
Under review as a conference paper at ICLR 2021

ADDING RECURRENCE TO PRETRAINED TRANSFORM-
ERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning a pretrained transformer for a downstream task has become a stan-
dard method in NLP in the last few years. While the results from these models
are impressive, applying them can be extremely computationally expensive, as is
pretraining new models with the latest architectures. We present a novel method
for applying pretrained transformer language models which lowers their memory
requirement both at training and inference time. An additional benefit is that our
method removes the fixed context size constraint that most transformer models
have, allowing for more flexible use. When applied to the GPT-2 language model,
we find that our method attains better perplexity than an unmodified GPT-2 model
on the PG-19 and WikiText-103 corpora, for a given amount of computation or
memory.

1 INTRODUCTION

Recent progress in NLP has been dominated by large pretrained transformer neural net-
works (Vaswani et al., 2017), such as BERT (Devlin et al., 2019), and GPT-2 (Radford et al., 2019).
However, these models have a memory footprint that is quadratic in input sequence length. Al-
though architectural innovations such as those of Kitaev et al. (2019) and Rae et al. (2019) mitigate
this and the issue of a predetermined maximum context size, large pretrained models applying these
techniques are not available at this time. Even if large pretrained models of this kind are released
in the future, they will likely not cover the wide range of domains that BERT-family models have
been published for. For example, there have been BERT-based models trained for other languages
such as French (Le et al., 2020; Martin et al., 2020), Italian (Polignano et al., 2019), and many other
languages (see Nozza et al. (2020) for an overview) as well as specific domains such as scientific
papers (Beltagy et al., 2019), biomedical papers (Lee et al., 2020), and health records (Rasmy et al.,
2020). Individuals working with these models may not have the resources to train new models from
scratch using the latest tricks, as the computation requirements for pretraining are extremely high.
As such, identifying ways that already existing models can be improved could be widely impactful.

Another drawback of this family of models is that they have an a priori fixed maximum context size
(typically 512 or 1024 tokens for the currently available pretrained models). A typical application
of pretrained language models is producing contextual embeddings for a document. If the document
is simply chunked into disjoint segments of 512 tokens, tokens at the boundary of a window will
have less contextual information than tokens in the center of a window. This can be mitigated by
striding the evaluation of the model, and only keeping the embedding for a token which has the
largest context—but this adds quite a bit of wasted computation.

In this paper, we propose a method for augmenting and fine-tuning pretrained transformer language
models to use context without directly attending to it. Our method simultaneously allows for in-
creasing the context size a transformer processes, while allowing a controllable trade-off between
computation and perplexity. We accomplish this by adding a small recurrence module that com-
putes a fixed size representation from the transformer hidden states in a window of text. Then, the
representation for that window is used during processing of the next window. Shrinking the window
size is then a way to reduce the memory footprint of the model, with less loss of performance than
would occur with a standard transformer. Our experiments add recurrence GPT-2 language mod-
els, and fine-tune them on the PG-19 (Rae et al., 2019) and WikiText-103 corpora (Merity et al.,
2016), and require only the same amount of memory used for standard fine-tuning of a pretrained

1



Under review as a conference paper at ICLR 2021

language model. We demonstrate improvements in perplexity compared to a baseline model using
the same amount of computation. Qualitative analysis shows that our recurrent module propagates
certain information from previous windows of text, which can facilitate handling of long-distance
dependencies with fixed-size input windows.

2 RELATED WORK

Many methods have been proposed to lower the memory footprint or computation time of trans-
former language models, or allow them to be used on larger contexts. The Transformer-XL (Dai
et al., 2019) allows a position within an attention window to attend to tokens from the previous
windows by introducing relative position embeddings. While that mechanism, like ours, allows in-
formation to flow between windows, existing BERT and GPT-2 models do not use relative position
embeddings, so training from scratch would be necessary to take advantage of this architecture. Ad-
ditionally, each layer in the Transformer-XL attends to the previous layer in the previous window,
so the maximum attention horizon is finite. Our recurrent method could theoretically pass informa-
tion across an arbitrary distance, although one would not expect it to exceed the Transformer-XL’s
horizon without a much larger scale of data than we experiment with.

We list here some other modifications of the transformer architecture, somewhat imprecisely group-
ing them for brevity. For a more detailed discussion, see Tay et al. (2020b). Child et al. (2019),
Qiu et al. (2019), Kitaev et al. (2019), Sukhbaatar et al. (2019), and Roy et al. (2020) introduce
sparsity to self-attention in various forms, reducing its memory cost. Rae et al. (2019) and Beltagy
et al. (2020)—dynamically and statically respectively—add extra tokens to attend to which allow
for global passing of information. Tay et al. (2020a) and Wu et al. (2019) replace dynamically com-
puted self-attention with cheaper alternatives. While the above methods all allow for a reduction
in computation, they also all require training from scratch. Our goal is to allow more efficient and
powerful use of the wide array of existing pre-trained models that cover many domains.

Cao et al. (2020) propose the DeFormer, which also modifies the execution of a pretrained trans-
former. However, unlike our method, they decompose a single window into multiple windows by re-
moving the attention interactions between these windows. This is largely orthogonal to our method,
as one could both decompose windows of text, and additionally use our method to allow information
to be passed between neighboring windows. Similarly, distilled versions of pre-trained models such
as DistilBERT (Sanh et al., 2019) provide more computational efficiency, but could be combined
with our method to apply them to longer contexts, or reduce the quadratic cost of self-attention.

Hao et al. (2019) apply pre-trained transformers recurrently for machine translation, but do so by
using an attention network to embed the document, applying a recurrent encoder to those embed-
dings, and using the recurrent encoder alongside a typical transformer encoder. This differs from
our method as we are fine-tuning language models, which are transformer decoders, and directly
modifying the transformer’s computation with a recurrent connection, rather than running an RNN
on top of embeddings produced by a transformer.

3 METHOD

The main idea of our method is to take a transformer that was pretrained in a fixed context size setting
and add recurrence at the level of T -token windows of text. For example, instead of executing the
model on one 1000 token window of text, we could instead execute our model with 10 windows of
100 tokens. The first window is processed by the transformer model as normal, but for subsequent
windows we add a supplementary embedding, which is generated using the hidden states from the
preceding window (see Figure 1). The recurrence module is extremely small compared to the size
of transformer language model, so the additional computation required is negligible.

3.1 ADDING RECURRENCE TO PRETRAINED TRANSFORMERS

Starting by defining terms, we will consider a pretrained transformer with L layers, a hidden state
size of k, and a maximum context size of T tokens. Let h(`)

i ∈ Rk be the output of the `-th layer of
the pretrained model, at position i. To produce a fixed-size representation of tokens t1, t2, . . . , tT ,

2



Under review as a conference paper at ICLR 2021

Pretrained
Transformer

z1

Pretrained
TransformerMLP

t1:T t(T+1):2T

P
(
t2:(T+1)

)
P
(
t(T+2):(2T+1)

)

Figure 1: Augmenting a pretrained trans-
former with a recurrence module, allowing
reduction of attention computation as well as
simpler processing of longer contexts.

h
(`ins−1)
1 h

(`ins−1)
2 h

(`ins−1)
T

...

h
(`ins)
1 h

(`ins)
2 h

(`ins)
T

...

h
(`ins+1)
1 h

(`ins+1)
2 h

(`ins+1)
T

...

hprev

Figure 2: hprev is added as an additional key
and value to one self-attention layer. Arrows
show which positions can pass information
to which other positions.

the embeddings produced by the pretrained transformer are mean-pooled as follows:

z1 =
1

T

T∑

i=1

L∑

`=1

w`h
(`)
i (1)

where w` are weights softmax-normalized from learned parameters α`:

w` =
eα`

L∑
j=1

eαj

The fixed-size representation, z1, is passed through a feedforward network to produce an embedding
hprev,1 which represents the tokens processed so far, t1:T . Next, instead of evaluating the pretrained
transformer without modification on positions T + 1 through 2T , hprev,1 is inserted at a single
layer (denoted `ins) of the pretrained model, as an additional embedding that may be used in the
computation of attention, as shown in Figure 2. To keep the number of embeddings per layer fixed,
this embedding is only used as a key and a value, but not a query, in the self-attention layer. That
is, for a window size of 300 tokens, there are 301 inputs to layer `ins, but still only 300 outputs. The
embeddings for positions T + 1 to 2T are then pooled in the same way as Equation 1 to produce
z2 and passed through the feedforward network, outputting hprev,2. hprev,2 is used to modify the
execution of the pretrained language model on tokens 2T + 1 through 3T , and so on. Because the
model is now being applied recurrently, it is trained end-to-end with backpropagation through time.

One could consider more complex recurrence modules, other methods for pooling the previous win-
dow’s embeddings, or for inserting hprev into the computation for the next window. We experimented
with modifications such as max pooling instead of mean pooling, inserting multiple embeddings into
the next window, inserting an embedding at all layers of the transformer for the next window, and
using fixed key attention as the pooling function. However during our preliminary experiments,
we were not successful in finding a significantly higher performing architecture than the one given
above, so it is the one we present results for.

3.2 GRADIENT CHECKPOINTING IN NETWORKS WITH BOTTLENECKS

While our method can reduce the quadratic cost of attention by splitting the input into windows, we
can also easily apply it to much longer contexts by use of gradient checkpointing (Chen et al., 2016).

Gradient checkpointing is a method for lowering the peak memory requirement of training large
neural networks. This is accomplished by storing only a subset of activations during the forward
pass, and recomputing forward from those cached states during the backwards pass. For example,
in a 100 layer feedforward network with uniformly wide layers, one could store the output of only
every 10th layer. Then, during the backward pass, in order to compute the gradients for the 95th
layer, one would re-compute layers 91 through 99 using the stored 90th layer activations. The overall
memory cost is reduced to

√
L at the cost of a single additional forward pass.

3



Under review as a conference paper at ICLR 2021

(a) Disjoint execution. Predic-
tions have context ranging be-
tween 1 and 3 tokens.

(b) Maximum overlap. All pre-
dictions except the first two have
maximal context.

(c) Intermediate degree of over-
lap. Except the first prediction,
all predictions attend to at least 2
tokens of context.

Figure 3: Varying degree of overlap while evaluating a transformer with a window size of 3. The
green (top) circles are outputs, and the blue (bottom) circles are inputs.

In a network with variable width, the memory reduction can be even larger. When gradient check-
pointing is applied to transformers, the outputs of each layer are usually stored (k × L× T values),
so that at most one set of self-attention activations is in memory at once. In the case of our recurrent
models, we have an even narrower bottleneck: the zi’s and hprev,i’s. Storing only these values means
that the maximum number of activations present in memory while training on sequences N tokens
in length isM +2kdNT e, whereM is the number of activations stored when training the transformer
on an individual window of length T . Because k is extremely small compared to M , our model can
be applied to very long contexts on any GPU on which the pretrained model can be fine-tuned.

4 REVISITING THE EVALUATION OF TRANSFORMER LANGUAGE MODELS

Before describing the empirical evaluation of our method, we discuss how transformer language
models are evaluated in related work. The standard way of measuring perplexity uses extra com-
putation in order to make as much context available for each token prediction. This yields low
perplexities, but does not reflect how practitioners use transformer language models in applications.
In this section, we describe the situation in detail and propose practical solutions that achieve rela-
tively low perplexities while being closer to how transformers are used in practice.

4.1 POTENTIAL MISALIGNMENT BETWEEN LM EVALUATION AND APPLICATION

Transformers are often described as having quadratic time complexity in comparison to RNNs which
have linear time complexity. However, this can be somewhat misleading when it comes to evaluation
of perplexity. Given a test set of length N , an RNN requires O(N) time to evaluate—but reaching
the best perplexity for a transformer requiresO(NT 2), where T is its maximum context size. (These
time complexities exclude hidden state size, number of layers, and batch size.) This much higher
time complexity is due to the fact that a transformer may be run with its full context size once for
each token in the test set, so that the maximum context is available for each prediction. Re-execution
of the whole model for each token is required for models with absolute position embeddings, since
hidden state reuse is only possible up to the maximum context size of the network. Note that it is
possible to achieve smaller wall-clock time by splitting evaluation of a test set over multiple GPUs,
but this is not applicable to the generation setting where outputs depend on prior ones.

To illustrate why re-computation is necessary, consider executing GPT-2 (which has 1024 position
embeddings) on a test set. Each of the first 1024 tokens of a test set will have been passed into the
network using a distinct position embedding. Having exhausted the position embeddings, one option
is to start again with the 1025th token being treated as position 1—we will refer to this as disjoint
execution, illustrated in Figure 3a. The issue with disjoint execution is that it requires predicting the
tokens at the beginning of a window from a very small amount of context.

The alternative, which is used for standard test set evaluation, is overlapped execution, as shown in
Figure 3b. The position embeddings are advanced by one position for each prediction, meaning that
T − 1 tokens are repeated between consecutive evaluations of the transformer, requiring much more
computation. The benefit of this method is that it allows a model with T position embeddings to
have T tokens of context for each prediction, as opposed to a variable amount between 1 and T .

Stepping a transformer decoder forward one token at a time measures the best that such a model
could perform, but it reflects a generative story that does not align with how the models may be used

4



Under review as a conference paper at ICLR 2021

in practice. A perplexity that only measures the ability of GPT-2 to generate the 1024th token given
a context of 1023 tokens is not necessarily indicative of the model’s performance when generating
from a smaller context. For example, the popular website Talk To Transformer1 generates samples
from GPT-2, but only provides 150 tokens of output. The evaluation of GPT-2 by stepping forward
one token at a time provides little information about the quality of such generations.

An example where the discrepancy is length instead of brevity is the GPT backed text adventure
game AI Dungeon.2 In this setting, the number of tokens can easily reach and exceed the full context
size GPT-2 was trained on. Using overlapped execution as described above, generating each token
would be 1024 times slower than with disjoint execution, so perplexity calculated by overlapped
execution does not match this use case either.

While lower perplexity seems to correspond to better generation with shorter contexts in practice
(perhaps due to parameter sharing between all sequence positions), there is no reason that this need
be the case in principle. To demonstrate an extreme case of the concern being discussed, let F be a
transformer model with vocabulary V , which uses the previous 1023 tokens as context, and consider
the following generative story for generating token ti:

ti ∼
{

Uniform(V ) if i ≤ 1023

F (t(i−1023):(i−1)) otherwise

Clearly the above generative model would not be of any practical use for generation or otherwise.
However, because perplexity is calculated per token, increasing the size of the test set will lead to a
measured perplexity that approaches that of a standard evaluation of the model F . This example is
not representative of the models that are trained in practice, as even generations much shorter than
the maximum context size from a GPT-2 model are quite impressive. However, it does demonstrate
that the criteria that we use to compare models, or to select the best model during early stopping,
place very high weight on the ability of the model to produce text given a full context, and a poten-
tially vanishingly small amount on its ability to generate text using shorter contexts.

4.2 VARYING OVERLAP FOR EVALUATION

As we are interested in increasing computational efficiency at evaluation time for pretrained models,
we investigate their performance using overlapped execution, but with a reduced degree of overlap
between windows. Varying the overlap lets us investigate the connection between degree of overlap
and perplexity. The overlap used in evaluation will be defined to be the number of tokens from each
input window that are repeated in the next window (see Figure 3). For example, consider a window
size T = 10 and an overlap of 3. The windows that the transformer will be executed are then t1:10,
t8:17, t15:24, . . . , t1+7n:10+7nwhere n indexes the window. These input windows are used to predict
the spans of tokens t2:11, t12:18, t19:25, . . . , t5+7n:11+7n. Figure 3c illustrates an intermediate overlap
setting with T = 3 and an overlap of 1. The perplexity-minimizing evaluation setting is then the
extreme with an overlap T − 1, and an overlap of 0 corresponds to disjoint execution.

While a transformer can be evaluated with any degree of overlap, our augmentation method produces
the embedding hprev, which is used during training to help predict the first token of a window. If we
change the overlap at test time, the alignment of the text represented by hprev and the current window
will be different than the model was trained for, and so performance will degrade. To address this,
we use the same overlap that will be used at test time during training for the recurrent models.3

5 EXPERIMENTS

We now present experiments comparing our proposed technique to the default usage of transformer
language models. We describe experiments on the WikiText-103 corpus and a subset of the PG-19

1https://talktotransformer.com/
2https://aidungeon.io/. Note that AIDungeon now uses the OpenAI GPT-3 API, but a similar project without

OpenAI API access would still have to use GPT-2.
3Evaluating recurrent models trained with no overlap between adjacent windows on a different level of over-

lap is possible by changing which positions are pooled. We found that it led to a slight increase in perplexity,
so we report results with training and evaluation matching.

5



Under review as a conference paper at ICLR 2021

corpus, using the GPT-2-small language model as the pretrained transformer in our models. We also
provide proof-of-concept experiments using RoBERTa (Liu et al., 2019) on the HotpotQA (Yang
et al., 2018) question answering dataset, indicating that our method can improve encoder perfor-
mance for tasks other than language modeling. All of our experiments are based on the Hugging
Face Transformers library (Wolf et al., 2019).

WikiText-103 is a standard language modeling corpus composed of approximately 29,000 docu-
ments from English Wikipedia, containing 103 million words. We use the WikiText-103 “raw”
corpus, which does not have rare words replaced by “UNK”. While GPT-2 uses BPE tokenization,
we compute perplexity using the number of words rather than the number of BPE tokens for clarity.

Although WikiText-103 does test long term dependencies, many of the documents are still shorter
than the context size of the models we test. Therefore, we also use PG-19, which consists of books
from the Project Gutenberg corpus. The average length of a WikiText-103 document is 3.6K words,
while PG-19 documents (i.e. books) average 69K words, which far exceeds the context size of the
models we test. However, the full PG-19 dataset is over 20 times larger than WikiText-103, so we
use only a subset of it for training due to computational constraints. Specifically, we use only the first
(alphabetically by filename) 1250 books of the PG-19 corpus, and use only the first 15000 tokens of
each of the books in the validation set for early stopping. We make no modifications to the test set.

In all our experiments we use the HuggingFace implementation of the pretrained GPT-2 small model
(12 layers, 768-dimensional hidden state). For both the recurrent and baseline models, the GPT-2
model was fine-tuned, not left frozen. We selected learning rates for both our models and the baseline
separately, by evaluating on WikiText-103 for the same set of candidate learning rates. We used the
same learning rates for the PG-19 experiments without further hyperparameter search. We fine-tune
all models for 2 epochs, measuring the validation loss every 2 million tokens. All models were
trained with Adam (Kingma & Ba, 2014), warming the learning rate up linearly from 0 to its final
value over 100 steps. The feedforward network used to produce hprev,i from window i− 1 consisted
of 3 hidden layers with dimension 200. We fixed `ins to be 2.4

Recall from Section 4 that we are interested in evaluating the models in a setting similar to how
they would be used in practice. To that end, we report separate perplexities for different degrees
of overlap between adjacent windows of text, as described in Section 4.2. For our models, we train
with the same overlap that we test with, as unlike the baseline models, they cannot be trained with no
overlap between adjacent windows and then tested with an overlap. This is because the embedding
of the previous window of text is expected to represent all tokens up until the first token of the
current window, but with an overlap of 30 for example, that embedding would be representing all
tokens up until the 30th token of the current window.

5.1 RESULTS

We first show that with the same amount of fine-tuning, our method achieves lower perplexity than
a baseline GPT-2 model when evaluated using the same window size and degree of overlap between
adjacent windows of text.

It is important to emphasize that the perplexities we report are based on pretrained models, and so
should not be compared to models trained from scratch on these datasets. The GPT-2 models were
trained on text from a web crawl from which all Wikipedia documents are removed, but this still
leaves open the possibility of quotes from Wikipedia having been encountered, or text from PG-19.

Table 1 shows the perplexity of our models and the non-recurrent GPT-2 models on the WikiText-103
dataset. The models compared here all use windows of 300 tokens, with varying degrees of over-
lap. The baseline models can only access information from the previous window of text through the
overlapping tokens, while the recurrent models have a fixed size representation of the longer context.
Our addition of recurrence increases the performance of the GPT-2 models in this setting, but by a
relatively small amount. Increasing the overlap between each window of text decreases the perplex-
ities of the baseline model as expected, but also decreases the perplexity of the recurrent models.5

4During our preliminary experiments, we found that setting `ins to be one of the final layer in the network
gave slightly worse results, but we did not re-tune this hyperparameter for PG-19 or our final architecture.

5We did not attempt to train recurrent models with extremely high overlaps, as that would greatly increase
the required training time.

6



Under review as a conference paper at ICLR 2021

Table 1: Results on WikiText-103

Model Overlap Validation
Perplexity

Test Perplexity FLOPs/token

GPT-2 (small), 300
token window

0 29.00 30.47 1.75× 108

5 27.99 29.36 1.78× 108

10 27.58 28.88 1.81× 108

30 26.72 27.96 1.94× 108

50 26.17 27.31 2.10× 108

Recurrent, 20
windows of 300
tokens (Ours)

0 27.70 29.01 1.75× 108

5 26.88 28.12 1.78× 108

10 26.51 27.77 1.81× 108

30 25.90 27.12 1.94× 108

50 25.53 26.73 2.10× 108

Table 2: Results on PG-19

Model Overlap Validation
Perplexity

Test Perplexity FLOPs/token

GPT-2 (small), 300
token window

0 172.25 147.71 1.75× 108

5 165.93 142.30 1.78× 108

10 162.66 139.49 1.81× 108

30 156.21 134.30 1.94× 108

50 152.64 131.25 2.10× 108

75 149.54 128.46 2.33× 108

100 147.05 126.51 2.62× 108

150 143.62 123.53 3.50× 108

200 141.14 121.40 5.25× 108

Recurrent, 20
windows of 300
tokens (Ours)

0 155.27 133.02 1.75× 108

5 150.00 128.78 1.78× 108

10 147.53 127.05 1.81× 108

30 142.35 122.22 1.94× 108

50 140.10 119.93 2.10× 108

This indicates that there is room to increase the capacity of the recurrence mechanism (potentially
requiring more training data), as an ideal recurrence mechanism would render these overlapping
tokens redundant. On the other hand, some useful information beyond what is contained in the local
context is being propagated, as otherwise the baseline model should catch up in perplexity at higher
overlaps. To investigate this further, we also experiment with the PG-19 dataset.

The results for the PG-19 experiments are shown in Table 2. While we find only small increases
in performances on the WikiText-103 dataset, we see larger improvements on PG-19, confirming
our prediction that the gains would be larger on a dataset that has a larger context available for each
prediction on average. We find that adding our recurrence module leads to a model that gives as
good a perplexity with no overlap between adjacent windows as an unmodified model does when
evaluated with an overlap of 30 out of 300 tokens in each window. Training the recurrent model
with a 5 token overlap gives perplexity lower than the baseline perplexity with an overlap of 50 or
even 75. In terms of FLOPs, adding our recurrence module and overlapping adjacent windows of
tokens by 50 is less than half as costly as using a non-recurrent model with an overlap of 200.

5.2 EFFECT OF WINDOW SIZE

As one of our motivations is to retain performance while decreasing compute requirements, we
experiment with varying the window size used by our model and an unmodified GPT-2 model. At
smaller window sizes the recurrent model has access to much more information than GPT-2, which
can only attend to the current window. Because of this, we expect our augmentation to cause the

7



Under review as a conference paper at ICLR 2021

Figure 4: Effect of window size on perfor-
mance on PG-19 validation set.

Figure 5: Relationship between FLOPs and
perplexity. Curves range over window sizes
from 200 to 600.

performance to fall off less rapidly with decreasing window size. The results, shown in Figure 4,
confirm this prediction, as the performance gap widens with smaller windows. Figure 5 contains
the same points (and additional baseline curves for various overlaps), but in terms of FLOPs rather
than window size. All of the results of the recurrent models lie on the Pareto frontier, meaning that
to improve perplexity or computational cost, one must worsen the other. The non-monotonicity of
the overlap 30 and 50 curves is due to the fact that at smaller window sizes, an overlap represents a
higher fraction of the computation being used for positions that predictions were already produced
for. Also note that while the baseline with overlap 50 curve has the lowest absolute perplexity in
Figure 5, the recurrent models trained with overlaps shown in Table 2 still perform better.

5.3 WHAT INFORMATION IS BEING PROPAGATED BETWEEN WINDOWS?

We now discuss some features that our models display in greedily decoded continuations from con-
texts in the PG-19 validation set, which illustrate types of information that the recurrent module
passes (or fails to pass) forward. Samples are included in Tables 4 and 5 in the appendix.

The most common phenomenon we identify in these samples is successful propagation of topical
information between adjacent windows. For instance, we see in Table 4 a context discussing ge-
ography and rivers, followed by a continuation maintaining the same topic, and we see a context
discussing the topic of payment, leading to a mention of money in the continuation. We give more
rigorous quantitative support of this claim in Section 5.3.1. Beyond passing of topical information,
another success case in the generations is passing of certain information about characters between
windows—in Table 5 we see that pronouns in the continuations often reflect characters mentioned
in the context, and we see an example in which the continuation includes “the two women”, after a
context mentioning “the aunts”. This behavior was likely learned due to the fact that PG-19 consists
of narratives, so correctly passing character information between windows is quite beneficial.

However, these examples also contain discontinuities between the context and the continuation, in
terms of local syntax or facts of the narrative. We see that some sentences are not completed in the
expected form (for instance, “There are lots of ways of being” is continued with a new quote rather
than completion of the thought), and new characters are sometimes invented rather than continuing
to reference those described in the context. One sample has a closing quotation mark, predicted from
the previous window, being interpreted as an opening quotation mark. These are the types of issues
that an overlap between adjacent windows easily addresses—a fact that likely accounts in part for
the gap between the recurrent model with disjoint and overlapped execution in Table 2. A higher
capacity recurrent module might fix these issues in exchange for additional computation.

5.3.1 QUANTITATIVE EVALUATION OF TOPIC PROPAGATION

To verify the trend we identified of topic propagation in continuations generated by our recurrent
models, we fit an LDA topic model (Blei et al., 2003) with 20 topics to 5000 books from the PG-19

8



Under review as a conference paper at ICLR 2021

Table 3: Results on HotpotQA distractor setting development set, using 30,000 randomly selected
training examples. Scores are answer only (no supporting fact prediction).

Method F1 Exact Match

Disjoint RoBERTa 48.17 43.55
Recurrent RoBERTa 49.12 44.55

training set. Given a bag of words, this topic model will assign a distribution over topics, so we can
use a statistical distance as a metric for the similarity between the topics of two segments of text.

We sampled 8000 contexts of 300 tokens from the PG-19 validation set, and computed argmax
decoded continuations of 30 tokens from the same models used to generate Table 46. We then
computed the Jensen-Shannon divergence (JSD) between the topic distribution of each context and
the corresponding continuations. This procedure finds that continuations from the recurrent model
have an average topic JSD of 0.5331, while those from the baseline model have an average topic
JSD of 0.5951. For a given context, the continuation given by the recurrent model is likely to have
a lower JSD at least 60% of the time (p < 0.00001).

5.4 QUESTION ANSWERING EXPERIMENTS

To investigate whether our recurrence method would be helpful in tasks other than language model-
ing, we ran a small experiment on the HotpotQA extractive question answering task, in the distractor
setting. In this setting, 10 paragraphs of context are given which must be used to answer the given
question. HotpotQA’s inputs can greatly exceed one 512 token window in length, making it an ideal
test of our method. The questions are a mix of span-based and yes/no questions. In order to be able
to reduce training time, we use a subset of 30000 randomly sampled questions from the training set.

We use the RoBERTa-base model for both the baseline and the recurrently augmented model. To
evaluate whether recurrence improves encoder performance on this task, we directly finetune the
models to predict answer span start and end tokens, as done for question answering by Devlin et al.
(2019), and max pool the embedding of the [CLS] token across windows and use the result for
three way classification between “span”, “yes”, and “no”. Because the non-recurrent baseline cannot
process an entire example at once, we begin each input window with the question, separated from
the text by a [SEP] token. We use this input format for both the baseline and recurrent models.

For both models, we use a learning rate of 2e-5 and train for 4 epochs. For the recurrent model,
we mean-pool the final RoBERTa layer for the previous window, and use a 2 layer, 768-dimensional
hidden layer MLP to produce an embedding which is inserted at the second layer of the next window
(i.e., `ins = 2).

Table 3 shows F1 and exact match scores for both models on the HotpotQA dev set. Adding the
recurrence module improves both scores by about 1 point, indicating that our method of propagating
information between windows can be beneficial for question answering in addition to language
modeling. It should be noted that these values are not directly comparable to scores on the HotpotQA
leaderboard, as we only used a subset of the training set, in addition to evaluating on the dev set rather
than the private test set.7 Nonetheless, we find these initial experiments to be highly promising,
especially given the lack of hyperparameter tuning.

6 CONCLUSION AND FUTURE WORK

We showed that augmenting a pretrained language model with a recurrence module during fine-
tuning can allow increased performance given a fixed computational budget. Our method can be
similarly applied to improve the computational efficiency of pretrained models that already exist for
many languages and domains, as well as for future models that will be developed. It can also allow
their application to longer contexts than they were trained for, increasing their flexibility.

6The baseline receives one token of context to begin generating from
7These initial results thus represent preliminary experiments that completed prior to the revision deadline;

the next version of the paper will have more thorough results including when training on the entire training set.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A pretrained language model for scientific text.
In EMNLP/IJCNLP, 2019.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv, abs/2004.05150, 2020.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022, 2003.

Qingqing Cao, Harsh Trivedi, Aruna Balasubramanian, and Niranjan Balasubramanian. DeFormer:
Decomposing pre-trained transformers for faster question answering. arXiv, abs/2005.00697,
2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv, abs/1604.06174, 2016.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1285. URL
https://www.aclweb.org/anthology/P19-1285.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//www.aclweb.org/anthology/N19-1423.

Jie Hao, Xing Wang, Baosong Yang, Longyue Wang, Jinfeng Zhang, and Zhaopeng Tu. Modeling
recurrence for transformer. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 1198–1207, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

Hang Le, Loic Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexan-
dre Allauzen, Benoı̂t Crabbé, Laurent Besacier, and Didier Schwab. FlauBERT: Unsupervised
language model pre-training for French. In LREC, 2020.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jae-
woo Kang. BioBERT: a pre-trained biomedical language representation model for biomedical
text mining. Bioinformatics, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, ’Eric
de la Clergerie, Djamé Seddah, and Benoı̂t Sagot. CamemBERT: a tasty French language model.
arXiv, abs/1911.03894, 2020.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

10

https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423


Under review as a conference paper at ICLR 2021

Debora Nozza, Federico Bianchi, and Dirk Hovy. What the [MASK]? making sense of language-
specific BERT models. arXiv, abs/2003.02912, 2020.

Marco Polignano, Pierpaolo Basile, Marco Degemmis, Giovanni Semeraro, and Valerio Basile. Al-
BERTo: Italian BERT language understanding model for NLP challenging tasks based on tweets.
In CLiC-it, 2019.

Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise
self-attention for long document understanding. arXiv preprint arXiv:1911.02972, 2019.

Alec Radford, Jeffrey Wu, Dario Amodei, Daniela Amodei, Jack Clark, Miles Brundage, and
Ilya Sutskever. Better language models and their implications. OpenAI Blog https://openai.
com/blog/better-language-models, 2019.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and Degui Zhi. Med-BERT: pre-trained contextual-
ized embeddings on large-scale structured electronic health records for disease prediction. arXiv,
abs/2005.12833, 2020.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. arXiv preprint arXiv:2003.05997, 2020.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 331–335, Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1032. URL https://www.aclweb.org/anthology/
P19-1032.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models. arXiv, abs/2005.00743, 2020a.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv
preprint arXiv:2009.06732, 2020b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv, pp. arXiv–1910, 2019.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. arXiv, abs/1901.10430, 2019.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2018.

A APPENDIX

Here we provide some example continuations for contexts from the PG-19 validation set. The sam-
ples were generated with greedy argmax decoding, which leads to a large amount of repetition,
however we were more concerned with reducing variance and identifying the most likely continua-
tion than optimizing for sample quality.

11

https://arxiv.org/abs/1911.05507
https://www.aclweb.org/anthology/P19-1032
https://www.aclweb.org/anthology/P19-1032


Under review as a conference paper at ICLR 2021

Table 4: Continuations of PG-19 validation set passages using recurrent model (T = 300, disjoint)
which display approximate continuation of topic. Contexts are shortened for space, 300 tokens of
context were used for each.

Context Continuation Topic

. . . It drains a territory of 300,000 square miles,
and, traced back to the rise of its principal
source, is 2,000 miles long. At two points, Nee-
dles and Yuma on the California boundary, it is
crossed by a railroad. Elsewhere its course lies
far from Caucasian settlements and far from the
routes of common travel, in the heart of a vast
region fenced on the one hand by arid plains
or deep forests and on the other by formidable
mountains

. The first of the two great rivers, the
Mississippi, was the first to be navi-
gated by the Americans, and the first
to be navigated by the Indians. The
other was the first to be navigated
by the Americans, and the first to be
navigated by the Indians. The first
of the two great streams, the Missis-
sippi, was navigable by the Indians,
and the first by the English. . .

Rivers

. . . “Mr. Hammerby will have to wait for his
money.” “Will he?” “I don’t see what else he
can do. But, aside from that, three dollars and a
half won’t keep us a month. I’ll have to

get the money, and he’ll be glad to
see you again.” “I’m glad to see you
again, Tom. I’m glad to see you
again. I’m glad to see you again. I’m
glad to see you again. I’m glad to see
you again

Money

. . . Long’s his sister, Thankful, lived, we
couldn’t say nothing, of course. If she wanted
to slave and work so’s her brother could live in
idleness and sloth, why, that was her business.
There ain’t any law against a body’s making a
fool of herself, more’s the pity. But she’s been
dead a year, and he’s done nothing since but live
on those that’ll trust him, and ask help from the
town. He ain’t sick–except sick of work. [. . . ]
to-mor

rer and his wife, and the whole fam-
ily. He was a good man, and he was a
good man. He was a good man, and
he was a good man. He was a good
man, and he was a good man. He was
a good man, and he was a good man.
He

Family,
Descrip-
tion of a
man

. . . and any form of thought or any institution
tending to suppress education or destroy intel-
ligence strikes at the very essence of the gov-
ernment, and constitutes a treason which no law
can meet, and for which no punishment is ade-
quate. Education, then, as universally diffused
as the elements of God, is the life-blood of our
body politic. The intelligence of the people is
the one great fact of our civilization and our
prosperity,–it

is the only way to preserve the peace
of the world. The only way to pre-
serve the peace of the world is to pre-
serve the liberty of the people. The
first step to be taken is to abolish
the power of the government. The
first step to be taken is to abolish the
power of the people. The first step to
. . .

Government

12



Under review as a conference paper at ICLR 2021

Table 5: Continuations of PG-19 validation set passages using recurrent model (T = 300, disjoint)
which display continuation of correct pronouns or references to characters from context. Contexts
are left-truncated, 300 tokens of context were given for each continuation.

Context Continuation

. . . Elaine, however, did not gratify their hopes; she re-
ferred to the ball with the detachment she would have
shown in describing a drawing-room show of cottage in-
dustries. It was not difficult to discern in her descrip-
tion of the affair the confession that she had been slightly
bored. From Courtenay, later in the day, the aunts re-
ceived a much livelier impression of

the house, and the two women were
standing in the doorway. “I am afraid I
have not been very well,” she said, as
she looked at the two men. “I have
been very much worried about you,
and I have been very much worried
about you. I have been very much wor-
ried about you, and I have been very
much worried about you. I have been
very much pleased with you, and I have
been very much

. . . “Oh, he’s not at all a bookworm,” said Suzette
quickly, “though he’s tremendously well-read. He’s quite
the man of action.” “Does he hunt?” asked Elaine.
“No, he doesn’t get much time or opportunity for rid-
ing.” “What a pity,” commented Elaine; “I don’t think I
could marry a man who wasn

” “I don’t know,” said the Sergeant,
“but I have heard that you are a very
good friend.” “I am not,” said the
girl, “I am not.” “I am not,” said the
Sergeant, “I am not.” “I am not,” said
the girl, “I am not.

. . . Gregg was still the soft-stepping scoundrel who in-
vited the toe of honesty, and Mornway, as he entered, was
conscious of a sharp revulsion of feeling. But it was im-
possible to evade the interview, and he sat silent while
the man stated his case. Mrs. Mornway had represented
the stenographer as being in desperate straits, and ready
to accept any job that could be found, but though his ap-
pearance might have seemed to corroborate her account,
he evidently took a less hopeless view of his case, and the
Governor found with surprise that he had fixed his eye on
a clerkship

that he had been in the habit of doing,
and that he had been in the habit of
doing. “I’m not going to be a fool,”
he said, “and I’m not going to be a
fool,. . .

. . . Many transactions too, from a desire to avoid worry-
ing me, were carried through without my knowledge, al-
though formerly, as a matter of course, they would have
been submitted to me. Strangers, when they called, asked
to see Johnson or Marsh. I directed the messenger that
they were to be shown into my room if I was disengaged.
This was a failure, for, when they came, I was obliged
to ask for help, which was not given very generously.
Sometimes I sent for the papers, but it took a long time
to read them, and my visitors became impatient. Dur-
ing one of these interviews, I remember that I was sorely
perplexed, but I had managed to

get the money, and I was glad to get it.
The next day I went to the Court of the
Emperor, and found him standing in
the courtyard of the Palace, with a large
number of soldiers. He was dressed in
a very dirty uniform, and wore a very
dirty hat. He was dressed in a very
dirty uniform, and wore a very dirty
hat. He was dressed in a very dirty hat,
and wore a very dirty hat

. . . I know at which crossings to look out–I know what
I’m going to see in the shop-windows. It saves a lot of
wear and tear to know what’s coming. For a good many
years I never did know, from one minute to another, and
now I like to think that everything’s cut-and-dried, and
nothing unexpected can jump out at me like a tramp from
a ditch.” He paused calmly to knock the ashes from his
cigar, and Garnett said with a smile: “Doesn’t such a plan
of life cut off nearly all the possibilities?” The old gen-
tleman made a contemptuous motion. “Possibilities of
what? Of being multifariously miserable? There are lots
of ways of being

”I’m afraid I’m not going to be able to
do that,” he said. “I’m going to have to
go to the station. I’m going to have to
go to the station. I want to see the sta-
tion. I want to see the station. I want
to see the station. I want to see the sta-
tion. I want to see the station. I want
to see the station. I want to see the sta-
tion. I want to see

13


	Introduction
	Related Work
	Method
	Adding recurrence to pretrained transformers
	Gradient checkpointing in networks with bottlenecks

	Revisiting the evaluation of transformer language models
	Potential misalignment between LM evaluation and application
	Varying overlap for evaluation

	Experiments
	Results
	Effect of window size
	What information is being propagated between windows?
	Quantitative evaluation of topic propagation

	Question answering experiments

	Conclusion and Future work
	Appendix

