
UPS: Unified Projection Sharing for Lightweight
Single-Image Super-resolution and Beyond

Kun Zhou1,2∗, Xinyu Lin1,2†, Zhonghang Liu3, Xiaoguang Han1‡, Jiangbo Lu2‡
1SSE, CUHK-Shenzhen, 2SmartMore Corporation 3SMU, Singapore

hanxiaoguang@cuhk.edu.cn, jiangbo.lu@gmail.com

Abstract

To date, Transformer-based frameworks have demonstrated impressive results
in single-image super-resolution (SISR). However, under practical lightweight
scenarios, the complex interaction of deep image feature extraction and similarity
modeling limits the performance of these methods, since they require simultaneous
layer-specific optimization of both two tasks. In this work, we introduce a novel
Unified Projection Sharing (UPS) algorithm to decouple the feature extraction and
similarity modeling. To achieve this, we establish a unified projection space defined
by a learnable projection matrix, for similarity calculation across all self-attention
layers. As a result, deep image feature extraction remains a per-layer optimization
manner, while similarity modeling is carried out by projecting these image features
onto the shared projection space. Extensive experiments demonstrate that our
proposed UPS achieves state-of-the-art performance relative to leading lightweight
SISR methods, as verified by various popular benchmarks. Moreover, our unified
optimized projection space exhibits encouraging robustness performance for unseen
data (degraded and depth images). Finally, UPS also demonstrates promising
results across various image restoration tasks, including real-world and classic
SISR, image denoising, and image deblocking.

1 Introduction

Single-image super-resolution is a fundamental task in computer vision, aiming to enhance the
resolution and quality of a low-resolution image. Recently, Transformer-based methods [1–6], espe-
cially, SwinIR [7], combines the benefits of window-based self-attention and convolutional feature
extraction, thus achieving effective similarity modeling and feature extraction. It yields promising
outcomes, reducing computational demand compared to global/non-local attention mechanisms.

However, the coupled optimization in existing Transformer-based methods may face two challenges.
First, in a lightweight configuration characterized by a very limited number of learnable parameters,
performing layer-specific optimization for both image feature extraction and similarity modeling
remains challenging. Second, such a tightly coupled optimization scheme (image feature extraction
and projection similarity are synchronously updating in each layer during the training phase) may
suffer from co-adaptation issue [8, 9], potentially leading to inferior results.

Interestingly, we observe that projection spaces (layer) in trained SwinIR-light exhibit substantial
layer-to-layer (CKA [10]) similarities4. Fig. a.(1-3) below shows over 0.95 (0.99, 0.95, 0.96) for
∗Project leader
†Co-first author
‡Corresponding author
4The dimensions remain consistent across all projection layers in SwinIR-light. Thus we can directly evaluate

the pair-wise similarity scores.
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Figure 1: (a) We observe that the SwinIR-light (termed as Base) models exhibit significant similarities
(CKA [10]) in projection layers. (b) Comparison between our proposed UPS and SOTA lightweight
SISR models on BSD100 [11] for ×2 setting. A bigger circle size means a larger number of param-
eters. While being the most computationally and parameter-efficient, UPS-S (a more lightweight
version of our method) demonstrates highly competitive results compared to SOTA methods.

×{2, 3, 4}) (projection layer) pairs get over 0.9 scores (ranging from 0 to 1)5. This experiment
suggests that all the projection layers are highly similar.

To mitigate the two problems, we are motivated by the observation and explore a novel Unified
Projection Sharing (UPS) technique for lightweight SISR. In particular, UPS decouples the deep
image feature representation and similarity learning: it performs the layer-specific image feature
extraction while calculating the self-similarity in a unified projection space. In other words, the
similarity modeling is optimized in a layer-invariant manner, effectively separating the learning of
both two tasks. More specifically, UPS accomplishes self-similarity modeling with the following three
steps: (i) UPS defines a unified projection space by a learnable matrix; (ii) for each self-attention layer,
it projects deep image features onto the unified projection space; (iii) it calculates the attention map
using the Cosine similarity metric in the projection space and performs attention-based aggregation.

Our proposed UPS consistently demonstrates superior performance compared to existing approaches
across all testing benchmarks. Notably, our method outperforms the second-best model by more
than 0.33dB on the Manga109 dataset for the ×2 settings. Furthermore, our model exhibits sig-
nificant improvement over our baseline model, SwinIR-light [7], achieving enhancements of up to
0.50dB, 0.55dB, 0.47dB on the Manga109 dataset for the ×2,×3,×4 settings, while utilizing fewer
parameters. Our contributions are summarized as follows:

−We propose UPS, an effective decoupled SISR optimization framework, to address the challenge
of simultaneous layer-specific feature extraction and similarity modeling for lightweight SISR.

− UPS simplifies the similarity optimization process by learning a layer-invariant projection space,
leading to effective aggregation (activating more local/non-local pixels as shown in Fig. 3) and
improved performance, even with reduced model capacity (see Fig. 1) and less training samples (see
the data efficiency analysis in Sec. A.2).

− Extensive robustness analysis in Sec. 5.4, 5.5, A.3, A.4, have confirmed the good generalization
ability of our proposed UPS for unseen data, such as noisy image and depth map SR.

2 Related Works

CNN-based SISR. Due to their low complexity and helpful feature extraction abilities, CNNs have
been widely used for SISR task. SRCNN [12] pioneered the use of deep convolutional neural network
(CNN) architectures specifically designed for single image super-resolution (SISR). SRCNN consists
of only three layers: patch extraction, non-linear mapping, and reconstruction. It has demonstrated
competitive performance compared to traditional non-deep methods, inspiring the development of
numerous lightweight CNN approaches in the SISR field. ESPCN [13] introduced a compact network

5The numerical values on the axes indicate the layer indices.
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architecture that employs sub-pixel convolutional layers to upscale low-resolution image features.
In contrast, LapSRN [14] utilizes image structure priors across different pyramid representations,
resulting in improved performance while minimizing computational overhead. Taking inspiration
from dictionary-learning models [15–17], LAPAR [18] learns linear coefficients associated with
pre-defined basic up-sampling kernels to produce an optimal pixel-specific kernel, achieving superior
super-resolution results. LatticeNet [19] designs a parameter-efficient convolutional lattice block to
extract hierarchical contextual features. Despite their computational efficiency, CNN-based models
are limited in terms of long-term aggregation due to content-invariant similarity optimization.

Transformer-based SISR. Recently, Transformer-based techniques [20–25] have achieved remark-
able outcomes in SISR but still suffer from high complexity. The computational cost of non-local
self-similarity modeling increases quadratically with the size of the image. Inspired by the success
of Swin Transformer [26], numerous window-based Transformer frameworks emerged to address
the efficiency of SISR. For example, SwinIR [7] introduces a residual window-based transformer
block (RSTB) for image feature extraction and similarity-based aggregation, outperforming previous
CNN-based and Transformer-based approaches. DLGSA-l [27] proposes a global sparse attention
technique to enhance the aggregation of relevant tokens. NGswin [28] incorporates the N-Gram
context to attain a larger receptive field, activating more neighboring pixels for effective aggregation.
However, when it comes to lightweight setups, the optimization of coupled feature extraction and
similarity calculation is limited, resulting in inferior performance.

Efficient Transformers. On the other hand, some advanced transformers have been proposed to
reduce the computational complexity, enhancing inference or training efficiency. ShareFormer [29]
presents a local similarity map-sharing scheme between neighboring attention layers for lower
latency. Thus, ShareFormer shares a static similarity map for neighboring attention layers while UPS
calculates dynamic similarity maps with layer-refined features in a shared projection space.

Skip-Attention [30] cuts off some intermediate attention layers to improve efficiency and performance
for high-level tasks. LaViT [31] proposes a residual-based attention downsampling that fuses the
initial calculated attention scores to guide the aggregation of the following layers, resulting in faster
efficiency and improved classification accuracy.

Therefore, Skip-Attention and LaViT follow the existing coupled optimization scheme (reduce some
attention calculations), and UPS proposes a decoupled learning strategy to enhance performance. We
will cite the insightful studies and add this discussion to our revised paper.

3 Understanding Swin Transformer

Preliminaries. Swin Transformer [26] proposes an effective self-attention mechanism, achieving
long-range information capture at a lower computation complexity. Inspired by Swin Transformer,
several subsequent methods [7, 32, 28] dedicated to solving lightweight SISR have emerged, consis-
tently enhancing the quality of super-resolved images. Fig. 2(a) illustrates the general framework
architecture of the Swin Transformer-based SISR method. It consists of three primary components:
a shallow head module, a deep image feature extraction and aggregation (FEA) module, and a tail
reconstruction module. The head module is tasked with converting the input low-resolution RGB
image into a high-dimensional feature space. The FEA module, the key role in the whole architecture,
is composed of multiple (N ) Swin Transformer layers (STLs). Each STL has two main objectives: (i)
extracting image features and (ii) modeling similarities using a learnable projection space. The former
focuses on capturing essential image features, while the latter employs window-based self-attention
to facilitate spatially adaptive aggregation. Notably, similarity modeling optimizes a projection
space to obtain pixel-wise correlations, which is achieved by projecting image features into the
learnable projection space and calculating similarity scores. Finally, the tail module generates the
final high-resolution output image, completing the SISR process. In the subsequent section, we will
delve into the details of the STL, with a particular emphasis on deep feature extraction and similarity
modeling aspects.

3.1 Decomposing Swin Transformer Layer

Efficient deep feature extraction and similarity modeling are accomplished by the Swin Transformer
Layer (STL), the fundamental unit within the FEA module of the Swin Transformer. Illustrated in
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Figure 2: Overview of Transformer-based architecture for lightweight SISR. There are three main
components: (i) a head shallow feature extraction module, (ii) a deep feature extraction and aggre-
gation (FEA) module consisting of N Swin Transformer layers (STL1,· · · , STLN ), and (iii) a tail
reconstruction module. Previous transformers (i.e., SwinIR [7], NGSwin [28]) synchronously perform
multiple layer-specific deep image feature extraction (FE) and projection space (PS) optimization
within a Swin Transformer Layer (STL). In contrast, we develop a decoupled Swin Transformer
Layer (D-STL) in UPS to optimize per-layer feature extraction and a unified projection space (“PSu"
defined by a learnable projection matrix UQ).

Fig. 2(b), in the i-th STL, the process begins by employing a convolutional layer to extract deep
image feature F̂i from an input feature Fi−1, which is the output of the preceding (i− 1)-th STL:

F̂i = Conv(Fi−1). (1)
Subsequently, the STL executes a conventional window-based self-attention mechanism, comprising
four basic steps: (i) window-partitioning, (ii) deep feature projection for similarity calculation, (iii)
aggregation based on similarity to merge neighboring pixels, and (iv) patch merging.

(i) Window-partitioning. Initially, the updated image feature F̂i is reshaped into HW
M2 non-

overlapping patches, each with a shape of M2 × C, where M2 represents the spatial size of each
patch and C is the channel dimension.

(ii) Layer-specific projection. Following window-partitioning, each divided image patch Xi from
F̂i is projected to generate the corresponding query, key, and value matrices Qi,Ki, Vi:

Qi = XiP
Q
i , Ki = XiP

K
i , Vi = XiP

V
i , (2)

where PQi , PKi , PVi ∈ R{d×C} denote the learnable projection parameters specific to the i-th STL,
while Qi,Ki, Vi ∈ R{M

2×d} represent the projected features of patch Xi and d is the projection
dimension. The similarity matrix is then computed:

Si = SoftMax

(
QiK

T
i√
d

+Bi

)
, (3)

where Bi represents a relative position encoding, and Si is the predicted similarity map for the Xi.

(iii) Similarity-based Aggregation. Later on, neighboring information within the patch Xi is
aggregated based on the computed similarity map Si:

Yi = SiVi. (4)

(iv) Patch Merging. Finally, all the aggregated image patches are reshaped into a 2D image feature
which is fed into the next STL for further processing.

Discussion. With sufficient model capability, i.e., millions of parameters, SwinIR [7], a SOTA Swin
Transformer SISR model, exhibits strong abilities for the SISR task. However, in resource-constrained,
lightweight settings as previously mentioned, it potentially poses challenges to simultaneously
optimize deep image feature extraction and projection space. We will compare the per-layer projection
space optimization with our proposed UPS scheme later.
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Figure 3: Comparison between SOTA SISR models and ours. We show the SR results overlaid with
the local attribution map (LAM [33]) of each model. The LAM visually illustrates the activation of
local and non-local pixels involved in super-resolving the highlighted patch within the red box. The
numbers beneath are the DI (↑) [33] and PSNR (↑) values. Zoom in for better visual comparison.

4 Unified Projection Sharing for Lightweight SISR

Overview. To address the entanglement optimization of image feature extraction and similarity
modeling, we introduce a Unified Projection Sharing (UPS) technique for lightweight SISR. Fig. 2(b),
(c) summarizes the optimization schemes of existing Transformer-based SISR frameworks and our
proposed UPS. As can be seen, previous methods typically focus on jointly optimizing deep image
features and similarity modeling within each layer. In contrast, UPS adopts a shared projection space
for similarity modeling, allowing layer-specific feature extraction while separating the optimization
of similarity calculation.

4.1 Unified Projection Sharing

We follow the general framework structure of Swin Transformer but use decoupled projection space
optimization. As shown in Fig. 2(c), UPS consists of three basic modules, namely the convolutional
head module, FEA module, and reconstruction tail module. In the FEA, we develop a decoupled Swin
Transformer layer (D-STL) for deep image feature extraction, while optimizing a unified projection
space for similarity modeling. Next, we will provide a detailed description of our D-STL.

4.2 Decoupled STL (D-STL)

We take the i-th D-STL for illustration. Given an input image feature Fi−1 produced by the last
(i− 1)-th D-STL, we aim to perform feature updating as well as self-similarity-based aggregation.
Similarly, we adopt the Eq. 1 to conduct deep image feature extraction and obtain the transformed
image feature F̂i. Then we employ the window-partitioning process to reshape the F̂ into HW

M2

non-lapped image patches.

Unified Projection. Unlike the layer-specific projection scheme in Swin Transformers, we introduce
a layer-invariant (unified) projection space defined by a learnable matrix UQ ∈ R{D×C} (D refers to
the unified projection dimension) and project the deep feature Xi on this unified projection space:

Qi = XiU
Q, Vi = Xi. (5)

After that, we consider the calculation of the self-similarity in the unified projection space. Motivated
by ReLUFormer [34] that addresses the over-centralized distribution in Softmax by incorporating
ReLU activation for self-similarity calculation, we get the similarity scores as:

Si = ReLU(Cosine(Qi, Q
T
i ) +Bi). (6)

Note that we conduct normalization operation for the projected image features Qi
6. Subsequently,

we utilize the Cosine similarity metric, followed by a ReLU activation function, to obtain the final
similarity map Si. We also assess our design in Sec. 5.3. Finally, leveraging the calculated similarity
map Si, we perform image feature aggregation using Eq. 4.

Discussion. In Algorithm. 1, 2, we provide side-by-side illustrations of standard STL and our D-STL
and highlight the differences between the two methods. The STL in previous Swin Transformers learns
the coupled projection spaces and deep image feature extraction. In contrast, by a unified projection
optimization scheme, each of our D-STLs only focuses on the deep image feature extraction. It largely

6To decrease the model complexity, we set the Ki to be identical to the Qi, as the SISR task typically
involves only one data modality.
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Algorithm 1 Pseudo Code of the i-th STL

1: Require: Input Fi−1, window sizeM
2: Feature extraction: F̂i = Conv(Fi−1)

3: Partitioning: Xlist
i = Partitioning(F̂i,M)

4: Define aggregated patch list: Y list
i

5: forXi inXlist
i do

6: Projection: Qi, Ki, Vi = XiP
Q
i , XiP

K
i , XiP

V
i

7: Similarity cal.: Si = SoftMax
(

QiK
T
i√

d
+ Bi

)
8: Aggregation: Yi = SiVi

9: Y list
i .append(Yi)

10: end for
11: return Reshape(Y list

i )

Algorithm 2 Pseudo Code of the i-th Decoupled STL

1: Require: Fi−1,M , unified projection matrix UQ

2: Feature extraction: F̂i = Conv(Fi−1)

3: Partitioning: Xlist
i = Partitioning(F̂i,M)

4: Define aggregated patch list: Y list
i

5: forXi inXlist
i do

6: Projection: Qi, Vi = XiU
Q, Xi

7: Similarity cal.: Si = ReLU(Cosine(Qi, Q
D
i ) + Bi)

8: Aggregation: Yi = SiVi

9: Y list
i .append(Yi)

10: end for
11: return Reshape(Y list

i )

reduces the overall optimization complexity by learning the similarity modeling in a unified projection
space throughout all D-STL layers. As shown in Fig. 3, compared with SOTA lightweight Swin
Transformers, UPS activates more non-local pixels and restores correct fine-grain image structures.

Table 1: Quantitative comparison with SOTA lightweight SISR methods on multiple benchmark
datasets. The best and second-best results on the default training setting (DIV2K) are highlighted in
red and blue, respectively. The "+" indicates that the two methods are trained on the DF2K dataset.
We use bold to highlight the lowest FLOPs of Transformer-based methods. All FLOPs (also in Tab.
2b, 3,4) are calculated with an output size of 1280× 720.

Method Scale Parameters (K) FLOPs (G) Set5 Set14 BSD100 Urban100 Manga109
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

IMDN

×2

694 158.8 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88 / 0.9774
RFDN-L 626 145.8 38.08 / 0.9606 33.67 / 0.9190 32.18 / 0.8996 32.24 / 0.9290 38.95 / 0.9773
SwinIR-light 910 244.4 38.14 / 0.9611 33.86 / 0.9206 32.31 / 0.9012 32.76 / 0.9340 39.12 / 0.9783
DLGSA-light 745 170.0 38.20 / 0.9612 33.89 / 0.9203 32.30 / 0.9012 32.94 / 0.9355 39.29 / 0.9780
Omni-SR 772 194.5 38.22 / 0.9613 33.98 / 0.9210 32.36 / 0.9020 33.05 / 0.9363 39.28 / 0.9784
UPS 824 162.5 38.26 / 0.9642 34.16 / 0.9232 32.42 / 0.9031 33.08 / 0.9373 39.62 / 0.9800
SwinIR-S ×2 497 107.3 38.06 / 0.9603 33.80 / 0.9186 32.23 / 0.9006 32.24 / 0.9301 38.76 / 0.9778
UPS-S ×2 453 90.6 38.16 / 0.9638 34.00 / 0.9220 32.36 / 0.9023 32.79 / 0.9346 39.26 / 0.9790
Omni-SR+ ×2 772 194.5 38.29 / 0.9617 34.27 / 0.9238 32.41 / 0.9026 33.30 / 0.9386 39.53 / 0.9792
UPS+ ×2 824 162.5 38.31 / 0.9643 34.37 / 0.9247 32.43 /0.9032 33.34 / 0.9388 39.80 / 0.9802

IMDN

×3

703 71.5 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519 33.61 / 0.9445
RFDN-L 633 65.6 34.47 / 0.9280 30.35 / 0.8421 29.11 / 0.8053 28.32 / 0.8547 33.78 / 0.9458
SwinIR-light 918 110.8 34.62 / 0.9289 30.54 / 0.8463 29.20 / 0.8082 28.66 / 0.8624 33.98 / 0.9478
DLGSA-light 752 75.4 34.70 / 0.9295 30.58 / 0.8465 29.24 / 0.8089 28.83 / 0.8653 34.16 / 0.9483
Omni-SR 780 88.4 34.70 / 0.9294 30.57 / 0.8469 29.28 / 0.8094 28.84 / 0.8656 34.22 / 0.9487
UPS 832 72.4 34.66 / 0.9322 30.72 / 0.8489 29.31 / 0.8114 28.98 / 0.8685 34.53 / 0.9505
SwinIR-S ×3 503 47.9 34.38 / 0.9281 30.46 / 0.8448 29.15 / 0.8073 28.37 / 0.8572 33.77 / 0.9464
UPS-S ×3 459 40.4 34.53 / 0.9312 30.55 / 0.8463 29.24 / 0.8093 28.60 / 0.8614 34.12 / 0.9484
Omni-SR+ ×3 780 88.4 34.77 / 0.9304 30.70 / 0.8489 29.33 / 0.8111 29.12 / 0.8712 34.64 / 0.9507
UPS+ ×3 832 72.4 34.78 / 0.9325 30.78 / 0.8492 29.36 / 0.8122 29.28 / 0.8728 34.84 / 0.9517

IMDN

×4

715 40.9 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
RFDN-L 643 37.4 32.28 / 0.8957 28.61 / 0.7818 27.58 / 0.7363 26.20 / 0.7883 30.61 / 0.9096
SwinIR-light 930 63.6 32.44 / 0.8976 28.77 / 0.7858 27.69 / 0.7406 26.47 / 0.7980 30.92 / 0.9151
DLGSA-light 761 42.5 32.54 / 0.8993 28.84 / 0.7871 27.73 / 0.7415 26.66 / 0.8033 31.13 / 0.9161
Omni-SR 792 50.9 32.49 / 0.8988 28.78 / 0.7859 27.71 / 0.7415 26.64 / 0.8018 31.02 / 0.9151
UPS 843 41.3 32.50 / 0.9024 28.90 / 0.7892 27.79 / 0.7435 26.83 / 0.8073 31.39 / 0.9194
SwinIR-S ×4 512 27.3 32.14 / 0.8955 28.67 / 0.7832 27.63 / 0.7382 26.22 / 0.7906 30.68 / 0.9111
UPS-S ×4 468 23.0 32.41 / 0.9008 28.80 / 0.7863 27.73 / 0.7414 26.58 / 0.7995 31.13 / 0.9163
Omni-SR+ ×4 792 50.9 32.57 / 0.8993 28.95 / 0.7898 27.81 / 0.7439 26.95 / 0.8105 31.50 / 0.9192
UPS+ ×4 843 41.3 32.60 / 0.9029 28.97 / 0.7896 27.83 / 0.7446 27.10 / 0.8136 31.79 / 0.9223

5 Experiments
5.1 Settings

Implementation Details. Our UPS model is developed by PyTorch and incorporates several com-
monly used data augmentation techniques, including random cropping, vertical/horizontal flipping,
and rotation. During training, we employ the Adam [35] optimization with cosine annealing [36],
starting with an initial learning rate of 4e− 4. We set the batch size as 32 and the input image size as
64× 64. Training is conducted for 600K iterations, utilizing four NVIDIA RTX 3090 GPUs.
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Scalable Model Size. Generally, we train our UPS and UPS-S with different configurations. Our
UPS model follows the setting of SwinIR-light [7], consisting of 4 D-RSTB blocks with 6 decoupled
Swin Transformer layers (channel size: 60). Additionally, our UPS-S model is more lightweight with
4 compact D-RSTB blocks with varying numbers of decoupled Swin Transformer layers (6, 4, 4, 5)
and a channel size of 48. Training various UPS models requires approximately 2-3 days.

Benchmark Datasets. Following previous studies [7, 28, 18], we utilize the DIV2K [37] image
dataset for training. Subsequently, we conduct comprehensive evaluations on several widely-used
SISR benchmarks, including Set5 [38], Set14 [39], BSD100 [11], Urban100 [40], and Manga109 [41].
Our quantitative comparison is based on PSNR and SSIM. Consistent with established research, we
report the results specifically for the Y channel derived from the YCbCr color space.

5.2 Comparison with SOTA Methods

We perform extensive comparisons with a wide range of lightweight SISR models: MAFFSRN
(ECCV20) [42], LAPAR-A (NeurIPS20) [18], LatticeNet (ECCV20) [19], RLFN (CVPRW22) [43],
SwinIR-light [7], NGswin [28], SwinIR-NG [28], and DLGSA-l (ICCV23) [27]. More comprehensive
comparisons with early SOTA lightweight models can be accessed in our supplementary material.

Table 2: Results of inference time (ms), FLOPs (G) and GPU memory usage (MB). The speed
is tested on an NVIDIA GeForce RTX 2080Ti GPU with an input size of 256 × 256 under ×2
lightweight SISR. FLOPs is calculated at an output resolution of 1280 x 720.

Metrics RFDN-L LatticeNet DLGSA-light Omni-SR SwinIR-light UPS

Time (ms) ↓ 13 18 225 112 175 119
FLOPs (G) ↓ 146 170 170 195 244 163
Memory (GB) ↓ 1577 1639 1800 1842 2051 1785

Quantitative Comparison. Tab.1 illustrates the quantitative evaluation. Our proposed UPS consis-
tently outperforms existing methods across all benchmarks. Notably, UPS exceeds the second-best
model by over 0.33dB on the Manga109 dataset[41] for the×2 setting. Additionally, our model shows
significant improvements over SwinIR-light [7], achieving improvements of up to 0.5dB, 0.55dB,
and 0.47dB on the Manga109 dataset [41] for the ×2, ×3, and ×4 settings, respectively, while using
fewer parameters. These results confirm the effectiveness of our decoupled optimization strategy.
Significantly, when constrained by model complexities, our UPS demonstrates superior performance
over SwinIR-light [7]. As shown in Tab.1, our approach achieves a 0.55dB increase in PSNR for
×2 super-resolution on the Urban100 dataset[40], highlighting the advantages of our decoupled
optimization in feature extraction and similarity modeling under compact parameter conditions.

Additionally, we evaluate the inference efficiency of various state-of-the-art (SOTA) lightweight
single image super-resolution (SISR) models. As shown in Table 2, UPS reduces the overall inference
cost by 33% in terms of FLOPs compared to our baseline model, SwinIR-light

Last, we have extensively explored the benefits of UPS for real-world SR and other frameworks,
including HAT and DRCT, under both lightweight and parameter-intensive scenarios. Our experi-
ments show that the proposed UPS consistently enhances efficiency and performance across all these
settings (real-world SR, lightweight, and SISR tasks).

For real-world super-resolution (Real-world SR), as shown in Tab. 3 of the PDF file (also the table
below), our proposed UPS-GAN outperforms other state-of-the-art GAN-based [44, 45] and even
Diffusion-based methods (Reshift [46] and StableSR [47]) in terms of NIQE, NRQM, and PI metrics,
achieving the best quantitative results (5.09/6.84/4.19). This confirms the effectiveness of UPS for
real-world SR tasks.

Qualitative Comparison. Fig. 4 presents some visual examples. It is evident that UPS is capable of
producing correct image textures with fewer super-resolved artifacts. Conversely, previous CNN-
based and Transformer-based frameworks either fail to reconstruct clear image patterns or suffer from
unpleasing artifacts. We provide more visual comparison in the supplementary material.
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Table 3: Non-reference results of real-world SISR on RealSRSet [44].

Metrics BSRGAN RealSR ResShift† StableSR† SwinIR-GAN UPS-GAN

NIQE ↓ 5.66 5.83 8.37 5.24 5.49 5.09
NRQM ↑ 6.27 6.32 4.56 6.12 6.48 6.84
PI ↓ 4.75 4.40 7.03 4.66 4.72 4.19

SwinIR-light

LAPAR-A

UPS(Ours)

LR

HR

NGSwin

Manga109_003

SwinIR-light

LAPAR-A

UPS

LR

Ground Truth

NGSwin

Urban100_003 LR LAPAR-A NGSwin

SwinIR-light UPSGround Truth

DIV2K_0820

LAPAR-A

SwinIR-light

NGSwin

UPS

LR

Ground Truth

LAPAR-A NGSwinLR

SwinIR-light UPSGround Truth

BSD100_091

Figure 4: Qualitative comparison between LAPAR-A [18], SwinIR-light [7], NGSwin [28] and UPS
(ours) on four popular benchmarks (BSD100 [11], Urban100 [40], Manga109 [41] and DIV2K [37].)
under ×4 setting. Our predictions present more detailed textures and fewer artifacts.

5.3 Ablation Studies

To verify the effectiveness of our design, we conduct a series of comprehensive experiments. Note
that we primarily adopt the UPS-S architecture for fast analysis. We generally report the quantitative
results on the Set14 benchmark under the ×2 setting.

Different Groups of Projection Space. Unlike conventional attention-based frameworks, our
approach introduces a unified projection space for similarity calculation. In this evaluation, we
investigate the impact of incorporating additional groups of projection space. The quantitative results
in Fig.5 (Left) shows that a higher number of block-wise projection groups reduce performance
compared to our unified projection method. Additionally, layer-specific projection optimization
exhibits inferior performance. Fig.5 (Right) confirms that our unified projection-sharing scheme
outperforms models with multiple projection spaces. This experiment highlights the challenges of
coupled optimization in image feature extraction and similarity modeling.

Similarity Calculation. Differing from the conventional similarity calculation paradigm (Matrix
dot product + SoftMax), we incorporate the Cosine distance followed by a ReLU activation for
similarity computation. Here, to assess the effectiveness of our choice, we train different models that
utilize various combinations of distance metrics (Matrix dot and Cosine) and activation functions
(SoftMax and ReLU). The results, as displayed in the left Fig. 6, indicate that our design (Cosine +
ReLU) achieves the best performance among all the competing strategies. Additionally, we provide a
corresponding visual comparison in the right Fig. 6. It shows that our design activates more non-local
pixels, resulting in a larger valid receptive field and more precise reconstructed image details.

Table 4: The effect of varying projection dimen-
sions on similarity calculation.

Dimension 8 32 64 128 256

PSNR (dB) 33.83 33.86 33.90 34.00 33.96
SSIM 0.9206 0.9207 0.9207 0.9220 0.9221
#Params 452K 452K 452K 453K 454K
FLOPS 107G 113G 119G 124G 159G

Projection Matrix Dimension. We investi-
gate the impact of various projection dimen-
sions for similarity calculation, ranging from
8 to 256 (D = 8, 32, 64, 128, 256). Tab. 4 in-
dicates that performance initially improves as
the projection dimension increases, but slightly
drops after reaching extremely high dimensions
(e.g., 256). We also observe that higher projec-
tion dimensions lead to increased computational
costs on both learnable parameters and FLOPS.
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Proj. Group G19 G4 G2 G1 (Ours)

PSNR (dB) 33.63 33.91 33.97 34.00
SSIM 0.9186 0.9205 0.9216 0.9220

5.55/16.25dB 6.16/20.46dB 6.19/20.84dB 6.58/20.97dBDI/PSNR

G19Ground Truth G4 G2 G1 (Ours)

Figure 5: Analysis of several UPS-S models with different projection groups, including the layer-
specific projection model (consists of 19 attention layers). (Left): PSNR/SSIMs are examined for
quantitative comparison. (Right): Visual results on the Urban100 [39] benchmark under x2 setting.

Matrix dot Cosine SoftMax ReLU PSNR/SSIM

A 3 33.60/0.9192
B 3 3 33.84/0.9202
C 3 3 33.41/0.9169
D 3 33.61/0.9208
E 3 3 33.73/0.9194
F 3 3 34.00/0.9220

1.98/24.88dB

D

A

0.57/24.23dB

2.19/24.48dB

E

5.03/27.32dB

F
1.18/24.87dB

B

0.36/24.58dB

CLR

GT

DI/PSNR

DI/PSNR

Figure 6: Impact of different similarity calculation methods. The left Table shows the quantitative
results of employing different similarity calculation methods on the Urban100 [39] (×2). The right
figure gives a visual example to illustrate the SR results overlaid the LAM [33] maps of each model.
The numbers beneath are the DI (↑) [33] and PSNR (↑) values.

𝑋!" 𝑆!" 𝑌!" 𝑋"# 𝑆"# 𝑌"#GTLR

SwinIR-
UPS Layer 12 Layer 23

𝑋!" 𝑆!" 𝑌!" 𝑋"# 𝑆"# 𝑌"#

Layer 12 Layer 23light

Figure 7: Visual comparison of layer-specific projection optimization and our proposed UPS scheme.
UPS achieves better similarity calculation and yields better image structural restoration.

Similarity Map Visualization. To better un-
derstand the effect of our projection-sharing scheme, we visualize the deep image features of our
baseline model (SwinIR-light) and UPS. For an LR image, Fig. 7 illustrates the updating of deep
image features at layers i = 12, 23 in both the base and UPS models. The right arrows indicate the
input-output data flow for each layer. Following that, we present a detailed visualization for Alg.1,2
in our paper7. Notably, the similarity maps S12, S23 produced by UPS (highlighted in the red box)
are more effective in aggregating neighboring pixels, resulting in sharper final SR image.

5.4 Extension 1: Image Denoising and JPEG Image Deblocking

In this section, we explore the benefits of applying UPS for other image restoration tasks. While
SwinIR (baseline model) requires millions of parameters for image denoising and deblocking, our
lightweight UPS frameworks handle these common low-level restoration tasks more efficiently. As
shown in Fig. 8, the results, indicate that UPS achieves performance comparable to the large baseline
model (SwinIR) while requiring only 1

13 of the model complexity on Denoising. Additionally, the
compact baseline models exhibit inferior performance relative to our UPS. We describe the framework
of these models in Sec. A.6 of our appendix.

7Xi, Yi denote input and output, and Si is the similarity matrix.
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Tasks Metrics SwinIR SwinIR-C UPS

Deblocking PSNR 29.86 29.63 29.98
q = 40 Param. 11.50M 3.89M 3.49M
Denoising PSNR 28.56 28.20 28.37
σ = 50 Param. 11.50M 0.959M 0.873M

5.55/16.25dB 6.16/20.46dB 6.19/20.84dB 6.58/20.97dBDI/PSNR

G19Ground Truth G4 G2 G1 (Ours)

Ground Truth SwinIR SwinIR-C UPS

Figure 8: Extension on other image restoration problems. (Left) UPS attains comparable results
compared with its larger baseline SwinIR and outperforms SwinIR-C with similar model sizes.
(Right) A visual example of image deblocking.

Settings Metrics SwinIR-light UPS

×4
PSNR 47.25 47.79
SSIM 0.994 0.995
RMSE 2.339 2.198

×16
PSNR 37.25 37.98
SSIM 0.969 0.972
RMSE 7.832 7.236

33.43/0.951/5.156 34.15/0.956/4.725PSNR/SSIM/RMSE

LR/HR Depth map SwinIR-light UPS

PSNR/SSIM/RMSE 34.64/0.963/6.956 36.01/0.970/5.966

Figure 9: Generalization comparison between our baseline model and UPS. The quantitative results
on NYU V2 [48] (×4, ×16) are displayed in the left table, while the right figure illustrates two visual
examples. Additionally, normalized error maps are included in the left corner to facilitate comparison.

5.5 Extension 2: Depth Map Super-resolution

We also compare it with our baseline model (SwinIR-light) on the depth SR task. To do this, without
training on any depth images, we directly test the two models on the NYU V2 [48] depth benchmark8

under×4 and×16 settings. We use the PSNR, SSIM, and RMSE (the root-mean-square error) metrics
for quantitative evaluation. The quantitative results are shown in the left Fig. 9. We can see UPS
consistently outperforms its baseline model on all the objective metrics. For instance, UPS exhibits
superior performance compared to SwinIR-light with a PSNR improvement of 0.54dB (0.73dB) for
×4 (×16) configurations. The visual examples in the right Fig. 9 illustrate that UPS generates clearer
structures, leading to higher accuracy when compared to our baseline model.

In addition to these two extensions, we also explore the improvement over SwinIR, DRCT, HAT for
both lightweight and classic SISR to comprehensive analyze the potential capabilities of the proposed
UPS. Please refer to the appendix sections.

6 Conclusion

In this paper, we propose a unified projection sharing (UPS) technique for lightweight SISR. A
layer-invariant projection space is optimized for similarity modeling. Comprehensive experiments
have demonstrated the effectiveness of the proposed decoupled learning algorithm. Notably, UPS
achieves state-of-the-art performance on multiple SISR benchmarks. Moreover, UPS-S exhibits
competitive results compared with leading approaches, while requiring fewer learnable parameters.
Additionally, experiments indicate that our proposed UPS demonstrates superior data efficiency. Code
will be made publicly available at https://github.com/redrock303/UPS-NeurIPS2024.
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A Appendix / supplemental material

A.1 Improvements over SOTA Swin-transformers

In our main paper, we have explore the improvements over SwinIR-light for lightweight SISR task.
Here, we discuss the potential improvement and generalization capability of UPS for more Swin-
transformers (such as DRCT [49] and HAT [21]) on both lightweight and classic SISR. Table. 5
shows our UPS is capable of enhancing several SOTA Swin-transformers with fewer parameters,
FLOPs and inference latency.

Table 5: Quantitative comparison with SOTA lightweight models for ×2 SISR. All the models
are trained on the DIV2K dataset for fair comparison. Inference time is tested at an input size of
256× 256 on an NVIDIA GeForce RTX 2080Ti GPU.

Lightwight Params/FLOPs/Time Set5 Set14 BSD100 Urban100 Manga109
(K / G / ms) PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

SwinIR-light 910 / 244 / 175 38.14 / 0.9611 33.86 / 0.9206 32.31 / 0.9012 32.76 / 0.9340 39.12 / 0.9783
SwinIR-light-UPS 843 / 163 / 119 38.26 / 0.9642 34.16 / 0.9232 32.42 / 0.9031 33.08 / 0.9373 39.62 / 0.9800
DRCT-light 1137 / 137 / 92 38.05 / 0.9632 33.76 / 0.9201 32.28 / 0.9012 32.48 / 0.9318 38.87 / 0.9783
DRCT-light-UPS 996 / 125 / 85 38.06 / 0.9634 33.89 / 0.9213 32.30 / 0.9013 32.59 / 0.9325 39.27 / 0.9786
HAT-light 813 / 102 / 153 38.02 / 0.9612 33.88 / 0.9203 32.28 / 0.9016 32.64 / 0.9330 38.82 / 0.9783
HAT-light-UPS 777 / 91 / 136 38.16 / 0.9636 34.16 / 0.9223 32.36 / 0.9022 32.92 / 0.9351 39.35 / 0.9791

Table 6: Quantitative comparison with SOTA Classic models for ×4 SISR. All the models are trained
on the DF2K dataset for fair comparison. Inference time is tested at an input size of 256× 256 on an
NVIDIA GeForce RTX 2080Ti GPU.

Classic Param./FLOPs (G)/Time Set5 Set14 BSD100 Urban100 Manga109
(Millions / G / ms) PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

SwinIR 11.9 / 584 / 683 32.92 / 0.9044 29.09 / 0.7950 27.92 / 0.7489 27.45 / 0.8254 32.03 / 0.9260
SwinIR-UPS 10.73 (-1.17) / 471 (-113) / 542 (-141) 33.29 / 0.9116 29.51 / 0.8027 28.24 / 0.7595 28.03 / 0.8538 32.96 / 0.9332
HAT 20.77 / 728 / 1419 33.04 / 0.9056 29.23 / 0.7973 28.00 / 0.7517 27.97 / 0.8368 32.48 / 0.9292
HAT-UPS 17.25 (-3.52) / 633 (-95)/ 1224 (-195) 33.11 / 0.9098 29.29 / 0.7991 28.08 / 0.7548 28.61 / 0.8479 32.87 / 0.9319
DRCT 14.14 / 520 / 811 33.11 / 0.9064 29.35 / 0.7984 28.18 / 0.7532 28.06 / 0.8378 32.59 / 0.9304
DRCT-UPS 12.31(-1.83) / 482(-38) / 669(-142) 33.17 / 0.9088 29.38 / 0.7989 28.20 / 0.7536 28.32 / 0.8416 32.68 / 0.9331

A.2 Data Efficiency
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Figure 10: Comparison between several lightweight SISR models on Set14 [39] (×4). (a) Evaluation
of using different numbers of training samples. (b) Validation performance of different models.
In this part, We assess the data efficiency of several models, including LAPAR-A, LatticeNet, our
baseline model SwinIR-S [7] (a more lightweight model with identical framework configuration as
our UPS-S), and our proposed UPS-S. In addition to training all models on the complete training set,
we gradually adjust the percentage of used training data. As shown in Fig.10(a), UPS consistently
outperforms other models regardless of training data size, demonstrating superior data efficiency.
Fig.10(b) shows PSNR values during training iterations, with UPS-S converging faster and providing
better early predictions. These results highlight the effectiveness of our UPS scheme.
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A.3 Robustness Optimization of UPS

Intuitively, given noisy input features, the error will be invertibly accumulated and affect the following
projection space optimization.
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Figure 11: Comparison between SwinIR and our proposed UPS under noise optimization setup. We
also report visual examples of the ‘input featureF1’, ‘input feature with noise (the noise std is set to
0.3) Fn1 ’, and ‘output feature FN ’ enhanced by methods and corresponding final predictions.

To better understand the effectiveness and robustness of our unified projection-sharing scheme, we
compare SwinIR [7] and UPS under noisy input features to simulate the perturbation training. Firstly,
we train both two models with perfect training images. Then, we add different levels of Gaussian
white noise (zero mean and std values ranged from 0.01 to 0.3) on the input image feature F1 (the
input of the FEA module) for both training and evaluation:

Fn1 = F1 + n, (7)

where n is the Gaussian white noise. The results are shown in Fig. 11. We observe that, with severe
noise, the SwinIR-light fails to restore high-frequency details in the output feature FN produced by
the last STL layer, thus it produces incorrect image structures. In contrast, UPS is able to recover
high-frequency signals from the noisy input feature and accordingly reconstruct accurate image
details. This experiment suggests our proposed UPS is more optimization robust and effective with
noisy input features.

Table 7: Robustness comparison of SwinIR-light [7], NGSwin [28] and our proposed UPS. While
being trained on clean DIV2K [37] training samples, we directly evaluate their generalization ability
on the degraded Set14 benchmark under the x4 setting. We report the PSNR (dB)/SSIM values for
quantitative evaluation.

Degradation None Compression Blur Noise

SwinIR-light 28.77/0.7858 28.45/0.7783 28.69/0.7829 27.93/0.7562
NGSwin 28.83/0.7870 28.46/0.7783 28.65/0.7819 27.93/0.7532
UPS 28.90/0.7892 28.73/0.7838 28.87/0.7864 28.29/0.7616

A.4 Robustness on Degraded Data

The co-adaptation issue [8, 9] reveals that deep-learning models may fit the training samples well
but exhibit poor generalization for unseen data, especially for out-of-domain samples. Here, we aim
to evaluate the robustness of SOTA SISR models (including SwinIR-light and NGSwin) and our
proposed UPS. To do this, we apply different data degradations (i.e., JPEG compression, Gaussian
blur, and Gaussian White noise) and obtain degraded samples. Without training on these degradations,
we directly evaluate the performance of these lightweight SISR models. The results presented in
Tab. 7 illustrate our proposed UPS is more robust on unseen data. Notably, UPS outperforms the
competing models up to 0.36dB on the noise testing data. Moreover, Fig. 12 shows both SwinIR-light
and NGSwin restore incorrect and blur image structures due to their poor generalization (not robust)
for unseen degradations. In contrast, UPS produces more accurate results with clearer image contents.
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Figure 12: Qualitative robustness comparison of different lightweight SISR models on out-of-domain
degraded inputs under x4 setting. The first sample is from Set14 and the last two samples are from
the Urban100 benchmark.

Table 8: More ablation studies (PSNR/SSIM). A: The impacts of ReLU and Softmax activations in
Eq.6. B. Quantitative comparison between two advanced optimization schemes (Dropout in RDSR
CVPR 2022 and progressive training in DRCT ARXIV 2024.) and UPS.

Analysis A. Activation B. Optimization schemes vs. UPS
SwinIR-light UPS (Softmax) UPS (ReLU) SwinIR-light SwinIR + Dropout SwinIR + Pro. Train UPS

Urban100 (×4) 26.47 / 0.7980 26.79 / 0.8069 26.83 / 0.8073 26.47 / 0.7980 26.52 / 0.7988 26.56 / 0.7986 26.83 / 0.8073
Improve. - +0.32 / +0.0089 +0.36 / +0.0093 - +0.05 / +0.0008 +0.09 / +0.0006 +0.36 / +0.0093
Param. (K) 930 843 (-87) 843 (-87) 930 930 930 843 (-87)

A.5 More Ablated Studies

Impact of ReLU and Softmax. We conduct the experiment to demonstrate the impact of different
activations. The results in Tab.8(A) suggests the used ReLU performs better than the softmax
activation. As we can see, the main improvement comes from our UPS design instead of the ReLU
activation. The performance gap between the two different activation choices is only 0.04dB, which
represents 11% of the total improvement of 0.36dB. In other words, the 89% improvements come
from the UPS design. We will include this ablation analysis in our revised paper.

UPS vs. Other Optimization Schemes. We investigate two existing training strategies for the SISR
task. RDSR [9] incorporates dropout techniques to achieve better testing results, while DRCT [49]
employs a progressive training scheme that involves multi-stage training to enhance final performance.
Here, we compare UPS with RDSR and progressive training schemes in DRCT. To do this, we re-train
SwinIR-light using the above two training strategies. As shown in Tab.8(B), UPS delivers superior
results compared to both of these optimization methods. Nevertheless, we hope our exploration will
inspire future research to develop more effective algorithms to better address this challenge.

The Identity Mapping of Xi and Vi. For the lightweight scenario, we aim to further reduce the
computational cost and model size. Thus, we explore cutting off the linear mapping between Xi and
Vi, and our early experimental analysis (presented in Tab. 9) suggests such a design will not lead to a
performance drop. We will add this discussion to our revised paper.

A.6 Framework Details for Image Denoising and Deblocking

In Section 5.4, we delve into the advantages of UPS in tasks like image denoising and JPEG removal,
conducting a comparative analysis among various baseline models and UPS. For both tasks, the
SwinIR model adheres to the default framework settings outlined in the original paper, featuring 6
RSTB blocks with a channel size of 180. SwinIR-C and UPS follow similar framework configurations:
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Table 9: C. V projection indicates the linear projection for transforming the input Xi into Vi.

Results&Param. w/ V proj. w/o V proj. (Default)

Urban100 (×4) 26.80 / 0.8071 26.83 / 0.8073

Set14 (×4) 28.91 / 0.7892 28.90 / 0.7892

Param. (K) 895 843

8 RSTB/D-RSTB blocks with a channel dimension of 90 for image deblocking, and 6 RSTB/D-RSTB
blocks with a channel size of 60 for image denoising.

A.7 Limitation

While UPS exhibits SOTA results in lightweight SISR, we have not investigated its potential benefits
for large (UPS-based) models. Exploring larger UPS-based models is an interesting future work.
On the other hand, we will explore more applications for a wide range of low-level tasks, such as
real-world image restoration.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and/or introduction clearly state the claims made, also match
theoretical and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our method in Sec.A.7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
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Justification: No theoretical results in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have disclosed all the information needed to reproduce the main experi-
mental results. We have carefully explained the structure and experimental settings of our
model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release our code and all the command and environment needed to
reproduce the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have stated all the experimental details for the reproduction of our method,
including data, hyperparameters, optimizer, learning rate, and so on.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Following previous works, we conduct extensive experiments to demonstrate
the effectiveness of our proposed UPS. Moreover, our method also exhibits superior general-
ization(robust) ability for unseen data.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the experimental details on the computer resources, includ-
ing GPU, memory and execution time.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As stated in our introduction, super resolution is a fundamental task in computer
vision, and is pivotal in various fields such as medical imaging, satellite imagery, and
consumer electronics, where clear and detailed visual information is crucial.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited related papers, codes and data in our paper, and we also stated the
version we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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