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Abstract

Diffusion models have shown remarkable potential in planning and control tasks
due to their ability to represent multimodal distributions over actions and trajec-
tories. However, ensuring safety under constraints remains a critical challenge
for diffusion models. This paper proposes Constrained Diffusers, an extended
framework for planning and control that incorporates distribution-level constraints
into pre-trained diffusion models without retraining or architectural modifications.
Inspired by constrained optimization, we apply a constrained Langevin sampling-
for the reverse diffusion process that jointly optimizes the trajectory and realizes
constraint satisfaction through three iterative algorithms: projected method, primal-
dual method and augmented Lagrangian methods. In addition, we incorporate
discrete control barrier functions as constraints for constrained diffusers to guaran-
tee safety in online implementation, following a receding-horizon control that we
generate a short-horizon plan and execute only the first action before replanning.
Experiments in Maze2D, locomotion, and PyBullet ball running tasks demonstrate
that our proposed methods achieve constraint satisfaction with less computation
time, and are competitive with existing methods in environments with static and
time-varying constraints.

1 Introduction

In recent years, diffusion models that learn data distributions by gradually adding noise and then
reversing the process have achieved remarkable success in image generation [[1]]. The forward process
corrupts expert data into noise via predefined Gaussian steps, while the reverse process trains a
neural network to iteratively denoise, reconstructing the original distribution from random noise
[2]]. This success has naturally extended to policy representation in planning and control, surpassing
traditional imitation learning by denoising trajectories for planning [3]] and modeling policies as
return-conditional diffusion models to obtain optimal trajectories [4].

Despite these advances, deploying diffusion-based planning policies on real physical systems raises
safety challenges, as such systems operate under strict constraints. Recent works incorporate
constraints as conditions within generative models—e.g., classifier-guided [3]] and classifier-free [6]
methods. While effective in image or text generation, their applications in planning/control still lead
to substantial violations under nonconvex, time-varying constraints and often requires retraining
for specific constraints [3| 4, [7, [8]. Other efforts enforce safety with Control Barrier Functions
(CBFs) at each reverse step [9], but this entails solving a Quadratic Program (QP) per diffusion step,
incurring heavy computation. Projection-based approaches instead map sampled points to the safe
set [10} [11], effectively guaranteeing strict constraint satisfaction for samples during the diffusion
process. However, they typically focus on pointwise constraints rather than general expectation
constraints on distributions. Furthermore, the hard constraint projection can potentially disrupt
trajectory smoothness, posing challenges for safe online implementation..

We propose Constrained Diffusers for planning and control, formulating diffusion generation with
constraints on distributions through the lens of Stochastic Gradient Langevin Dynamics (SGLD)
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Figure 1: Overall Framework. We use expert trajectories to train the diffuser, apply constrained
sampling methods for DCBF constraints in the reverse sampling process to get safe trajectories and
finally use an inverse dynamics model to obtain actions, ensuring the safety in online implementation.
We follow a receding-horizon scheme that only the first action is executed before replanning.
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[12L13]]. We interpret generation as constrained sampling, viewing the iterations as stochastic gradient
descent, and integrate constraints using projected, primal—dual, and augmented Lagrangian methods
(ALM). To keep system states within the safe set, we impose discrete CBF (DCBF) constraints during
reverse diffusion process. This coupling allows reverse steps to optimize trajectories while enforcing
safety without solving QPs for DCBF, and avoids retraining when a pre-trained diffusion model exists
for the task. Building on [14} [18]], we analyze convergence under mild conditions and
provide constraint-satisfaction guarantees. We use an inverse dynamics model, trained on datasets,
to map states to actions and execute control in a receding horizon scheme. At each step we replan
over a short horizon, execute the first action, update with the new observation, and repeat, mirroring
Model Predictive Control (MPC) and mitigating errors by replanning.

The main contributions of our work are summarized as follows:

* We propose Constrained Diffusers, an extended framework for planning and control that enforces
distribution-level constraints for trajectories generated by pre-trained diffusion models, modify-
ing the reverse diffusion process with constrained sampling methods—Projected [10], a novel
Primal-Dual method, and Augmented Lagrangian—thus avoiding retraining at deployment. We
further introduce DCBF on physical trajectories to ensure safe receding-horizon execution that
executes only the first action in the plan, then repeat, leveraging the iterative diffusion process
for efficient constraint satisfaction.

* We demonstrate the effectiveness of our proposed methods in Maze2D, locomotion, PyBullet
ball running tasks and manipulation tasks in the Appendix showing that our method effectively
enforces constraints with competitive performance and computational efficiency.

2 Related Work

Diffusion Models and Policy Representation Diffusion models [[1} 2] have demonstrated signif-
icant potential in image [55} [6]] and text generation [[19, 20]. They gradually add noise to the data,
transforming them into a random distribution over time [12} 21]] and learn to iteratively denoise the
data by reversing the forward diffusion steps [22]]. This success extended to planning tasks [3l 4],
outperforming traditional imitation learning methods through the ability to model complex distribu-
tions [7]. Recent literature focuses on trajectory optimization through diffusion models [24]
while they require interactions with environments in the optimization process. Some researchers
have also investigated how diffusion can be combined with reinforcement learning to guide strategy
improvement [8]]. However, they did not handle constraints in the trajectory generation and online
implementation through diffusion.

Constrained Sampling Constrained sampling methods have been developed for support constraints
in the standard sampling process [26]. Projected Langevin Monte Carlo extends the algorithm
to compactly supported measures through a projection step when sampling from a log-concave
distribution [13]]. Primal-dual methods simultaneously sample from the target distribution and
constrain it through gradient descent-ascent dynamics in the Wasserstein space [[16} [17]. In addition,
some Langevin Monte Carlo methods based on mirror maps [27]], barriers [28]], and penalties [29]



have also demonstrated significant advantages in constrained sampling. However, they do not make
connections with diffusion models and do not extend them to nonconvex settings.

Safe Reinforcement Learning and Control Barrier Functions Safe control is a central research
area in robotics and autonomous systems [30]]. Traditional model-based methods—Hamilton—Jacobi
reachability [31] and Model Predictive Control [32]—offer rigorous guarantees. Safety-reinforcement
learning typically formulates a Constrained Markov Decision Process, optimizing expected cumulative
costs with trajectory-level constraints [33) 134} 135]; safe exploration adds safety layers to adjust
actions [36], and other algorithms strengthen policy robustness to safety risks [37]. Beyond safe
RL, constrained sampling methods include task-constrained RRT [38]], while overall complexity
limits broad applicability across robotics [39]. Control Barrier Functions (CBFs) are widely used
for safe control [40, 41]; recent work embeds CBFs in diffusion to ensure generated trajectories
avoid obstacles [9]. [42] proposes BarrierNet, a differentiable layer that learns CBF parameters for
end-to-end training of less conservative policies. Other studies tackle safety in imitation learning and
uncertainty by solving QPs, which is time-consuming [43| 144} 43]].

Compared to classical planners, we use diffusion models as planners for their ability to represent
complex, multimodal trajectory distributions—well-suited when objectives are unknown and policies
come from expert demonstrations. Compared to SafeDiffuser [9]], which interprets each denoising
step as a control action over the diffusion horizon and applies CBFs at intermediate steps, and
Projected Diffusion [10]], which works on constraints for samples, our PD and ALM treat diffusion as
a constrained optimization problem on distributions, enforce DCBFs along the entire trajectory in the
physical world, and use efficient first-order updates to ensure safety—thereby avoiding costly per-step
QP solves. Detailed comparisons with Projected Diffusion and summarized table on comparisons
with other literature can be found in Appendix [A]

3 Background

3.1 Diffusion Models and Langevin Dynamics

Diffusion models are a type of generative model inspired by principles of thermodynamics and work
by simulating a two-step process. The forward process perturbs data xg ~ q(x¢) by gradually adding
noise over diffusion time ¢ € [0, T'], and the reverse process reconstructs the target data distribution
from a simple prior distribution. These can be formulated as the following SDEs [21]:

dry = flag, t)dt + g(t)dWy,  dze = [f(ze,t) — g(t)>Vy, log pe(ze)|dt + g(t)dW, (1)

where W, and W, are standard Wiener processes running forward and backward in time, f(x¢,t) and
¢g(t) are drift and diffusion coefficients chosen such that py(z7) approximates a simple prior, e.g.,
N(0,1), and V,, log p;(z;) is the score function of the marginal distribution py (z¢).

Langevin Dynamics is a method that leverages gradient information and noise to sample from a
given distribution, resembling simulating the diffusion reverse SDE [21] starting from x1 ~ pr and
evolving backward to ¢t = 0. Standard Langevin Monte Carlo (LMC) aims to sample from a target
distribution p(z) o< e~7(*) using the update rule derived from the Langevin SDE:

dz(t) = =V f(z(t))dt + V2dW (t). )

In practice, due to the challenges in directly computing the path of SDE, we often use a discrete-time
approximation, Stochastic Gradient Langevin Dynamics (SGLD):

Tip1 = Tt + gVT logp(a:t) + \/ﬁzt 3)

where 7 is the step size, and z; ~ N (0, I) is standard Gaussian noise. By iterating this update rule
with an appropriate step size 7, the sequence z; can be considered as samples drawn from p(z).

Denoising Diffusion Probabilistic Model (DDPM) can be connected to a Langevin-like update
rule through its iterative denoising process. In DDPM, the forward process gradually adds Gaussian
noise to data over T steps, defined by q(z¢|zi—1) = N(x4; /1 — Brxi—1, B:I), where 3; controls
the noise schedule. The reverse process, pg(x:—1|2+), approximates the data distribution by learning
the noise via a neural network, enabling the following reverse update:

1
Tyl = N (l’t - 1&%69(%773)) + Bz, 4



where ¢g is the learned noise estimate, a; = [[._, (1 — Bs) and z; ~ N(0, I) is standard Gaussian
noise. This reverse step resembles Langevin dynamics, where the score function V,, log p(z;) is
implicitly approximated by the denoising model’s prediction of the noise component. According
to [46], we can rewrite the score function with respect to the noise term by combining Tweedie’s
Formula with this reparameterization:

_ep(me,t) _ T — Vo
v1—ay (1—au)
This reformulates the DDPM reverse process update into a Langevin Sampling process in terms of

the score function V, log p(z;) instead of the noise estimate ey (x4, t).

Ve, logp(zy) = §))

Ty_1 = Tt + %V:ct log p(x¢) + v/ Bz (6)

This formulation bridges the DDPM reverse process to stochastic gradient-based Langevin dynamics,
aligning denoising with probabilistic inference, forming the basis for leveraging optimization tech-
niques within the sampling process. To ensure consistency in the time scale, we assume the iterative
process proceeds from 7" to 0 as 7" — oo in this paper.

3.2 Constrained Sampling

In practical applications, it is crucial to generate samples that satisfy specific constraints or physical
laws. This motivates the problem of constrained sampling, where the goal is to sample from a
distribution ¢ that is "close" to a reference distribution p (e.g., the distribution implicitly defined
by expert data) while satisfying certain constraints. As formulated by [16], this can be posed as an
optimization problem in the space of probability measures:

¢* = argmin  KL(g|lp) st Ezlg(x)] <0, 7
gEP2(RY)

where g(-) represent inequality constraint functions and KL(g||p) measures the divergence from the
reference distribution p.

For the task we aim to solve, we do not assume constraints are convex. Therefore, our approach
involves adapting existing methods and extending them to non-convex settings, while proving the
effectiveness of the proposed algorithm in experiments and giving theoretical analysis.

3.3 Discrete Control Barrier Functions

To enforce safety constraints in dynamical systems, Control Barrier Functions (CBFs) are designed
to ensure forward invariance of a desired safe set C, which is typically defined as the superlevel set of
a continuously differentiable function h(z), i.e., C = {x € R? : h(x) > 0} [40].

For a general discrete-time deterministic system 277! = f;(27,u"), where 2™ € R is the system
state at physical system time step 7, u, € U C R is the control input, and f; denotes the discrete-
time system dynamics, a function h(z) is a Discrete Control Barrier Function (DCBF) if there exists
an extended class K function « such that for all x € C[41]]:

h(fa(x™,u")) — h(zT) = —a(h(z")). ®)

This condition ensures that the decrease in h(z) between discrete time steps is bounded, thus
preserving the forward invariance of the safe set C. In practice, this often involves solving a quadratic
programme (QP) at each time step to find a control input w that satisfies the CBF condition while
minimally deviating from a nominal control policy.

4 Problem Statement

The generative power of diffusion models extends to sequential decision-making problems, leveraging
the models to represent distributions over trajectories or action sequences. Specifically, these
models are trained to model the distribution over expert demonstrations by corrupting trajectories
(2°,...,27) with noise in a forward diffusion process and learning to reverse this corruption during
training [3]]. Despite the demonstrated success of diffusion models in trajectory planning and control,
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Figure 2: Constrained sampling trajectories through (a) projected, (b) primal-dual and (c) augmented
Lagrangian Methods. The goal is to use Langevin sampling methods to sample from a 2-dimensional
Gaussian distribution with the constraint 22 + y* > r2. Yellow regions show the high density of
Langevin sampling trajectory distributions. Trajectories of the projected method mostly concentrate
on the constraint boundary while the other two are more distributed.

their practical deployment in safety-critical systems faces a fundamental challenge: enforcing dynamic
constraints during the sampling process without costly retraining or architectural modifications.

To address this, we propose solving the constrained generation problem by formulating it as the
following optimization problem: given a pretrained diffusion model defining an implicit distribution
p(z%7) over trajectories, and constraint functions g(x%7), where 7 is physical system time step, we
design an alternative reverse process that produces a "similar" trajectory distribution ¢* satisfying:
: 0:
¢* = argmin  KL(q|]p) st Egor[g(z®7)] <0, )
qE€P2(RY)
while remaining computationally tractable. We assume access to the differentiable constraints and
their gradients. For notational brevity, we omit the superscript O : 7 when possible.
Remark 1. For constraints on samples rather than expectations under distributions, we could formulate
the constraints as E 0.7, [[g(z%7)] ] < 0, which ensures the probability of any constraint violation
is exactly zero under q. For cases where the constraints need to be differentiable, we can use
0:T
3 : 0:

]EIO:TNq[ng(_%;] < 0 as a smooth approximation of [g(z%7 )] .
In the context of control systems, we implement these constraints using DCBF to ensure safety. The
DCBF conditions are treated as the specific constraint imposed on the system’s actuation dynamics
within our general formulation in (9). This approach provides a plug-and-play mechanism to enforce
constraints directly into the reverse diffusion process, as illustrated in our framework in Figure[I]

5 Constrained Diffusers

In this section, we present three methods for handling constraints during reverse diffusion sampling:
Projected methods, Primal-Dual methods, and Augmented Lagrangian methods. Visualization of the
modified reverse process can be found in Appendix [N}

5.1 Projected Diffusion Sampling

This approach leverages Projected Gradient Descent (PGD) to enforce trajectory constraints during
the diffusion denoising process, extended from the work [10], which has shown that projected
diffusion model can be successfully applied to some planning tasks, with analysis on the convergence
and applications to the control tasks. At each denoising diffusion time step ¢ of the diffusion process,
we modify the standard update rule with constraint projection as follows,

1 = ¢ (xt + %th log p(z:) + ﬁtz> (10)

where IIc denotes the projection operator onto the constraint set C defined in (9). The projection
operator Il solves the constrained optimization problem:

He(z) = argmin ||z — 2| st. z€C (11)
z€eR4



Through these updates, the samples will converge to stationary points. Detailed analysis to the
statement can be found in Appendix |II This method applies for constraints for samples and the
constraints are met at every diffusion step.

5.2 Primal-Dual Methods (PD)

This approach addresses the constrained optimization problem (9) by solving the following problem:

maxmin {L(g, A) = KL(g/|p) + A" Evnglg()]} - (12)

where ) is the corresponding Lagrange multiplier.

Definition 5.1. A local saddle point of L(g,A) is a point (¢*, A\*) such that for some r > 0,
Vg € P2(R%) N By« (r) and YA > 0, we have

L(q,\*) > L(q*, \*) > L(q*, \),

where B,- (1) is a ball centered at ¢* with radius > 0 under the 2-Wasserstein metric.

According to [47) 48], a local saddle point for the maxmin problem is a local optimal solution
to the primal constrained optimization problem (9). The optimal constrained distribution ¢* can
be characterized as a tilted version of the original distribution p(z) o e~/(*), given by ¢*(x) o

e~ (F@+3"9(=)) Sampling from ¢* can then be achieved by modifying the LMC dynamics to target
this tilted distribution. In practice, we solve the maxmin problem by alternatively updating = and A:
The primal update is to incorporate gradients related to the constraint functions; the dual update is to
ascend in A using the gradients of L(g, \) w.r.t. A, i.e.,

rir = e+ (Ve logp(e) — AT Veg(e0) + VB (13)
A1 = (M + MEa,~glg(ze)]]4- (14)

where [-]; = max(0, -) denotes projection onto the non-negative orthant, and 1), are step sizes.

Theorem 5.1. Under mild conditions, the sequence of updates (13) and (T4) converges almost surely
to a local saddle point, i.e. a local optimal solution to the constrained optimization problem ), as T
goes to infinity.

The detailed proof of the theorem can be found in the Appendix [J] That is to say, under the proposed
update strategy, when a score function already exists, constraint satisfaction can be achieved by their
gradients with respect to the samples, eliminating the need for solving a QP.

5.3 Augmented Lagrangian Methods (ALM)

This approach enhances constraint handling by introducing a quadratic penalty term into the La-
grangian relaxation which enhances numerical stability[49} [50]. To handle inequality constraints
E;qlg(x)] < 0, we introduce slack variables s > 0 and let E,4[g(x)] + s = 0. Then, we
reformulate the constrained optimization problem (9 using the augmented Lagrangian:

La(q, )\, 5) = KL(q||p) + AT [Eq,~nglg(ae)] + 8] + gllqu[Q(xt)] + s|? (15)

The slack variable s enables exact constraint satisfaction while maintaining differentiability. The
update scheme features three components:

Ti—1 = 2t + be [th log p(x¢) — (¢ + pe(Ee,~nglg(e)] + St))TVztg(xt)] + \/Ezty (16)

2
st = [~Eu,~qlg(xt)] — At/pe]+, (Slack Update) (17)
Ai—1 = Mt + pt (Esz,oqlg(xt)] + s¢) , (Dual Update) (18)

To obtain p — oo, we update the penalty term p;_1 = ¢ - p;(c > 1). These updates will finally
converge to the local optimal solution of (9) under certain conditions. Detailed analysis of the
statement can be found in Appendix [Kl Compared to the primal-dual method, this method provides
better constraint satisfaction for inequality-constrained diffusion processes.



6 Online Safety Implementation

To ensure that the trajectories produced by our model remain safe during online implementation
with actions feeding into environments, we incorporate two key components: discrete control barrier
functions (DCBFs) and inverse dynamics model based on the following two assumptions: 1) that an
inverse dynamics model exists for the system, while it is not accessible in a closed form derived from
first-principle physics, 2) that there are no constraints on the inputs.

6.1 Discrete Control Barrier Function Constraints in Physical Environments

To enhance safety during the implementation stage, we incorporate discrete control barrier functions
in our reverse diffusion process. In practice, this condition is typically enforced through a QP at
each time step. Since our approach directly generates trajectories, we could directly consider safety
constraints between consecutive states ™ and 27T at the trajectory level. Specifically, we guarantee
that consecutive states in our generated trajectories satisfy the safety condition by rewriting (8):

h(z™™) > (1 —a)h(z™), V7r=0,...,7, (19)

here we use a proportional function to replace extended class X function where « € (0, 1] is the
coefficient that determines how aggressively the system state is required to remain within or approach
the safe set. By enforcing this condition directly on the state trajectory, we ensure that the system
trajectory evolves safely without explicitly computing control actions during the generation process.
The detailed update scheme for DCBF constraints can be found in Appendix [[]

6.2 Inverse Dynamics Model

When applying the proposed methods at implementation stage in control tasks, the diffuser generates
sequences of states. To guarantee the consistency of state and action, we employ an inverse dynamics
model (IDM), denoted by u™ = IDM(x7, 27 1), which predicts the action u required to transition
from state 27 to state 77! after obtaining the constrained state through the proposed algorithms.
This ensures that the action executed corresponds to the constraint-satisfying state achieved after
the modified reverse diffusion step. To address the potential inconsistency that the mapping from a
state transition to a control input may not be one-to-one in systems with redundancy, our approach
implements IDM using a deterministic neural network, which provides a unique action output.
Furthermore, the IDM is applied on well-behaved transitions whose distribution closely matches the
expert distribution, which further reduces the risk of ambiguity. More clarifications can be found in

Appendix
The pseudo-code of the complete algorithm is shown below.

Algorithm 1 Constrained Diffusers (use Primal-Dual as an example)

Input parameters: Expert data, constraints g(z), variance 3, dual step 7, initial Lagrangian
multiplier A
1: Training: Use the expert data to train the score function and IDM.
2: For 7 =0, ..., T: // environment timesteps
Initialize z7 ~ N(0,I).
Planning:
Fort =T, ...,0: // diffusion timesteps
Update z; based on (I3)) with DCBFs as constraints.
Update \; based on (14)
end for
:  return zq for planning
10:  Control:
11:  u™ =IDM(x), z})
12:  Feed u” into environment.
13: end for

woRNDHW

Note that our algorithm involves two time horizons: the diffusion process horizon denoted by ¢ and T',
and the physical environment horizon denoted by 7 and 7. x( represents the entire clean trajectory



over the planning horizon 7 at diffusion timestep 0. 2, denotes the noisy version of this trajectory at
diffusion step ¢. The notation ) refers to the 7-th state in o, where z{ is the current agent state,
and x§ is the next planned state. During inference, the agent first observes its current state, which
becomes z. Then a full reverse diffusion process is run from noise to generate z¢. The constrained
sampling method ensures safety state constraints are satisfied. The IDM computes the control a” for
the safe state transition 3 — x{ which is executed in the environment. The remaining trajectory is
discarded. After the environment updates to the next state, the process repeats from Step 1. Thus, the
policy predicts a full safe trajectory at each time step but executes only the first action.

7 Experiments

We evaluate Constrained Diffusers on Maze2D planning, locomotion, manipulation, and PyBullet
ball-running tasks. Our experiments address four questions: (i) can our methods enforce trajectory
constraints without retraining? (ii) how do they compare to existing techniques in constraint satis-
faction, task success, and computational efficiency? (iii) can they adapt to time-varying constraints
during deployment? and (iv) what are the strengths and weaknesses of the proposed approaches
integrated within diffusion sampling? Detailed settings are in Appendix [Cand further experiments
on scalability to high-dimensional tasks can be found in Appendix [D}

7.1 Constraint Satisfaction in Maze2D Planning tasks

First, we evaluate the constrained diffusers on trajectory planning tasks in two Maze2D environments:
Maze2D-umaze and Maze2D-large. We set up obstacles in these environments (Figure [3), requiring
the agent’s planned trajectory to reach the goal while avoiding these obstacles. Obstacles are
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W
°
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Figure 3: Trajectories generated by Constrained Dif- Figure 4: Convergence Results for algo-
fuser in Maze2D Environment with Black obstacles. rithms in Maze2D. Proposed methods can
The blue part shows the start of the trajectories and the satisfy constraints. ALM shows better con-
red part shows the target. We observe that the trajecto- vergence and projected methods satisfy con-
ries avoid the obstacles and reach the goal straints throughout reverse diffusion process.

expressed as linear or quadratic inequalities, which we explicitly embed into the trajectory generation
process. We compare against three baselines: Diffuser (vanilla trajectory diffusion), Conditional Dif-
fuser [4] (constraint-conditioned generation), and SafeDiffuser [9] (CBF-guided denoising). TablelIl
reports, for both environments, the Euclidean distance to the original trajectory, the total constraint
violations %7_,[g(x7)]+, and computation time per diffusion step.

From Table[T] conditional diffusion struggles to handle constraints in environments. Both SafeDiffuser
and the Projected method can strictly satisfy all constraints, achieving zero violations, because they
solve a QP problem at every diffusion step. This strict enforcement, however, comes at a substantial
computational cost. In contrast, PD and ALM use numerical iterative updates, which introduce
minor violations in the planning phase but still reduce constraint violations by over 99% compared
to vanilla Diffuser, while only increasing computation time by approximately 10%. ALM adds a
squared constraint penalty, making it slightly more effective in violation reduction than PD at the
cost of 10% additional computation, which is still only 1/10 of the closed-form method and 1/100 of
QP-based methods. This demonstrates the ability of our proposed approach: being nearly consistent
with expert behavior while flexibly handling constraints to ensure safety, all without retraining.



Table 1: Performance comparison for Maze2D tasks. We can find that our algorithm could almost
satisfy constraints and reduce computational time, compared to baseline algorithms. We report the
mean and the standard error over 10 random environments.

Env Algorithm Distance Total Violations Time(s)
Diffuser[3]] 0.00 7.316 4+ 0.884 0.0016
Conditional[4] 23.96 + 2.14 1.109 £+ 0.834 0.0017

maze2d-umaze SafeDiffuser[9] 42.81 4 8.66 0.000 £ 0.000 0.1208
Projected[10] 10.24 £+ 1.39 0.000 + 0.000 0.0107
Primal-Dual 9.78 + 1.14 0.013 £ 0.032 0.0017
ALM 9.81 £+ 1.65 0.002 4+ 0.002 0.0018
Diffuser[3] 0.00 12.400 +2.440  0.0022
Conditional[4]  194.31 £13.25 1.653 £1.124 0.0027

maze2d-large SafeDiffuser[9] 196.25 4+ 33.06 0.000 + 0.000 0.2219
Projected[10] 199.95 +37.45 0.000 & 0.000 0.0083
Primal-Dual 187.52 +£33.80 0.069 + 0.056 0.0028
ALM 195.85 £21.82 0.033 £ 0.044 0.0029

7.2 Safe control in locomotion tasks

We evaluate our algorithm on planning and control in two Gymnasium MuJoCo environments, Hopper
and Swimmer [51]]. In Hopper, we bound the thigh-hinge angular velocity; in Swimmer, we bound
the second rotor’s angular velocity. We impose DCBF constraints and use an IDM to generate actions.
Baselines are Diffuser, Conditional Diffuser, and SafeDiffuser. For the Projected Gradient Descent
methods, we adapt the approach from [[10] to handle sample-based constraints. However, comapre to
[LO], for online execution, we further embed DCBF constraints rather than simple state-based hard
constraints to smooth the resulting trajectories with a receding-horizon loop that executing only the
first action of a planned sequence before replanning. This ensures the IDM can generate feasible
and effective control solutions in real-time. Metrics include (i) rewards, (ii) planning constraint
violations, (iii) online violations and rates under IDM execution, and (iv) per-step diffusion compute
time (Table [2). In Hopper, Projected achieves zero planning violations but lower online returns
and occasional violations from IDM generalization and stochasticity, reduced by 90% vs. Diffuser.
PD and ALM cut planning violations by 96% and yielding higher rewards and an 85% violation
reduction, at just 1/400 the computation time of [9, [10]. In Swimmer, Projected reduces online
violations by only 50%, whereas PD/ALM achieve 98%, which we attribute to better alignment with
the expert distribution and hence safer IDM actions. We also compare the constraint violations during
both the planning and implementation stage with and without DCBF as a constraint (directly use
hard constraints). The results demonstrate that both planned violations and implementing violations
can be effectively reduced by incorporating DCBFs. Based on our analysis, we conclude that when
constraints are directly applied, the IDM may fail to generate a reasonable and feasible action,
validating that DCBF improves safety during online execution. In addition, we perform a sensitivity
analysis of the IDM model to assess its impact on the control stage in Appendix [F}

Table 2: Performance comparison for locomotion tasks. We report the mean and standard error over
10 random environments.

Planning Planning Impl. Impl. Violation

Eny Algorithm Reward  violations (w/o CBF)  Violations (w/o CBF)  Rate (%) Lime(s)
Diffuser[3] 3592+ 37 2554021 - 261 +021 - 482+ 060 00026
Conditional @] 3608 £36 1.06+0.19 121+033 138+027 1.14+027 474+083 00027

Hopper  StfeDiffuseriD] 351446 0.00£000 0.00£0.00 028006 LI3£022 027005 09307
Projected(I0] 3547+ 13 0.00 = 0.00 0.00 = 0.00 029+009 042+0.10 029+008 09305
Primal-Dual 3551 +10 0104003 0.13+003 043+0.12 046+043 041+030 0.0027
ALM 3553+ 14 0.08+0.02 0.10+0.03 0384016 0.61+012 0.09+0.11 00031
Diffuser[3] 574+87 838+087 - 112+026 - 130+ 026 00026
Conditional[d] 588 +5.6 802+078 054+011 100+031 093+044 1.11+043 00027

Swimmey  SafeDiffuser@] 60461 0.00£0.00 0.00=0.00 065+021 078=038 0974025 09301
Projected(I0] 587 +4.1 0.00+0.00 0.00+0.00 061+025 075+029 081+026 09049
Primal-Dual ~ 864+92 017+008 0.16+006 002+002 006+008 007+007 0.0027
ALM 887+ 54 0084005 1.80+052 0.00+002 042+024 0.03+0.04 00029




7.3 Adaptability to Time-varying Constraints

Finally, we evaluate the adaptability of our proposed algorithm in
the PyBullet SafetyBallRunning environment, where safety con-
straints vary over time. In this setup, we have an obstacle ball that
moves in the space, requiring the ball to avoid collision while con-
tinuing to move. We assume that the agent ball has no knowledge
of the obstacle’s dynamics and can only observe its current states,
making planning infeasible. During implementation, we construct
the discrete control barrier functions (DCBF) based on the current
observation of obstacles as constraints in the constrained diffuser
to generate a trajectory. Following the same receding-horizon
strategy and compared to [10], this approach ensures the IDM pro-
duces feasible actions. We use Diffuser and Conditional Diffuser
as baseline algorithms. We compare rewards, constraint violations
and violation rates during implementation stage, and computation
time per diffusion step in the experiment. The results are summarized in Table (3| Ablation studies on
hyperparameter of DCBF and worst-case analysis of initial conditions can be found in Appendices

and[Gl

Figure 5: PyBulletBallRunning
tasks with the black-white ball
and a red moving obstacles ball.

Table 3: Performance comparison for PyBullet ball running tasks. The results indicate our methods
effectively adapt to time-varying constraints. We report the mean and the standard error over 10
random environments.

. Impl. Impl. Violation .
Env Algorithm Reward Violations  (w/o CBF) Rate (%) Time (s)
Diffuser[3] 6464 +303  220+0.77 37751 9.6e-3

Conditional[4] 616.5+339 1.554+053 199+£1.09 33.1+11.1 9.7e3
SafetyBall ~SafeDiffuser[9] 820.8 £29.8 1.13+1.08 136+046 2194128 2.6e-2
Running  Projected[10] 586.7+33.7 1.01+0.63 150+£0.14 2584139 2.6e-2
Primal-Dual 7222+ 118.6 0.02+0.03 0.10£0.13 22432 1.3e-2
ALM 696.1 £99.9  0.02+0.02 0.02£0.02 1.6+34 2.1e-2

Compared to the baselines, we can ensure effective collision reduction with less decision time. The
Projected method reduces violations by only 50%, with 170% more computation time based on
the closed-form projection. In contrast, PD and ALM achieve 99% reduction, with 35% and 119%
computation overhead, respectively. In addition, we also observed an improvement in the reward
during implementation. We interpret this as the adjustment bringing the ball closer to the target.

8 Conclusions

In this work, we proposed constrained diffusers for planning and control tasks. The model integrates
constraints over distributions directly into pre-trained diffusion models without requiring retraining
or architectural changes. By re-interpreting safe trajectory generation as a constrained sampling
problem, we apply three methods—Projected, Primal-Dual and Augmented Lagrangian methods—to
realize the constrained reverse Langevin sampling. Then we introduce DCBFs as constraints in the
Constrained Diffusers and use inverse dynamics models to obtain actions, following a receding-
horizon control that only the first action of the selected plan is executed before replanning, ensuring
safety in the implementation stage. We demonstrated them in Maze2D, robotic locomotion, and
PyBullet ball running tasks showing that the proposed constrained diffusion model not only meets
safety requirements but also reduces computational time compared to existing approaches. We
summarize the limitations into theoretical and practical ones. On the theoretical end, our methods
rely on assumptions including accurate score function estimation. On the practical end, we made an
assumption that we have access to constraints, and lack robustness analysis. For a detailed analysis,
please refer to Appendix
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the abstract and introduction accurately reflect our contributions and scope, i.e.
Constrained Diffusers for safe planning and control tasks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we discuss the limitations in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: we have justified assumptions, making the problem clear and provided detailed
proofs in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we provide the detailed results in the experiment section and appendix, and
codes in supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: we provide codes in the supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: we provide the detailed settings in the experiment section and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We give all precisions relative to the the evaluation of our models.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: the compute resources are shown in supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and this paper does not
address societal impact directly.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: In our opinion the paper does not have direct social impact
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: in our opinion the paper does not present such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we have included all information for the assets we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: we include our codes in supplemental material.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Comparisons on Related Works

Compared with Projected Diffusion [[10], which enforces feasibility by projecting each sampled
point onto a predefined safe set, our Constrained Diffusers treat generation as constrained sampling
at the distribution level. Beyond the projected method, we introduce primal-dual and augmented
Lagrangian updates that support distribution-level constraints, jointly update trajectories and Lagrange
multipliers inside the reverse process. For online execution, we further embed DCBF constraints
rather than state-based hard constraints and use a receding-horizon loop that executes only the first
action before replanning, avoiding per-step QP solves and aligning the generated trajectory with
system dynamics. Under some assumptions we establish convergence and constraint-satisfaction
guarantees, and empirically show in Maze2D, locomotion, and PyBullet tasks that our methods satisfy
constraints with less computation while matching or improving task performance.

We provide a comparative analysis of several key approaches in safety-critical planning and control
in Table

Table 4: Performance Comparison

Method Constraint Satisfaction Computational Primary Application /
Efficiency Notes
Traditional QP Strict; can find an optimal safe Average; solving a QP Known dynamics and
with CBF plan with minimal costs if one for each action (e.g., via  cost functions.
exists. primal-dual interior
point method).
SafeDiffuser High; Planning: solves a QP at Low; solving a QP at Safety-critical systems
each diffusion denoising step to every step of the where having a
ensure the planned trajectory is diffusion process is guaranteed safe plan is
safe. Inference: uses state-based ~ computationally essential.
hard constraints. expensive.
Projected Strict; Planning: guarantees the Low, solving an Systems that require
Diffusion (Ours  planned trajectory has zero optimization problem strict safety guarantees
and [10]) violations. Inference: DCBF as each diffusion denoising  during the planning
constraints, violations can occur  step. phase.

due to errors from the IDM or
environment randomness.

Primal-Dual
Diffusion (Ours)

Good; Planning: may have very
small violations in the final plan
due to the iterative process.
Inference: keeps the system safe
with DCBF constraints,
especially when the planned path
is similar to expert behavior.

Extremely high; uses
simple gradient updates
and avoids solving
optimization problems.

Real-time applications
where planning speed is
more important than
perfect constraint
satisfaction.

ALM Diffusion
(Ours)

Strong; Planning: produces plans
with near-zero violations;
Inference: provides robust online
safety with DCBFE.

High; slightly slower
than the PD method but
much faster than solving

QPs.

General use cases that
need a good balance
between safety and
planning speed.

B Limitations

We categorize limitations into theoretical and practical aspects.

Theoretical Aspects.

hold perfectly in practice.
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* Score Estimation Accuracy: We assume that the trained neural network yields an accurate
estimate of the score function (Vy, log p:(x;)). Our analysis does not quantify how these
errors impact the probability or degree of constraint violation in the final samples.

* Convergence Guarantees: Our convergence analysis relies on standard, but potentially
strong, assumptions regarding the score and constraint functions. Furthermore, the results
established provide guarantees for local, rather than global, convergence.

Practical Aspects. From a practical standpoint, the applicability and scope of the current method
can be extended.

* Constraint Complexity and Guarantees: We have not addressed more complex scenarios
involving, e.g., constraints coupled with system dynamics or other constraints beyond
safety. Moreover, while we empirically demonstrate a high rate of satisfaction, the proposed
method does not, in its current form, offer formal, provable guarantees of 100% constraint
satisfaction for every sample, which may be a requirement for safety-critical applications.

» Known and Differentiable Constraints: A core assumption is that the constraints g(z) are
known in an explicit, analytical form, and that their gradients Vg(z) are readily available.

* Robustness to Uncertainty: The formulation assumes that constraints are deterministic.
We do not currently address how to handle uncertainty in the environment, which is vital for
robust deployment in noisy or variable conditions.

C Experimental Details

The experiments are all running on the machine with intel Core 17-14700 x 28, 32GB Memory,
NVIDIA GeForce RTX 4060 and the operational system Ubuntu 24.04. All diffuser models in our
experiments were trained from scratch using expert demonstration data. For Maze2D, we used
Maze2D-umaze-v1l and Maze2D-large-v1 from D4RL; for MuJoCo locomotion tasks, we used
hopper-medium-expert-v2 from D4RL and swimmer-medium-expert-v2 from Minari; for PyBullet
ball running tasks, we used SafetyBallRun-vO from DSRL.

The experimental details are summarized as follows:

e In Maze2D environment, the noise is approximated by a temporal U-Net [3]. The training
settings and codes are borrowed from [3,9]. For Maze2D-umaze tasks, we use a planning
horizon of 128, 64 diffusion steps and additional 64 steps in reverse process. The constraint is
formulated as © + y < b, where (z, y) is the position state of the agent and b is the parameter
of the boundary. The learning rate 7 for dual variables in primal-dual methods is 0.025 and
the initial penalty p is 0.05. For Maze2D-large tasks, we use a planning horizon of 384, 256
diffusion steps and additional 200 steps in reverse process. The constraint is formulated as
(2=E0)2 4 (452)2 > 1, where (z, y) is the position state of the agent and (o, o, a, b) are the
parameters of the boundary. The learning rate 7 for dual variables in primal-dual methods is
le~3 and the initial penalty p is 2.5e~%.

¢ In Gymnasium Mujoco and PyBullet environment, the temporal U-Net architecture, training
settings and codes are borrowed from [4]]. For Hopper tasks, we use a planning horizon
of 100, 200 diffusion steps and additional 100 steps in reverse process. The constraint is
formulated as w < wpax, Where w is the angular velocity of the thigh hinge. The learning
rate 1) for dual variables in primal-dual methods is 0.1 and the initial penalty p is 0.01. The
hyperparameter a in DCBFs is 0.85. For Swimmer, we use a planning horizon of 100, 200
diffusion steps and additional 100 steps in reverse process. The constraint is formulated as
w < wmax, Where w is the angular velocity of the second rotor. The learning rate n for dual
variables in primal-dual methods is 0.5 and the initial penalty p is 0.01. The hyperparameter
« in DCBFs is 0.85. For SafetyBallRunning tasks, we use a planning horizon of 100, 200
diffusion steps and additional 100 steps in reverse process. The constraint is formulated as
[z — (@0 +v.7)]? + [y — (Yo +v,7)]? > (R+1)?, where (x,y) is the position state of the ball
agent, (zg, yo) represents the position of the obstacle ball, (v, v,) represents the velocity, R
represents the radius of agent ball and r represents the radius of the obstacle ball. The learning
rate 7 for dual variables in primal-dual methods is 0.1 and the initial penalty p is 0.01. The
hyperparameter o in DCBFs ranges from 0.3 to 0.8.
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We assume access to a differentiable constraint function and its gradient: for common geometric
obstacles these are analytic; in more complex settings, constraints can be built online from sensor
data (e.g., camera-based segmentation of obstacle boundaries). For black-box constraints, a neural
network learns a differentiable approximation from cost signals collected via interaction with the
environment.

D Scalability to high-dimensional action space in manipulation tasks

To demonstrate the wider applicability of the algorithm, we conducted additional experiments on
the Dexterous Hand Manipulation Adroit Relocate task with a 30-dimensional action space. The
new environment Adroit Relocate was introduced in [52]] as part of the Adroit manipulation platform.
For our new experiments, we use the D4RL dataset relocate-expert-v1, which contains 5,000 expert
trajectories sampled from an expert that solves the task. We imposed two constraints: one is that the
translation distance of the full arm at each step cannot exceed a certain value (22 + y? + 22 < r?),
and the other is that the angular up-and-down movement of the full arm cannot exceed a certain
value. Note that since the robot’s action is its end-effector pose, the constraints are directly applied
to the action. Therefore, it is not necessary to use an IDM and compare planning violations in this
task. Results summarized below show that even with similarly sized models, our algorithms satisfy
constraints, demonstrating scalability to high-dimensional tasks.

Table 5: Performance comparison for relocate tasks. We can find that our algorithm could almost
satisfy constraints and reduce computational time, compared to baseline algorithms. We report the
mean and the standard error over 10 random environments.

Env Algorithm Rewards Violations Violation Rate (%) Time (s)
Diffuser[3]] 5504938 87.04+30.4 74.0+£16.4 0.0028
Conditional[4] 422+837 32.0+14.7 58.5+16.3 0.0029

Relocate Projected 3214791 0.0£0.0 0.0£0.0 0.9515
Primal-Dual ~ 499+951 0.04=+0.03 2.9+1.9 0.0031

ALM 3254670 0.04+0.02 2.94+1.6 0.0035

E Ablation Studies on hyperparameters

In the control tasks, we apply discrete control barrier functions as constraints in the reverse diffusion
process. We find that « plays an important role in the safety implementation. To show its importance,
we compare the performance of our Constrained Diffusers with different values of « in SafetyBall-
Running tasks. Also, when we use hard constraints rather than DCBFs, it is equivalent to o = 1.
Theoretically, smaller o may lead to a more robust solution which contradicts the final results. This
may occur as a result of the smaller o making the trajectories deviate more from the distribution and
the inverse dynamics model is not accurate enough. Results are summarized in Table[6]

Table 6: Performance comparison for PyBullet SafetyBallRunning tasks with different o. We report
the mean and the standard error over 10 random environments.

Total Impl. Violation
Violations Rate (%)

Projected 586.7£337 1.01£063 258+139
a =0.3 Primal-Dual 7173 £107.7 0.21+0.23 104 +11.38
ALM 696.0 £ 1445 029+0.19 93 +£9.87

Projected 5953 £463 147£050 29.7£10.5
a=0.5 Primal-Dual 720.6 £ 80.97 0.09 £ 0.09 92+79
ALM 647.7 £7434 0.17 £0.17 10.3+9.8

Projected 595.7£19.6 1.54+£0.53 36.0+£1.41
o =0.8 Primal-Dual 7222 £118.6 0.02 £ 0.03 22432
ALM 696.1 £99.9  0.02 £ 0.02 1.6 £ 34

@ Algorithm Reward
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F Sensitivity Analysis to IDM Prediction Errors

The accuracy of the IDM is critical because errors cause a mismatch between planned and actual
states, leading to potential task failures and safety violations. We quantify this sensitivity by defining
the IDM error as Au ~ % — u*. Linearizing the dynamics shows the resulting state deviation

Az ~ g—ZAu, which affects the safety function as h(z'tl ) ~ h(:vfﬂti) + Vh(xf)lﬁ)TA:c, meaning

the change in constraints is primarily influenced by Vh(zé[;})T %. To validate the capability of our
method to maintain safety constraints in the presence of prediction errors, we conducted a sensitivity
analysis on Hopper. We evaluated three algorithms (Projected, Primal-Dual, ALM) with varying
levels of IDM errors (2%, 10%, 25%). Results show that increasing IDM error generally lowers
reward and increases constraint violations, but a 10% error is still acceptable for the tasks. The results

are shown in Table[7]

Table 7: Sensitivity analysis on IDM errors in Hopper and Swimmer

Env Error Algorithm Reward Impl. Violations Violation Rate (%)
Projected 34374196 0.28+0.12 1.7640.75
2% Primal-Dual 35014130 0.48-+0.21 3.47+0.85
ALM 3370442 0.44+0.19 3.1340.10
H Projected 33914325 0.32+0.08 1.98-+0.60
opper 10%  Primal-Dual 26904707 0.46+0.12 3.3340.86
ALM 23694455 0.4140.08 3.5140.02
Projected 19004471 0.62+0.12 2.09+0.29
25%  Primal-Dual  1446+354 1.194£0.22 4.6740.75
ALM 1614504 0.95+0.33 4.1140.02
Projected 58.1+4.7 0.58-+0.31 0.7240.31
2% Primal-Dual ~ 89.4+6.2 0.05+0.06 0.10+0.07
ALM 89.245.5 0.03-0.04 0.05+0.08
Swi Projected 62.145.8 0.66+-0.23 0.77+0.28
WIMMET  10g,  Primal-Dual  87.6+7.3 0.034-0.08 0.09+0.08
ALM 88.945.3 0.03+0.06 0.07+0.10
Projected 61.545.2 0.73+0.31 0.69-+0.29
25%  Primal-Dual  86.3+5.9 0.07+0.03 0.50+0.07
ALM 92.844.5 0.04-0.30 0.30+0.45

G Worst-Case Analysis under Extreme Initial Conditions

To show the robustness of our methods under extreme initial conditions, we performed additional
worst-case analysis in the PyBullet Safety BallRunning environment. In the original setup, the agent
and the moving obstacle start with a safe distance between them. In this new analysis, we created
more extreme initial conditions by placing the obstacle closer to the agent, reducing the initial safety
distance. The results are summarized in Table[8] The "SafetyMargin" denotes the starting distance as
a percentage of the sum of the radii of the ball and the obstacle, with "Boundary" meaning the agent
and obstacle start at the point of collision.

Even in the most extreme case starting at the point of collision, our methods still effectively reduce
the magnitude and frequency of constraint violations compared to the baseline. As the initial safety
margin increases to 10% and 25%, the number of violations is further and substantially reduced,
showcasing the framework’s ability to maintain safety even when initialized in or very near to a
compromised state.
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Table 8: Worst-Case initial case analysis in Safety BallRunning task

SafetyMargin  Algorithm Reward Impl.Violations Violation Rate (%)

Diffuser[3]  640.6+29.0 14.04£1.27 81.9£1.92
Boundary Projected 536.7+£36.2 3.44+0.32 74.6£1.6
Primal-Dual ~ 457.1+48.4 2.9940.12 67.5£2.3
ALM 380.9£27.1 3.10£0.17 70.1£1.5
Diffuser[3]  640.8+28.9 13.08+1.40 76.5+£2.2
10% Projected 507.1£57.6 2.63+0.36 57.8+2.0
Primal-Dual ~ 479.5+54.6 1.55+0.23 32.5+5.6
ALM 421.9£59.77 1.33+0.21 29.0+4.4
Diffuser[3]  640.6+29.0 11.42+1.65 69.2+2.99
25% Projected 525.0£59.2 0.31£0.16 19.6£3.7
Primal-Dual ~ 413.9+87.9 0.45+0.75 18.9+16.5
ALM 422.1£70.4 0.06£0.11 8.0+£8.5

H Variations of executing steps

We conducted an experiment to evaluate the impact of executing multiple steps (1, 2, and 3) before
replanning. The results are summarized in Table 0]

The results demonstrate that performance degrades dramatically for all methods when executing two or
more steps at a time before replanning. This finding supports our hypothesis that multi-step execution
strategies are highly sensitive to the accumulation of errors, which can stem from the generalization of
the diffusion model and potential inaccuracies in the inverse dynamics model. Therefore, a single-step,
"closed-loop" execution strategy, where replanning occurs at each timestep, proves to be the most
robust and effective approach for achieving high performance in our experiments.

Table 9: Performance and constraint violations under different numbers of execution steps before
replanning. We report the mean and standard error over 10 random seeds.

Impl. Violation
Violations Rate (%)

Diffuser[3]  57.4 £8.7 1.12+£0.26  1.30£0.26
Projected 58741 0.61+£025 0.81=£0.26

Steps  Algorithm  Reward

Istep  pumal-Dual 864 +£92 0024002 007+ 0.07
ALM 88.7+54  0.00+0.02 0.03=+0.04
Diffuser[3] 12.4+259 0.09+0.15 0.2040.24

5 seps  Projected 82+ 132  0.00=+0.00 0.00+ 0.00

PS " primal-Dual 7.9 +£25.5  0.0540.08 0.13 +0.20
ALM 24+ 123  0.00+001 0.01+0.03
Diffuser[3] 0.7+ 167 0.04+0.12 0.06 + 0.15

3teps ProOjected 524201 0.02=+0.06 0.04+0.09

Primal-Dual 5.9 +13.7 0.01 £0.03 0.04 +0.08
ALM 89+232 0.00+0.00 0.00=+£0.00

I Analysis of Projected Methods

Recall that the projected Langevin sampling can be written as

zi—1 = ll¢ (It + %Vx,, log p(x¢) + Bt2> . (20)

From [[15]], we could conclude that when the distribution is log-concave with smooth potential and
there exists a convex body K C R™ that 0 € K, K contains a Euclidean ball of radius r, and K is
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contained in a Euclidean ball of radius R, projected Langevin Monte Carlo will target at sampling
from distribution ¢ oc e~/ (®H=€K} While in our problem settings, the distributions are not always
log-concave and the constrained sets are not always convex. Therefore, it is always difficult to
analyze it from the perspective of distributions. In the following part, we prove that the samples from
projected methods will converge to a nearly stationary point under certain assumptions.

Assumption 1. We assume that the iterates satisfy:
1. log p(z) is bounded and has L-Lipschitz continuous gradient:
IViogp(x) — Viegp(y)|l < Lllx —yl| Va,y €C 2D
2. 320 B =00,3072 B < o0
Remark 2. Since we interpret the reverse diffusion process as a Langevin sampling process, in our

theoretical analysis, the iteration flows from ¢ = 0 to ¢ = T when T' — o0, rather than following the
backward time direction in the original reverse diffusion process.

Theorem L.1. Under the above assumptions, when 3, < % for all t and we define the gradient
mapping as G(x¢) = %(mt — x4_1), then when t — oo samples from the projected methods satisfies:

inf E[|G (z)|[*] — 0 (22)
Proof. Because of the Lipschitz gradient assumption, we have:

L
log p(ws—1) <logp(z¢) + (Viogp(zt), 41 — x4) + §||9Ct—1 — x| (23)

From the projection property (y — Il¢(y), x — Il¢(z)) < 0, we have:
(41— — %Vlogp(:c) — Bz —x4-1) 20 (24)

(xy — 41, %Vlogp(z) + 1/ Bez) > ||eeo1 — x4 ]? (25)

Hence, we can conclude that
2

2 gy — i,y — 2
Bt t tflv\/E

El\mm — x| |? (26)

>_

(Viogp(xy), w41 —x¢) < —
Then we combine (23) and (26),

2 2 2 L
logp(x¢—1) < logp(a:) — E@t — Tt—1, ﬁ@ - Eth—l - l’t||2 + 5”%&—1 - iL’t||2 27

2 L 2 2
=logp(zs) — | = — = ) l|wee1 — o) — = (2p — 241, —=2 28)
g p(at) (ﬂt 2>||t1 al Bt<t tl\/E> (
Then we take expectations on the equations,
2 L )
Bllog ple—1)] < Ellogpen)] - (5 — 3 ) Elller—s — P 29)
¢
since E[(z; — z;_1, %zﬂ = 0. Then we define §; := (% — %) and sumovert =T,,...,0
1
25— [lze—1 — z4]]*] <logp(xo) —logp(ar) (30)
t=0
Since log p(x) is bounded, we can rewrite (30) as
1
Z(S— [[lzt—1 — 24| ] < logp(zo) — inflogp(x) < oo 31

t=0
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Then we relate (3I)) to the projected methods. Note that the update rule of projected methods is
z—1 = I¢ (a:t + %th log p(z:) + Btz). Recall the definition of gradient mapping G(z;) =

2 (x4 — 24_1). Then, we have the following inequality according to (3T)),

Bt
T
> BE[|G(a)|1?] < oo (32)
t=0
Since Ztho B = oo, we have
inf E[||G(2¢)]]*] — 0 (33)
when ¢ goes to oo. O

Under the given conditions, as the number of iterations & tends to infinity, the inferior of the expected
squared norm of the gradient mapping G(z;) goes to zero. In other words, the algorithm approaches
a stationary point during the iterations.

J Proof of Primal-Dual Methods

We employ the multi-timescale stochastic approximation framework [18] to analyze the convergence
of the primal-dual update and show that the convergent results satisfy the constraints. Combined with
Remark 2] we make the following assumptions that the step sizes satisfy the standard multi-timescale
approximation framework conditions:

Assumption 2 (Step Sizes). The step size schedules {;} and {n:} satisfy:
1 E:ioﬁt = 00, Zfiom =00.
2. Y20 B <00, YZgmi <o
3. m = o(B)

The condition 7; = O(S;) ensures that the primal variables () evolve on a faster timescale than the
dual variables (\;).

Step 1 (Convergence of primal update) Consider the dynamics of x; while holding the dual variable
A+ fixed at some value A. The primal update (I3) becomes:

I} _
Tpp1 = Ty + é(vxt log p(z:) — AV, g(x)) + /By 2. (34)
Defining the potential function of the distribution as U(z¢, \) = — logp(z¢) + AT g(z¢), we have

that VU (z¢, \) = —V, log p(2¢) + ATV, g(x;). Consequently the update can be written as:

.13,5.:,.1 =Tt — %VU(Z}, X) =+ ,BtZt. (35)

This is the Euler-Maruyama discretization of the overdamped Langevin stochastic differential equation
(SDE). The update rule falls under the Langevin-Robbins-Monro (LRM) scheme described in
Theorem 4.9, Section 4.4 of [14]. The theorem states that for a Langevin-Robbins-Monro (LRM)
scheme of the form:

Tn+l = Tn + 7n+1{v(mn) + ZnJrl} + vV '7n+10'(xn)£n+l (36)

where &,y are i.i.d. standard Gaussian, the stochastic interpolation (X¢);>¢ of {%, }nen is an
asymptotic pseudo trajectory of the flow ® corresponding to the SDE

dY; = v(Yy)dt + o (V;)dW, (37)

in the Wasserstein space, provided the some assumptions for theorem 4.9 in [[14] hold. We now verify
the assumptions for our specific update.

A1 (Lipschitz): Firstly, we need the drift term v(x) = Vlogp(x) — ATVg(z) to be Lipschitz. We
make the following assumption for the proof:
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Assumption 3. Assume that the gradients V log p(x) and Vg(x) are Lipschitz continuous with
constants L, and L, respectively.

Under Assumption (3} v(x) is Lipschitz continuous:

[v(z) — vyl = [[(Viogp(z) = ATVg(x)) = (Vlogp(y) — A" Vg(y))|
< [[Vlogp(z) — Viogp(y) || + AT (Va(z) = Vg(y))|
< Lyllz =yl + 1M Vg(=) = Vo)
< Lyllz — yll + M Lyl — i
= (Lp + 1N Lg)[l2 = |
Therefore, v(z) is Lipschitz with constant L, = (L, + ||A||L,). For diffusion term, we have

o(x) = I which is a constant function. Thus, o () is Lipschitz with constant L, = 0. In conclusion,
under Assumption 3] Assumption 4.2 in [14] holds.

A2 (Robbin-Monro): Based on Assumption[2} we have 37 8, = oo and 3 ;7 87 < oo which
satisfies conditions in Assumption 4.3 in[/14]].

A3 (Error term): We have Z,,4; = 0, so U,41 = 0 and B,+; = 0. For Assumption 4.1
in [14], measurability holds for Z,,; = 0. For Condition 4.14 in [14], E[U,+1|F~,_,] = 0.
sup, ey E||Un+1]|*> = 0 < oo. For Condition 4.15, E[|| B,11]/?|F.] = 0. We need to check if
0 < B2|jv(zn)||? + Bn. Since B, > 0 and |[v(z,,)||? > 0, this inequality holds trivially. Thus,
Assumption 4.4 in [[14]] holds.

A5 (Bounded Moments): We need to verify that sup,,cy E||2,||*> < co. Theorem 4.13 in [14]
provides sufficient conditions for this, requiring v to be dissipative and either L2 < o (where « is the
dissipativity constant) or ¢ to be bounded.

Definition J.1 (Dissipativity (Def 4.12 in [14])). The drift v is («, 8)-dissipative if (z,v(z)) <
—al|x]|? + B for some a > 0, 3 > 0.

Assumption 4. Assume the drift v(z) = —3(Vlogp(z) — ATVg(z)) is («, B)-dissipative for some
a>0,8>0.

Also, we could find that o(x) = I is Lipschitz, lim,,_,~, 8, = 0, Condition (ii) of Theorem 4.13 in
[14]requires o to be bounded in Frobenius norm. ||o(z)||r = |14z = V/d < oo all hold. Therefore,
by Theorem 4.13, we have sup,,cy E||z,[|? < oc.

At this point, all assumptions are satisfied and we could conclude that the update rule () is an
asymptotic pseudo trajectory of the flow corresponding to the following SDE:

1 _
dX; = fEVU(Xt,)\)dterWt. (38)
when ¢ — oo, it converges to the stationary distribution of this SDE, denoted by g5:
g5 (x) o exp(—log p(z) + A" g(x)). (39)

Furthermore, similar to Lemma 4.10 in [14]], the relative entropy H (-|g5 ) acts as a Lyapunov function,
implying that the only internally chain-transitive set for the SDE flow is the singleton {g5 }. This
implies:

Lemma J.1 (Fast Scale Convergence). Under the assumptions above, for any fixed X\ > 0, the
distribution of x; generated by (34) converges to the unique stationary distribution gs,.

Step 2 (Convergence of dual update) We analyze the slower dynamics of \; based on the previous
stationary distribution conclusion. However, in practice, the approximation of E,[g(x)] may be
inefficient. Therefore, we directly use the term g(z) and rewrite the dual update:

Att1 = [Ae Fmeg(Tes1)]+ (40)

Consider the associated ordinary differential equation (ODE) related to the behavior of A under the
distribution gy, :
dX¢

e [VAL(q" Al+ = [Ezngy [9(2)]]+ (41)
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where ¢ represents the slow time scale associated with 7;. Then, we prove that the update (0) is a
stochastic approximation of the ODE (#1I)) based on stochastic approximation theory. To illustrate the
proof, we write the dual update into the following formulation:

Atyr = Mo +0e(VAL(q", A) + M)+, (42)

where M, is Martingale differences w.r.t the o-field o(\;, M;,i < t) and here M1 = g(x) —
ViaL(g*, A) = g(x) — Eyg, [g(x)]. Because the samples are generated independently and randomly
from the distribution ¢,, we can easily obtain that E[M;|F) ;] = E[g(x) — Ezng, [9(2)]| Fa] =0
where Fy; = o(X;, M;,i < t) is the filtration of \; generated by the update trajectories. Then, we
show that M is square integrable. To illustrate this proof, notice that

IVAL(Y) = g(@)[]* = [[VALIP + [lg(@)[]* = 2(VAL() - g(2)) -

We analyze the term separately. By the Cauchy-Schwarz inequality, we can obtain
—2(VAL(A) - g(2)) < 2[[VALN)]] - l|lg(2)]|
< IVALW)|P + [lg(@)]*.

Substitute the bound into the expanded squared norm:

IVAL(Y) = g(@)[[* < 2/[VALWNII? + 2[]g ()]

Then we apply Lipschitz and Boundedness Conditions, Using ||[VAL(\)||? < K1(1 + ||)\]|?) and
oI < C: 2 2 2
2[[VALNI7 + 2[lg(@)[]” < 2K1(1 + [[A[]7) +2C.

Since 1 < 1 + ||A||? for all ), we have:
2K1 (14 ||M?) +2C < (2K1 +2C)(1+ [|A]]%).
Let K = 2K, + 2C. Therefore:
IVAL(A) = g(@)[] < K1+ [[AlP).

Then, we can conclude that M, is square integrable. By combining these results, we could say that
the update (@0) is a stochastic approximation of the ODE (T)) with a Martingale difference error
term.

To show that the system converges to a locally stable point, we consider the following Lyapunov
function,
where \* is a local maximum point of the Langragian function. Consequently, there exists a
neighborhood By (r) centered at A* with radius r, such that £()) is locally positive definite (i.e.,
L(A) > 0) for all A within this neighborhood. Since it is a local maximum point, we can obtain that

dA N

th = [VAL(¢", N4 aza- = 0. (44)
which means that A* is a stationary point. Then we calculate the time-derivative of the Lyapunov
function,

dL(A)
dt

which is nonzero when [V Ly, (At)]+ # 0. Based on the Lyapunov theory, A; will finally converge to
A

= —VLy,M\)IVLx, )]s < —[I[VLx, (A)]4]1? <0 (45)

Therefore, under conditions above, iterates A; converge to the set of stable equilibrium points of the
ODE (@), i.e., A*, which is the local maximum point of L(g*(\), A).

Step 3 (Local Saddle Point) After the steps above, we could conclude that ¢* is the minimum point
of the L(q, A\*) over the feasible set. We now show that the equilibrium condition implies that the
constraint satisfaction and the local saddle point for the original problem (Q) are satisfied at (¢*, \*).
To complete the proof, we firstly show

Equ[g(z)] <0, (46)
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when )\, converges to A*. Suppose that E,.4[g(x)] > 0, this implies that %+ > 0, which contradicts

that % |r,=a+ = 0. Therefore, the constraints are satisfied when dual update converges. Then we
show that

AE;nqg(2)] = 0. (47)
When the constraints are tight, we can easily show that the equation is satisfied. When E,.4[g(2)] <
0. Suppose that A* € (0, Aax], then there exists a small constant e such that

d\ 1., .
Thers = (N = Banglg@)l)s = X) = Eonylg(@)] < 0 48)
which contradicts the stationary conditions. Then, we can obtain that
L(q*,\) < L(¢",\") < L(q, ") (49)

In conclusion, (¢*, \*) is a local saddle point of L(gq, ), i.e., ¢* is a local optimal solution to the
original optimization problem (9}

K Analysis of Augmented Lagrangian Methods

In this section, we analyze the results of the Augmented Lagrangian methods. In the proposed
methods, we introduce slack variables to handle inequality constraints, but the problem is still based
on equality constraints. Therefore, in the analysis, we omit the slack variables and consider the case
of equality constraints. We rewrite the equation (I5)),

La(g, A, 5) = KL(ql[p) + AT [Ea,nglg(w)]] + £ |Ea g lg ()] (50)

2

Similar to the primal-dual methods, the optimal constrained distribution ¢* can be characterized as a
tilted version of the original distribution p(z) o< e~f(#), given by ¢ (z). Sampling from ¢} (z) can
then be achieved by the update (I6). Our analysis proceeds the assumption that the iterates are in a
neighborhood of an optimal solution (¢*, \*) that satisfies KKT conditions of original constrained
optimization problem,

oL

7 log g(x)—logp(xz) + 1+ Ag(x) +v =0 (51)

Eznglg(x)] =0 (52)

where v is the term related to the normalization. The directions of time flows follow Remark 2l

At time step ¢ of the Augmented Lagrangian method, we have the following update rules,

T4l = Tt + % [Va, logp(xe) — (A + pt(]Eibt’\/q[g(‘rt)]))Tvztg(xt)] +/ Brzt, (53)
When we have fixed \; and p;, following the same assumptions in the proof of convergence of primal
update for primal-dual methods, we could conclude that the distribution of z; generated by (33)
converges to the unique stationary distribution q/*\—tﬁ{, which is the optimal solution to the problem (9}

with fixed \; and p;. B
Q1 = 0y, 5, = A8 1in La(g; A, pr) (54)

In the neighborhood of the optimal solution, the (33) approximates the related optimal solution,
which is analogous to the first-order approximation in optimization methods. Since the solution is
optimal, we have the following first-order optimality conditions d L 4 /dq = 0, stating that the optimal
distribution g1 () for this subproblem satisfies:

log gi11(2) —logp(x) + 14 Aig(2) + piBang,.. [9(2)]g(x) +v =0 (55)
where v is the term related to the normalization. This implies that ¢;11(x) has the form:
qe11(x) o< p(x) exp (= (s + pr(Eaynglg(z1)]) 9(2)) (56)

Following the solution of the Langevin update to obtain ¢, 1, the Lagrange multiplier estimate is
updated as follows:

A1 = A + piBang, . [9(2)] (57
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Then we substitute into (33)) and obtain
log gr41(z) —logp(z) + 1+ Aryr1g(z) +v =0 (58)

This form is identical to the KKT condition for the original constrained optimization problem. For
convergence, we need A1 — A* and, that the constraints are satisfied, i.e., Ey~q,.,, [g(x)] — 0. If
the penalty parameter sequence p(*) is chosen such that p*) — oo, the solution to the optimization
problem will make E,~4[g(z)] — 0. Furthermore, based on the dual update rule, \; will converge
to A* when bounded. Otherwise, the augmented Lagrangian will goes to infinity. According to
Proposition 2.4 with Assumption S in [49], when we have conditions on twice differentiability
and linear independence constraint qualification, we could have a rigorous convergence result in
augmented Lagrangian methods. Given these conditions, as t — oo, gi(x) — ¢*(x), Apy1 — A*,
Eyngrlg(@)] =0,

Thus, the sequence of distributions g; generated by the iterative process converges to the optimal dis-
tribution ¢* that minimizes KL(qu) subject to ].Ezwq.[g(:c.)] = 0. The penalty term g”E“.”q [g(x)] 1
ensures that for large p, any significant constraint violation heavily penalizes L 4, driving iterates
towards feasibility.

L Clarifications on DCBF constraints

Unlike a static state constraint, the DCBF constraint at each state ™ depends on its neighboring state
271, This coupling means that the gradient guidance at each trajectory point varies according to
the states of adjacent points. In our three methods, the implementation differs as follows: for the
Projected Method, the projection step solves a constrained optimization problem where the feasible
set is defined by all coupled DCBF inequalities simultaneously enforced along the entire trajectory.
For the Primal-Dual Methods, the update rule should be written as follows:

vy = a7+ 2 (Ve logp(a]) + TV hla) — )T (L= )V h(a]) + v/ e,

Moy = [N = Eanglh(z{™) = (1= a)h@]]] .,

For ALM, the update rule should be written as follows:

T

z_y =a] + 5 [Vap logp(a]) — (A7) Vg hla]) = pe(Eonglh(a]) = (1= a)h(a] )]

2
- Szil)Terh(xtT) + )‘tT(l - O‘)Tvzlh(@r) + Pt(l - a)(qu[h(iU?“)

— (1= a)h(@])] = )T Varh(a])| + V/Bez,

ST = [Bong[h(a7y1) = (1= e)h(a])] + ] /pe] ,
M1 = A+ pe(Bonglh(27™h) = (1 = a)h(a])] = s7_y).

M The Inverse Dynamics Model (IDM)

We provide a detailed description and discussion of the Inverse Dynamics Model (IDM) used in our
framework, including its rationale, architecture, and training methodology.

M.1 Rationale and Training from Expert Data

In our framework, we assume that while an inverse dynamics model exists for the system, it is not
accessible in a closed form derived from first-principle physics. The forward dynamics are treated as
a black box, making classical model-based inversion infeasible.

To overcome this, we learn the IDM from data. Both the diffusion model and the IDM are trained
offline using a dataset of expert trajectories. These trajectories are collected from interactions with
the true physical system and are therefore composed entirely of dynamically feasible state-action
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sequences. By training on this data, the IDM learns a valid mapping from state transitions (z”, 27 1)
to the actions (u") that produce them.

Once trained, this neural network-based model is “available” during deployment. It can efficiently
convert the safe state trajectories generated by our constrained diffuser into the corresponding
actions through a single forward pass, ensuring both state-action consistency and high computational
efficiency.

M.2 Model Architecture and Consistency

We implement the IDM as a deterministic model using multilayer perceptrons (MLPs). To enhance
stability, we discretize the continuous action space into a finite number of bins, transforming the
regression task of predicting an action into a more stable classification task.

The model’s architecture is autoregressive, generating the action vector dimension by dimension. It
first encodes the concatenated initial and next states (7, 27 T1) into a latent feature vector. Then, for
each dimension of the action vector, a dedicated MLP predicts its value based on both the state feature
vector and an embedding of all previously generated action dimensions. This autoregressive structure
allows the model to capture dependencies between action dimensions, leading to more coordinated
and realistic actions. The specific implementation follows the methodology presented in [4]].

To ensure the model learns a smooth and consistent mapping within the expert data distribution,
consistency can be further encouraged by adding a regularization term to the loss function during
training. This term typically penalizes large action magnitudes, promoting minimum-effort solutions
that generalize well and avoid erratic behavior.

M.3 Dynamic Feasibility and Future Work

A key challenge, particularly for underactuated systems, is the risk that the planner could generalize
outside the expert data distribution and propose a kinematically impossible transition. While our
current experiments focus on state-based constraints to validate the core framework, our method is
general and can be extended to handle constraints related to dynamic feasibility.

Specifically, we can enforce constraints directly on the output of the IDM during the reverse diffusion
process, ensuring that the planner only generates trajectories that are executable within the system’s
actuation limits. This ensures all planned states are reachable, assuming the learned IDM is accurate.

While ensuring the existence of control actions for underactuated robots is a critical topic, a full
exploration is beyond the scope of this paper. We plan to address this in future work, which will
also explore more expressive and efficient IDM architectures, such as Neural ODE-based models, to
better capture complex continuous-time dynamics.

N Visualization of Diffusion Process

The following visualizations show how trajectories evolve during denoising under different constraint-
handling strategies.

Figure 6: Diffusion process for vanilla diffusion
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Vanilla Diffusion: The trajectory is recovered from Gaussian noise through stepwise denoising over
the entire trajectory. No constraints are enforced and paths may intersect obstacles or violate safety
conditions.

Figure 7: Conditional Diffusion

Conditional Diffuser: Each denoising step is guided by the gradient of a classifier. Early steps
resemble vanilla diffusion, while later steps steer entire trajectories away from obstacles, producing
safer paths at the cost of potential deviation from expert-like behavior.

Figure 8: Diffusion process for SafeDiffuser

SafeDiffuser: If any point enters a constraint-violating region during denoising, that step is adjusted
to move the point directly to the safe boundary. This ensures all points remain within or on the
constraint boundary at every step while leading to some local traps.

Figure 9: Diffusion process for projected methods

Projected methods: Similar to SafeDiffuser, but applies a geometric projection operator that any
violating point is immediately projected onto the nearest constraint boundary.
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Figure 10: Diffusion process for primal-dual methods

Primal-Dual methods: Early denoising is close to vanilla diffusion. Near the end, only points
violating constraints are gradually guided out, while safe points evolve like vanilla diffusion. This
minimizes deviation from expert data while ensuring constraint satisfaction.

e [

Figure 11: Diffusion process for ALM

ALM: Uses a quadratic penalty term to gradually guide violating points out during late denoising.
This enables stronger constraint satisfaction.
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