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Abstract001

Recent advances in large language models002
(LLMs) have demonstrated the effectiveness003
of Iterative Self-Improvement (ISI) techniques.004
However, continuous training on self-generated005
data leads to reduced output diversity, a limi-006
tation particularly critical in reasoning tasks007
where diverse solution paths are essential.008
We present DIVE (Diversified Iterative Self-009
Improvement), a novel framework that ad-010
dresses this challenge through two key com-011
ponents: Sample Pool Expansion for broader012
solution exploration, and Data Selection for bal-013
ancing diversity and quality in preference pairs.014
Experiments on MATH and GSM8k datasets015
show that DIVE achieves a 10% to 45% rela-016
tive increase in output diversity metrics while017
maintaining performance quality compared to018
vanilla ISI. Our ablation studies confirm both019
components’ significance in achieving these020
improvements. Code is available at https://021
anonymous.4open.science/r/DIVE-1705.022

1 Introduction023

Recent advancements in large language models024

(LLMs) have driven significant improvements025

through self-improvement techniques (Zelikman026

et al., 2022; Madaan et al., 2024; Wang et al., 2022),027

where models enhance their capabilities by refin-028

ing their performance based on feedback, often029

using their own outputs for further enhancement.030

Two prominent approaches in this area are Rein-031

forcement Learning (RL) (Christiano et al., 2017;032

Ziegler et al., 2019; Ouyang et al., 2022) and Pref-033

erence Learning (Rafailov et al., 2024; Zhao et al.,034

2023; Ethayarajh et al., 2024; Azar et al., 2024),035

both of which enable models to refine their behav-036

ior by optimizing for feedback signals, such as037

rewards or preferences. Iterative Self-Improvement038

(ISI) extends these methods by using an iterative039

process, where models continuously leverage pre-040

vious outputs to generate more refined responses,041

proving highly effective in various domains from 042

general instruction-following (Xu et al., 2023; Yuan 043

et al., 2024) to specialized areas like mathematical 044

reasoning (Pang et al., 2024; Mitra et al., 2024). 045

Despite the positive outcomes of ISI in enhanc- 046

ing model performance, recent research has iden- 047

tified model collapse as a critical challenge when 048

training models on self-generated data (Shumailov 049

et al., 2024; Dohmatob et al., 2024; Gerstgrasser 050

et al., 2024). This phenomenon, where models pro- 051

gressively lose information about the underlying 052

distribution, is particularly relevant to ISI processes 053

as models continuously learn from their own out- 054

puts. In RL and preference learning settings, this 055

issue manifests as reduced diversity in generated 056

responses, as the model increasingly focuses on a 057

narrow set of high-reward patterns (Wu et al., 2024; 058

Kirk et al., 2023). 059

While recent advancements in reasoning with 060

LLMs have focused on improving accuracy 061

through top-ranking solutions, they often overlook 062

the importance of diverse reasoning paths. Methods 063

like Self Consistency (Wang et al., 2022), ToT (Yao 064

et al., 2024) and RAP (Hao et al., 2023) rely on the 065

LLM’s capacity to explore diverse reasoning solu- 066

tions, leveraging the intuition that complex reason- 067

ing tasks typically admit multiple valid paths to the 068

correct answer (Evans, 2010; Stanovich, 2012). Al- 069

though some studies have investigated techniques 070

to enhance reasoning diversity (Wang et al., 2022; 071

Xie et al., 2024; Li et al., 2022; Naik et al., 2023; 072

Yu et al., 2024), the challenge of diversity loss in 073

ISI remains underexplored. 074

To address this challenge, we present Diversified 075

Iterative Self-ImproVEment (DIVE), shown in 076

Fig.1, the first study focused on this problem. 077

DIVE operates through two complementary strate- 078

gies in the preference learning stage: (1) Sample 079

Pool Expansion and (2) Data Selection. Sample 080

Pool Expansion encourages the model to explore a 081

broader set of potential solutions at each iteration 082
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Figure 1: Overview of the Diversified Iterative Self-Improvement (DIVE) framework. At each iteration t, the
process includes response generation, pool expansion through correct and incorrect response collection, data
selection for balancing quality and diversity, and model refinement through preference learning, producing an
improved model M t+1 for the next iteration.

by sampling more responses per question and in-083

corporating data from all previous iterations. Data084

Selection then applies outlier detection techniques085

to filter responses for quality while using greedy se-086

lection algorithms to maximize diversity in the pref-087

erence pairs. By curating diverse yet high-quality088

preference pairs, DIVE guides the model to gener-089

ate varied outputs while maintaining performance.090

Our experimental results demonstrate that DIVE091

significantly enhances the diversity of model out-092

puts on the MATH and GSM8k datasets compared093

to vanilla ISI, achieving a 10% to 45% relative in-094

crease across various diversity metrics for both pos-095

itive and negative examples, without compromising096

output quality. Ablation studies further highlight097

the critical roles of Sample Pool Expansion and098

Data Selection in driving these results.099

2 Methodology100

Let D = (xi, yi)
N
i=1 represent a training set of ques-101

tions xi and corresponding ground truth response102

yi. Starting with a pre-trained model MPT, the ob-103

jective of self-improvement is to refine the model’s104

performance using its own outputs, without exter-105

nal signals. When repeated over several rounds,106

this process becomes ISI, where the model incre-107

mentally improves by applying preference learning108

to its generated responses at each iteration.109

2.1 Iterative Self Improvement110

Direct Preference Optimization (DPO) (Rafailov111

et al., 2024) DPO is a widely-used method for112

offline preference learning that enables direct opti- 113

mization of model preferences without requiring an 114

explicit reward model. The key insight of DPO is 115

to express the probability of preference data using 116

the ratio between the policy model and a reference 117

model. The DPO objective is defined as: 118

LDPO(πθ;πref) = −E(x,y+,y−)∼Dpref
[log σ(r)] , 119

r = β log
πθ(y

+|x)
πref(y+|x)

− β log
πθ(y

−|x)
πref(y−|x)

(1) 120

where (x, y+, y−) represents preference pairs 121

from the dataset Dpref, with x is the input question, 122

y+ the preferred (correct) response, and y− the non- 123

preferred (incorrect) response. The policy model 124

πθ learns to assign higher probability to preferred 125

responses compared to non-preferred ones. 126

To stabilize DPO training and prevent deviation 127

from the initial behavior, we incorporate a nega- 128

tive log-likelihood (NLL) loss on the chosen se- 129

quences (Pang et al., 2024; Dubey et al., 2024; Xu 130

et al., 2024). This ensures response consistency 131

while enabling targeted improvements via prefer- 132

ence learning. The NLL loss term is defined as: 133

LNLL = −E(x,y+)∼Dpref

log πθ(y
+|x)

|y+|
(2) 134

The final loss function combines the DPO and 135

NLL losses as follows: 136

Lpref = α · LDPO + (1− α) · LNLL (3) 137
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where α is a hyperparameter that balances the138

contributions of DPO and NLL losses.139

Iterative Training We start by performing super-140

vised fine-tuning (SFT) on the pre-trained model141

MPT using dataset D, producing a fine-tuned model142

M0. In ISI, a series of models M1, . . . ,MT are143

trained, where each model Mt builds upon the out-144

puts of the previous model Mt−1. During each145

iteration, preference data for training Mt is sam-146

pled from Mt−1, and Mt−1 is used as the reference147

model in the DPO loss. The steps for each iteration148

are as follows:149

1. Data Sampling: In the t-th iteration, for each150

question x ∈ D, we sample K responses from151

the model Mt−1 to form the candidate pool:152

Dt
pool = {(xi, yji )|xi ∈ D, j ∈ [1,K]}.153

2. Preference Pair Construction: The candi-154

date pool Dt
pool is divided into a correct pool155

Dt+
pool and an incorrect pool Dt−

pool by com-156

paring the generated response with the gold-157

standard answer. If the final answer of a gen-158

erated response matches the gold standard,159

the response goes to Dt+
pool; otherwise, it goes160

to Dt−
pool. From these pools, we select P re-161

sponses to construct the preference dataset:162

Dt
pref = {(xi, y+i , y

−
i )|xi ∈ D, y+i ∈163

Dt+
pool, y

−
i ∈ Dt−

pool}.164

3. Preference Training: Using the preference165

dataset Dt
pref, the model Mt−1 is refined into166

Mt by optimizing the preference loss Lpref.167

2.2 Diversified Iterative Self-Improvement168

As highlighted in Wu et al. (2024); Kirk et al.169

(2023), preference learning often leads to a reduc-170

tion in diversity, a problem that is exacerbated in171

iterative settings due to the accumulation of this172

effect over time. We propose two complementary173

strategies to address this challenge: Sample Pool174

Expansion, which enlarges the candidate pool for175

response selection, and Data Selection, which en-176

sures diverse yet high-quality examples are chosen177

for training. These strategies work within the ex-178

isting ISI framework while effectively maintaining179

output diversity.180

2.2.1 Sample Pool Expansion181

To provide more candidates for constructing di-182

verse preference pairs, we expand the candidate183

sample pool Dpool through two complementary184

strategies. A larger sample pool offers more op- 185

tions for the subsequent data selection process, 186

which is crucial for selecting diverse examples for 187

preference learning. 188

Increased Sampling per Question At each it- 189

eration, we increase the number of responses K 190

sampled per question, providing a broader set of 191

candidates for preference learning. 192

Global Data Usage Instead of relying solely on 193

the responses generated by model Mt−1 for train- 194

ing Mt, we incorporate global data from all pre- 195

vious iterations. This expanded pool is defined as 196

Dt
pool =

⋃t
i=1D

i
pool ensuring that no information 197

from previous iterations is lost and avoiding extra 198

sampling computation. 199

2.2.2 Data Selection 200

Our preliminary experiments show that the diver- 201

sity of the examples selected for preference learn- 202

ing, rather than the overall diversity of the response 203

pool, significantly impacts the model’s ability to 204

generate diverse outputs after training. Thus, it is 205

crucial to carefully select diverse examples from 206

the response pool for preference learning. 207

Greedy Selection Method We use a greedy al- 208

gorithm to maximize the diversity of the selected 209

responses, following these steps: 210

1. Randomly select one response from Dpool and 211

add it to the selected response list. Remove 212

this response from Dpool. 213

2. For each remaining response in Dpool, calcu- 214

late the diversity of the selected response list 215

as if the current example were added. 216

3. Select the response that maximizes the diver- 217

sity of the selected list, add it to the list, and 218

remove it from Dpool. 219

4. Repeat Steps 2 and 3 until either Dpool = ∅ or 220

the desired number of responses P is reached. 221

While this method increases diversity effectively, 222

we observed that focusing solely on diversity can 223

negatively impact model accuracy. We hypothesize 224

that maximizing diversity may lead to selecting 225

low-quality, outlier responses that harm the model’s 226

performance. 227
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Balancing Quality and Diversity To mitigate228

this issue, we filter the response pool using the229

Isolation Forest method (Liu et al., 2008), with230

features derived from Sentence-BERT embeddings231

(Reimers, 2019) that capture the semantic aspects232

of the responses. We then exclude extreme outliers233

based on embedding space distances to maintain234

response quality.235

Once the response pool is filtered, we apply236

the greedy selection method to maximize diversity237

among the remaining high-quality responses. This238

ensures a balanced selection process that maintains239

both diversity and quality in the final model.240

3 Experiment241

3.1 Experimental Settings242

3.1.1 datasets243

We conducted experiments on two math reason-244

ing datasets: GSM8K (Cobbe et al., 2021): This245

dataset contains grade-school math word problems,246

each with a question xi and a solution yi, which247

includes a gold chain-of-thought (COT) explana-248

tion (Wei et al., 2022) and a final numerical answer.249

The training set has 7,473 examples, and the test250

set has 1,319. MATH (Hendrycks et al., 2021):251

This dataset features more advanced math prob-252

lems, similar to GSM8K, with a gold CoT solution253

and final answer. The training set includes 7,500254

problems, while the test set contains 5,000.255

In the self-improvement paradigm, for both256

datasets, we utilize only the questions from the257

training set for preference learning, without intro-258

ducing any additional questions. The correctness259

of the model-generated solutions is judged based260

on the final answers provided in the gold solutions.261

3.1.2 Evaluation Metrics262

To assess how well the model balances quality and263

diversity, we adopt two types of evaluation metrics264

that measure performance from both aspects:265

Quality For quality evaluation, we use the fol-266

lowing metrics: @1 Accuracy which measures the267

model’s accuracy when sampling a single response.268

It tests how well the model ranks the sample space,269

with a focus on whether the correct response is270

placed at the top-1 position. @50 Accuracy which271

evaluates the model’s accuracy when sampling 50272

responses. The model is considered correct if any273

of the 50 responses is correct. This metric tests the274

model’s potential to solve a question when sam-275

pling more responses.276

Diversity To evaluate the diversity of the gen- 277

erated responses, we use the following metrics, 278

in line with Kirk et al. (2023): Distinct N- 279

grams (Tevet and Berant, 2020) which counts 280

the number of distinct N-grams (averaged over 281

n = 1, . . . , 5) in the set of outputs, which provides 282

a measure of lexical diversity. Sentence-BERT 283

Embedding Cosine Similarity (Li et al., 2015) 284

which embeds each response using a Sentence- 285

BERT model and calculates the average cosine 286

similarity between the embeddings. The diversity 287

score is then calculated as 1 − average similarity, 288

where lower similarity indicates higher diversity. 289

Both of these methods have been shown to align 290

well with human evaluations of diversity (Tevet and 291

Berant, 2020), enabling us to quantify the diversity 292

of the model’s outputs effectively. 293

3.1.3 Training Details 294

Our experiments are based on the pre-trained 295

language model Mistral-7B (Jiang et al., 2023). 296

For SFT, we fine-tune Mistral-7B on the 297

GSM8K/MATH Train subset to produce the ini- 298

tial model, M0. The fine-tuning is done using full- 299

model fine-tuning with a learning rate of 1× 10−6, 300

a cosine learning rate schedule, 3 epochs. 301

For the ISI phase, at each iteration t, we generate 302

K = 10 or 50 solutions per question from the 303

GSM8K/MATH Train subset to form the response 304

pool Dt
pool, using nucleus sampling with top_p = 305

0.95 and temperature T = 0.7, based on the model 306

Mt−1. For experiments without global data usage, 307

P = 5 preference pairs are constructed from Dt
pool. 308

For experiments with global data usage, the pool is 309

expanded to Dt
pool = ∪t

i=1D
i
pool.

1 310

We run up to T = 6 iterations, producing models 311

M1,M2, . . . ,M6. In each iteration, we train for 312

one epoch on all the preference pairs constructed so 313

far, with the number of pairs per iteration ranging 314

from 10k to 30k, depending on the setting. 2 315

The loss coefficient α is set to 0.5, and the DPO 316

coefficient β is set to 0.4. Full-model fine-tuning is 317

used, with a batch size of 8, gradient accumulation 318

steps of 2, and a learning rate of 3 × 10−8 using 319

the AdamW optimizer with a constant learning 320

1Since some questions may have fewer than P = 5 correct
or incorrect responses, we construct at most P preference
pairs per question. Questions with no correct or no incorrect
responses in the pool are skipped without constructing any
preference pairs.

2As model performance improves over iterations, fewer
incorrect examples and more correct examples are generated,
leading to varied number of preference pairs being constructed
in each iteration.
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Method Dis-N Pos Dis-N Neg SentBERT Pos SentBERT Neg @1 @50

Sample 10

Vanilla 0.345 0.454 0.111 0.168 0.704 0.976
Global 0.350 0.444 0.119 0.182 0.707 0.980

Selection 0.388 0.462 0.125 0.184 0.703 0.975
Global+Selection 0.397 0.507 0.132 0.196 0.707 0.975

Sample 50

Vanilla 0.309 0.380 0.106 0.168 0.718 0.975
Global 0.348 0.462 0.118 0.184 0.716 0.974

Selection 0.440 0.538 0.145 0.214 0.716 0.976
Global+Selection 0.448 0.502 0.152 0.224 0.722 0.972

Table 1: Comparison of different diversity enhancement methods on GSM8k dataset using Mistral-7B as the base
model. Results show diversity metrics (Dis-N and SentBERT) for both positive and negative examples, along with
accuracy metrics. All metrics have been normalized so that higher values consistently indicate better performance.
Bold indicates the best overall performance across all settings, while underline represents the best performance
within their respective sampling group (Sample 10 or Sample 50).

Method Dis-N Pos Dis-N Neg SentBERT Pos SentBERT Neg @1 @50

Sample 10

Vanilla 0.647 0.557 0.247 0.304 0.176 0.580
Global 0.636 0.550 0.242 0.300 0.194 0.610

Selection 0.662 0.565 0.245 0.311 0.178 0.600
Global+Selection 0.665 0.573 0.254 0.310 0.188 0.610

Sample 50

Vanilla 0.612 0.540 0.228 0.283 0.186 0.606
Global 0.635 0.542 0.247 0.299 0.190 0.606

Selection 0.694 0.612 0.264 0.313 0.188 0.594
Global+Selection 0.692 0.599 0.273 0.326 0.194 0.586

Table 2: Results on MATH dataset with identical experimental settings as Table 1.

rate schedule. Training is conducted on four A100321

GPUs (80G memory) with a total batch size of 64.322

3.2 Experimental Results323

To evaluate the effectiveness of our proposed meth-324

ods, we conduct experiments with two sampling325

sizes (10 and 50) comparing four variants of ISI:326

1. Vanilla: The standard ISI method as our base-327

line328

2. Global: Expanding sample pool with global329

data (Section 2.2.1)330

3. Selection: Applying data selection for quality331

and diversity (Section 2.2.2)332

4. Global + Selection: Combining both global333

data expansion and data selection334

Tables 1 and 2 present the main results from335

the best-performing iteration (out of six) for each336

method. Our analysis reveals several key findings:337

Quality Preservation. All three proposed meth-338

ods (Global, Selection, and Global+Selection)339

maintain performance comparable to the baseline340

in terms of @1 and @50 accuracy on both GSM8K341

and Math datasets, demonstrating that our diversity- 342

enhancing techniques do not compromise model 343

quality. 344

Impact of Sampling Pool Size. With larger 345

sampling size (50 vs 10), the vanilla method shows 346

lower diversity, indicating that naive sampling ex- 347

pansion can actually harm diversity. Interestingly, 348

the Global method alone does not consistently im- 349

prove diversity over the vanilla baseline, suggesting 350

that sample pool expansion without proper diver- 351

sity management is insufficient. 352

Effectiveness of Data Selection. The data se- 353

lection mechanism consistently enhances diversity 354

across all settings (Sample 10/50, GSM8K/Math). 355

This is evidenced by clear improvements from 356

Vanilla to Selection and from Global to Global 357

+ Selection. Notably, the combination of large sam- 358

pling (50) with Global + Selection achieves the 359

highest diversity across most metrics. 360

Iterative Analysis. Figure 2 illustrates the dy- 361

namics across all six iterations: 362

1. Diversity Evolution: In vanilla ISI, diversity 363

consistently declines across iterations, with larger 364

sampling sizes (50) showing more severe reduc- 365

tion compared to smaller ones (10). Our Global + 366

Selection method, in contrast, maintains and even 367
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Figure 2: Evolution of diversity metrics and model performance across iterations (M0-M6) for both GSM8k and
MATH datasets. Each subplot shows different evaluation metrics: Distinct-N for positive and negative examples,
SentBERT embeddings similarity, and accuracy measures. Solid and dashed lines with different colors represent
different sampling settings and methods.

improves diversity throughout iterations.368

2. Performance Trends: All methods show369

accuracy gains of 10-12 points on GSM8K and 2-370

4 points on Math, peaking between iterations 4-6371

before saturation. The stable @50 accuracy across372

iterations suggests that self-improvement primarily373

acts as a re-ranking mechanism, consistent with374

observations in Wu et al. (2024).375

3. Sample Size Effects: Larger sampling (50)376

yields marginally better accuracy and significantly377

higher diversity compared to smaller sampling (10),378

indicating that increased sampling, when properly379

managed, benefits both quality and diversity.380

Ablation Analysis. Our experiments serve as an381

ablation study to validate each component’s con-382

tribution. For data selection, the consistent superi-383

ority of Selection over Vanilla in diversity metrics384

demonstrates its effectiveness. For sample pool ex-385

pansion, the advantage of Global + Selection over386

Selection, larger sampling (50) over smaller sam-387

pling (10), confirms the benefit of incorporating388

global data. These results verify that both compo-389

nents are essential for maximizing diversity while390

maintaining performance.391

4 Analysis392

To gain deeper insights into diversity challenges393

in ISI and evaluate the effectiveness of DIVE, we394

investigate three key questions: Q1: Can increas-395

ing the number of samples per question alone ad-396

equately substitute for using a global data pool to397

expand the sample set? Q2: How does question398

difficulty affect diversity throughout the iterative399

process? Q3: How robust are our diversity im- 400

provements across different evaluation metrics? 401

4.1 Impact of Global Data Usage (Q1) 402

While both global data accumulation and increased 403

per-question sampling can expand the sampling 404

pool size, their effectiveness may differ. To 405

investigate this, we compare three approaches 406

across six iterations: 1.Selection: the sampling 407

pool size remains constant at 10-10-10-10-10-10. 408

2.Global+Selection: the sampling pool size ex- 409

pands incrementally to 10-20-30-40-50-60 when 410

global data is included, as each iteration incorpo- 411

rates all previous ones. 3.Selection+Increased Sam- 412

pling: the sampling pool size is 10-20-30-40-50-60 413

via increased sampling count. 414

As shown in Figure 3, while Selection+Increased 415

Sampling shows improved diversity in later it- 416

erations, Global+Selection consistently achieves 417

higher diversity across all metrics for both positive 418

and negative examples. This suggests that diversity 419

lost in early iterations is difficult to recover through 420

increased sampling alone, underscoring the impor- 421

tance of leveraging accumulated data. Moreover, 422

Global+Selection achieves this with lower compu- 423

tational cost, requiring only 60 total samples per 424

question compared to 210 for Selection+Increased 425

Sampling, demonstrating both the effectiveness and 426

efficiency of global data incorporation. 427

4.2 Diversity Across Difficulty Levels (Q2) 428

Our experiments on GSM8K and MATH datasets 429

reveal an intriguing pattern: the more challeng- 430
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Figure 3: Comparison of different sampling strategies for GSM8k dataset.
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Figure 4: Diversity trends across different difficulty levels (Level 1-5) for positive and negative examples. The plots
demonstrate how question difficulty influences output diversity during the ISI process.

ing MATH dataset maintains higher diversity and431

shows less pronounced diversity loss during ISI.432

This observation motivates us to investigate the re-433

lationship between question difficulty and diversity434

patterns. To systematically analyze this relation-435

ship, we classify questions into five difficulty levels436

based on their correct ratio R (percentage of cor-437

rect answers when sampling 50 examples)3. This438

automated approach enables objective difficulty as-439

sessment without manual annotation.440

As shown in Figure 4, our analysis reveals441

key findings: 1.Difficulty-Diversity Correlation:442

Harder questions show higher diversity in positive443

examples, though this is less pronounced for neg-444

ative examples. 2. Differential Diversity Loss:445

Easier questions experience more diversity loss446

during iteration (e.g., Level 1 shows 53.4% and447

43.8% drops for negative and positive examples, vs.448

25.0% and 19.7% for Level 5). 3. Method Robust-449

ness: DIVE consistently improves diversity across450

all difficulty levels, demonstrating its effectiveness451

across the difficulty range.452

3Difficulty levels are defined as Level 5 (hardest): 0 ≤
R < 0.2; Level 4: 0.2 ≤ R < 0.4; Level 3: 0.4 ≤ R < 0.6;
Level 2: 0.6 ≤ R < 0.8; Level 1 (easiest): 0.8 ≤ R ≤ 1

4.3 Alternative Metrics for Diversity (Q3) 453

To validate the robustness of our diversity improve- 454

ments, we extend our evaluation beyond the met- 455

rics in Section 3.1.2, incorporating both advanced 456

embedding-based and task-specific metrics. 457

Advanced Embedding Metrics We employ two 458

state-of-the-art embedding models for diversity as- 459

sessment: NV-Embed (Moreira et al., 2024)4: A 460

7B parameter model leading the MTEB Leader- 461

board (Muennighoff et al., 2022). Stella 5: The 462

top-performing 1.5B parameter model on MTEB. 463

Mathematical Reasoning Metrics We introduce 464

two metrics specifically designed to capture diver- 465

sity in mathematical reasoning: Distinct Equation 466

Chains: This metric counts the number of distinct 467

equation sequences in model-generated solutions, 468

where each sequence represents a unique reason- 469

ing path.6 Distinct Answers: Counts unique final 470

answers per question, primarily reflecting diver- 471

sity in incorrect solutions as correct answers are 472

4Available at https://huggingface.co/nvidia/
NV-Embed-v2

5Available at https://huggingface.co/dunzhang/
stella_en_1.5B_v5

6This metric is only applicable to the GSM8K dataset due
to its standardized equation notation using «».
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Figure 5: Results of different diversity metrics for both the GSM8k and MATH datasets. Only the results from the
iteration with the highest accuracy are shown, while the results for all iterations are provided in Appendix A.1.

consistent.473

As shown in Figure 5, Global+Selection demon-474

strates consistent improvements across all eleven475

diversity metrics. Notably, while our method uses476

computationally efficient metrics (SentBERT and477

Distinct-N) during training, the improvements gen-478

eralize to more sophisticated metrics, confirming479

the robustness of our approach.480

5 Related Work481

Diversity in Reasoning Research on diversity482

in language models has evolved from general text483

generation diversity (Batra et al., 2012; Li et al.,484

2016; Vijayakumar et al., 2018) to the specific485

challenges of reasoning tasks, where the goal is486

to generate diverse yet valid solution paths. Re-487

cent work has explored various approaches: Wang488

et al. (2022) demonstrate that sampling multiple489

reasoning paths improves answer accuracy through490

aggregation, while Xie et al. (2024) combines beam491

search with temperature sampling to balance qual-492

ity and diversity. Other approaches include vary-493

ing prompts to enhance solution diversity (Li et al.,494

2022), using model feedback to encourage multiple495

solving strategies (Naik et al., 2023), and model-496

ing reasoning as a Markovian flow for diverse path497

generation (Yu et al., 2024).498

Iterative Self-Improvement Recent advances499

in ISI have shown promising results in improv-500

ing model capabilities through self-play and itera-501

tive refinement, especially in mathematical reason-502

ing (Pang et al., 2024; Mitra et al., 2024; Wu et al., 503

2024). However, models trained on self-generated 504

data may suffer from model collapse, losing in- 505

formation about the underlying distribution (Shu- 506

mailov et al., 2024; Dohmatob et al., 2024; Gerst- 507

grasser et al., 2024). This phenomenon has been 508

observed in various settings including preference 509

learning methods like DPO (Rafailov et al., 2024) 510

and RLHF (Ouyang et al., 2022), where it mani- 511

fests as reduced output diversity (Kirk et al., 2023; 512

Wu et al., 2024). While existing work suggests 513

maintaining a balanced mix of human-authored 514

and model-generated data to preserve model per- 515

formance (Shumailov et al., 2024; Dohmatob et al., 516

2024; Gerstgrasser et al., 2024), our work intro- 517

duces a systematic approach to enhance diversity 518

within the ISI framework itself. 519

6 Conclusion 520

We presented Diversified Iterative Self- 521

Improvement (DIVE), a framework that 522

addresses the challenge of diversity loss in ISI 523

while maintaining model performance. Through 524

systematic experiments on MATH and GSM8k 525

datasets, we demonstrated that our two-component 526

approach – sample pool expansion and data selec- 527

tion – effectively enhances output diversity across 528

multiple evaluation metrics. Our experiments 529

with different sampling sizes and detailed analysis 530

across various difficulty levels demonstrated 531

consistent improvements in diversity without 532

compromising accuracy. 533
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7 Limitations534

While our work demonstrates the effectiveness of535

DIVE in mathematical reasoning tasks, several536

limitations should be noted:537

Task Scope Our study focuses exclusively538

on mathematical reasoning tasks (MATH and539

GSM8k). While we evaluate diversity using540

multiple metrics including equation patterns and541

embedding-based measures, the generalization of542

our approach to other domains remains to be ex-543

plored.544

Sampling Strategy Although increasing the sam-545

pling size improves diversity, our current approach546

of fixed sampling per question may not be opti-547

mal. Questions of different difficulty levels might548

benefit from adaptive sampling strategies to better549

balance computational cost and diversity gains.550

Computational Cost Our experiments show that551

larger sample pools can enhance diversity, but the552

computational resources required increase signif-553

icantly with sample size. While our global data554

usage method provides an efficient alternative to555

increased sampling, finding the optimal balance556

between pool size and computational cost remains557

a challenge.558
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Figure 6: Results of all iterations across different diversity metrics for both the GSM8k and MATH datasets.
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A Appendix 755

A.1 Iterative Diversity Results by Alternative 756

Diversity Metrics 757

Figure 6 shows the full results of all itera- 758

tions comparing the diversity of "Vanilla" and 759

"Global+Selection" methods across six different 760

diversity metrics, complementing the analysis in 761

Section 4.3. As seen, "Global+Selection" demon- 762

strates higher diversity than "Vanilla" across all 763

iterations and metrics. Moreover, the discrepancy 764

increases with more iterations, highlighting the ef- 765

fectiveness of our method, particularly as the itera- 766

tive process progresses. 767
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