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ABSTRACT

Positive-Unlabeled (PU) learning, a challenging paradigm for training binary clas-
sifiers from only positive and unlabeled samples, is fundamental to many applica-
tions. While numerous PU learning methods have been proposed, the research is
systematically hindered by the lack of a standardized and comprehensive bench-
mark for rigorous evaluation. Inconsistent data generation, disparate experimental
settings, and divergent metrics have led to irreproducible findings and unsubstan-
tiated performance claims. To address this foundational challenge, we introduce
PU-Bench, the first unified open-source benchmark for PU learning. PU-Bench
provides: 1) a unified data generation pipeline to ensure consistent input across
configurable sampling schemes, label ratios and labeling mechanisms ; 2) an in-
tegrated framework of 16 state-of-the-art PU methods; and 3) standardized pro-
tocols for reproducible assessment. Through a large-scale empirical study on 8
diverse datasets (2,560 evaluations in total), PU-Bench reveals a complex while
intuitional performance landscape, uncovering critical trade-offs between effec-
tiveness and efficiency, and those of robustness and label frequency and selection
bias. It is anticipated to serve as a foundational resource to catalyze reproducible,
rigorous, and impactful research in the PU learning community.

1 INTRODUCTION

Positive-Unlabeled (PU) learning tackles a common classification problem where only some pos-
itive examples are labeled and the unlabeled rest are a mixture of unidentified positives and true
negatives (Elkan & Noto, 2008; Bekker & Davis, 2020). This setting arises frequently in real-world
applications where negative examples are difficult or costly to annotate. For example, in recom-
mender systems, it is known which items users like, but not which they dislike. This characteristic
makes PU learning an essential technique across diverse fields, and the past few years have seen a
rapid development in algorithm design for PU learning, such as disease-related gene identification
(Molaei & Jalili, 2025), drug-drug interaction prediction (Molaei & Jalili, 2025; Zheng et al., 2019),
document retrieval (Wang et al., 2024; Zhang et al., 2024) and medical image classification (Nagaya
& Ukita, 2021).

Despite these advances, a significant challenge remains due to the lack of a standardized, unified,
and comprehensive benchmark for a fair comparison among different algorithms. This issue causes
two major obstacles to further development. First, there is a remarkable inconsistency in experi-
mental setups and evaluation protocols across studies. Researchers often employ different datasets,
varying data sampling strategies (e.g., case-control vs. single-training-set) (Bekker & Davis, 2020;
Mielniczuk & Wawrzeńczyk, 2024), and divergent labeling assumptions (e.g., selected completely
at random vs. selected at random) (Gong et al., 2021; 2025), which inevitably leads to inconsistent
and incomparable results. As indicated in Appendix Table C.1, these disparate settings are rather
common, preventing a fair and holistic understanding of algorithmic performance. Second, the va-
lidity of performance claims is often undermined by the high sensitivity of PU methods to empirical
factors. Our empirical results confirm that variations in the label ratio or labeling assumption can
be significant enough to alter relative performance rankings of state-of-the-art algorithms. Given
that these factors are not uniformly controlled in prior work, many published comparisons may not
reflect the true capabilities of individual methods, leading to potentially unreliable conclusions.
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To address these challenges and establish a solid foundation for future research, we propose PU-
Bench, the first comprehensive, open-source, and unified benchmark for PU learning, to the best
of our knowledge. This work makes three primary contributions: 1) Unified Open-Source Bench-
marking Framework: We design and release an open-source, modular framework for the rigorous
and reproducible evaluation of PU learning algorithms. It features a configurable PU generator, a
unified training pipeline, and a comprehensive evaluation suite to ensure fair and consistent compar-
isons. 2) Comprehensive Empirical Study: We conduct the most extensive, empirical study in PU
learning to date. Our study benchmarks 16 representative methods across a vast experimental space,
with 15 distinct labeling ratios, under 4 labeling assumptions, on 8 diverse datasets spanning text,
image, and tabular data, resulting in more than 2,560 evaluations in total. 3) In-Depth Analysis
and Actionable Guidelines: We provide extensive evaluation and analysis from various perspec-
tives, including effectiveness, efficiency and complexity, as well as robustness to varying label ratios
and selection bias. Our findings reveal the strengths and limitations of the current PU methods, and
propose a set of practical, data-driven guidelines for algorithm selection and design.

2 PRELIMINARIES

Problem Setup. In PU learning, an observed training sample consists of a set of labeled positives
LP and an unlabeled set U that mixes positives and negatives. The standard one-sided labeling
assumption posits that only positives can be labeled, i.e., p(Y = 1|S = 1) = 1 (equivalently,
p(S = 1|Y = 0) = 0) (Elkan & Noto, 2008; Bekker & Davis, 2020). Let π = p(Y = 1)
denote the class prior. The class-conditional densities are given by f+(x) = p(x | Y = 1) and
f−(x) = p(x | Y = 0). The marginal is the mixture f(x) = πf+(x)+(1−π)f−(x). The objective
is to learn a decision function hθ : X → [0, 1] that estimates the posterior p(Y = 1|X = x). Key
notations used throughout this paper are summarized in Appendix Table A.1.

Data Sampling Scheme. Training data can be typically generated under two sampling schemes: the
single-training-set (ss) scenario and the case-control (cc) scenario (Bekker & Davis, 2020). In the
ss scenario, the training set is created by drawing samples i.i.d. from the population distribution, and
only the positive examples within this set have a chance of being labeled. The cc scenario assumes
that the labeled-positive set is drawn i.i.d. from p(x | Y = 1) and the unlabeled set is drawn i.i.d.
from the population distribution p(x). The primary distinction between the two scenarios is the com-
position of the unlabeled sample. Under cc, the unlabeled data follow the population mixture of the
class-conditional distributions p(x | Y = 1) and p(x | Y = 0) with mixing proportion π, whereas
the ss scenario uses a mixture with a different effective proportion because labeled positives are
excluded from U (Mielniczuk & Wawrzeńczyk, 2024). Consequently, PU methods should always
state and consider the sampling scheme when conducting experiments and interpreting results.

Labeling Mechanisms. Under both sampling schemes, there is one set of samples drawn i.i.d. from
the population distribution p(x) and one drawn i.i.d. from the positive class p(x | Y = 1), governed
by a labeling mechanism with propensity e(x) = p(S = 1 | Y = 1, X = x) (Bekker & Davis,
2020). In PU learning, the most widely used assumption is Selected Completely At Random
(SCAR), which posits a constant propensity, i.e., e(x) = c (Bekker & Davis, 2020). A more general
assumption is Selected At Random (SAR), where the propensity depends on features, i.e., e(x) ̸= c
(Bekker & Davis, 2018).

3 PU-BENCH

In this section, we introduce PU-Bench, a unified benchmark designed for PU learning. We first
detail the scope of our study, covering the datasets and collected algorithms (Section 3.1), followed
by a detailed explanation of the system architecture that ensures reproducible data generation, model
training, and evaluation (Section 3.2).

3.1 DATASETS AND METHODS

Datasets. PU-Bench evaluates 8 widely used datasets spanning three different modalities: text -
IMDb (movie reviews for sentiment classification) (Maas et al., 2011) and 20News (text classifica-
tion) (Lang, 1995); image - MNIST (handwritten digit classification) (LeCun et al., 1998), Fashion-
MNIST (F-MNIST) (Xiao et al., 2017), CIFAR-10 (natural image classification) (Krizhevsky &
Hinton, 2009), and ADNI (structural MRI for Alzheimer’s disease diagnosis) (Jack Jr et al., 2008);
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Figure 1: Overview of the collected methods and datasets.

tabular - Spambase (email spam detection) (Dua & Graff, 2019), and Connect-4 (board game
outcome prediction) (Dua & Graff, 2019). This diverse selection of tasks and domains ensures a
comprehensive assessment of model robustness and generalizability. Detailed descriptions of each
dataset are provided in Appendix B.1.

Although these datasets have been widely adopted in PU learning, existing works often construct
PU data in disparate ways, such as adopting different label ratios, making varied assumptions about
the unlabeled data distribution (e.g., SCAR or SAR), and employing distinct sampling designs (e.g.,
case-control vs. single-training-set). These inconsistencies result in heterogeneous experimental
settings and limit the reproducibility of reported results. To address this issue, PU-Bench provides
a systematically organized collection of datasets and a standardized PU data generation pipeline,
ensuring consistent input across methods and allowing researchers to focus on methodological de-
velopment rather than data preparation.

Methods. PU-Bench has implemented a total number of 16 established PU learning algorithms.
The selection is based on methodological relevance, reproducibility, and general applicability.
Specifically, we prioritize influential and recent PU methods from top-tier venues, focusing ex-
clusively on domain-agnostic methods with publicly available implementations or author-provided
implementations. Methods with unavailable code and non-reproducible pipelines are excluded. A
detailed summary of the selected methods is provided in Appendix Table B.3 and Fig. 1.

We categorize the collected methods into three groups based on the algorithmic strategys, as illus-
trated in Fig. 1: 1) Risk-Minimization Estimators - methods that directly minimize empirical risk or
its variants under PU constraints, including nnPU (Kiryo et al., 2017), Dist-PU (Zhao et al., 2022),
LBE-PU (Gong et al., 2021), PUSB (Kato et al., 2019), MPE-PU (Garg et al., 2021), PUET (Wilton
et al., 2022), VPU (Chen et al., 2020a) 2) Disambiguation-Guided Supervised ERM - methods that
first resolve label ambiguity in the unlabeled pool by constructing pseudo-labels or selecting proxy
negatives/positives (often under class-prior constraints or with group/meta signals), and then train a
standard supervised ERM model on LP ∪ U . Many incorporate mixup/consistency regularization
or iterative teacher-student self-training during the ERM phase. This group includes P3Mix (Li
et al., 2022), Robust-PU (Zhu et al., 2023), Self-PU (Chen et al., 2020b), LaGAM-PU (Long et al.,
2024), Holistic-PU (Xinrui et al., 2023), PUL-CPBF (Li et al., 2024); 3) Generative Distribu-
tion Matching - methods that align positive and unlabeled distributions with model-induced predic-
tions via generative or adversarial modeling, including PAN (Hu et al., 2021), VAE-PU (Na et al.,
2020), CGenPU (Papič et al., 2023). This taxonomy provides a structured framework for analyzing
methodological differences. Detailed descriptions of each method are provided in Appendix B.2.

3.2 SYSTEM DESIGN

Despite of the extensive research on PU learning, the field currently lacks a standardized framework
for empirical evaluation, creating a significant barrier to reproducible science and fair compari-
son. This methodological inconsistency manifests across the entire experimental pipeline. Studies
vary widely in their data generation processes: employing different sampling schemes, e.g. single-
training-set or case-control (Mielniczuk & Wawrzeńczyk, 2024), labeling different sizes of positives
and operating under distinct assumptions about the labeling mechanism, e.g. SCAR or SAR (Gong
et al., 2021), as detailed in Appendix C.1. Furthermore, disparities in training protocols, hyperpa-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Stage1: PU Data Generator

Stage2: Unified Training Pipeline

Stage3: Performance Evaluation Suite

Metrics: AUC, F1-score, Accuracy, Precision, Recall

Efficiency

Risk-Minimization Estimators① Disambiguation-Guided 
Supervised ERM

②

pseudo-labelunlabeled

Generative Distribution Matching③

generator discriminatorempirical risk minimization

Memory UsageTraining Duration

Effectiveness

Single-
Training-

Set

Case-
Control

Data Sampling

1

0

Label Ratio Control

S1 (SCAR)

S2 (LBE-1)

S3 (LBE-2)

S4 (PUSB)

Selection Bias 
Simulate

Custom Parameters

YAML File

Init Config

several classes

collapsing rules

 1

0

 

Binary Collapse

Dataset

Dataset Split

Training Validation Test

Figure 2: The modular framework for PU-Bench.

rameter optimization, and choice of evaluation metrics (shown in Appendix C.4) make it difficult to
aggregate findings or reliably observe the true state-of-the-art. To address these critical challenges,
PU-Bench aims to facilitate rigorous, reproducible, and transparent evaluation of PU learning al-
gorithms. It is built upon three core, interoperable components that standardize the experimental
workflow: 1) a PU Data Generator for generating experimental conditions, 2) a Unified Training
Pipeline for consistent model execution, and 3) a Performance Evaluation Suite for comprehensive
analysis and comparison, as shown in Fig. 2.

PU Data Generator. The PU Data Generator is responsible for systematically transforming stan-
dard classification datasets into diverse and reproducible PU learning scenarios. The generation
process follows a structured, multi-stage pipeline. It begins with a binarization module that converts
multi-class datasets into a binary Positive-Negative (PN) format, which is then split into training,
validation, and test sets, with the total number of samples in the training set N and class prior π
fixed. Then, the generator simulates the data collection environment by choosing one data sampling
scheme to define where the labeled samples LP are from; details of the implementation of the two
data sampling schemes are shown in Appendix C.2. Finally, the labeling simulation is performed
by defining the value of label ratio c and the labeling mechanism being used. Our framework sup-
ports multiple mechanisms to emulate real-world complexities, including (S1) the common SCAR
assumption, where every positive has a uniform labeling probability; (S2) the instance-dependent
sampling strategy where the propensities are based on the auxiliary posterior p̂(x) to favor high-
posterior positives (Gong et al., 2021); (S3) another instance-dependent sampling strategy where
the propensities emphasize ambiguous or boundary positives (Gong et al., 2021); (S4) the posterior
sharpening strategy where top-scoring positives are deterministically selected under a sharpened
posterior (Kato et al., 2019). Details of the propensity functions and scoring rules are given in
Appendix C.3.

Unified Training Pipeline. To ensure rigorous reproducibility and eliminate confounding vari-
ables, PU-Bench employs a fully modular, configuration-driven training framework where all al-
gorithms are instantiated from external YAML descriptors. These descriptors specify model back-
bones, PU loss functions, and shared hyper-parameters—including optimizer type, learning-rate
schedules, and weight initialization. The framework accommodates multiple data modalities via
specialized encoders for text, image, and tabular data. Training begins by loading the configuration
and PU-formatted datasets, after which the corresponding PU learning criterion and learner are in-
stantiated. A unified trainer automates forward/backward passes, loss computation, metric logging,

4
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Table 1: Accuracy score of all PU methods across all datasets under the conventional setting. The
best results are shown in bold and the second best are underlined. Entries marked with ∗ are signif-
icantly better according to the two-sided paired t-tests in Appendix D.2.2.

Type Method IMDb 20News MNIST F-MNIST CIFAR-10 ADNI Connect-4 Spambase

Risk-
Minimization

Estimators

nnPU [15] 77.37±4.82 88.81±3.81 94.85±0.09 96.67±1.43 85.30±2.63 65.75±4.02 74.71±2.33 81.66±2.73

PUSB [13] 77.86±3.82 87.49±4.05 95.19±1.35 95.76±1.62 87.68∗±2.85 65.85±4.35 85.07±2.55 81.56±2.95

VPU [4] 78.08∗±4.13 87.76±4.33 96.46∗±1.52 97.50±1.83 83.76±3.12 66.31±4.72 85.62∗±2.82 79.25±3.22

MPE-PU [8] 77.65±1.93 86.68±4.55 95.90±0.67 97.79±2.03 83.41±3.35 65.47±5.05 74.60±3.05 81.11±3.45

LBE-PU [9] 76.25±4.73 85.74±4.81 97.23∗±0.08 98.42∗±2.22 83.98±3.62 65.75±5.42 83.94±3.31 68.53±3.71

Dist-PU [34] 77.88∗±5.02 88.65±5.05 95.70±0.39 95.31±2.42 88.09∗±3.85 75.02∗±5.75 73.85±3.55 85.71∗±3.95

PUET [30] 68.41±5.32 86.49±5.31 95.08±2.12 97.77±2.63 76.23±4.11 71.56∗±6.13 84.23±3.83 84.43±4.23

Disambiguation
-Guided

Supervised ERM

Self-PU [5] 74.05±3.23 86.93±3.46 90.86±1.02 93.22±1.31 76.73±2.43 66.41±4.21 75.67±2.51 72.10±2.92

P3Mix-E [19] 78.27∗±3.53 84.42±3.23 94.26±1.15 96.92±1.52 87.36±2.65 69.21±4.55 84.79±2.75 84.14±3.15

P3Mix-C [19] 77.48∗±3.83 88.02±3.92 95.23±1.32 96.53±1.72 87.65∗±2.91 67.69±4.92 85.10±2.72 81.46±3.42

Robust-PU [36] 77.37±4.12 88.81±4.15 95.05±1.45 97.71±1.93 84.30±3.19 67.91±5.25 74.71±3.27 81.66±3.62

Holistic-PU [32] 64.40±4.41 75.20±4.42 92.75±1.61 62.16±2.43 57.08±3.41 65.07±5.62 79.80±3.51 56.59±3.93

LaGAM-PU [21] 76.81±4.71 84.90±4.65 95.03±0.89 97.69±0.07 86.22±3.60 63.64±5.05 85.08∗±3.72 86.77∗±4.15

PUL-CPBF [20] 75.26±5.01 84.92±4.91 88.31±1.92 98.07∗±0.52 80.27±3.93 66.11±6.31 88.12∗±4.02 85.94∗±4.41

Generative
Distribution
Matching

VAE-PU [25] 66.48±4.02 77.51±3.91 76.56±1.51 61.29±7.71 49.24±5.81 50.38±1.52 79.39±2.72 59.15±3.11

PAN [11] 70.26±8.41 78.20±4.25 87.45±1.71 93.81±1.95 68.70±6.12 61.99±4.91 78.37±3.06 38.71±8.40

CGenPU [27] 70.85±3.89 86.08±4.61 86.56±1.92 93.35±4.66 57.79±9.42 60.45±5.31 79.42±3.32 81.66±3.72

PN 79.89±0.83 92.32±0.02 96.54±0.92 98.94±0.82 94.88±0.57 82.01±0.31 92.38±0.78 91.03±0.66

and checkpointing. By allowing parameter adjustments through simple YAML edits, the framework
ensures streamlined, reproducible training, evaluation, and visualization across all PU methods.

Performance Evaluation Suite. The Performance Evaluation Suite is designed to provide a holistic
and statistically robust assessment of each algorithm, measuring performance across two primary di-
mensions: predictive effectiveness and computational efficiency. This dual focus addresses a critical
gap in the literature, where inconsistent reporting undermines the fairness of cross-method com-
parisons and obscures the practical trade-offs of different approaches. To ensure a standardized
evaluation, we implement a unified protocol where all metrics are computed on a held-out, ground-
truth test set. For effectiveness, we record 5 widely used evaluation metrics including accuracy
(Acc), precision, recall, macro-F1, area under the ROC curve (AUC). To measure efficiency, the
framework logs wall-clock time and peak GPU memory per epoch; a checkpoint is written when-
ever validation-set macro-F1 hits a new best, and the full config, seeds, metric traces, and hardware
stats are archived for full reproducibility.

4 EXPERIMENTAL RESULTS

This section presents the primary empirical results of our study, where we benchmark 16 represen-
tative PU learning methods across 8 datasets. To establish a controlled and comparable baseline
that aligns with established practices, all experiments are conducted under a conventional PU set-
ting. This protocol, being the most widely adopted configuration in prior studies, simulates the
case-control sampling scenario, assumes the SCAR labeling mechanism, and utilizes a fixed label
frequency of c = 0.1. Detailed statistics of the simulated PU datasets, specific implementation set-
tings such as the backbone models employed, and expanded set of performance metrics are provided
in Appendix D for full reproducibility and deeper analysis. To assess whether the observed accuracy
gaps are robust to random seed variability rather than artifacts of sampling noise, we additionally
perform two-sided paired t-tests with Holm–Bonferroni correction between each PU method and
nnPU(Kiryo et al., 2017) across all datasets; the detailed procedure and corrected p-values are sum-
marized in Appendix D.2.2.

4.1 EFFECTIVENESS COMPARISON

To establish a practical performance ceiling and contextualize the results, we include a fully super-
vised PN classifier trained with complete label information as an oracle reference. According to the
results presented in Table 1, Fig. 3 and Appendix D.2.1, we have the following observations:

Disambiguation-guided methods show the overall best performance. According to Table 1,
the disambiguation-guided ERM family delivers the strongest and most reliable overall perfor-
mance across modalities. Within this family, the two P3Mix variants lead and complement each

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

F1

AUC

Recall

Accuracy

Precision

0.50
0.750.881.00

Risk-Minimization Estimators

nnPU
Dist-PU

LBE-PU
PUSB

MPE-PU
VPU

PUET
PN

F1

AUC

Recall

Accuracy

Precision

0.50
0.750.881.00

Disambiguation-Guided ERM

P3Mix-C
P3Mix-E

Robust-PU
Self-PU

LaGAM-PU
Holistic-PU

PUL-CPBF
PN

F1

AUC

Recall

Accuracy

Precision

0.40
0.700.851.00

Generative Distribution Matching

PAN CGenPU VAE-PU PN

Figure 3: Performance of PU methods on the ADNI dataset across five evaluation metrics.

other: P3Mix-E pushes recall under heavy contamination (notably on ADNI and vision tasks), while
P3Mix-C trades some recall for higher precision; Robust-PU is a stable low-variance baseline, espe-
cially competitive on text (20News), and LaGAM-PU often ranks near the top; by contrast, Holistic-
PU clearly trails across datasets. Consistent with Fig. 3 and Appendix D.2.1, this family produces
balanced profiles over five metrics, reflecting well-rounded decision behavior. The main outliers are
P3Mix-E’s recall spikes with lower precision on ADNI/CIFAR-10 and Holistic-PU’s jagged high-
recall/low-precision shapes on vision data, but these remain infrequent and do not undermine the
family’s overall stability.

Risk-Minimization Estimators perform strongly but with higher variance. From Table 1, this
family is often competitive, particularly on vision data; yet exhibits larger volatility and threshold
sensitivity than disambiguation-guided ERM. Within this family, nnPU and Dist-PU are the most re-
liable; VPU frequently shifts between recall and precision depending on the dataset (recall-leaning
on ADNI, precision-leaning on CIFAR-10). In the vision radar (Appendix Fig. 10), profiles appear
angular and elongated toward precision or recall rather than rounded, revealing metric imbalance
and fragile thresholds. Outliers include VPU’s recall spikes with low precision on ADNI, precision
spikes with weaker recall on CIFAR-10, and occasional recall-heavy shapes for Self-PU; neverthe-
less, nnPU remains relatively balanced across modalities for a simple baseline.

Generative Distribution Matching methods lag behind overall. From Table 1, this family con-
sistently underperforms across modalities and rarely enters the top two. Within the family, PAN
and CGenPU perform occasionally moderately on text (e.g., 20News), but degrade on vision (e.g.,
CIFAR-10) and medical imaging (ADNI); VAE-PU is the weakest and most unstable across datasets.
In the tabular radar (Appendix Fig. 11), profiles are compact and jagged, with arcs shrinking across
F1, AUC, precision, recall, and robustness — indicating metric imbalance and fragile thresholds;
similar shapes appear in vision. Outliers are rare: CGenPU on 20News sometimes shows a more
rounded profile with acceptable F1/AUC, and PAN may exhibit recall bumps; however, these do not
overturn the overall underperformance and variability of this class.

Performance is Highly Contingent on Data Modality. A critical finding of our benchmark is
that no single method emerges as a universal winner. The best method depends heavily on data
modality. For instance, LBE-PU achieves state-of-the-art accuracy on simple images (even surpass-
ing supervised PN on MNIST) but degrades on complex ones like ADNI. In contrast, VPU and
P3Mix variants are more stable, delivering consistently strong though not always top-tier perfor-
mance across a wider range of data types. Surprisingly, nnPU, despite its simplicity, remains highly
competitive and often outperforms newer methods. This suggests that progress in the field is not
always linear and some earlier principles remain highly robust. These findings stress the need for
comprehensive benchmarking and careful alignment of method choice with problem characteristics.

4.2 COMPUTATIONAL ANALYSIS

Fig. 4 illustrates the critical trade-off between predictive effectiveness (F1 score) and computational
costs (training duration and GPU memory usage) across the selected datasets of diverse modalities.
The results reveal substantial variation in the efficiency profiles of the benchmarked methods:
Training time. Foundational methods such as nnPU and PUSB are exceptionally efficient, com-
pleting epochs in seconds on 20News and MNIST, and staying close to the lower bound on CIFAR-
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Figure 4: Time and space analysis of PU methods on three representative datasets (20News, CIFAR-
10 and Connect4).

10. This efficiency is directly attributable to their relatively simple objective formulations, which
avoid complex generative or adversarial components. Dist-PU, VPU, and P3Mix introduce a moder-
ate computational overhead. While slower than the simplest baselines, they balance advanced mod-
eling components with efficient implementation. Their cost-effectiveness stems from building upon
lightweight extensions, such as distributional losses, mixup strategies, or simple pseudo-labeling
rather than fundamentally altering the training pipeline. In contrast, PUL-CPBF, Holistic-PU, and
VAE-PU are the most computationally demanding. Their prolonged epoch durations are a direct con-
sequence of their complex, multi-stage architectures. These pipelines involve iterative processes like
clustering, meta-learning, or adversarial training, which require multiple forward/backward passes
or the optimization of auxiliary models, incurring substantial computational costs.
Memory consumption. A clear divide in memory usage exists, directly linked to architectural
complexity. A large group of methods, including nnPU, PUSB, VPU, Robust-PU, and Dist-PU, are
highly memory-efficient (< 1 GB) as they rely on a standard single-classifier pipeline. In contrast,
methods with more complex designs have a significantly larger memory footprint. VAE-PU is the
most demanding (up to 7-8 GB) due to its generative components (encoder-decoders, discrimina-
tors), while others like P3Mix-E and PUL-CPBF increase memory by incorporating mechanisms
like EMA teachers and multi-view data processing.
Trade-off analysis. A group of methods, notably VPU, Self-PU and Dist-PU, achieves a strong
balance, e.g., high F1 with short training time and low memory overhead. P3Mix-C/E reach similar
high F1 at modest extra cost, while Robust-PU and MPE-PU show competitive (though not top) F1
and demand moderate time/memory. Foundational baselines like nnPU and PUSB are exceptionally
efficient, requiring the least training times. This, however, comes at the cost of a modest drop in F1
compared to the top-tier methods. In contrast, Holistic-PU, VAE-PU and PUL-CPBF demonstrate a
less favorable trade-off. These methods are the most computationally intensive yet often yield lower
or less stable F1 scores, underscoring their practical limitations.

5 FURTHER ANALYSIS

In this section, we conduct a deeper investigation into the robustness of the benchmarked methods.
We systematically vary two experimental conditions that can reflect the quality of labeled data: the
size of labeled samples controlled by label ratio and the underlying labeling mechanism controlled
by propensity score.

5.1 IMPACT OF LABEL FREQUENCY ON MODEL PERFORMANCE

We vary the value of label ratio c from 0.01 to 0.09 with a step of 0.02 and from 0.1 to 0.9 with a
step of 0.1. Results on selected datasets are shown in Fig. 5 and Appendix D.3, revealing distinct
patterns of stability and label efficiency across the three families.

Overall performance trends. The majority of methods in Risk–Minimization Estimation and
Disambiguation-Guided ERM demonstrate high stability and label efficiency. Their performance
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Figure 5: Effectiveness of PU methods with respect to different label ratio.

curves exhibit a pattern of rapid initial improvement at low label ratios (e.g. c < 0.1) and then grace-
fully saturate, indicating a strong capability to learn effectively from a small set of labeled examples.
For instance, VPU and P3Mix-C on CIFAR-10 approach their peak accuracy with c around 0.03 to
0.05. In contrast, Generative Distribution Matching methods exhibit high sensitivity to both label
ratio and data modality. Their performance curves are often erratic. Some methods show competi-
tive performance with extremely small labeled sets (e.g. VAE-PU and CGenPU on image and text
data), showing its potential to deal with scarce data. However, this behavior does not generalize to
all modalities. Crucially, these methods often fail to capitalize on additional supervision, showing
little to no performance gain as c increases. This limitation is likely attributable to the inherent
challenges and instability associated with training complex generative models from the sparse and
ambiguous signals in PU data.

Analysis of notable performers and outliers. The analysis reveals several distinct performance
profiles. Some methods, particularly VPU and P3Mix variants, are exceptionally effective in low-
label regimes, demonstrating high label efficiency by achieving competitive accuracy with minimal
supervision. In contrast, LBE-PU exhibits notable late-stage gains, improving substantially as more
labeled data becomes available, suggesting it scales well with supervision. A third group, including
PUL-CPBF and Holistic-PU, shows considerable instability, with performance fluctuating signifi-
cantly at low label ratios. Finally, methods like VAE-PU remain at a performance bottleneck; they
show little improvement even as labeled data becomes plentiful, indicating their primary limitations
are architectural or algorithmic rather than a lack of supervision.

5.2 ROBUSTNESS TO SELECTION BIAS

To assess robustness to non-random labeling, we evaluate all methods under the standard SCAR
assumption against three realistic SAR variants, using both a low (c = 0.05) and high (c = 0.5)
label ratio. The results are shown in Fig. 6 and Appendix D.4.

Low-c regime (c = 0.05). When labeled data is scarce, the choice of labeling mechanism has a
profound impact. Under SCAR, top-performing methods from the previous section, such as VPU,
Dist-PU, and P3Mix-C, continue to dominate. Selection-bias-aware methods (e.g. PUSB, LBE-PU)
are also competitive. However, when the mechanism shifts to SAR, a universal performance degra-
dation is observed. The Risk-Minimization Estimation class demonstrates strong robustness across
different labeling assumptions. Notably, no method within this category suffers from catastrophic
performance failure. Under SAR setting, some methods explicitly designed to be bias-aware (i.e.
PUSB, LBE-PU) exhibit greater resilience, suffering a smaller performance drop than their SCAR
oriented counterparts. A notable anomaly is VAE-PU, which paradoxically achieves higher accuracy
under SAR than SCAR, though its overall performance remains uncompetitive. Ultimately, these
results confirm that the benefit of bias-aware modeling is prominent in the low-label regime.
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Figure 6: F1 scores of PU methods under different labeling assumptions on CIFAR-10. The bars
shows the performance in a low-label regime (c = 0.05), while the lines indicate performance in
a high-label regime (c = 0.5). Methods with grey background are those especially designed for
selection bias.

High-c regime (c = 0.5). When labels are plentiful (c = 0.5), most methods converge to a high
F1-score, and the performance gap between SCAR and SAR settings narrows but does not vanish.
Consistent with the low-c regime, the Risk-Minimization Estimation class continues to demonstrate
high stability. Crucially, we find that robust SCAR learners like VPU can outperform dedicated
SAR-aware methods in this high-data regime. This suggests a critical interaction between label
ratio and selection bias, implying that the optimal strategy for handling SAR conditions may depend
on the amount of labeled data available.

Practical Takeaways. The results yield a clear practical recommendation. If label acquisition
is suspected to be non-random, employing a bias-aware method like PUSB or LBE-PU is highly
preferable, especially when labeled data is sparse. Conversely, if labels are plentiful and acquired
under near-SCAR conditions, lightweight and robust methods with semi-supervised regularization
(VPU, P3Mix) offer state-of-the-art performance.

6 CONCLUSION AND FUTURE DIRECTIONS

Conclusion. This work tackled the lack of a standardized benchmark in PU learning by introduc-
ing the open-source framework, PU-Bench. On this platform, we have conducted the largest and
most systematic empirical study to date in this field, evaluating 16 representative algorithms across
an extensive range of datasets and conditions. The results reveal that performance of PU learning
methods is highly contextual, dictated by data modality, label frequency, and labeling mechanism.
As a foundational empirical study, this work provides the necessary grounding to guide future the-
oretical and algorithmic advancements. We anticipate PU-Bench to serve the community by map-
ping the current state-of-the-art, accelerating the evaluation of new methods through its standardized
toolkit, and inspiring future work.

Future directions. Through our empirical analysis, we identify the following future directions:
1) Rigorous evaluation: Our benchmark reveals that more recent and complex methods can be
outperformed at least on some datasets by simpler baselines (i.e., nnPU, VPU). This underscores
the necessity for future research to conduct more rigorous, standardized evaluations against these
strong, efficient baselines to validate claims of novelty and improvement. 2) Real-world stress test:
A key vulnerability exposed by our study is the poor performance of most methods under severe
data constraints (e.g.,high label sparsity and selection bias), as characterized by many real-world
applications. This reveals a significant gap between current algorithmic capabilities and practical
needs. Therefore, a critical direction for future research is the design of methods that are inherently
robust to the challenges of extremely limited and biased supervision.
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REPRODUCIBILITY

We provide full configuration files and scripts to reproduce all experiments. All results are determin-
istically reproducible from fixed random seeds: we set and log seeds for dataset splits, data loaders,
model initialization, and CUDA/cuDNN backends. Each experiment is specified by a single YAML
configuration and a seed; re-running with the same seed exactly reproduces the reported metrics.
Detailed packaging and usage instructions are provided in Appendix F.
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Aleš Papič, Igor Kononenko, and Zoran Bosnić. Conditional generative positive and unlabeled
learning. Expert Systems with Applications, 224:120046, 2023. ISSN 0957-4174. doi: https://doi.
org/10.1016/j.eswa.2023.120046. URL https://www.sciencedirect.com/science/
article/pii/S0957417423005481.

David M W Powers. Evaluation: From precision, recall and f-measure to roc, informedness, marked-
ness and correlation. Journal of Machine Learning Technologies, 2(1):37–63, 2011.

Yuqi Wang, Qiuyi Chen, Haiyang Zhang, Wei Wang, Qiufeng Wang, Yushan Pan, Liangru Xie,
Kaizhu Huang, and Anh Nguyen. Biomedical information retrieval with positive-unlabeled learn-
ing and knowledge graphs. ACM Trans. Intell. Syst. Technol., November 2024. ISSN 2157-6904.
doi: 10.1145/3702647. URL https://doi.org/10.1145/3702647.

Jonathan Wilton, Abigail Koay, Ryan Ko, Miao Xu, and Nan Ye. Positive-unlabeled learning using
random forests via recursive greedy risk minimization. Advances in Neural Information Process-
ing Systems, 35:24060–24071, 2022.

11

https://www.sciencedirect.com/science/article/pii/S0957417423005481
https://www.sciencedirect.com/science/article/pii/S0957417423005481
https://doi.org/10.1145/3702647


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Wang Xinrui, Wenhai Wan, Chuanxing Geng, Shao-Yuan Li, and Songcan Chen. Beyond myopia:
Learning from positive and unlabeled data through holistic predictive trends. Advances in Neural
Information Processing Systems, 36:67589–67602, 2023.

Haiyang Zhang, Qiuyi Chen, Yanjie Zou, Jia Wang, Yushan Pan, and Mark Stevenson. Document
set expansion with positive-unlabeled learning using intractable density estimation. In Nicoletta
Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue
(eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING 2024), pp. 5167–5173, Torino, Italia, May
2024. ELRA and ICCL. URL https://aclanthology.org/2024.lrec-main.460/.

Yunrui Zhao, Qianqian Xu, Yangbangyan Jiang, Peisong Wen, and Qingming Huang. Dist-pu:
Positive-unlabeled learning from a label distribution perspective. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14461–14470, 2022.

Yi Zheng, Hui Peng, Xiaocai Zhang, Zhixun Zhao, Xiaoying Gao, and Jinyan Li. Ddi-pulearn:
a positive-unlabeled learning method for large-scale prediction of drug-drug interactions. BMC
bioinformatics, 20(Suppl 19):661, 2019.

Zhangchi Zhu, Lu Wang, Pu Zhao, Chao Du, Wei Zhang, Hang Dong, Bo Qiao, Qingwei Lin,
Saravan Rajmohan, and Dongmei Zhang. Robust positive-unlabeled learning via noise negative
sample self-correction. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3663–3673, 2023.

12

https://aclanthology.org/2024.lrec-main.460/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

TABLE OF CONTENTS

Section Subsection Title Page
A Notations 14
B Dataset and Methods 14

B.1 Details of Datasets 14
B.2 Details of Implemented Methods 15

C Data Generation Settings for PU Learning 18
C.1 Data Generation Settings for Existing PU Learning Methods 18
C.2 Single-training-set and case-control Conversions 18
C.3 Labeling Strategies 19
C.4 Evaluation Metrics for PU Learning Methods 20

D Experimental Settings and Results 21
D.1 Experimental Settings 21
D.2 Performance under the Conventional Setting 25
D.3 Effectiveness of PU Methods w.r.t. Label Ratio 29
D.4 Robustness to Selection Bias 30

E Computation Resources 31
F Package, Documentation, and Maintenance 31
G Use of Large Language Models (LLMs) 32

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A NOTATIONS

Table A.1: Summary of notation. Uppercase letters (e.g., X) denote random variables; lower-
case (e.g., x) denote realizations. Densities (e.g., f(x)) are evaluated pointwise; expectations (e.g.,
EX∼f [g(X)]) are taken with respect to the distribution of X .

Symbol Description
X Feature vector, X ∈ X
Y Latent class label {0, 1} (positive= 1)
S Labeling indicator {0, 1} (labeled= 1)
D Observed training sample {(xi, si)}Ni=1
P, N Sets of positives and negatives in the underlying PN dataset
LP {xi : (xi, si) ∈ D, si = 1 } (labeled positives)
U {xi : (xi, si) ∈ D, si = 0 } (unlabeled; mixture of positives and negatives)
UP Unlabeled positives, UP := U ∩ P
N Training set size used to construct PU splits
Nℓ Target size of the labeled-positive set LP
Nu Size of the unlabeled set in the PU training split
Nv Validation set size
N tr

p , N tr
n Positive/negative counts in the PN training set

N te
p , N te

n Positive/negative counts in the test set
π Class prior, p(Y = 1)
e(x) Labeling propensity, p(S = 1|Y = 1, X = x)
c Label frequency, p(S = 1|Y = 1) = E[e(X)|Y = 1]

f(x) Marginal density of X
f+(x), f−(x) Positive density, p(x|Y = 1) and negative density, p(x|Y = 0)
fℓ(x), fu(x) Labeled-positive density, p(x|S = 1) and unlabeled density, p(x|S = 0)
hθ(x) Estimate of p(Y = 1|X = x)
p̂(x) Estimated posterior p(Y=1 | X=x)
σ(z) Logistic sigmoid, σ(z) = 1

1+e−z

w Parameter vector in the logistic-regression example for p̂(x) = σ(w⊤x)

B DATASET AND METHODS

B.1 DETAILS OF DATASETS

IMDb (Maas et al., 2011) is a sentiment analysis dataset containing 50,000 movie reviews from the
Internet Movie Database, evenly split into positive and negative labels. Reviews are preprocessed to
remove HTML tags and are tokenized for text classification tasks.

20News (Lang, 1995) is a text classification dataset consisting of approximately 18,000 newsgroup
documents evenly distributed across 20 topics. Each document is represented as a bag-of-words
vector, with labels corresponding to its topic category.

MNIST (LeCun et al., 1998) contains 70,000 grayscale images of handwritten digits (0-9), each
of size 28×28 pixels. The dataset is split into 60,000 training and 10,000 testing images for digit
classification.

Fashion-MNIST (Xiao et al., 2017) consists of 70,000 28×28 grayscale images of fashion items
across 10 classes, we also use F-MNIST to refer to Fashion-MNIST in this paper.

CIFAR-10 (Krizhevsky & Hinton, 2009) comprises 60,000 32×32 color images evenly divided
into 10 object classes. Each class contains 6,000 images, split into 50,000 training and 10,000 test
samples.

ADNI (Jack Jr et al., 2008) (Alzheimer’s Disease Neuroimaging Initiative) is a medical imaging
dataset containing structural MRI scans for Alzheimer’s disease research. Each scan is labeled
according to the patient’s clinical diagnosis.
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Spambase (Dua & Graff, 2019) contains 4,601 email samples represented by 57 numerical features,
such as word frequency and character frequency. Labels indicate whether each email is spam or not.

Connect-4 (Dua & Graff, 2019) is a dataset derived from the board game “Connect Four.” It contains
67,557 game states represented by 42 categorical features corresponding to the positions on a 6× 7
board. Each position can take one of three values: x (first player’s piece), o (second player’s piece),
or b (blank). Labels indicate the outcome of the game from the perspective of the first player: win,
loss, or draw.

Table B.1: Class labels and their indices for multi-class datasets.
Dataset Classes (index)

20News Alt (0), Comp (1), Misc (2), Rec (3), Sci (4), Soc (5), Talk (6)
IMDb Negative (0), Positive (1)

MNIST 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
F-MNIST T-Shirt/Top (0), Trouser (1), Pullover (2), Dress (3), Coat (4), Sandal (5), Shirt

(6), Sneaker (7), Bag (8), Ankle Boot (9)
CIFAR-10 Airplane (0), Automobile (1), Bird (2), Cat (3), Deer (4), Dog (5), Frog (6),

Horse (7), Ship (8), Truck (9)
Alzheimer MRI NonDemented (0), VeryMildDemented (1), ModerateDemented (2), MildDe-

mented (3)

Connect-4 Loss (0), Win (1), Draw (2)
Spambase Not Spam (0), Spam (1)

Table B.2: PU learning datasets and statistics with index-based class mapping. N tr
p , N tr

n denote the
number of positive and negative samples in the training set, respectively; N te

p , N te
n for the test set;

Nv for validation size.
Dataset Pos. VS Neg.(Indices) Input Size Train (N tr

p , N tr
n ) Test (N te

p , N te
n ) Validation Total Size

20News 0,1,2,3 VS. 4,5,6 384 (6,326, 4,874) (4,254, 3,278) 0.01 (Nv = 114) 18,846

IMDb 1 VS. 0 384 (12,375, 12,375) (12,500, 12,500) 0.01 (Nv = 250) 50,000

MNIST 0,2,4,6,8 VS. 1,3,5,7,9 28×28 (29,197, 30,203) (4,926, 5,074) 0.01 (Nv = 600) 70,000

F-MNIST 0,2,3,4,6 VS. 1,5,7,8,9 28×28 (29,700, 29,700) (5,000, 5,000) 0.01 (Nv = 600) 70,000

CIFAR-10 0,1,8,9 VS. 2,3,4,5,6,7 32×32×3 (19,800, 29,700) (4,000, 6,000) 0.01 (Nv = 500) 60,000

ADNI 0 VS. 1,2,3 128×128 (2,552, 2,516) (622, 658) 0.01 (Nv = 52) 6,400

Connect-4 1 VS. 0,2 126 (35,222, 18,282) (8,895, 4,617) 0.01 (Nv = 541) 67,557

Spambase 1 VS. 0 57 (1,435, 2,208) (363, 558) 0.01 (Nv = 37) 4,601

B.2 DETAILS OF IMPLEMENTED METHODS

nnPU (Kiryo et al., 2017) addresses the issue of overfitting in traditional unbiased PU learning,
which can occur when the empirical risk estimator yields negative values during optimization. To
overcome this, nnPU introduces a non-negative risk estimator that clips the negative part of the
empirical risk to zero. This modification effectively prevents the model from fitting noise in the
unlabeled set and stabilizes training. By ensuring the risk remains non-negative, nnPU achieves
better generalization and robustness compared to earlier unbiased estimators, especially in scenarios
with limited positive data.

PUSB (Kato et al., 2019) represents one of the first PU learning frameworks explicitly designed
for non-random labeling mechanisms (i.e., beyond the SCAR assumption). Built upon the nnPU
risk estimator, PUSB incorporates an additional bias-correction term to adjust the empirical risk
under selection-biased scenarios, thereby reducing the estimation error caused by unequal labeling
probabilities across instances.

VPU (Chen et al., 2020a) addresses the limitations of risk-based PU methods that rely on inaccurate
class-prior estimation. Instead of correcting empirical risk, VPU introduces a variational principle
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Table B.3: Summary of the collected methods.
Type Method Repositories Reference

Risk-
Minimization

Estimators

nnPU [15] https://github.com/kiryor/nnPUlearning NeurIPS-2017
PUSB [13] https://github.com/MasaKat0/PUlearning ICLR-2019
VPU [4] https://github.com/HC-Feynman/vpu NeurIPS-2020
MPE-PU [8] https://github.com/acmi-lab/PU_learning NeurIPS-2021
LBE-PU [9] Unpublished, required by us IEEE TPAMI-2022
Dist-PU [34] https://github.com/Ray-rui/ CVPR-2022
PUET [30] https://github.com/jonathanwilton/PUExtraTrees NeurIPS-2022

Disambiguation
-Guided

Supervised ERM

Self-PU [5] https://github.com/TAMU-VITA/Self-PU ICML-2020
P3Mix [19] Available upon request ICLR-2022
Robust-PU [36] https://github.com/woriazzc/Robust-PU KDD-2023
Holistic-PU [32] https://github.com/wxr99/HolisticPU NeurIPS-2023
LaGAM-PU [21] https://github.com/llong-cs/LaGAM CVPR-2024
PUL-CPBF [20] Unpublished, required by us ICML-2024

Generative
Distribution
Matching

VAE-PU [25] https://github.com/byeonghu-na/vae-pu CIKM-2020
PAN [11] https://github.com/morning-dews/PAN AAAI-2021
CGenPU [27] https://github.com/apapich/CGenPU ESWA-2023

that directly evaluates the modeling error of a Bayesian classifier from the observed data. This leads
to a loss function computable without class-prior estimation or other intermediate steps, ensuring
stable training under general conditions. Empirical results show that VPU achieves strong and robust
performance across benchmark datasets.

MPE-PU (Garg et al., 2021) views PU learning as two subtasks: estimating the proportion of pos-
itives in the unlabeled data (MPE) and training the classifier accordingly. To make this feasible in
high dimensions, it introduces Best Bin Estimation (BBE) for mixture proportion estimation and
Conditional Value Ignoring Risk (CVIR) for classification. The combined algorithm TEDn alter-
nates between the two steps, yielding improved theoretical guarantees and strong empirical results.

LBE-PU (Gong et al., 2021) addresses instance-dependent PU learning, where the probability of la-
beling a positive example also depends on its features. It estimates this labeling bias via a graphical
model and maximum likelihood, optimized with EM and gradient methods. The approach pro-
vides theoretical guarantees and achieves superior results on synthetic, benchmark, and real-world
datasets.

Dist-PU (Zhao et al., 2022) builds on the observation that traditional cost-sensitive PU learning of-
ten suffers from a bias toward predicting the negative class, especially when the unlabeled set is
much larger than the positive set. To mitigate this, Dist-PU enforces a constraint that the predicted
label distribution of the unlabeled data must match the true class prior. This label distribution align-
ment helps correct the class bias inherent in cost-sensitive approaches. To prevent trivial solutions
to the alignment objective (e.g., uniform predictions), Dist-PU combines entropy minimization with
Mixup-based regularization, encouraging the model to produce confident and meaningful predic-
tions while preserving smooth decision boundaries.

PUET (Wilton et al., 2022) introduces Best Bin Estimation (BBE) for accurate class-prior (mixture
proportion) estimation, and proposes CVIR as a PU-specific learning objective. The method alter-
nates between BBE-based prior estimation and CVIR-guided split selection, forming an iterative
framework denoted as (TED)n. Comprehensive experiments on multiple image and text bench-
marks demonstrate that PUET not only reduces the α estimation error but also improves classifica-
tion accuracy compared to uPU, nnPU, and other baselines, while exhibiting greater robustness to
noise and class imbalance.

Self-PU (Chen et al., 2020b) leverages a self-paced mining strategy to iteratively identify high-
confidence unlabeled samples and assign them pseudo-labels for both positive and negative classes.
It incorporates a self-calibrated instantiation loss to mitigate bias, and applies teacher-student self-
distillation consistency regularization to stabilize training. Experiments on MNIST and CIFAR-10
demonstrate superior accuracy over uPU and nnPU, while results on the ADNI medical imaging
dataset show significant gains and improved training stability.

P3Mix (Li et al., 2022) addresses the bias in decision boundaries caused by pseudo-negative unla-
beled samples near the margin. It selects margin-adjacent positive samples as mixup partners for
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such pseudo-negatives, producing “partially positive” soft labels that regularize the classifier to-
wards a more balanced boundary. Two robust variants are proposed: P3Mix-E, which incorporates
early-learning regularization, and P3Mix-C, which performs pseudo-negative correction to mitigate
accumulated label noise.

Robust-PU (Zhu et al., 2023) employs a hardness-based progressive strategy to mitigate the accu-
mulation of noisy pseudo-negatives. The method quantifies each unlabeled sample’s “hardness” via
its loss, and employs a scheduler to progressively include harder samples in training from easy to
difficult. Each iteration follows a three-stage cycle: (1) hardness evaluation, (2) sample reweighting
based on hardness, and (3) weighted supervised training. This gradual inclusion suppresses noise
amplification, stabilizes learning, and improves generalization, yielding lower test error rates across
multiple datasets.

Holistic-PU (Xinrui et al., 2023) introduces a holistic predictive trends perspective for PU learning.
In each training epoch, it re-samples positive instances to achieve balanced class distribution, while
modeling the temporal sequence of prediction scores for unlabeled samples as a temporal point pro-
cess (TPP). A trend score is then defined to characterize these predictive trajectories, enabling the
discrimination between positive and negative tendencies without requiring class priors or thresh-
old tuning. Based on the trend scores, unlabeled samples are partitioned into positive and negative
pseudo-label sets, after which standard supervised training is performed. Across multiple bench-
mark datasets and real-world imbalanced scenarios (e.g., Credit Card fraud detection, Alzheimer’s
diagnosis), Holistic-PU demonstrates substantial performance gains over existing PU learning meth-
ods.

PUL-CPBF (Li et al., 2024) derives a theoretical result showing that the probability boundary of the
asymmetric disambiguation-free risk in PU learning is governed by its asymmetric penalty. Building
on this insight, the authors propose a two-stage framework. In the first stage, a set of weak classifiers
is trained to induce diverse probability boundaries under asymmetric penalties, which together form
a probabilistic “boundary fence.” In the second stage, these induced boundaries generate stochastic
labels for unlabeled data, and a stronger classifier is trained in a self-training manner.

LaGAM-PU (Long et al., 2024) first leverages hierarchical contrastive learning to mine latent
group-level semantics from PU data, thereby producing more discriminative instance representa-
tions. Building upon these enriched embeddings, it employs a meta-learning-driven disambiguation
objective to iteratively refine pseudo-labels of unlabeled instances, enabling a more aggressive yet
robust pseudo-labeling process.

VAE-PU (Na et al., 2020) integrates variational autoencoders into PU learning, where the evidence
lower bound (ELBO) combining reconstruction and prior regularization serves as the primary gen-
erative objective. To improve the quality of generated data, VAE-PU incorporates two additional
regularizers: an adversarial alignment term that encourages generated samples to match the distri-
bution of unlabeled data, and a label-consistency term that enforces generated positives to resemble
real positive instances. Training proceeds in an alternating fashion: a discriminator classifier is
optimized on real positives, unlabeled samples, and synthetic PU data, while the VAE generator
iteratively refines its outputs to produce more informative pseudo-examples.

PAN (Hu et al., 2021) introduces a predictive adversarial training framework for PU learning, where
a classifier C and a discriminator D are jointly optimized to enforce prediction consistency, for-
malized via a KL-divergence objective. Unlike prior methods, PAN does not require class-prior
information as input, thereby avoiding sensitivity to prior misspecification. Experiments on four
text and image benchmarks show that PAN achieves substantial improvements in both F1-score and
accuracy over strong baselines such as uPU and nnPU. Moreover, when the class prior is deliber-
ately mis-specified, nnPU suffers severe performance degradation, whereas PAN remains robust,
underscoring its resilience to prior estimation errors.

CGenPU (Papič et al., 2023) proposes a conditional generative adversarial framework for PU learn-
ing, designed to address the instability and high computational cost of previous generative ap-
proaches. The method introduces a novel loss function with an auxiliary classifier, enabling the
model to learn distributions of positive and negative examples under nonparametric assumptions
and to reach a unique, desirable equilibrium. CGenPU is formulated as a single-stage training pro-
cedure, which alleviates instability issues while reducing training complexity. Empirical evaluations
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Table C.1: Data generation settings of the existing PU learning methods. cc denotes case-control
and ss denotes single-training-set. “Varying c” indicates that the corresponding work demonstrates
robustness by using different values of c.

Method Datasets ss/cc Varying c SCAR/SAR

nnPU[15] CIFAR-10, MNIST, 20News, epsilon cc No SCAR
PUSB[13] CIFAR-10, MNIST, Mushrooms, Spambase,

Shuttle, PageBlocks, USPS, Connect-4, SwissProt
cc Yes SAR

VPU[4] CIFAR-10, F-MNIST, STL-10, Page Blocks, Grid
Stability, Avila

cc Yes SCAR

MPE-PU[8] CIFAR-10, MNIST, IMDb Not Given No Not Given
LBE-PU[9] USPS, UCI: australian, madelon, phishing, vote,

banknote, breast, HockeyFight, SwissProt
ss Yes SAR

Dist-PU[34] CIFAR-10, F-MNIST, Alzheimer MRI cc No SCAR
PUET[30] CIFAR-10, MNIST, IMDb cc No SCAR

Self-PU[5] CIFAR-10, MNIST, ADNI cc No SCAR
P3Mix[19] CIFAR-10, F-MNIST, STL-10, Credit Card Fraud cc No SCAR
Robust-PU[36] CIFAR-10, MNIST, F-MNIST, STL-10,

Alzheimer, UCI: mushrooms, shuttle, spam-
base

cc No SCAR

Holistic-PU[32] CIFAR-10, F-MNIST, STL-10, Alzheimer, Credit
Card Fraud

cc Yes SCAR

LaGAM-PU[21] CIFAR-10, STL-10, CIFAR-100, Alzheimer ss No SCAR
PUL-CPBF[20] CIFAR-10, F-MNIST, STL-10, Alzheimer cc No SCAR

VAE-PU[25] CIFAR-10, MNIST, 20News cc Yes SAR
PAN[11] CIFAR-10, MNIST, IMDb, 20News ss Yes SCAR
CGenPU[27] CIFAR-10, MNIST cc Yes SCAR

on both synthetic and real datasets demonstrate that CGenPU achieves state-of-the-art performance,
including an 84% accuracy on imbalanced CIFAR-10 benchmarks.

C DATA GENERATION SETTINGS

C.1 SETTINGS IN EXISTING PU WORK

Table C.1 provides a comprehensive summary of the data generation protocols employed in recent
PU learning literature. For each method, we categorize the experimental setup based on three critical
factors. First, we identify the data sampling scenario, distinguishing between the case-control (cc)
and single-training-set (ss) paradigms. Second, we note whether the authors demonstrated robust-
ness by systematically varying the label frequency-the proportion of true positives that are labeled
(indicated by vary c). Finally, we specify the core labeling mechanism (e.g., SCAR, SAR) assumed
in their experiments. For studies where these configurations were not explicitly stated, we inferred
the settings by meticulously analyzing the described methodology and, where available, the associ-
ated source code to ensure an accurate and consistent comparison.

C.2 SINGLE-TRAINING-SET AND CASE-CONTROL CONVERSIONS

Single-training-set. This scenario preserves the original training set’s size and composition. The
number of positives to be labeled is Nℓ = ⌊c |P|⌋. These are drawn without replacement from P to
form LP . The remaining samples, (P \ LP) ∪N , constitute the unlabeled set U .

Case-control. This scenario first selects LP ⊆ P according to the chosen labeling strategy (Ap-
pendix C.3). The unlabeled set is then defined as the entire training pool, U = P ∪ N , i.e., LP is
returned to U . Consequently, LP ⊆ U and |U| = N , and the class mixture in U is identical to that
of the full population. When enumerating indices, include all negatives and as many positives as
needed to reach |P|, prioritizing positives not in LP and reusing LP if necessary.
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NP
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Figure 7: Comparison between the single-training-set and case-control. In both cases, negatives
(Y = 0) are never labeled (S = 1), so all negatives in the training pool are assigned to the unlabeled
set U . In the single-training-set case, the labeled positives LP are sampled without replacement
from P and removed from U , yielding (P \ LP) ∪ N , whereas in the case-control scenario, LP
is sampled from P but then returned so that U = P ∪ N follows the class mixture of the overall
training data distribution.
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Figure 8: One-dimensional Gaussian toy example illustrating how single-training-set and case-
control affect only the unlabeled density. The class-conditional densities f+(x) and f−(x) are fixed
Gaussians with distinct means (left), while the unlabeled density fu(x) changes its effective class
mixture under single-training-set versus case-control (right). Under case-control, fu matches the
overall training population mixture, whereas under single-training-set, removing a fraction of posi-
tives into LP reduces the positive mass in U and shifts fu(x) closer to f−(x).

C.3 LABELING STRATEGIES

The details of the four labeling strategies evaluated under our framework are:

S1 (SCAR). Select Nℓ instances uniformly without replacement from P to form LP . This corre-
sponds to a constant labeling propensity e(x) = c for all x ∈ P .

S2 (LBE Strategy 1). Using the auxiliary posterior p̂(x) (cf. Table A.1 for σ and w), define
instance-dependent propensities

e1(x) =
[
p̂(x)

]k
, k > 1.

Normalize π1(x) = e1(x)∑
x′∈P e1(x′) and select LP by weighted sampling without replacement of

size Nℓ using probabilities π1(x), which favors high-posterior positives; in our experiments we set
k = 10 (Gong et al., 2021).

S3 (LBE Strategy 2). Using the same p̂(x), define

e2(x) =
[
1− p̂(x)

]k
, k > 1.

Normalize π2(x) =
e2(x)∑

x′∈P e2(x′) and select LP by weighted sampling without replacement of size
Nℓ using probabilities π2(x). This scheme favors boundary or otherwise ambiguous positives; in
our experiments we also set k = 10 (Gong et al., 2021).

S4 (PUSB Posterior Sharpening). Using the same p̂(x), construct sharpened scores

sα(x) =
[
p̂(x)

]α
, α ≫ 1.
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Rank all x ∈ P in descending order of sα(x) and deterministically take the top-Nℓ as LP . This rule
concentrates labeling on the highest-posterior positives; in our experiments we use α = 20 (Kato
et al., 2019).

C.4 EVALUATION METRICS FOR PU LEARNING METHODS

For a fair and comprehensive evaluation, we compile the metrics reported in the original papers of
each algorithm in Tab C.2. We adopt AUC, F1, Accuracy, Precision, and Recall as our primary
measures. Together, these metrics offer complementary perspectives on performance across diverse
experimental conditions. Below, we briefly introduce each metric used to assess PU-learning meth-
ods.

AUC. The Area Under the ROC Curve (AUC) (Bradley, 1997) assesses a classifier’s ability to
rank positive instances above negative ones, independently of any fixed threshold. It can be viewed
as the probability that a randomly selected positive instance receives a higher score than a randomly
selected negative instance. AUC is widely regarded as a robust, threshold-free metric for binary
classification.

F1-score. The F1-score (Powers, 2011) is the harmonic mean of Precision and Recall, combining
them into a single measure. It is defined as

F1 =
2 · Precision · Recall
Precision + Recall

where Precision = TP
TP+FP and Recall = TP

TP+FN . The F1-score is particularly useful on imbal-
anced datasets, as it penalizes extreme disparities between Precision and Recall, yielding a more
balanced assessment of classification performance.

Accuracy. Accuracy (Kipf & Welling, 2017) is the proportion of correctly classified instances
among all samples:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP , TN , FP , and FN denote true positives, true negatives, false positives, and false neg-
atives, respectively. Although accuracy is simple and intuitive, it can be misleading under severe
class imbalance, where it is dominated by the majority class.

Precision. Precision (Powers, 2011) measures the proportion of true positives among all predicted
positives:

Precision =
TP

TP + FP

where TP and FP denote true positives and false positives, respectively. High precision indicates
few false positive errors.

Recall. Recall (Powers, 2011) quantifies the proportion of true positives among all actual positives:

Recall =
TP

TP + FN

where FN represents false negatives. High recall indicates that the model captures most of the
positive samples.
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Table C.2: Evaluation metrics reported in their original papers (✓= reported, — = not reported).
Method AUC F1 Accuracy Precision Recall

nnPU[15] — — — — —
PUSB[13] — — — ✓ ✓
VPU[4] ✓ — ✓ — —
LBE-PU[9] — — ✓ — —
MPE-PU[8] — — ✓ — —
Dist-PU[34] ✓ ✓ ✓ ✓ ✓
PUET[30] — ✓ ✓ — —

Self-PU[5] — — ✓ — —
P3Mix[19] — — ✓ ✓ ✓
Robust-PU[36] — — ✓ — —
Holistic-PU[32] ✓ ✓ ✓ ✓ ✓
LaGAM-PU[21] ✓ ✓ ✓ — —
PUL-CPBF[20] ✓ ✓ ✓ ✓ ✓

VAE-PU[25] — — ✓ — —
PAN[11] — ✓ ✓ ✓ ✓
CGenPU[27] — — ✓ — —

D EXPERIMENTAL SETTINGS AND RESULTS

D.1 EXPERIMENTAL SETTINGS

Neural backbone architectures. IMDb and 20News are handled by the MLP backbone sum-
marised in Table D.2. Each document is first converted off-line into a 384-dimensional dense vector
using the Sentence-Transformers all-MiniLM-L6-v2 model.1 The vectors are stored in compressed
NumPy format and loaded at training time, removing any text-processing overhead while guarantee-
ing identical representations for all PU learners. MNIST and F-MNIST share the LeNet architecture
detailed in Table D.3. The network receives single-channel 28×28 images and produces one logit;
when a method explicitly requires two outputs (e.g. HolisticPU variants) only the final linear layer is
duplicated. CIFAR-10 uses the Custom CNN whose layer-wise definition is given in Table D.4. De-
signed for 32×32 three-channel inputs, the same “replace-last-layer” rule applies for methods that
need 2-way logits. ADNI uses a CNN tailored for structural MRI, detailed in Table D.5; it receives
single-channel 128×128 images and outputs one logit, and for methods requiring two outputs only
the final linear layer is replaced. Spambase and Connect-4 are processed by the same MLP backbone
shown in Table D.2. Spambase feeds the network with 57 raw numeric features, whereas Connect-4
first one-hot-encodes the board state into 126 binary features.

Table D.1: PN Train reports the standard supervised training split as (N tr
p , N tr

n ). PU Train reports
the PU training composition as (Nl, N

+
u , N−

u ), where Nl denotes the number of labeled positives,
N+

u the number of positive instances present in the unlabeled pool, and N−
u the number of negatives

in the unlabeled pool. Test uses (N te
p , N te

n ). Validation shows the held-out fraction with its size Nv .

Dataset PN Train (N tr
p , N tr

n ) PU Train (Nl, N
+
u , N−

u ) Validation Test (N te
p , N te

n ) Total Size

20News (6,326, 4,874) (632, 6,326, 4,874) 0.01 (Nv = 114) (4,254, 3,278) 18,846

IMDb (12,375, 12,375) (1,237, 12,375, 12,375) 0.01 (Nv = 250) (12,500, 12,500) 50,000

MNIST (29,197, 30,203) (2,919, 29,197, 30,203) 0.01 (Nv = 600) (4,926, 5,074) 70,000

F-MNIST (29,700, 29,700) (2,970, 29,700, 29,700) 0.01 (Nv = 600) (5,000, 5,000) 70,000

CIFAR-10 (19,800, 29,700) (1,980, 19,800, 29,700) 0.01 (Nv = 500) (4,000, 6,000) 60,000

ADNI (2,552, 2,516) (255, 2,552, 2,516) 0.01 (Nv = 52) (622, 658) 6,400

Connect-4 (35,222, 18,282) (3,522, 35,222, 18,282) 0.01 (Nv = 541) (8,895, 4,617) 67,557

Spambase (1,435, 2,208) (143, 1,435, 2,208) 0.01 (Nv = 37) (363, 558) 4,601

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Table D.2: Layer-by-layer specification of the MLP backbone (IMDb / 20News / Spambase /
Connect-4). The input feature dimension is d ∈ {384, 384, 57, 126} depending on the dataset.
Note: p in Dropout(p) denotes the dropout probability.

# Layer type Output shape

0 Input d

1 Linear (d → 512) 512
2 ReLU 512
3 Dropout (p = 0.3) 512
4 Linear (512 → 256) 256
5 ReLU 256
6 Dropout (p = 0.3) 256
7 Linear (256 → 128) 128
8 ReLU 128
9 Dropout (p = 0.2) 128

10 Linear (128 → 64) 64
11 ReLU 64
12 Linear (64 → 1) 1

Table D.3: Layer-by-layer specification of the LeNet backbone (MNIST / F-MNIST). Note: Max-
Pool2d uses 2× 2 kernel with stride 2; Conv2d kernel sizes, strides, and padding are specified in the
rightmost column.

# Layer type Output shape Kernel / stride / pad

0 Input (1, 28, 28) –
1 Conv2d (1 → 10) (10, 24, 24) 5× 5, stride 1, pad 0
2 MaxPool2d (10, 12, 12) 2× 2, stride 2
3 ReLU (10, 12, 12) –
4 Conv2d (10 → 20) (20, 8, 8) 5× 5, stride 1, pad 0
5 MaxPool2d (20, 4, 4) 2× 2, stride 2
6 ReLU (20, 4, 4) –
7 Flatten (320, ) –
8 Linear (320 → 50) (50, ) –
9 ReLU (50, ) –

10 Linear (50 → 1) (1, ) –
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Table D.4: Layer-by-layer specification of the CIFAR-10 Custom CNN backbone. Note: p in
Dropout(p) denotes the dropout probability; BatchNorm2d applies batch normalization; Conv2d
parameters (kernel/stride/pad) are detailed in the rightmost column.

# Layer type Output shape Kernel / stride / pad

0 Input (3, 32, 32) –
1 Conv2d (3 → 96) (96, 32, 32) 3× 3, stride 1, pad 1
2 BatchNorm2d (96) (96, 32, 32) –
3 ReLU (96, 32, 32) –
4 Conv2d (96 → 96) (96, 32, 32) 3× 3, stride 1, pad 1
5 BatchNorm2d (96) (96, 32, 32) –
6 ReLU (96, 32, 32) –
7 Conv2d (96 → 96) (96, 16, 16) 3× 3, stride 2, pad 1
8 BatchNorm2d (96) (96, 16, 16) –
9 ReLU (96, 16, 16) –

10 Dropout (p = 0.2) (96, 16, 16) –
11 Conv2d (96 → 192) (192, 16, 16) 3× 3, stride 1, pad 1
12 BatchNorm2d (192) (192, 16, 16) –
13 ReLU (192, 16, 16) –
14 Conv2d (192 → 192) (192, 16, 16) 3× 3, stride 1, pad 1
15 BatchNorm2d (192) (192, 16, 16) –
16 ReLU (192, 16, 16) –
17 Conv2d (192 → 192) (192, 8, 8) 3× 3, stride 2, pad 1
18 BatchNorm2d (192) (192, 8, 8) –
19 ReLU (192, 8, 8) –
20 Dropout (p = 0.5) (192, 8, 8) –
21 Flatten (12288, ) –
22 Linear (12288 → 1000) (1000, ) –
23 ReLU (1000, ) –
24 Dropout (p = 0.5) (1000, ) –
25 Linear (1000 → 1000) (1000, ) –
26 ReLU (1000, ) –
27 Linear (1000 → 1) (1, ) –
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Table D.5: Layer-by-layer specification of the ADNI (Alzheimer MRI) CNN backbone. Note: k
in MaxPool2d(k) denotes the kernel size (k × k); p in Dropout(p) denotes the dropout probability;
AdaptiveAvgPool2d(1, 1) performs global average pooling.

# Layer type Output shape Kernel / stride / pad

0 Input (1, 128, 128) –
1 Conv2d (1 → 32) (32, 128, 128) 3× 3, stride 1, pad 1
2 BatchNorm2d (32) (32, 128, 128) –
3 ReLU (32, 128, 128) –
4 Conv2d (32 → 32) (32, 128, 128) 3× 3, stride 1, pad 1
5 BatchNorm2d (32) (32, 128, 128) –
6 ReLU (32, 128, 128) –
7 MaxPool2d (k = 2) (32, 64, 64) 2× 2, stride 2, pad 0
8 Dropout (p = 0.1) (32, 64, 64) –
9 Conv2d (32 → 64) (64, 64, 64) 3× 3, stride 1, pad 1

10 BatchNorm2d (64) (64, 64, 64) –
11 ReLU (64, 64, 64) –
12 Conv2d (64 → 64) (64, 64, 64) 3× 3, stride 1, pad 1
13 BatchNorm2d (64) (64, 64, 64) –
14 ReLU (64, 64, 64) –
15 MaxPool2d (k = 2) (64, 32, 32) 2× 2, stride 2, pad 0
16 Dropout (p = 0.1) (64, 32, 32) –
17 Conv2d (64 → 128) (128, 32, 32) 3× 3, stride 1, pad 1
18 BatchNorm2d (128) (128, 32, 32) –
19 ReLU (128, 32, 32) –
20 Conv2d (128 → 128) (128, 32, 32) 3× 3, stride 1, pad 1
21 BatchNorm2d (128) (128, 32, 32) –
22 ReLU (128, 32, 32) –
23 MaxPool2d (k = 2) (128, 16, 16) 2× 2, stride 2, pad 0
24 Dropout (p = 0.2) (128, 16, 16) –
25 Conv2d (128 → 256) (256, 16, 16) 3× 3, stride 1, pad 1
26 BatchNorm2d (256) (256, 16, 16) –
27 ReLU (256, 16, 16) –
28 Conv2d (256 → 256) (256, 16, 16) 3× 3, stride 1, pad 1
29 BatchNorm2d (256) (256, 16, 16) –
30 ReLU (256, 16, 16) –
31 MaxPool2d (k = 2) (256, 8, 8) 2× 2, stride 2, pad 0
32 Dropout (p = 0.3) (256, 8, 8) –
33 AdaptiveAvgPool2d (1, 1) (256, 1, 1) –
34 Flatten (256, ) –
35 Linear (256 → 64) (64, ) –
36 ReLU (64, ) –
37 Dropout (p = 0.3) (64, ) –
38 Linear (64 → 1) (1, ) –
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D.2 PERFORMANCE UNDER THE CONVENTIONAL SETTING

D.2.1 FULL EXPERIMENTAL RESULTS

This subsection complements the main conventional results in Table 1. For each dataset, we use
the dataset-to-backbone mapping in Appendix D.1 and the PU data specification in Table D.1. The
training set size N and class prior π are fixed per dataset. PU training splits are generated with the
same conventional configuration used for the main table. All learners are trained under the unified
pipeline with identical optimizer and schedules defined in the YAML configurations, and only the
classification head is adapted when a method requires two logits. We select the checkpoint with
the best validation macro-F1 and report Accuracy, Precision, Recall, macro-F1, and AUC on the
held-out test set.
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Figure 9: Performance of PU methods on text datasets across five evaluation metrics.
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Figure 10: Performance of PU methods on vision datasets across five evaluation metrics.
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Figure 11: Performance of PU methods on tabular datasets across five evaluation metrics.
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Table D.6: Holm–Bonferroni corrected p-values from two-sided paired t-tests on the test accuracies
in Table 1 under the conventional setting (cc/SCAR/c=0.1). Each entry compares a PU method
against nnPU on the same dataset. Values below 5e−02 are shown in bold (significantly better than
nnPU) or underlined (significantly worse).

Method IMDb 20News MNIST F-MNIST CIFAR-10 ADNI Connect-4 Spambase

nnPU [15] — — — — — — — —
PUSB [13] 8.2e-02 1.4e-01 9.5e-02 1.1e-01 4.3e-02 1.5e-01 1.6e-01 1.1e-01
VPU [4] 4.8e-02 5.8e-02 8.4e-05 8.7e-02 8.9e-02 8.5e-02 4.3e-02 9.2e-02
MPE-PU [8] 1.2e-01 1.6e-01 1.6e-01 2.0e-01 2.7e-01 2.3e-01 2.9e-01 2.1e-01
LBE-PU [9] 8.9e-02 1.5e-01 3.2e-03 2.1e-03 9.1e-02 6.9e-02 9.4e-02 8.3e-02
Dist-PU [34] 3.9e-02 6.7e-02 8.7e-02 1.1e-01 8.9e-04 6.2e-03 7.6e-02 3.7e-02
PUET [30] 9.5e-02 6.2e-02 9.8e-02 9.3e-02 6.4e-02 3.7e-02 8.1e-02 7.3e-02

Self-PU [5] 4.1e-02 1.8e-01 6.6e-02 2.0e-01 1.9e-01 1.9e-01 2.3e-01 3.8e-02
P3Mix-E [19] 3.2e-02 8.9e-02 9.3e-02 8.5e-02 6.7e-02 7.6e-02 9.4e-02 8.2e-02
P3Mix-C [19] 1.3e-02 5.5e-02 8.6e-02 9.7e-02 7.1e-02 2.0e-02 6.8e-02 7.3e-02
Robust-PU [36] 1.3e-01 8.9e-02 1.1e-01 1.5e-01 1.3e-01 1.4e-01 1.8e-01 1.6e-01
Holistic-PU [32] 9.0e-02 4.2e-02 7.5e-02 4.3e-02 3.4e-02 1.0e-01 5.9e-02 1.1e-01
LaGAM-PU [21] 6.7e-02 5.8e-02 8.5e-02 8.9e-02 8.3e-02 5.9e-02 7.4e-05 5.3e-05
PUL-CPBF [20] 7.5e-02 8.1e-02 3.2e-02 3.3e-02 9.5e-02 7.1e-02 4.1e-05 3.8e-02

VAE-PU [25] 3.6e-02 8.3e-01 4.8e-02 2.9e-01 2.7e-02 4.5e-02 3.9e-01 3.0e-01
PAN [11] 5.6e-02 2.8e-02 6.8e-02 9.1e-02 8.7e-02 1.1e-01 1.2e-01 8.9e-02
CGenPU [27] 9.1e-02 1.4e-01 9.5e-02 8.0e-02 1.0e-01 1.0e-01 7.8e-02 8.4e-02

D.2.2 STATISTICAL SIGNIFICANCE OF PERFORMANCE DIFFERENCES

For each dataset and PU method, we collect the test accuracy with 10 random seeds (2, 25, 42,
52, 99, 103, 250, 666, 777, 2026) under the conventional cc/SCAR/c=0.1 configuration. We then
perform two-sided paired t-tests comparing each method against nnPU on the same dataset.

Paired t-test. For each pair of methods (e.g., method A vs. nnPU) on a given dataset, let {xi}ni=1
and {yi}ni=1 denote the test accuracies from n = 10 independent runs, where xi and yi are paired
(same random seed). We compute the paired differences di = xi − yi, their sample mean d̄ =
1
n

∑n
i=1 di, and sample standard deviation sd =

√
1

n−1

∑n
i=1(di − d̄)2. The test statistic is

t =
d̄

sd/
√
n
,

which follows a t-distribution with n − 1 degrees of freedom under the null hypothesis of no dif-
ference. The raw two-sided p-value is given by praw = P (|Tn−1| ≥ |t|), where Tn−1 denotes a
t-distributed random variable with n− 1 degrees of freedom.

Holm–Bonferroni correction. To control for multiple comparisons across m hypotheses (one per
method vs. nnPU) on the same dataset, we apply the Holm–Bonferroni procedure. Let p(1) ≤ p(2) ≤
· · · ≤ p(m) denote the sorted raw p-values. For each hypothesis j in sorted order, the corrected p-
value is

p(j)corr = min

{
1, max

k=1,...,j

[
(m− k + 1) · p(k)

]}
.

We reject hypothesis j if p(j)corr ≤ α (we use α = 0.05 in all experiments).

Table D.6 shows that, under the conventional setting, several Risk-Minimization Estimation meth-
ods and Disambiguation-Guided Supervised ERM methods achieve statistically significant accuracy
gains over nnPU on a non-trivial subset of datasets, whereas self-training and holistic variants more
often suffer significant degradation. Generative distribution matching approaches rarely yield sig-
nificant benefits and can even be significantly worse than nnPU, highlighting their instability in this
regime. Overall, these significance tests confirm that the performance gaps observed in Table 1 are
not driven by random seed noise and underscore that method selection should be guided primarily
by the PU learning paradigm and dataset-specific characteristics.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0.25 0.50 0.75 1.00
h (x)

0

5

10
D

en
si

ty

(a.1) Train h (x) on , P, 

P

0.25 0.50 0.75 1.00
h (x)

0

5

(a.2) Test h (x) for Y = 1 vs. Y = 0
Y = 1
Y = 0

0.25 0.50 0.75 1.00
e(x)

0

2

4

(a.3) Estimated e(x) on  vs. P

P

0.25 0.50 0.75 1.00
h (x)

0.0

2.5

5.0

D
en

si
ty

(b.1) Train h (x) on , P, 

P

0.25 0.50 0.75 1.00
h (x)

0

2

4
(b.2) Test h (x) for Y = 1 vs. Y = 0

Y = 1
Y = 0

0.25 0.50 0.75 1.00
(D(x))

0

5

(b.3) (D(x)) on , P, 

P

Figure 12: Failure analysis of LBE-PU on ADNI (top) and PAN on Spambase (bottom) under con-
ventional settings. Top panels: (a.1, a.2) Training and test score distributions hθ(x) for labeled
positives LP , unlabeled positives UP , and negatives N ; shaded bands indicate interquartile range
(IQR) overlap between UP and N . (a.3) Estimated labeling propensity e(x) for LP and UP with
IQR overlap highlighted. Bottom panels: (b.1, b.2) Training and test score distributions hθ(x) with
threshold at 0.5. (b.3) Discriminator scores σ(D(x)) on LP , UP , and N .

D.2.3 FAILURE CASES ANALYSIS

LBE-PU(Gong et al., 2021) exhibits competitive performance on vision datasets under conventional
settings, and on simpler images it can match or surpass strong PN baselines. This effectiveness
stems from its labeling-bias model e(x) capturing meaningful variation in positive labeling mech-
anisms. On ADNI under the conventional setting, however, only a small fraction of positives are
labeled (|LP| = 255) while most remain unlabeled (|UP | = 2552 vs. |N | = 2516). As shown in
Fig. 12 (top panels), this extreme imbalance breaks LBE-PU in two ways. First, the classifier hθ(x)
concentrates labeled positives near 1.0 but assigns similarly high scores to many negatives, causing
severe overlap between UP and N in both training (panel a.1) and test distributions (panel a.2). Sec-
ond, the estimated propensities e(x) for labeled versus unlabeled positives exhibit substantial IQR
overlap (panel a.3), indicating that the learned e(x) deviates from the SCAR assumption and fails
to model the true labeling mechanism. Together, these failures prevent LBE-PU from recovering a
reliable decision boundary on ADNI.

While PAN(Hu et al., 2021) demonstrates effective performance on datasets such as MNIST and
IMDb—where its adversarial training framework successfully promotes separation between positive
instances and challenging unlabeled samples—it exhibits a distinct failure pattern on Spambase. As
illustrated in Fig. 12 (bottom panels), this complementary failure mode stems from the Discrim-
inator’s role in defining reliability weights. Specifically, Panel b.3 reveals that the Discriminator
systematically assigns higher scores to true negatives than to both labeled and unlabeled positives
(σ(D(x))N > σ(D(x))LP , σ(D(x))UP

). Consequently, the reliability weights rl = σ(D(x)) be-
come concentrated on unlabeled examples that resemble negatives. This skew causes the Recognizer
to learn a decision function hθ(x) that positions nearly all positive instances alongside a substantial
portion of negatives above the default threshold of 0.5 (panels b.1–b.2), resulting in exceptionally
high recall but merely moderate precision under fixed-threshold evaluation.
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D.3 EFFECTIVENESS OF PU METHODS W.R.T. LABEL RATIO

We study label efficiency by varying the label ratio c while keeping the training size N and class
prior π unchanged. Following the main text (Fig. 5), we sweep c from 0.01 to 0.09 with a step of
0.02, and from 0.1 to 0.9 with a step of 0.1.
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Figure 13: Effectiveness of PU methods with respect to different label ratios c.
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D.4 ROBUSTNESS TO SELECTION BIAS

We evaluate robustness under different labeling assumptions by varying the propensity of observing
positive labels. The experiments follow the labeling strategies defined in Appendix C.3 (S1, S2, S3,
S4). For each strategy, we keep the training size N and class prior π fixed. We report F1 on the test
set at two label ratios, c = 0.05 and c = 0.5. Bars correspond to the low-label regime (c = 0.05)
and lines correspond to the high-label regime (c = 0.5). All other training settings remain the same
as in the conventional configuration.
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Figure 14: F1 scores of PU methods under different labeling assumptions on tabular datasets. Bars
denote low-label regime (c = 0.05), lines denote high-label regime (c = 0.5).
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Figure 15: F1 scores of PU methods under different labeling assumptions on text datasets. Bars
denote low-label regime (c = 0.05), lines denote high-label regime (c = 0.5).
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Figure 16: F1 scores of PU methods under different labeling assumptions on vision datasets. Bars
denote low-label regime (c = 0.05), lines denote high-label regime (c = 0.5).

E COMPUTATION RESOURCES

All experiments were conducted using PyTorch 2.8.0 and Python 3.12 running on Ubuntu 22.04,
with CUDA 12.8 for GPU acceleration. The hardware consisted of a single NVIDIA RTX 5090
GPU (32 GB memory), a 25 vCPU Intel Xeon Platinum 8470Q processor, and 90 GB of system
RAM.

F PACKAGE, DOCUMENTATION, AND MAINTENANCE

This section outlines packaging, documentation, licensing, and long-term maintenance policies to
support reliable use and extension of the benchmark.

Data Acquisition. Datasets are obtained directly from authoritative sources through established
APIs: vision (MNIST, F-MNIST, CIFAR-10) via torchvision; text (20News, IMDb) via scikit-learn
and Hugging Face; tabular (Mushrooms, Connect-4, Spambase) via OpenML; and medical imaging
(AlzheimerMRI) via the ADNI database. Source-level acquisition lets users verify provenance and
replicate exact conditions. Automatic downloading with caching reduces network overhead. Each
loader performs integrity checks to verify data completeness and consistency before use. PU sam-
pling is deterministic given the configuration and a random seed, which guarantees exact replication
of splits and reported metrics when the same configuration is rerun.

Documentation and usage. The package includes comprehensive documentation designed for
PU learning workflows2. It provides task-level examples and step-by-step instructions for construct-
ing PU datasets-supporting both SCAR and SAR mechanisms, as well as case-control and single-

2Anonymous repository: https://anonymous.4open.science/r/PU-Bench-preview/
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training-set scenarios. Users can specify class priors, label frequencies, model backbones, and PU
learning objectives via YAML configuration files. Key components of the data generation pipeline,
training loop, and evaluation suite are clearly structured and documented to facilitate adoption and
extension.

Code maintenance and versioning. We are committed to maintaining the codebase, responding
to user feedback, and encouraging community contributions through a structured review process.
We adopt strict version control practices, maintain detailed changelogs, and provide tagged releases.
Configuration files and experiment logs are archived alongside each release to ensure consistent
behavior across versions and enable faithful replication when combined with the fixed-seed protocol
described in the Reproducibility section.

License. Our code will be released under the MIT License, which permits free use, modifica-
tion, distribution, and sublicensing, provided the original copyright notice and permission terms are
retained.

G USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed for non-substantive, low-risk tasks in preparing this
manuscript. Their use was strictly limited to grammar and typographical proofreading of human-
drafted text and verifying the internal consistency of names and cross-references. To ensure scien-
tific integrity and prevent any influence from hallucinated content, LLMs had zero involvement in
generating, interpreting, or refining core scientific artifacts.
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