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ABSTRACT

Positive-Unlabeled (PU) learning, a challenging paradigm for training binary clas-
sifiers from only positive and unlabeled samples, is fundamental to many ap-
plications. While numerous PU learning methods have been proposed, the re-
search is systematically hindered by the lack of a standardized and comprehen-
sive benchmark for rigorous evaluation. Inconsistent data generation, disparate
experimental settings, and divergent metrics have led to irreproducible findings
and unsubstantiated performance claims. To address this foundational challenge,
we introduce PU-Bench, the first unified open-source benchmark for PU learn-
ing. PU-Bench provides: 1) a unified data generation pipeline to ensure consis-
tent input across configurable sampling schemes, label ratios and labeling mech-
anisms; 2) an integrated framework of 18 state-of-the-art PU methods; and 3)
standardized protocols for reproducible assessment. Through a large-scale em-
pirical study on 8 diverse datasets (2880 evaluations in total), PU-Bench reveals
a complex yet intuitive performance landscape, uncovering critical trade-offs be-
tween effectiveness and efficiency, and systematically mapping method robustness
against variations in label frequency and selection bias. It is anticipated to serve
as a foundational resource to catalyze reproducible, rigorous, and impactful re-
search in the PU learning community. The source code is publicly available at
https://github.com/XiXiphus/PU-Bench.

1 INTRODUCTION

Positive-Unlabeled (PU) learning tackles a common classification problem where only some pos-
itive examples are labeled and the unlabeled rest are a mixture of unidentified positives and true
negatives (Elkan & Noto, 2008; Bekker & Davis, 2020). This setting arises frequently in real-world
applications where negative examples are difficult or costly to annotate. For example, in recom-
mender systems, it is known which items users like, but not which they dislike (Zhou et al., 2021;
Zhang et al., 2021). This characteristic makes PU learning an essential technique across diverse
fields, and the past few years have seen a rapid development in algorithm design for PU learning,
such as disease-related gene identification (Yang et al., 2012; Molaei & Jalili, 2025), drug-drug in-
teraction prediction (Zheng et al., 2019), document retrieval (Wang et al., 2024; Zhang et al., 2024)
and medical image classification (Nagaya & Ukita, 2021).

Despite these advances, a significant challenge remains due to the lack of a standardized, unified,
and comprehensive benchmark for a fair comparison among different algorithms. This issue causes
two major obstacles to further development. First, there is a remarkable inconsistency in experi-
mental setups and evaluation protocols across studies. Researchers often employ different datasets,
varying data sampling strategies (e.g., case-control vs. single-training-set) (Bekker & Davis, 2020;
Mielniczuk & Wawrzeńczyk, 2024), and divergent labeling assumptions (e.g., selected completely
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at random vs. selected at random) (Gong et al., 2021; 2025), which inevitably leads to inconsistent
and incomparable results. As indicated in Appendix Table C.1, these disparate settings are rather
common, preventing a fair and holistic understanding of algorithmic performance. Second, the va-
lidity of performance claims is often undermined by the high sensitivity of PU methods to empirical
factors. Our empirical results confirm that variations in the label ratio or labeling assumption can
be significant enough to alter relative performance rankings of state-of-the-art algorithms. Given
that these factors are not uniformly controlled in prior work, many published comparisons may not
reflect the true capabilities of individual methods, leading to potentially unreliable conclusions.

To address these challenges and establish a solid foundation for future research, we propose PU-
Bench, to the best of our knowledge, the first comprehensive, open-source, and unified benchmark
for PU learning. This work makes three primary contributions: 1) Unified Open-Source Bench-
marking Framework: We design and release an open-source, modular framework for the rigorous
and reproducible evaluation of PU learning algorithms. It features a configurable PU generator, a
unified training pipeline, and a comprehensive evaluation suite to ensure fair and consistent compar-
isons. 2) Comprehensive Empirical Study: We conduct the most comprehensive empirical study
in PU learning to date, benchmarking 18 representative methods across 8 diverse datasets. Our ex-
perimental design covers 20 configurations per method-dataset pair, including 14 label ratios under
SCAR and 3 SAR mechanisms evaluated at 2 representative label frequencies. This protocol yields
a total of 2,880 controlled evaluations, enabling rigorous assessment of both peak performance and
robustness across the full spectrum of PU learning scenarios. 3) In-Depth Analysis and Action-
able Guidelines: We provide extensive evaluation and analysis from various perspectives, including
effectiveness, efficiency and complexity, as well as robustness to varying label ratios and selection
bias. Our findings reveal the strengths and limitations of the current PU methods, and propose a set
of practical, data-driven guidelines for algorithm selection and design.

2 PRELIMINARIES

Problem Setup. In PU learning, an observed training sample consists of a set of labeled positives
LP and an unlabeled set U that mixes positives and negatives. The standard one-sided labeling
assumption posits that only positives can be labeled, i.e., p(Y = 1|S = 1) = 1 (equivalently,
p(S = 1|Y = 0) = 0) (Elkan & Noto, 2008; Bekker & Davis, 2020). Let π = p(Y = 1)
denote the class prior. The class-conditional densities are given by f+(x) = p(x | Y = 1) and
f−(x) = p(x | Y = 0). The marginal is the mixture f(x) = πf+(x)+(1−π)f−(x). The objective
is to learn a decision function hθ : X → [0, 1] that estimates the posterior p(Y = 1|X = x). Key
notations used throughout this paper are summarized in Appendix Table A.1.

Data Sampling Scheme. Training data can be typically generated under two sampling schemes:
the single-training-set (ss) scenario and the case-control (cc) scenario (Bekker & Davis, 2020). In
the ss scenario, the training set is created by drawing samples i.i.d. from the population distribution,
and only the positive examples within this set have a chance of being labeled. The cc scenario as-
sumes that the labeled-positive set is drawn i.i.d. from p(x | Y = 1) and the unlabeled set is drawn
i.i.d. from the population distribution p(x). The primary distinction between the two scenarios is the
composition of the unlabeled sample. Under cc, the unlabeled data follow the population mixture
of the class-conditional distributions p(x | Y = 1) and p(x | Y = 0) with mixing proportion π,
whereas the ss scenario uses a mixture with a different effective proportion because labeled positives
are excluded from U (Mielniczuk & Wawrzeńczyk, 2024). Consequently, PU methods should al-
ways state and consider the sampling scheme when conducting experiments and interpreting results.
A detailed illustration of the differences between ss and cc can be found in Appendix C.2.

Labeling Mechanisms. Under both sampling schemes, there is one set of samples drawn i.i.d. from
the population distribution p(x) and one drawn i.i.d. from the positive class p(x | Y = 1), governed
by a labeling mechanism with propensity e(x) = p(S = 1 | Y = 1, X = x) (Bekker & Davis,
2020). In PU learning, the most widely used assumption is Selected Completely At Random
(SCAR), which posits a constant propensity, i.e., e(x) = c (Bekker & Davis, 2020). A more general
assumption is Selected At Random (SAR), where the propensity depends on features, i.e., e(x) ̸= c
(Bekker & Davis, 2018).
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Figure 1: Overview of the collected methods and datasets.

3 PU-BENCH

In this section, we introduce PU-Bench, a unified benchmark designed for PU learning. We first
detail the scope of our study, covering the datasets and collected algorithms (Section 3.1), followed
by a detailed explanation of the system architecture that ensures reproducible data generation, model
training, and evaluation (Section 3.2).

3.1 DATASETS AND METHODS

Datasets. PU-Bench evaluates 8 widely used datasets spanning three different modalities: text -
IMDb (movie reviews for sentiment classification) (Maas et al., 2011) and 20News (text classifica-
tion) (Lang, 1995); image - MNIST (handwritten digit classification) (LeCun et al., 1998), Fashion-
MNIST (F-MNIST) (Xiao et al., 2017), CIFAR-10 (natural image classification) (Krizhevsky &
Hinton, 2009), and ADNI (structural MRI for Alzheimer’s disease diagnosis) (Jack Jr et al., 2008);
tabular - Spambase (email spam detection) (Dua & Graff, 2019), and Connect-4 (board game
outcome prediction) (Dua & Graff, 2019). This diverse selection of tasks and domains ensures a
comprehensive assessment of model robustness and generalizability. Detailed descriptions of each
dataset are provided in Appendix B.1.

Although these datasets have been widely adopted in PU learning, existing works often construct
PU data in disparate ways, such as adopting different label ratios, making varied assumptions about
the unlabeled data distribution (e.g., SCAR or SAR), and employing distinct sampling designs (e.g.,
ss vs. cc). These inconsistencies result in heterogeneous experimental settings and limit the repro-
ducibility of reported results. To address this issue, PU-Bench provides a systematically organized
collection of datasets and a standardized PU data generation pipeline, ensuring consistent input
across methods and allowing researchers to focus on methodological development rather than data
preparation.

Methods. PU-Bench has implemented a total number of 18 established PU learning algorithms.
The selection is based on methodological relevance, reproducibility, and general applicability.
Specifically, we prioritize influential and recent PU methods from top-tier venues, focusing ex-
clusively on domain-agnostic methods with publicly available implementations or author-provided
implementations. Methods with unavailable code and non-reproducible pipelines are excluded. A
detailed summary of the selected methods is provided in Appendix Table B.3 and Fig. 1.

We categorize the collected methods into three groups based on their algorithmic strategies, as
illustrated in Fig. 1: 1) Risk-Minimization Estimators: methods that directly minimize empiri-
cal risk or its variants under PU constraints, including nnPU (Kiryo et al., 2017), PUSB (Kato
et al., 2019), VPU (Chen et al., 2020a), LBE-PU (Gong et al., 2021), MPE-PU (Garg et al.,
2021), PUET (Wilton et al., 2022), Dist-PU (Zhao et al., 2022), PULDA (Jiang et al., 2023); 2)
Disambiguation-Guided Supervised ERM: methods that first resolve label ambiguity in the unla-
beled pool by constructing pseudo-labels or selecting proxy negatives/positives (often under class-
prior constraints or with group/meta signals), and then a standard supervised ERM model is trained
on LP ∪ U . This training phase often leverages mixup, consistency regularization, or iterative
teacher-student self-training. This group includes Self-PU (Chen et al., 2020b), P3Mix (Li et al.,
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Figure 2: The modular framework for PU-Bench.

2022), Robust-PU (Zhu et al., 2023), Holistic-PU (Xinrui et al., 2023), LaGAM-PU (Long et al.,
2024), PUL-CPBF (Li et al., 2024); 3) Generative Distribution Matching: methods that align pos-
itive and unlabeled distributions with model-induced predictions via generative or adversarial mod-
eling, including PAN (Hu et al., 2021), VAE-PU (Na et al., 2020) and CGenPU (Papič et al., 2023).
This taxonomy provides a structured framework for analyzing methodological differences. Detailed
descriptions of each method are provided in Appendix B.2.

3.2 SYSTEM DESIGN

Despite the extensive research on PU learning, the field currently lacks a standardized framework for
empirical evaluation, posing a challenge to experimental reproducibility and fair comparison. This
methodological inconsistency manifests across the entire experimental pipeline. Studies vary widely
in their data generation processes: employing different sampling schemes, e.g. ss or cc (Mielniczuk
& Wawrzeńczyk, 2024), varying the size of the positive set, and operating under distinct labeling
assumptions, e.g. SCAR or SAR (Gong et al., 2021), as detailed in Appendix C.1. Furthermore,
disparities in training protocols, hyperparameter optimization, and the choice of evaluation metrics
(shown in Appendix C.4) make it difficult to aggregate findings or reliably observe the true state-
of-the-art. To address these critical challenges, PU-Bench aims to facilitate rigorous, reproducible,
and transparent evaluation of PU learning algorithms. It is built upon three core, interoperable
components that standardize the experimental workflow: 1) a PU Data Generator for generating
experimental conditions, 2) a Unified Training Pipeline for consistent model execution, and 3) a
Performance Evaluation Suite for comprehensive analysis and comparison, as shown in Fig. 2.

PU Data Generator. The PU Data Generator is responsible for systematically transforming stan-
dard classification datasets into diverse and reproducible PU learning scenarios. The generation
process follows a structured, multi-stage pipeline. It begins with a binarization module that converts
multi-class datasets into a binary Positive-Negative (PN) format, which is then split into training,
validation, and test sets, with the total number of samples in the training set N and class prior π
fixed. Then, the generator simulates the data collection environment by choosing one data sampling
scheme to define where the labeled samples LP are from; details of the implementation of the two
data sampling schemes are shown in Appendix C.2. Finally, the labeling simulation is performed
by specifying the value of label ratio c, which controls how many LP are sampled, and the labeling
mechanism, which defines the selection strategy for LP . Our framework supports multiple mech-
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anisms to emulate real-world complexities, including (S1) the common SCAR assumption, where
every positive has a uniform labeling probability; (S2) the instance-dependent sampling strategy
where the propensities are based on the auxiliary posterior p̂(x) to favor high-posterior positives
(Gong et al., 2021); (S3) another instance-dependent sampling strategy where the propensities em-
phasize ambiguous or boundary positives (Gong et al., 2021); (S4) the posterior sharpening strategy
where top-scoring positives are deterministically selected under a sharpened posterior (Kato et al.,
2019). Details of the propensity functions and scoring rules are given in Appendix C.3.

Unified Training Pipeline. This module currently supports 18 state-of-the-art PU methods, as de-
tailed in Sec. 3.1. To ensure rigorous reproducibility and eliminate confounding variables, PU-Bench
employs a fully modular, configuration-driven training framework where all algorithms are instan-
tiated from external YAML descriptors. These descriptors specify model backbones, PU loss func-
tions, and shared hyper-parameters, including optimizer type, learning-rate schedules, and weight
initialization. The framework accommodates multiple data modalities via specialized encoders
for text, image, and tabular data. Training begins by loading the configuration and PU-formatted
datasets, after which the corresponding PU learning criterion and learner are instantiated. A unified
trainer automates forward/backward passes, loss computation, metric logging, and checkpointing.
By allowing parameter adjustments through simple YAML edits, the framework ensures stream-
lined, reproducible training, evaluation, and visualization across all PU methods.

Performance Evaluation Suite. The Performance Evaluation Suite is designed to provide a holistic
and statistically robust assessment of each algorithm, measuring performance across two primary di-
mensions: predictive effectiveness and computational efficiency. This dual focus addresses a critical
gap in the literature, where inconsistent reporting undermines the fairness of cross-method com-
parisons and obscures the practical trade-offs of different approaches. To ensure a standardized
evaluation, we implement a unified protocol where all metrics are computed on a held-out, ground-
truth test set. For effectiveness, we record 5 widely used evaluation metrics including accuracy
(Acc), precision, recall, macro-F1, area under the ROC curve (AUC). To measure efficiency, the
framework logs wall-clock time and peak GPU memory per epoch; a checkpoint is written when-
ever validation-set macro-F1 hits a new best, and the full config, seeds, metric traces, and hardware
stats are archived for full reproducibility.

4 EXPERIMENTAL RESULTS

This section presents the primary empirical results of our study, where we benchmark 18 represen-
tative PU learning methods across 8 datasets. To establish a controlled and comparable baseline that
aligns with established practices, all experiments are conducted under a conventional PU setting.
This protocol, the most widely adopted configuration in prior studies, simulates the case-control
sampling scenario, assumes the SCAR labeling mechanism, and utilizes a fixed label frequency of
c = 0.1. Detailed statistics of the simulated PU datasets, specific implementation settings such
as the backbone models employed, and expanded set of performance metrics are provided in Ap-
pendix D for full reproducibility and deeper analysis. To assess whether the observed accuracy
gaps are robust to random seed variability rather than artifacts of sampling noise, we additionally
perform two-sided paired t-tests with Holm–Bonferroni correction between each PU method and
nnPU (Kiryo et al., 2017) across all datasets; the detailed procedure and corrected p-values are
summarized in Appendix D.2.2.

4.1 EFFECTIVENESS COMPARISON

To establish a practical performance ceiling and contextualize the results, we include a fully super-
vised PN classifier trained with complete label information as an oracle reference. According to the
results presented in Table 1, Fig. 3 and Appendix D.2.1, we have the following observations:

Risk-Minimization Estimators perform strongly but with higher variance. As shown in Ta-
ble 1, while this family often achieves the best results on specific datasets (e.g., Dist-PU on ADNI
and CIFAR-10, LBE-PU on MNIST and F-MNIST), it suffers from significantly higher variance
and threshold sensitivity than disambiguation-guided counterparts, exemplified by LBE-PU’s col-
lapse on ADNI under extreme positive-label imbalance (Appendix D.2.3). Within this group, nnPU
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Table 1: Accuracy score of all PU methods across all datasets under the conventional setting. The
best results are shown in bold and the second best are underlined. Entries marked with ∗ are signif-
icantly better according to the two-sided paired t-tests in Appendix D.2.2.

Type Method IMDb 20News MNIST F-MNIST CIFAR-10 ADNI Connect-4 Spambase

Risk-
Minimization

Estimators

nnPU [15] 77.37±4.82 88.81±3.81 94.85±0.09 96.67±1.43 85.30±2.63 65.75±4.02 74.71±2.33 81.66±2.73

PUSB [14] 77.86±3.82 87.49±4.05 95.19±1.35 95.76±1.62 87.68∗±2.85 65.85±4.35 85.07±2.55 81.56±2.95

VPU [4] 78.08∗±4.13 87.76±4.33 96.46∗±1.52 97.50±1.83 83.76±3.12 66.31±4.72 85.62∗±2.82 79.25±3.22

MPE-PU [8] 77.65±1.93 86.68±4.55 95.90±0.67 97.79±2.03 83.41±3.35 65.47±5.05 74.60±3.05 81.11±3.45

LBE-PU [9] 76.25±4.73 85.74±4.81 97.23∗±0.08 98.42∗±2.22 83.98±3.62 65.75±5.42 83.94±3.31 68.53±3.71

PUET [30] 68.41±5.32 86.49±5.31 95.08±2.12 97.77±2.63 76.23±4.11 71.56∗±6.13 84.23±3.83 84.43±4.23

Dist-PU [36] 77.88∗±5.02 88.65±5.05 95.70±0.39 95.31±2.42 88.09∗ ±3.85 75.02∗±5.75 73.85±3.55 85.71∗±3.95

PULDA [13] 75.30±1.47 86.67±0.03 96.69±0.35 96.92±0.42 87.02∗±0.68 67.91±5.45 78.18∗±4.48 84.80±2.30

Disambiguation
-Guided

Supervised ERM

Self-PU [5] 74.05±3.23 86.93±3.46 90.86±1.02 93.22±1.31 76.73±2.43 66.41±4.21 75.67±2.51 72.10±2.92

P3Mix-E [19] 78.27∗±3.53 84.42±3.23 94.26±1.15 96.92±1.52 87.36±2.65 69.21±4.55 84.79±2.75 84.14±3.15

P3Mix-C [19] 77.48∗±3.83 88.02±3.92 95.23±1.32 96.53±1.72 87.65±2.91 67.69∗±4.92 85.10±2.72 81.46±3.42

Robust-PU [39] 77.37±4.12 88.81±4.15 95.05±1.45 97.71±1.93 84.30±3.19 67.91±5.25 74.71±3.27 81.66±3.62

Holistic-PU [32] 64.40±4.41 75.20±4.42 92.75±1.61 62.16±2.43 57.08±3.41 65.07±5.62 79.80±3.51 56.59±3.93

LaGAM-PU [21] 76.81±4.71 84.90±4.65 95.03±0.89 97.69±0.07 86.22±3.60 63.64±5.05 85.08∗±3.72 86.77∗±4.15

PUL-CPBF [20] 75.26±5.01 84.92±4.91 88.31±1.92 98.07∗±0.52 80.27±3.93 66.11±6.31 88.12∗±4.02 85.94∗±4.41

Generative
Distribution
Matching

VAE-PU [25] 66.48±4.02 77.51±3.91 76.56±1.51 61.29±7.71 49.24±5.81 50.38±1.52 79.39±2.72 59.15±3.11

PAN [11] 70.26±8.41 78.20±4.25 87.45±1.71 93.81±1.95 68.70±6.12 61.99±4.91 78.37±3.06 38.71±8.40

CGenPU [27] 70.85±3.89 86.08±4.61 86.56±1.92 93.35±4.66 57.79±9.42 60.45±5.31 79.42±3.32 81.66±3.72

PN 79.89±0.83 92.32±0.02 96.54±0.92 98.94±0.82 94.88±0.57 82.01±0.31 92.38±0.78 91.03±0.66
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Figure 3: Performance of PU methods on the ADNI dataset across five evaluation metrics.

and Dist-PU emerge as the most consistent performers. In contrast, VPU frequently shifts be-
tween recall-dominant and precision-dominant behaviors depending on the dataset (recall-leaning
on ADNI, precision-leaning on CIFAR-10). The radar visualizations in Fig. 3 and Appendix Fig. 10
underscore this instability. Despite extreme outliers like VPU’s recall spikes or Self-PU’s erratic
shapes, nnPU remains a remarkably resilient baseline, maintaining a balanced configuration across
diverse modalities.

Disambiguation-guided methods provide balanced and stable performance. While rarely
achieving the absolute highest accuracy scores (Table 1), this family delivers the most reliable
overall stability across modalities. Within this family, the two P3Mix variants lead and comple-
ment each other: P3Mix-E pushes recall under heavy contamination (notably on ADNI, IMDb, and
vision tasks), while P3Mix-C trades some recall for higher precision. Robust-PU is a stable low-
variance baseline, especially competitive on text (20News), and LaGAM-PU performs strongly on
tabular data (Spambase); by contrast, Holistic-PU clearly trails across datasets. Consistent with
Fig. 3, Fig. 9, and Fig. 11, this family produces balanced profiles over five metrics, reflecting well-
rounded decision behavior. The main outliers are P3Mix-E’s recall spikes with lower precision on
ADNI/CIFAR-10 and Holistic-PU’s jagged high-recall/low-precision shapes on vision and tabular
data, but these remain infrequent and do not undermine the family’s overall stability.

Generative Distribution Matching methods lag behind overall. From Table 1, this family con-
sistently underperforms across modalities and rarely enters the top two. While PAN and CGenPU
achieve moderate success on text data (e.g., 20News), they fail to generalize to vision (e.g., CIFAR-
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Figure 4: Time and space analysis of PU methods on three representative datasets (20News, CIFAR-
10 and Connect-4).

10) and medical imaging (ADNI). VAE-PU is the weakest and least stable estimator overall. This
brittleness is exemplified by PAN’s critical failure on Spambase, where discriminator-induced re-
liability collapse produces extreme recall-precision imbalance (Appendix D.2.3). As shown in the
radar charts (Appendix Fig. 11), profiles are compact and jagged, indicating a severe imbalance be-
tween F1, AUC, precision, and recall. Although rare outliers exist, such as the balanced profile of
CGenPU on 20News, they are insufficient to offset the group’s broader lack of robustness.

Performance is Highly Contingent on Data Modality. A critical finding of our benchmark is
that no single method emerges as a universal winner. The best method depends heavily on data
modality. For instance, LBE-PU achieves state-of-the-art accuracy on simple images (even surpass-
ing supervised PN on MNIST) but degrades on complex ones like ADNI. In contrast, VPU and
P3Mix variants are more stable, delivering consistently strong though not always top-tier perfor-
mance across a wider range of data types. Surprisingly, nnPU, despite its simplicity, remains highly
competitive and often outperforms newer methods. This suggests that progress in the field is not
always linear, and some earlier principles remain highly robust. These findings stress the need for
comprehensive benchmarking and careful alignment of method choice with problem characteristics.

4.2 COMPUTATIONAL ANALYSIS

Fig. 4 illustrates the critical trade-off between predictive effectiveness (F1 score) and computational
costs (training duration and GPU memory usage) across the selected datasets of diverse modalities.
The results reveal substantial variation in the efficiency profiles of the benchmarked methods:

Training time. Foundational methods such as nnPU and PUSB are exceptionally efficient, com-
pleting epochs in seconds on 20News and MNIST, and staying close to the lower bound on CIFAR-
10. This efficiency is directly attributable to their relatively simple objective formulations, which
avoid complex generative or adversarial components. Dist-PU, VPU, and P3Mix introduce a moder-
ate computational overhead. While slower than the simplest baselines, they balance advanced mod-
eling components with efficient implementation. Their cost-effectiveness stems from building upon
lightweight extensions, such as distributional losses, mixup strategies, or simple pseudo-labeling
rather than fundamentally altering the training pipeline. In contrast, PUL-CPBF, Holistic-PU, and
VAE-PU are the most computationally demanding. Their prolonged epoch durations are a direct con-
sequence of their complex, multi-stage architectures. These pipelines involve iterative processes like
clustering, meta-learning, or adversarial training, which require multiple forward/backward passes
or the optimization of auxiliary models, incurring substantial computational costs.
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Figure 5: Effectiveness of PU methods with respect to different label ratio.

Memory consumption. A clear divide in memory usage exists, directly linked to architectural
complexity. A large group of methods, including nnPU, PUSB, VPU, Robust-PU, and Dist-PU, are
highly memory-efficient (< 1 GB) as they rely on a standard single-classifier pipeline. In contrast,
methods with more complex designs have a significantly larger memory footprint. VAE-PU is the
most demanding (up to 7-8 GB) due to its generative components (encoder-decoders, discrimina-
tors), while others like P3Mix-E and PUL-CPBF increase memory by incorporating mechanisms
like EMA teachers and multi-view data processing.

Trade-off analysis. A group of methods, notably VPU, Self-PU and Dist-PU, achieves a strong
balance, e.g., high F1 with short training time and low memory overhead. P3Mix-C/E yield compa-
rably high F1 scores at modest extra cost. In contrast, Robust-PU and MPE-PU yield only compet-
itive performance while requiring more substantial resources. Established baselines like nnPU and
PUSB are exceptionally efficient, requiring the least training times. However, this comes at the ex-
pense of a modest reduction in F1 score compared to the top-tier methods. In contrast, Holistic-PU,
VAE-PU and PUL-CPBF demonstrate a less favorable trade-off. These methods are the most com-
putationally intensive yet often yield lower or less stable F1 scores, severely limiting their practical
applicability.

5 FURTHER ANALYSIS

In this section, we conduct a deeper investigation into the robustness of the benchmarked methods.
We systematically vary two experimental conditions that can reflect the quality of labeled data: the
size of labeled samples controlled by label ratio and the underlying labeling mechanism controlled
by propensity score.

5.1 IMPACT OF LABEL FREQUENCY ON MODEL PERFORMANCE

We vary the value of label ratio c from 0.01 to 0.09 with a step of 0.02 and from 0.1 to 0.9 with a
step of 0.1. Results on selected datasets are shown in Fig. 5 and Appendix D.3, revealing distinct
patterns of stability and label efficiency across the three families.

Overall performance trends. Most methods within the Risk–Minimization Estimation and
Disambiguation-Guided ERM categories demonstrate remarkable label efficiency. Their perfor-
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Figure 6: F1 scores of PU methods under different labeling assumptions on CIFAR-10. The bars
show the performance in a low-label regime (c = 0.05), while the lines indicate performance in
a high-label regime (c = 0.5). Methods with grey background are those especially designed for
selection bias.

mance curves typically show a rapid initial ascent at low label ratios (e.g. c < 0.1) before gracefully
saturating, indicating a strong capability to learn effectively from limited labeled examples. For
instance, VPU and P3Mix-C approach their peak performance on CIFAR-10 with c ranging only
from 0.03 to 0.05. In contrast, Generative Distribution Matching methods exhibit high sensitivity
to both label ratio and data modality. Their performance curves are often erratic. Some methods
show competitive performance with extremely small labeled sets (e.g. VAE-PU and CGenPU on
image and text data), demonstrating their potential to deal with scarce data. However, this behavior
does not generalize to all modalities. More importantly, these methods often exhibit poor scalability,
showing little improvement as the label ratio c grows. Such limitations likely stem from the inher-
ent instability of optimizing complex generative objectives under the sparse and ambiguous signals
characteristic of PU data.

Analysis of notable performers and outliers. The analysis reveals several distinct performance
profiles: 1) Efficiency: VPU and P3Mix variants are exceptionally effective in low-label regimes,
demonstrating high label efficiency by achieving competitive accuracy with minimal supervision;
2) Scalability: LBE-PU exhibits notable late-stage gains, improving substantially as more labeled
data becomes available, suggesting it scales well with supervision; 3) Instability: methods like PUL-
CPBF and Holistic-PU show high performance variance, with performance fluctuating significantly
at low label ratios; 4) Saturation: Finally, methods like VAE-PU remain at a performance bottleneck,
showing little improvement even as labeled data becomes plentiful, indicating that their primary
limitations are architectural rather than related to data scarcity.

5.2 ROBUSTNESS TO SELECTION BIAS

To assess robustness to labeling bias, we evaluate all methods under three realistic SAR variants, in
contrast to the standard SCAR setting. Experiments were conducted at both a low (c = 0.05) and a
high (c = 0.5) label ratio, with results shown in Fig. 6 and Appendix D.4.

Low-c regime (c = 0.05). When labeled data is scarce, the choice of labeling mechanism has a
profound impact. Under the standard SCAR assumption, top-tier methods, e.g. VPU, Dist-PU, and
P3Mix-C, maintain their dominance, while the selection-bias-aware methods like PUSB and LBE-
PU remain competitive. However, when the mechanism shifts to SAR, a universal performance
degradation is observed. The Risk-Minimization Estimation group demonstrates strong robustness
across different labeling assumptions, with no method suffering from catastrophic performance fail-
ure. Crucially, methods explicitly designed for bias mitigation (i.e., PUSB, LBE-PU) exhibit supe-
rior resilience, incurring smaller performance penalties than their SCAR-assuming counterparts. A
notable anomaly is VAE-PU, which paradoxically achieves higher accuracy under SAR than SCAR,
though its overall performance remains uncompetitive. Ultimately, these results confirm that the
benefit of bias-aware modeling is prominent in the low-label regime.

High-c regime (c = 0.5). When labels are plentiful (c = 0.5), most methods converge to high F1
scores, and the performance gap between SCAR and SAR settings narrows significantly, though it
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does not vanish. Consistent with the low-c regime, the Risk-Minimization Estimation group con-
tinues to demonstrate high stability. Crucially, we find that robust SCAR learners like VPU can
outperform dedicated SAR-aware methods in this high-data regime. This finding highlights a criti-
cal interaction between label ratio and selection bias, implying that the optimal strategy for handling
SAR conditions may depend on the amount of labeled data available.

Practical Takeaways. These findings yield a clear practical recommendation. When label acquisi-
tion is suspected to be non-random, particularly when labeled data is sparse, employing a bias-aware
method like PUSB or LBE-PU is highly preferable. Conversely, in scenarios where labels are plen-
tiful and the mechanism approaches near-SCAR conditions, lightweight and robust methods with
semi-supervised regularization (VPU, P3Mix) offer state-of-the-art performance.

6 CONCLUSION AND FUTURE DIRECTIONS

Conclusion. This work addresses the absence of a standardized benchmark in PU learning by
introducing the open-source framework, PU-Bench. Through this framework, we conducted the
largest systematic evaluations to date in this field, analyzing 18 representative algorithms across
an extensive range of datasets and conditions. The results demonstrate that the performance of
PU learning methods is highly context-dependent, varying significantly with data modality, label
frequency, and labeling mechanism. As a foundational empirical study, this work provides the
necessary grounding to guide future theoretical and algorithmic advancements. We anticipate PU-
Bench to serve as a cornerstone for the community, accelerating research by providing a rigorous,
standardized toolkit for comparing the state-of-the-art and inspiring next-generation solutions.

Future directions. Through our empirical analysis, we identify the following future directions:
1) Rigorous evaluation: Our benchmark reveals that more recent and complex methods can be
outperformed, at least on some datasets, by simpler baselines (i.e., nnPU, VPU). This underscores
the necessity for future research to conduct more rigorous, standardized evaluations against these
strong, efficient baselines to validate claims of novelty and improvement. 2) Real-world stress test:
A key vulnerability exposed by our study is the poor performance of most methods under severe
data constraints (e.g., high label sparsity and selection bias), as characterized by many real-world
applications. This reveals a significant gap between current algorithmic capabilities and practical
needs. Therefore, a critical direction for future research is the design of methods that are inherently
robust to the challenges of extremely limited and biased supervision.
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A NOTATIONS

Table A.1: Summary of notation. Uppercase letters (e.g., X) denote random variables; lower-
case (e.g., x) denote realizations. Densities (e.g., f(x)) are evaluated pointwise; expectations (e.g.,
EX∼f [g(X)]) are taken with respect to the distribution of X .

Symbol Description
X Feature vector, X ∈ X
Y Latent class label {0, 1} (positive= 1)
S Labeling indicator {0, 1} (labeled= 1)
D Observed training sample {(xi, si)}Ni=1
P, N Sets of positives and negatives in the underlying PN dataset
LP {xi : (xi, si) ∈ D, si = 1 } (labeled positives)
U {xi : (xi, si) ∈ D, si = 0 } (unlabeled; mixture of positives and negatives)
UP Unlabeled positives, UP := U ∩ P
N Training set size used to construct PU splits
Nℓ Target size of the labeled-positive set LP
Nu Size of the unlabeled set in the PU training split
Nv Validation set size
N tr

p , N tr
n Positive/negative counts in the PN training set

N te
p , N te

n Positive/negative counts in the test set
π Class prior, p(Y = 1)
e(x) Labeling propensity, p(S = 1|Y = 1, X = x)
c Label frequency, p(S = 1|Y = 1) = E[e(X)|Y = 1]

f(x) Marginal density of X
f+(x), f−(x) Positive density, p(x|Y = 1) and negative density, p(x|Y = 0)
fℓ(x), fu(x) Labeled-positive density, p(x|S = 1) and unlabeled density, p(x|S = 0)
hθ(x) Estimate of p(Y = 1|X = x)
p̂(x) Estimated posterior p(Y=1 | X=x)
σ(z) Logistic sigmoid, σ(z) = 1

1+e−z

w Parameter vector in the logistic-regression example for p̂(x) = σ(w⊤x)

B DATASET AND METHODS

B.1 DETAILS OF DATASETS

IMDb (Maas et al., 2011) is a sentiment analysis dataset containing 50,000 movie reviews from the
Internet Movie Database, evenly split into positive and negative labels. Reviews are preprocessed to
remove HTML tags and are tokenized for text classification tasks.

20News (Lang, 1995) is a text classification dataset consisting of approximately 18,000 newsgroup
documents evenly distributed across 20 topics. Each document is represented as a bag-of-words
vector, with labels corresponding to its topic category.

MNIST (LeCun et al., 1998) contains 70,000 grayscale images of handwritten digits (0-9), each
of size 28×28 pixels. The dataset is split into 60,000 training and 10,000 testing images for digit
classification.

Fashion-MNIST (Xiao et al., 2017) consists of 70,000 28×28 grayscale images of fashion items
across 10 classes, we also use F-MNIST to refer to Fashion-MNIST in this paper.

CIFAR-10 (Krizhevsky & Hinton, 2009) comprises 60,000 32×32 color images evenly divided
into 10 object classes. Each class contains 6,000 images, split into 50,000 training and 10,000 test
samples.

ADNI (Jack Jr et al., 2008) (Alzheimer’s Disease Neuroimaging Initiative) is a medical imaging
dataset containing structural MRI scans for Alzheimer’s disease research. Each scan is labeled
according to the patient’s clinical diagnosis.
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Spambase (Dua & Graff, 2019) contains 4,601 email samples represented by 57 numerical features,
such as word frequency and character frequency. Labels indicate whether each email is spam or not.

Connect-4 (Dua & Graff, 2019) is a dataset derived from the board game “Connect Four.” It contains
67,557 game states represented by 42 categorical features corresponding to the positions on a 6× 7
board. Each position can take one of three values: x (first player’s piece), o (second player’s piece),
or b (blank). Labels indicate the outcome of the game from the perspective of the first player: win,
loss, or draw.

Table B.1: Class labels and their indices for multi-class datasets.
Dataset Classes (index)

20News Alt (0), Comp (1), Misc (2), Rec (3), Sci (4), Soc (5), Talk (6)
IMDb Negative (0), Positive (1)

MNIST 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
F-MNIST T-Shirt/Top (0), Trouser (1), Pullover (2), Dress (3), Coat (4), Sandal (5), Shirt

(6), Sneaker (7), Bag (8), Ankle Boot (9)
CIFAR-10 Airplane (0), Automobile (1), Bird (2), Cat (3), Deer (4), Dog (5), Frog (6),

Horse (7), Ship (8), Truck (9)
Alzheimer MRI NonDemented (0), VeryMildDemented (1), ModerateDemented (2), MildDe-

mented (3)

Connect-4 Loss (0), Win (1), Draw (2)
Spambase Not Spam (0), Spam (1)

Table B.2: PU learning datasets and statistics with index-based class mapping. N tr
p , N tr

n denote the
number of positive and negative samples in the training set, respectively; N te

p , N te
n for the test set;

Nv for validation size.
Dataset Pos. VS Neg.(Indices) Input Size Train (N tr

p , N tr
n ) Test (N te

p , N te
n ) Validation Total Size

20News 0,1,2,3 VS. 4,5,6 384 (6,326, 4,874) (4,254, 3,278) 0.01 (Nv = 114) 18,846

IMDb 1 VS. 0 384 (12,375, 12,375) (12,500, 12,500) 0.01 (Nv = 250) 50,000

MNIST 0,2,4,6,8 VS. 1,3,5,7,9 28×28 (29,197, 30,203) (4,926, 5,074) 0.01 (Nv = 600) 70,000

F-MNIST 0,2,3,4,6 VS. 1,5,7,8,9 28×28 (29,700, 29,700) (5,000, 5,000) 0.01 (Nv = 600) 70,000

CIFAR-10 0,1,8,9 VS. 2,3,4,5,6,7 32×32×3 (19,800, 29,700) (4,000, 6,000) 0.01 (Nv = 500) 60,000

ADNI 0 VS. 1,2,3 128×128 (2,552, 2,516) (622, 658) 0.01 (Nv = 52) 6,400

Connect-4 1 VS. 0,2 126 (35,222, 18,282) (8,895, 4,617) 0.01 (Nv = 541) 67,557

Spambase 1 VS. 0 57 (1,435, 2,208) (363, 558) 0.01 (Nv = 37) 4,601

B.2 DETAILS OF IMPLEMENTED METHODS

nnPU (Kiryo et al., 2017) introduces a non-negative risk estimator for PU learning. Unlike unbiased
PU learning where the empirical risk can become negative during optimization, nnPU constrains
the risk to remain non-negative by truncating any negative component to zero. This modification
prevents the model from overfitting to noise when training flexible models such as deep neural
networks with limited positive data.

PUSB (Kato et al., 2019) operates under the invariance of order assumption, which posits that the
class posterior and the labeling probability induce the same ordering on the input space. It estimates
the density ratio between labeled positive and unlabeled data either by minimizing a pseudo classi-
fication risk or through direct density ratio estimation. The classifier is then constructed by ranking
instances according to this density ratio and setting the decision threshold at the precision-recall
breakeven point.

VPU (Chen et al., 2020a) introduces a variational principle that avoids class-prior estimation by
directly minimizing the KL divergence between the positive data distribution and the distribution
induced by the classifier. The method optimizes a variational loss computed as the difference be-
tween the log expectation of the classifier output over unlabeled data and the expectation of the log
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Table B.3: Summary of the collected methods.
Type Method Repositories Reference

Risk-
Minimization

Estimators

nnPU [15] https://github.com/kiryor/nnPUlearning NeurIPS-2017
PUSB [14] https://github.com/MasaKat0/PUlearning ICLR-2019
VPU [4] https://github.com/HC-Feynman/vpu NeurIPS-2020
MPE-PU [8] https://github.com/acmi-lab/PU_learning NeurIPS-2021
LBE-PU [9] Unpublished, required by us IEEE TPAMI-2022
PUET [30] https://github.com/jonathanwilton/PUExtraTrees NeurIPS-2022
Dist-PU [36] https://github.com/Ray-rui/Dist-PU CVPR-2022
PULDA [13] https://github.com/jiangyangby/PULDA IEEE TPAMI-2023

Disambiguation
-Guided

Supervised ERM

Self-PU [5] https://github.com/TAMU-VITA/Self-PU ICML-2020
P3Mix [19] Available upon request ICLR-2022
Robust-PU [39] https://github.com/woriazzc/Robust-PU KDD-2023
Holistic-PU [32] https://github.com/wxr99/HolisticPU NeurIPS-2023
LaGAM-PU [21] https://github.com/llong-cs/LaGAM CVPR-2024
PUL-CPBF [20] Unpublished, required by us ICML-2024

Generative
Distribution
Matching

VAE-PU [25] https://github.com/byeonghu-na/vae-pu CIKM-2020
PAN [11] https://github.com/morning-dews/PAN AAAI-2021
CGenPU [27] https://github.com/apapich/CGenPU ESWA-2023

output over positive data. To handle limited positive data and prevent overfitting, VPU incorpo-
rates a MixUp-based consistency regularization that enforces prediction smoothness on interpolated
samples between labeled positives and unlabeled data.

MPE-PU (Garg et al., 2021) addresses PU learning through two coordinated components: Best Bin
Estimation for mixture proportion estimation and Conditional Value Ignoring Risk for classifica-
tion. BBE estimates the proportion of positives in unlabeled data by leveraging a Positive-versus-
Unlabeled classifier to identify a high-score bin containing a concentrated subset of positives, then
computing the ratio of sample fractions in that bin. CVIR trains the classifier by iteratively removing
the estimated proportion of unlabeled samples with the highest classification loss and training on the
remaining samples as provisional negatives. The TEDn framework alternates between updating the
proportion estimate via BBE and refining the classifier via CVIR until convergence.

LBE-PU (Gong et al., 2021) addresses instance-dependent PU learning where the probability of
labeling a positive example depends on its features, known as labeling bias. It formulates the prob-
lem via a graphical model characterizing the relationships among input features, latent true labels,
and observed labeling status. The method jointly estimates the labeling bias function and the clas-
sifier parameters through maximum likelihood estimation, which is optimized via the Expectation-
Maximization algorithm with gradient-based updates applicable to both linear (logistic) and deep
(MLP) model instantiations.

PUET (Wilton et al., 2022) introduces a recursive greedy risk minimization framework for learning
decision trees from PU data. It reinterprets tree learning as directly minimizing PU-based risk
estimators (uPU or nnPU) rather than traditional impurity measures like Gini or entropy. The method
constructs PU Extra Trees by recursively partitioning nodes to maximize the PU risk reduction,
where each split is selected based on closed-form risk estimates computed from the positive and
unlabeled subsets at that node. Additionally, the framework provides a risk reduction importance
metric that directly quantifies each feature’s contribution to minimizing the empirical risk on PU
data.

Dist-PU (Zhao et al., 2022) addresses the negative-prediction preference inherent in cost-sensitive
PU methods—where classifiers tend to over-predict the negative class as training progresses—by
introducing a label distribution alignment perspective. It enforces consistency between the expected
value of predicted labels and the ground-truth class prior over the unlabeled data, thereby globally
constraining the proportion of negative predictions. To avoid trivial solutions where predictions
uniformly concentrate around the class prior, the method incorporates entropy minimization to en-
courage confident predictions and Mixup regularization to mitigate confirmation bias and smooth
decision boundaries.

PULDA (Jiang et al., 2023) extends the label distribution alignment framework by introducing a
margin-based formulation that enhances instance-wise discriminability. Beyond aligning the expec-
tation of predicted labels with the ground-truth distribution, it incorporates functional margins via
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confidence penalization terms that push model outputs away from ambiguous regions near the de-
cision boundary, preventing under-confident solutions. Furthermore, PULDA unifies this objective
with a class prior estimation process (using BBE) to eliminate reliance on oracle priors, and em-
ploys an exponential moving average (EMA) based stochastic optimization algorithm that achieves
a provable convergence rate under standard assumptions.

Self-PU (Chen et al., 2020b) integrates self-paced learning, self-calibrated loss reweighting, and
teacher-student self-distillation for positive-unlabeled classification. The self-paced component pro-
gressively mines high-confidence unlabeled examples into a dynamically expanding trusted set, em-
ploying an in-and-out mechanism to iteratively update soft pseudo-labels for both positive and nega-
tive classes with balanced sampling rates. For remaining unconfident unlabeled data, a meta-learning
based self-calibrated instance-aware loss adaptively reweights the combination of cross-entropy with
soft labels and non-negative PU risk, constrained by a balancing factor to regulate supervision qual-
ity. The framework further enforces consistency regularization through collaborative distillation
between two student networks trained with asynchronous learning paces (different sampling ratios),
and between each student and its corresponding teacher network maintained via exponential moving
average of weights.

P3Mix (Li et al., 2022) addresses decision boundary deviation in positive-unlabeled learning
through heuristic mixup augmentation of a disambiguation-free objective. Treating unlabeled in-
stances as pseudo-negative, it identifies marginal pseudo-negative instances (those exhibiting am-
biguous predictive scores within a thresholded range) and selects their mixup partners exclusively
from a candidate pool of positive instances with high prediction entropy (near-boundary positives),
while other instances select partners randomly from the full training set. This generates augmented
instances with partially positive soft labels that push the decision boundary toward the fully su-
pervised position. The method proposes two robust variants: P3Mix-E incorporates early-learning
regularization using mean-teacher estimated auxiliary targets to prevent memorization of imprecise
supervision, while P3Mix-C performs pseudo-negative correction by reassigning high-confidence
positive predictions to the positive class prior to mixup.

Robust-PU (Zhu et al., 2023) initializes the model via nnPU pre-training and executes an itera-
tive three-stage training strategy. In the hardness measurement stage, it computes classification
losses for all samples using temperature-scaled logistic or sigmoid loss, treating positive samples
with positive ground truth and unlabeled samples as negatives. The sample weighting stage maps
these hardness values to sample weights via the minimizer function of SPL-IR-Welsch regulariza-
tion, where the mapping threshold is dynamically controlled by a training scheduler implementing
linear, convex, concave, or exponential pacing functions to gradually relax selection criteria over
iterations. The weighted supervised training stage treats unlabeled data as negative and performs
binary cross-entropy optimization with the computed sample weights for multiple epochs. This it-
erative process progressively incorporates harder samples to prevent noise accumulation from early
misclassification.

Holistic-PU (Xinrui et al., 2023) employs balanced resampling of positive and unlabeled data into
equally-sized batches, initially treating unlabeled samples as negatives during training. It records
the prediction score trajectory for each unlabeled sample across training iterations. A trend score
is computed for each sample using a robust mean estimator applied to ordered differences between
prediction scores at different time steps, capturing the tendency of negative samples to exhibit con-
sistently decreasing scores while positive samples display chaotic or initially increasing patterns.
The unlabeled data is then partitioned into pseudo-positive and pseudo-negative sets using Fisher’s
Natural Break algorithm based on the trend score distribution. Finally, a supervised classifier is
trained on the resulting pseudo-labeled dataset.

PUL-CPBF (Li et al., 2024) establishes that the probability boundary of the asymmetric
disambiguation-free risk is governed by the asymmetric penalty. The method first trains a set of
weak classifiers with diverse probability boundaries by minimizing asymmetric disambiguation-
free empirical risks under specific penalty values, forming a probability boundary fence. For each
unlabeled instance, it locates the class posterior probability within the fence-defined range and gen-
erates a stochastic label via uniform sampling, then trains a strong classifier via self-training with
consistency regularization.
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LaGAM-PU (Long et al., 2024) employs hierarchical contrastive learning to extract latent group
semantics through unsupervised clustering alignment, dichotomized cut-off based on binary predic-
tions, and local neighbor smoothing. It then performs meta-learning-based label disambiguation
via bi-level optimization: an inner loop virtually trains the model with current pseudo-labels, and
an outer loop refines pseudo-labels using projected gradients with exponential moving average to
minimize evaluation loss on a support set, alternating between label updates and classifier training.

VAE-PU (Na et al., 2020) proposes a generative approach to positive-unlabeled learning that elim-
inates the Selected Completely At Random assumption. The method employs a variational au-
toencoder architecture featuring two distinct latent representations: one capturing label informa-
tion and another encoding observation indicators. Virtual positive-unlabeled instances are synthe-
sized by combining the label-related latent factors derived from labeled positive examples with the
observation-related factors extracted from unlabeled data. The optimization objective integrates
the evidence lower bound with an adversarial alignment loss that matches generated samples to
unlabeled data distributions and a label consistency loss that ensures generated instances exhibit
positive-class characteristics. Training alternates between updating the generative network to pro-
duce informative pseudo-examples and optimizing the classifier using these synthesized instances.

PAN (Hu et al., 2021) introduces a predictive adversarial framework where a classifier assumes the
role of a generator to identify likely positive instances from unlabeled data against a discriminator.
The approach optimizes a divergence-based objective comprising three components: a classification
term training the discriminator to recognize known positive examples, an alignment term encourag-
ing prediction consistency between the classifier and discriminator on unlabeled data, and a sym-
metry correction term ensuring balanced gradient updates for positive and negative instances. This
formulation enables training without requiring class-prior knowledge as input. The system alternates
between discriminator updates using standard classification losses and classifier updates employing
a policy-gradient-style mechanism based on discriminator feedback.

CGenPU (Papič et al., 2023) proposes a conditional GAN-based framework for positive-unlabeled
learning that employs a generator, discriminator, and auxiliary classifier in a single-stage three-
player minimax game. The training objective combines adversarial loss with an auxiliary loss that
minimizes distribution divergence between labeled and generated positives while maximizing sepa-
ration between generated positive and negative samples. An anchoring term stabilizes early training
by enforcing high confidence on labeled positives. This approach simultaneously learns both class
distributions without requiring prior knowledge of class priors or labeled negative examples, ad-
dressing the instability and architectural complexity of prior multi-generator methods.
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C DATA GENERATION SETTINGS

C.1 SETTINGS IN EXISTING PU WORK

Table C.1 provides a comprehensive summary of the data generation protocols employed in recent
PU learning literature. For each method, we categorize the experimental setup based on three critical
factors. First, we identify the data sampling scenario, distinguishing between the case-control (cc)
and single-training-set (ss) paradigms. Second, we note whether the authors demonstrated robust-
ness by systematically varying the label frequency-the proportion of true positives that are labeled
(indicated by vary c). Finally, we specify the core labeling mechanism (e.g., SCAR, SAR) assumed
in their experiments. For studies where these configurations were not explicitly stated, we inferred
the settings by meticulously analyzing the described methodology and, where available, the associ-
ated source code to ensure an accurate and consistent comparison.

Table C.1: Data generation settings of the existing PU learning methods. cc denotes case-control
and ss denotes single-training-set. “Varying c” indicates that the corresponding work demonstrates
robustness by using different values of c.

Method Datasets ss/cc Varying c SCAR/SAR

nnPU[15] CIFAR-10, MNIST, 20News, Epsilon cc No SCAR
PUSB[14] CIFAR-10, MNIST, Mushrooms, Spambase,

Shuttle, Page Blocks, USPS, Connect-4, Swis-
sProt

cc Yes SAR

VPU[4] CIFAR-10, F-MNIST, STL-10, Page Blocks, Grid
Stability, Avila

cc Yes SCAR

MPE-PU[8] CIFAR-10, MNIST, IMDb Not Given No Not Given
LBE-PU[9] USPS, UCI: Australian, Madelon, Phishing, Vote,

Banknote, Breast, HockeyFight, SwissProt
ss Yes SAR

PUET[30] CIFAR-10, MNIST, IMDb cc No SCAR
Dist-PU[36] CIFAR-10, F-MNIST, ADNI cc Yes SCAR
PULDA[13] CIFAR-10, F-MNIST, ADNI, Tiny-ImageNet cc Yes SCAR

Self-PU[5] CIFAR-10, MNIST, ADNI cc No SCAR
P3Mix[19] CIFAR-10, F-MNIST, STL-10, Credit Card Fraud cc No SCAR
Robust-PU[39] CIFAR-10, MNIST, F-MNIST, STL-10, ADNI,

UCI: Mushrooms, Shuttle, Spambase
cc No SCAR

Holistic-PU[32] CIFAR-10, F-MNIST, STL-10, ADNI, Credit
Card Fraud

cc Yes SCAR

LaGAM-PU[21] CIFAR-10, STL-10, CIFAR-100, ADNI ss No SCAR
PUL-CPBF[20] CIFAR-10, F-MNIST, STL-10, ADNI cc No SCAR

VAE-PU[25] CIFAR-10, MNIST, 20News cc Yes SAR
PAN[11] CIFAR-10, MNIST, IMDb, 20News ss Yes SCAR
CGenPU[27] CIFAR-10, MNIST cc Yes SCAR
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C.2 SINGLE-TRAINING-SET AND CASE-CONTROL

Single-training-set. This scenario preserves the original training set’s size and composition. The
number of positives to be labeled is Nℓ = ⌊c |P|⌋. These are drawn without replacement from P to
form LP . The remaining samples, (P \ LP) ∪N , constitute the unlabeled set U .

Case-control. This scenario first selects LP ⊆ P according to the chosen labeling strategy (Ap-
pendix C.3). The unlabeled set is then defined as the entire training pool, U = P ∪ N , i.e., LP is
returned to U . Consequently, LP ⊆ U and |U| = N , and the class mixture in U is identical to that
of the full population. When enumerating indices, include all negatives and as many positives as
needed to reach |P|, prioritizing positives not in LP and reusing LP if necessary.

NP

Single-training-set

LP

Case-control

UN

NP

LP UNUPUP

Figure 7: Comparison between the single-training-set and case-control. In both cases, negatives
(Y = 0) are never labeled (S = 1), so all negatives in the training pool are assigned to the unlabeled
set U . In the single-training-set case, the labeled positives LP are sampled without replacement
from P and removed from U , yielding (P \ LP) ∪ N , whereas in the case-control scenario, LP
is sampled from P but then returned so that U = P ∪ N follows the class mixture of the overall
training data distribution.
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Figure 8: One-dimensional Gaussian toy example illustrating how single-training-set and case-
control affect only the unlabeled density. The class-conditional densities f+(x) and f−(x) are fixed
Gaussians with distinct means (left), while the unlabeled density fu(x) changes its effective class
mixture under single-training-set versus case-control (right). Under case-control, fu matches the
overall training population mixture, whereas under single-training-set, removing a fraction of posi-
tives into LP reduces the positive mass in U and shifts fu(x) closer to f−(x).
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C.3 LABELING STRATEGIES

The details of the four labeling strategies evaluated under our framework are:

S1 (SCAR). Select Nℓ instances uniformly without replacement from P to form LP . This corre-
sponds to a constant labeling propensity e(x) = c for all x ∈ P .

S2 (LBE Strategy 1). Using the auxiliary posterior p̂(x) (cf. Table A.1 for σ and w), define
instance-dependent propensities

e1(x) =
[
p̂(x)

]k
, k > 1.

Normalize π1(x) = e1(x)∑
x′∈P e1(x′) and select LP by weighted sampling without replacement of

size Nℓ using probabilities π1(x), which favors high-posterior positives; in our experiments we set
k = 10 (Gong et al., 2021).

S3 (LBE Strategy 2). Using the same p̂(x), define

e2(x) =
[
1− p̂(x)

]k
, k > 1.

Normalize π2(x) =
e2(x)∑

x′∈P e2(x′) and select LP by weighted sampling without replacement of size
Nℓ using probabilities π2(x). This scheme favors boundary or otherwise ambiguous positives; in
our experiments we also set k = 10 (Gong et al., 2021).

S4 (PUSB Posterior Sharpening). Using the same p̂(x), construct sharpened scores

sα(x) =
[
p̂(x)

]α
, α ≫ 1.

Rank all x ∈ P in descending order of sα(x) and deterministically take the top-Nℓ as LP . This rule
concentrates labeling on the highest-posterior positives; in our experiments we use α = 20 (Kato
et al., 2019).

C.4 EVALUATION METRICS FOR PU LEARNING METHODS

For a fair and comprehensive evaluation, we compile the metrics reported in the original papers of
each algorithm in Tab. C.2. We adopt AUC, F1, Accuracy, Precision, and Recall as our primary
measures. Together, these metrics offer complementary perspectives on performance across diverse
experimental conditions. Below, we briefly introduce each metric used to assess PU-learning meth-
ods.

AUC. The Area Under the ROC Curve (AUC) (Bradley, 1997) assesses a classifier’s ability to
rank positive instances above negative ones, independently of any fixed threshold. It can be viewed
as the probability that a randomly selected positive instance receives a higher score than a randomly
selected negative instance. AUC is widely regarded as a robust, threshold-free metric for binary
classification.

F1-score. The F1-score (Powers, 2011) is the harmonic mean of Precision and Recall, combining
them into a single measure. It is defined as

F1 =
2 · Precision · Recall
Precision + Recall

where Precision = TP
TP+FP and Recall = TP

TP+FN . The F1-score is particularly useful on imbal-
anced datasets, as it penalizes extreme disparities between Precision and Recall, yielding a more
balanced assessment of classification performance.

Accuracy. Accuracy is the proportion of correctly classified instances among all samples:

Accuracy =
TP + TN

TP + TN + FP + FN
where TP , TN , FP , and FN denote true positives, true negatives, false positives, and false neg-
atives, respectively. Although accuracy is simple and intuitive, it can be misleading under severe
class imbalance, where it is dominated by the majority class.
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Precision. Precision (Powers, 2011) measures the proportion of true positives among all predicted
positives:

Precision =
TP

TP + FP

where TP and FP denote true positives and false positives, respectively. High precision indicates
few false positive errors.

Recall. Recall (Powers, 2011) quantifies the proportion of true positives among all actual positives:

Recall =
TP

TP + FN

where FN represents false negatives. High recall indicates that the model captures most of the
positive samples.

Table C.2: Evaluation metrics reported in their original papers (✓= reported, — = not reported).
Method AUC F1 Accuracy Precision Recall

nnPU[15] — — — — —
PUSB[14] — — — ✓ ✓
VPU[4] ✓ — ✓ — —
LBE-PU[9] — — ✓ — —
MPE-PU[8] — — ✓ — —
PUET[30] — ✓ ✓ — —
Dist-PU[36] ✓ ✓ ✓ ✓ ✓
PULDA[13] ✓ ✓ ✓ ✓ ✓

Self-PU[5] — — ✓ — —
P3Mix[19] — — ✓ ✓ ✓
Robust-PU[39] — — ✓ — —
Holistic-PU[32] ✓ ✓ ✓ ✓ ✓
LaGAM-PU[21] ✓ ✓ ✓ — —
PUL-CPBF[20] ✓ ✓ ✓ ✓ ✓

VAE-PU[25] — — ✓ — —
PAN[11] — ✓ ✓ ✓ ✓
CGenPU[27] — — ✓ — —

D EXPERIMENTAL SETTINGS AND RESULTS

D.1 EXPERIMENTAL SETTINGS

Neural backbone architectures. IMDb and 20News are handled by the MLP backbone sum-
marised in Table D.2. Each document is first converted off-line into a 384-dimensional dense vector
using the Sentence-Transformers all-MiniLM-L6-v2 model.1 The vectors are stored in compressed
NumPy format and loaded at training time, removing any text-processing overhead while guarantee-
ing identical representations for all PU learners. MNIST and F-MNIST share the LeNet architecture
detailed in Table D.3. The network receives single-channel 28×28 images and produces one logit;
when a method explicitly requires two outputs (e.g. HolisticPU variants) only the final linear layer is
duplicated. CIFAR-10 uses the Custom CNN whose layer-wise definition is given in Table D.4. De-
signed for 32×32 three-channel inputs, the same “replace-last-layer” rule applies for methods that
need 2-way logits. ADNI uses a CNN tailored for structural MRI, detailed in Table D.5; it receives
single-channel 128×128 images and outputs one logit, and for methods requiring two outputs only
the final linear layer is replaced. Spambase and Connect-4 are processed by the same MLP backbone
shown in Table D.2. Spambase feeds the network with 57 raw numeric features, whereas Connect-4
first one-hot-encodes the board state into 126 binary features.

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Table D.1: PN Train reports the standard supervised training split as (N tr
p , N tr

n ). PU Train reports
the PU training composition as (Nl, N

+
u , N−

u ), where Nl denotes the number of labeled positives,
N+

u the number of positive instances present in the unlabeled pool, and N−
u the number of negatives

in the unlabeled pool. Test uses (N te
p , N te

n ). Validation shows the held-out fraction with its size Nv .

Dataset PN Train (N tr
p , N tr

n ) PU Train (Nl, N
+
u , N−

u ) Validation Test (N te
p , N te

n ) Total Size

20News (6,326, 4,874) (632, 6,326, 4,874) 0.01 (Nv = 114) (4,254, 3,278) 18,846

IMDb (12,375, 12,375) (1,237, 12,375, 12,375) 0.01 (Nv = 250) (12,500, 12,500) 50,000

MNIST (29,197, 30,203) (2,919, 29,197, 30,203) 0.01 (Nv = 600) (4,926, 5,074) 70,000

F-MNIST (29,700, 29,700) (2,970, 29,700, 29,700) 0.01 (Nv = 600) (5,000, 5,000) 70,000

CIFAR-10 (19,800, 29,700) (1,980, 19,800, 29,700) 0.01 (Nv = 500) (4,000, 6,000) 60,000

ADNI (2,552, 2,516) (255, 2,552, 2,516) 0.01 (Nv = 52) (622, 658) 6,400

Connect-4 (35,222, 18,282) (3,522, 35,222, 18,282) 0.01 (Nv = 541) (8,895, 4,617) 67,557

Spambase (1,435, 2,208) (143, 1,435, 2,208) 0.01 (Nv = 37) (363, 558) 4,601

Table D.2: Layer-by-layer specification of the MLP backbone (IMDb / 20News / Spambase /
Connect-4). The input feature dimension is d ∈ {384, 384, 57, 126} depending on the dataset.
Note: p in Dropout(p) denotes the dropout probability.

# Layer type Output shape

0 Input d

1 Linear (d → 512) 512
2 ReLU 512
3 Dropout (p = 0.3) 512
4 Linear (512 → 256) 256
5 ReLU 256
6 Dropout (p = 0.3) 256
7 Linear (256 → 128) 128
8 ReLU 128
9 Dropout (p = 0.2) 128

10 Linear (128 → 64) 64
11 ReLU 64
12 Linear (64 → 1) 1

Table D.3: Layer-by-layer specification of the LeNet backbone (MNIST / F-MNIST). Note: Max-
Pool2d uses 2× 2 kernel with stride 2; Conv2d kernel sizes, strides, and padding are specified in the
rightmost column.

# Layer type Output shape Kernel / stride / pad

0 Input (1, 28, 28) –
1 Conv2d (1 → 10) (10, 24, 24) 5× 5, stride 1, pad 0
2 MaxPool2d (10, 12, 12) 2× 2, stride 2
3 ReLU (10, 12, 12) –
4 Conv2d (10 → 20) (20, 8, 8) 5× 5, stride 1, pad 0
5 MaxPool2d (20, 4, 4) 2× 2, stride 2
6 ReLU (20, 4, 4) –
7 Flatten (320, ) –
8 Linear (320 → 50) (50, ) –
9 ReLU (50, ) –

10 Linear (50 → 1) (1, ) –
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Table D.4: Layer-by-layer specification of the CIFAR-10 Custom CNN backbone. Note: p in
Dropout(p) denotes the dropout probability; BatchNorm2d applies batch normalization; Conv2d
parameters (kernel/stride/pad) are detailed in the rightmost column.

# Layer type Output shape Kernel / stride / pad

0 Input (3, 32, 32) –
1 Conv2d (3 → 96) (96, 32, 32) 3× 3, stride 1, pad 1
2 BatchNorm2d (96) (96, 32, 32) –
3 ReLU (96, 32, 32) –
4 Conv2d (96 → 96) (96, 32, 32) 3× 3, stride 1, pad 1
5 BatchNorm2d (96) (96, 32, 32) –
6 ReLU (96, 32, 32) –
7 Conv2d (96 → 96) (96, 16, 16) 3× 3, stride 2, pad 1
8 BatchNorm2d (96) (96, 16, 16) –
9 ReLU (96, 16, 16) –

10 Dropout (p = 0.2) (96, 16, 16) –
11 Conv2d (96 → 192) (192, 16, 16) 3× 3, stride 1, pad 1
12 BatchNorm2d (192) (192, 16, 16) –
13 ReLU (192, 16, 16) –
14 Conv2d (192 → 192) (192, 16, 16) 3× 3, stride 1, pad 1
15 BatchNorm2d (192) (192, 16, 16) –
16 ReLU (192, 16, 16) –
17 Conv2d (192 → 192) (192, 8, 8) 3× 3, stride 2, pad 1
18 BatchNorm2d (192) (192, 8, 8) –
19 ReLU (192, 8, 8) –
20 Dropout (p = 0.5) (192, 8, 8) –
21 Flatten (12288, ) –
22 Linear (12288 → 1000) (1000, ) –
23 ReLU (1000, ) –
24 Dropout (p = 0.5) (1000, ) –
25 Linear (1000 → 1000) (1000, ) –
26 ReLU (1000, ) –
27 Linear (1000 → 1) (1, ) –
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Table D.5: Layer-by-layer specification of the ADNI (Alzheimer MRI) CNN backbone. Note: k
in MaxPool2d(k) denotes the kernel size (k × k); p in Dropout(p) denotes the dropout probability;
AdaptiveAvgPool2d(1, 1) performs global average pooling.

# Layer type Output shape Kernel / stride / pad

0 Input (1, 128, 128) –
1 Conv2d (1 → 32) (32, 128, 128) 3× 3, stride 1, pad 1
2 BatchNorm2d (32) (32, 128, 128) –
3 ReLU (32, 128, 128) –
4 Conv2d (32 → 32) (32, 128, 128) 3× 3, stride 1, pad 1
5 BatchNorm2d (32) (32, 128, 128) –
6 ReLU (32, 128, 128) –
7 MaxPool2d (k = 2) (32, 64, 64) 2× 2, stride 2, pad 0
8 Dropout (p = 0.1) (32, 64, 64) –
9 Conv2d (32 → 64) (64, 64, 64) 3× 3, stride 1, pad 1

10 BatchNorm2d (64) (64, 64, 64) –
11 ReLU (64, 64, 64) –
12 Conv2d (64 → 64) (64, 64, 64) 3× 3, stride 1, pad 1
13 BatchNorm2d (64) (64, 64, 64) –
14 ReLU (64, 64, 64) –
15 MaxPool2d (k = 2) (64, 32, 32) 2× 2, stride 2, pad 0
16 Dropout (p = 0.1) (64, 32, 32) –
17 Conv2d (64 → 128) (128, 32, 32) 3× 3, stride 1, pad 1
18 BatchNorm2d (128) (128, 32, 32) –
19 ReLU (128, 32, 32) –
20 Conv2d (128 → 128) (128, 32, 32) 3× 3, stride 1, pad 1
21 BatchNorm2d (128) (128, 32, 32) –
22 ReLU (128, 32, 32) –
23 MaxPool2d (k = 2) (128, 16, 16) 2× 2, stride 2, pad 0
24 Dropout (p = 0.2) (128, 16, 16) –
25 Conv2d (128 → 256) (256, 16, 16) 3× 3, stride 1, pad 1
26 BatchNorm2d (256) (256, 16, 16) –
27 ReLU (256, 16, 16) –
28 Conv2d (256 → 256) (256, 16, 16) 3× 3, stride 1, pad 1
29 BatchNorm2d (256) (256, 16, 16) –
30 ReLU (256, 16, 16) –
31 MaxPool2d (k = 2) (256, 8, 8) 2× 2, stride 2, pad 0
32 Dropout (p = 0.3) (256, 8, 8) –
33 AdaptiveAvgPool2d (1, 1) (256, 1, 1) –
34 Flatten (256, ) –
35 Linear (256 → 64) (64, ) –
36 ReLU (64, ) –
37 Dropout (p = 0.3) (64, ) –
38 Linear (64 → 1) (1, ) –
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D.2 PERFORMANCE UNDER THE CONVENTIONAL SETTING

D.2.1 FULL EXPERIMENTAL RESULTS

This subsection complements the main conventional results in Table 1. For each dataset, we use
the dataset-to-backbone mapping in Appendix D.1 and the PU data specification in Table D.1. The
training set size N and class prior π are fixed per dataset. PU training splits are generated with the
same conventional configuration used for the main table. All learners are trained under the unified
pipeline with identical optimizer and schedules defined in the YAML configurations, and only the
classification head is adapted when a method requires two logits. We select the checkpoint with
the best validation macro-F1 and report Accuracy, Precision, Recall, macro-F1, and AUC on the
held-out test set.
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Figure 9: Performance of PU methods on text datasets across five evaluation metrics.
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Figure 10: Performance of PU methods on vision datasets across five evaluation metrics.
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Figure 11: Performance of PU methods on tabular datasets across five evaluation metrics.

29



Published as a conference paper at ICLR 2026

Table D.6: Holm–Bonferroni corrected p-values from two-sided paired t-tests on the test accuracies
in Table 1 under the conventional setting (cc/SCAR/c=0.1). Each entry compares a PU method
against nnPU on the same dataset. Values below 5e−02 are shown in bold (significantly better than
nnPU) or underlined (significantly worse).

Method IMDb 20News MNIST F-MNIST CIFAR-10 ADNI Connect-4 Spambase

nnPU [15] — — — — — — — —
PUSB [14] 8.2e-02 1.4e-01 9.5e-02 1.1e-01 4.3e-02 1.5e-01 1.6e-01 1.1e-01
VPU [4] 4.8e-02 5.8e-02 8.4e-05 8.7e-02 8.9e-02 8.5e-02 4.3e-02 9.2e-02
MPE-PU [8] 1.2e-01 1.6e-01 1.6e-01 2.0e-01 2.7e-01 2.3e-01 2.9e-01 2.1e-01
LBE-PU [9] 8.9e-02 1.5e-01 3.2e-03 2.1e-03 9.1e-02 6.9e-02 9.4e-02 8.3e-02
PUET [30] 9.5e-02 6.2e-02 9.8e-02 9.3e-02 6.4e-02 3.7e-02 8.1e-02 7.3e-02
Dist-PU [36] 3.9e-02 6.7e-02 8.7e-02 1.1e-01 8.9e-04 6.2e-03 7.6e-02 3.7e-02
PULDA [13] 1.8e-01 1.0e+00 8.1e-01 1.0e+00 1.3e-04 1.0e+00 5.9e-05 7.4e-02

Self-PU [5] 4.1e-02 1.8e-01 6.6e-02 2.0e-01 1.9e-01 1.9e-01 2.3e-01 3.8e-02
P3Mix-E [19] 3.2e-02 8.9e-02 9.3e-02 8.5e-02 6.7e-02 7.6e-02 9.4e-02 8.2e-02
P3Mix-C [19] 1.3e-02 5.5e-02 8.6e-02 9.7e-02 7.1e-02 2.0e-02 6.8e-02 7.3e-02
Robust-PU [39] 1.3e-01 8.9e-02 1.1e-01 1.5e-01 1.3e-01 1.4e-01 1.8e-01 1.6e-01
Holistic-PU [32] 9.0e-02 4.2e-02 7.5e-02 4.3e-02 3.4e-02 1.0e-01 5.9e-02 1.1e-01
LaGAM-PU [21] 6.7e-02 5.8e-02 8.5e-02 8.9e-02 8.3e-02 5.9e-02 7.4e-05 5.3e-05
PUL-CPBF [20] 7.5e-02 8.1e-02 3.2e-02 3.3e-02 9.5e-02 7.1e-02 4.1e-05 3.8e-02

VAE-PU [25] 3.6e-02 8.3e-01 4.8e-02 2.9e-01 2.7e-02 4.5e-02 3.9e-01 3.0e-01
PAN [11] 5.6e-02 2.8e-02 6.8e-02 9.1e-02 8.7e-02 1.1e-01 1.2e-01 8.9e-02
CGenPU [27] 9.1e-02 1.4e-01 9.5e-02 8.0e-02 1.0e-01 1.0e-01 7.8e-02 8.4e-02

D.2.2 STATISTICAL SIGNIFICANCE OF PERFORMANCE DIFFERENCES

For each dataset and PU method, we collect the test accuracy with 10 random seeds (2, 25, 42,
52, 99, 103, 250, 666, 777, 2026) under the conventional cc/SCAR/c=0.1 configuration. We then
perform two-sided paired t-tests comparing each method against nnPU on the same dataset.

Paired t-test. For each pair of methods (e.g., method A vs. nnPU) on a given dataset, let {xi}ni=1
and {yi}ni=1 denote the test accuracies from n = 10 independent runs, where xi and yi are paired
(same random seed). We compute the paired differences di = xi − yi, their sample mean d̄ =
1
n

∑n
i=1 di, and sample standard deviation sd =

√
1

n−1

∑n
i=1(di − d̄)2. The test statistic is

t =
d̄

sd/
√
n
,

which follows a t-distribution with n − 1 degrees of freedom under the null hypothesis of no dif-
ference. The raw two-sided p-value is given by praw = P (|Tn−1| ≥ |t|), where Tn−1 denotes a
t-distributed random variable with n− 1 degrees of freedom.

Holm–Bonferroni correction. To control for multiple comparisons across m hypotheses (one per
method vs. nnPU) on the same dataset, we apply the Holm–Bonferroni procedure. Let p(1) ≤ p(2) ≤
· · · ≤ p(m) denote the sorted raw p-values. For each hypothesis j in sorted order, the corrected p-
value is

p(j)corr = min

{
1, max

k=1,...,j

[
(m− k + 1) · p(k)

]}
.

We reject hypothesis j if p(j)corr ≤ α (we use α = 0.05 in all experiments).

Table D.6 shows that, under the conventional setting, several Risk-Minimization Estimation meth-
ods and Disambiguation-Guided Supervised ERM methods achieve statistically significant accuracy
gains over nnPU on a non-trivial subset of datasets, whereas self-training and holistic variants more
often suffer significant degradation. Generative distribution matching approaches rarely yield sig-
nificant benefits and can even be significantly worse than nnPU, highlighting their instability in this
regime. Overall, these significance tests confirm that the performance gaps observed in Table 1 are
not driven by random seed noise.
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D.2.3 FAILURE CASES ANALYSIS

LBE-PU (Gong et al., 2021) exhibits competitive performance on vision datasets under conventional
settings, and on simpler images it can match or surpass strong PN baselines. This effectiveness stems
from its labeling-bias model e(x) capturing meaningful variation in positive labeling mechanisms.
On ADNI under the conventional setting, however, only a small fraction of positives are labeled
(|LP| = 255) while most remain unlabeled (|UP | = 2552 vs. |N | = 2516). As shown in Fig. 12
(top panels), this extreme imbalance breaks LBE-PU in two ways. First, the classifier hθ(x) concen-
trates labeled positives near 1.0 but assigns similarly high scores to many negatives, causing severe
overlap between UP and N in both training (panel a.1) and test distributions (panel a.2). Second, the
estimated propensities e(x) for labeled versus unlabeled positives exhibit substantial IQR overlap
(panel a.3), indicating that the learned e(x) deviates from the SCAR assumption and fails to model
the true labeling mechanism. Together, these failures prevent LBE-PU from recovering a reliable
decision boundary on ADNI.

While PAN (Hu et al., 2021) demonstrates effective performance on datasets such as MNIST and
IMDb—where its adversarial training framework successfully promotes separation between positive
instances and challenging unlabeled samples—it exhibits a distinct failure pattern on Spambase. As
illustrated in Fig. 12 (bottom panels), this complementary failure mode stems from the Discrim-
inator’s role in defining reliability weights. Specifically, Panel b.3 reveals that the Discriminator
systematically assigns higher scores to true negatives than to both labeled and unlabeled positives
(σ(D(x))N > σ(D(x))LP , σ(D(x))UP

). Consequently, the reliability weights rl = σ(D(x)) be-
come concentrated on unlabeled examples that resemble negatives. This skew causes the Recognizer
to learn a decision function hθ(x) that positions nearly all positive instances alongside a substantial
portion of negatives above the default threshold of 0.5 (panels b.1–b.2), resulting in exceptionally
high recall but merely moderate precision under fixed-threshold evaluation.
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Figure 12: Failure analysis of LBE-PU on ADNI (top) and PAN on Spambase (bottom) under con-
ventional settings. Top panels: (a.1, a.2) Training and test score distributions hθ(x) for labeled
positives LP , unlabeled positives UP , and negatives N ; shaded bands indicate interquartile range
(IQR) overlap between UP and N . (a.3) Estimated labeling propensity e(x) for LP and UP with
IQR overlap highlighted. Bottom panels: (b.1, b.2) Training and test score distributions hθ(x) with
threshold at 0.5. (b.3) Discriminator scores σ(D(x)) on LP , UP , and N .
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D.3 EFFECTIVENESS OF PU METHODS W.R.T. LABEL RATIO

We study label efficiency by varying the label ratio c while keeping the training size N and class
prior π unchanged. Following the main text (Fig. 5), we sweep c from 0.01 to 0.09 with a step of
0.02, and from 0.1 to 0.9 with a step of 0.1.
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Figure 13: Effectiveness of PU methods with respect to different label ratios c.
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D.4 ROBUSTNESS TO SELECTION BIAS

We evaluate robustness under different labeling assumptions by varying the propensity of observing
positive labels. The experiments follow the labeling strategies defined in Appendix C.3 (S1, S2, S3,
S4). For each strategy, we keep the training size N and class prior π fixed. We report F1 on the test
set at two label ratios, c = 0.05 and c = 0.5. Bars correspond to the low-label regime (c = 0.05)
and lines correspond to the high-label regime (c = 0.5). All other training settings remain the same
as in the conventional configuration.

Dist-
PU

nn
PU

PU
SB VPU

PU
ET

PU
LD

A

MPE
-PU

LB
E-P

U

PU
L-C

PB
F

P3
Mix-

E

P3
Mix-

C

Ro
bu

st-
PU

LaG
AM-PU

Se
lf-P

U

Holis
tic

-PU

CGen
PU PA

N
VA

E-P
U

0

20

40

60

80

100

F1
 S

co
re

 (c
=0

.0
5)

 (%
)

Risk-Minimization Estimators Disambiguation-Guided Supervised ERM Generative Distribution Matching
S1
S2

S3
S4

PU
SB

PU
ET

MPE
-PU

Dist-
PU

nn
PU

LB
E-P

U
VPU

PU
LD

A

PU
L-C

PB
F

P3
Mix-

C
Se

lf-P
U

Holis
tic

-PU

P3
Mix-

E

Ro
bu

st-
PU

LaG
AM-PU PA

N

CGen
PU

VA
E-P

U
0

20

40

60

80

100

F1
 S

co
re

 (c
=0

.0
5)

 (%
)

Risk-Minimization Estimators Disambiguation-Guided Supervised ERM Generative Distribution Matching
S1
S2

S3
S4

0

20

40

60

80

100

F1
 S

co
re

 (c
=0

.5
) (

%
)

0

20

40

60

80

100

F1
 S

co
re

 (c
=0

.5
) (

%
)

Sp
am

ba
se

Co
nn

ec
t-4

Figure 14: F1 scores of PU methods under different labeling assumptions on tabular datasets. Bars
denote low-label regime (c = 0.05), lines denote high-label regime (c = 0.5).
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Figure 15: F1 scores of PU methods under different labeling assumptions on text datasets. Bars
denote low-label regime (c = 0.05), lines denote high-label regime (c = 0.5).
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Figure 16: F1 scores of PU methods under different labeling assumptions on vision datasets. Bars
denote low-label regime (c = 0.05), lines denote high-label regime (c = 0.5).

E COMPUTATION RESOURCES

All experiments were conducted using PyTorch 2.8.0 and Python 3.12 running on Ubuntu 22.04,
with CUDA 12.8 for GPU acceleration. The hardware consisted of a single NVIDIA RTX 5090
GPU (32 GB memory), a 25 vCPU Intel Xeon Platinum 8470Q processor, and 90 GB of system
RAM.

F PACKAGE, DOCUMENTATION, AND MAINTENANCE

This section outlines packaging, documentation, licensing, and long-term maintenance policies to
support reliable use and extension of the benchmark.

Data Acquisition. Datasets are obtained directly from authoritative sources through established
APIs: vision (MNIST, F-MNIST, CIFAR-10) via torchvision; text (20News, IMDb) via scikit-
learn and Hugging Face; tabular (Connect-4, Spambase) via OpenML; and medical imaging
(AlzheimerMRI) via the ADNI database. Source-level acquisition lets users verify provenance and
replicate exact conditions. Automatic downloading with caching reduces network overhead. Each
loader performs integrity checks to verify data completeness and consistency before use. PU sam-
pling is deterministic given the configuration and a random seed, which guarantees exact replication
of splits and reported metrics when the same configuration is rerun.

Documentation and usage. The package includes comprehensive documentation designed for
PU learning workflows. It provides task-level examples and step-by-step instructions for construct-
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ing PU datasets-supporting both SCAR and SAR mechanisms, as well as case-control and single-
training-set scenarios. Users can specify class priors, label frequencies, model backbones, and PU
learning objectives via YAML configuration files. Key components of the data generation pipeline,
training loop, and evaluation suite are clearly structured and documented to facilitate adoption and
extension.

Code maintenance and versioning. We are committed to maintaining the codebase, responding
to user feedback, and encouraging community contributions through a structured review process.
We adopt strict version control practices, maintain detailed changelogs, and provide tagged releases.
Configuration files and experiment logs are archived alongside each release to ensure consistent
behavior across versions and enable faithful replication when combined with the fixed-seed protocol
described in the Reproducibility section.

License. Our code will be released under the MIT License, which permits free use, modifica-
tion, distribution, and sublicensing, provided the original copyright notice and permission terms are
retained.

G USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed for non-substantive, low-risk tasks in preparing this
manuscript. Their use was strictly limited to grammar and typographical proofreading of human-
drafted text and verifying the internal consistency of names and cross-references. To ensure scien-
tific integrity and prevent any influence from hallucinated content, LLMs had zero involvement in
generating, interpreting, or refining core scientific artifacts.
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