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Abstract

Large-scale text encoders in text-to-image (T2I)
diffusion models have demonstrated exceptional
performance in generating high-quality images
from textual prompts. Unlike denoising modules
that rely on multiple iterative steps, text encoders
require only a single forward pass to produce text
embeddings. However, despite their minimal con-
tribution to total inference time and floating-point
operations (FLOPs), text encoders demand signif-
icantly higher memory usage, up to eight times
more than denoising modules. To address this
inefficiency, we propose Skip and Re-use lay-
ers (Skrr), a simple yet effective pruning strat-
egy specifically designed for text encoders in T2I
diffusion models. Skrr exploits the inherent re-
dundancy in transformer blocks by selectively
skipping or reusing certain layers in a manner
tailored for T2I tasks, thereby reducing mem-
ory consumption without compromising perfor-
mance. Extensive experiments demonstrate that
Skrr maintains image quality comparable to the
original model even under high sparsity levels,
outperforming existing blockwise pruning meth-
ods. Furthermore, Skrr achieves state-of-the-art
memory efficiency while preserving performance
across multiple evaluation metrics, including the
FID, CLIP, DreamSim, and GenEval scores.

1. Introduction
Diffusion generative models excel at tasks such as text-to-
image (T2I) synthesis (Rombach et al., 2022; Podell et al.,
2023; Esser et al., 2024; Chen et al., 2024), editing (Brooks
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Figure 1. (a) FLOPs distribution during image generation in Stable
Diffusion 3 (SD3) (Esser et al., 2024). (b) Parameter distribution
across modules in SD3. The text encoders contributes less than
0.5% to the overall FLOPs but account for over 70% of the total
model parameters. For VAE, only the decoder was considered.

et al., 2023; Cao et al., 2023; Kawar et al., 2023), video
generation (Liu et al., 2024; Polyak et al., 2024), and 3D
creation (Poole et al., 2022; Cao et al., 2023; Seo et al.,
2023; Wang et al., 2024c). With modern architecture and
large-scale text encoders, they produce high-quality images
that closely match text prompts. Despite these successes,
they require significant computational resources, especially
memory, making deployment and scalability challenging.

To address these issues, research suggests enhancing the ef-
ficiency of the T2I diffusion model through strategies such
as knowledge distillation (KD) (Castells et al., 2024b; Li
et al., 2024b; Song et al., 2024b; Kim et al., 2024; Zhao
et al., 2024), which transfers knowledge from larger models
to smaller ones; pruning (Castells et al., 2024a; Ganjdanesh
et al., 2024; Lee et al., 2024; Wang et al., 2024b), which
eliminates superfluous weights; and quantization (Li et al.,
2023; He et al., 2024; Ryu et al., 2025), which reduces preci-
sion by utilizing fewer bits. While effective, these methods
target the denoising module. As shown in Fig. 1, the text
encoders account for over 70% of the total parameters, but
only 0.5% of floating-point operations (FLOPs), causing dis-
proportionate memory usage. Despite this imbalance, efforts
to reduce the text encoder size have been limited.

Large language models (LLMs) also face similar challenges,
where model sizes result in significant computational and
memory overhead, hindering their practical use. To address
this problem, studies such as KD (Hsieh et al., 2023; Huang
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et al., 2023a; Ko et al., 2024), quantization (Xiao et al., 2023;
Ashkboos et al., 2024b; Lin et al., 2024), and pruning (Sun
et al., 2023; Ashkboos et al., 2024a; Men et al., 2024; Song
et al., 2024a; Yang et al., 2024; Zhang et al., 2024) have
been proposed. While KD reduces the size of the model, it
requires costly training. Quantization reduces memory us-
age by reducing precision, but it requires specific hardware
support. In contrast, pruning offers parameter reduction with
minimal performance loss, making it an efficient solution.

Among pruning techniques, structured pruning has been ac-
tively studied to remove rows and columns (van der Ouderaa
et al., 2023; Ashkboos et al., 2024a) of the model weights,
or entire layers or blocks (Gromov et al., 2024; Men et al.,
2024; Yang et al., 2024; Zhang et al., 2024) of the model
to reduce the size of the model and improve the inference
speed. However, these methods are designed for autore-
gressive LLMs and face challenges when applied to T2I
diffusion models, limiting their effectiveness in this context.

We propose Skip and reuse the layers (Skrr), a blockwise
pruning technique for T2I diffusion models. Skrr effectively
reduces text encoder size, alleviating memory overhead
while preserving image quality and text alignment. Skrr
involves two primary stages: the Skip to detect layers for
pruning, followed by the Re-use to recycle the remaining
layers to mitigate performance degradation. To the best of
our knowledge, this is the first work to tackle the challenge
of constructing a lightweight text encoder for T2I tasks.

In the Skip phase, sub-blocks of the text encoder transformer
are pruned using a T2I diffusion-tailored discrepancy metric
to align dense and pruned models. Prior methods greed-
ily remove blocks to reduce computational costs, but often
overlook block interactions, leading to suboptimal prun-
ing. To mitigate this, we propose a beam search (Freitag &
Al-Onaizan, 2017)-based approach that explores multiple
pruning paths simultaneously, balancing the performance of
exhaustive and efficiency of greedy strategies. In the Re-use
phase, we assess the discrepancy from reusing adjacent un-
skipped blocks to identify those that can be effectively reuti-
lized. Additionally, we provide theoretical support showing
that Re-use can enhance performance beyond mere skipping.
To improve discrepancy measurement in both phases, we
employ a projection module identical to the one used for
conditioning text embeddings in the denoising module.

We conducted comprehensive experiments across various
metrics, sparsity levels, and diffusion models to thoroughly
evaluate the T2I performance of compressed text encoders.
The results indicate that Skrr surpasses current autoregres-
sive LLM-targeted pruning techniques on image fidelity and
text-image alignment in high sparsity (> 40%).

Our contributions can be summarized as follows.

• We propose Skrr, an effective layer pruning method

for the text encoder in T2I diffusion models.

• We present Skip, a pruning approach for lightweight
T2I diffusion models, and Re-use, a method to restore
T2I performance by leveraging the remaining layers,
supported by theoretical analysis.

• Skrr achieves state-of-the-art blockwise pruning for
T2I synthesis, improving GenEval scores by up to
20.4% at high sparsity over 40%.

2. Related Works
2.1. Efficient diffusion model

As diffusion generative models scale, T2I synthesis has
achieved impressive results in generating high-fidelity, text-
aligned images. However, this advancement comes with sig-
nificant computational and memory overhead. Previous re-
search has primarily focused on optimizing the efficiency of
the denoising module through methods such as knowledge
distillation (Li et al., 2024b; Song et al., 2024b; Castells
et al., 2024b; Zhao et al., 2024; Kim et al., 2024), pruning
model weights (Fang et al., 2023; Ganjdanesh et al., 2024;
Wang et al., 2024b; Castells et al., 2024a; Lee et al., 2024),
and quantization of weights to lower precision bits (Li et al.,
2023; He et al., 2024; Li et al., 2024a; Wang et al., 2024a;
Ryu et al., 2025). While these approaches effectively reduce
the computational and memory costs of the pipeline, they
overlook the substantial memory burden imposed by the text
encoder, which remains largely underexplored. To address
this gap, we propose a targeted pruning strategy for the text
encoder of a T2I diffusion model, which allows more mem-
ory efficient T2I synthesis with comparable performance.

2.2. Blockwise pruning for LLMs

Although LLMs show promising performance in various
tasks, their size often limits practical deployment. To address
this problem, model compression techniques have been de-
veloped, with pruning emerging as a promising solution due
to its ability to reduce the parameter count with minimal re-
training. Notably, blockwise pruning of transformers (Men
et al., 2024; Yang et al., 2024; Zhang et al., 2024) effectively
reduces parameters while preserving performance.

ShortGPT (Men et al., 2024) proposed a method to prune
blocks to the desired sparsity by removing them one by
one and assigning a Block Influence (BI) score based on
changes in cosine similarity and pruning those with lower
BI first. LaCo (Yang et al., 2024) introduced a strategy to
reduce the size of LLMs by merging the weights of adjacent
transformer blocks, effectively compressing the model. Fin-
erCut (Zhang et al., 2024) refined this approach by pruning
sub-blocks, composed of Multi-Head Attention (MHA) and
Feed-Forward Network (FFN) layers with normalization,
in a fine-grained manner. It sequentially pruned sub-blocks
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(b) Fixed input similarity.

Figure 2. (a) The cosine similarity of hidden states in T5 trans-
former blocks demonstrates progressive variations. The result indi-
cates specific layers could be omitted without serious performance
degradation. (b) The cosine similarity of block outputs using fixed
inputs. The similarity map reveals redundant role across blocks,
suggesting that certain blocks could be replaced by adjacent blocks.

while partially considering interactions between blocks, re-
ducing the performance gap with the dense model.

Despite these advances, text encoder compression in diffu-
sion models remains underexplored. To address this discrep-
ancy, we propose Skrr, a blockwise text encoder pruning ap-
proach tailored for T2I diffusion models. We evaluated Skrr
against existing LLM-based pruning techniques, demon-
strating its effectiveness in reducing the size of the model
while maintaining the T2I performance of its dense model.

3. Method
Skrr is built around two main parts: Skip identifies layers
to prune, and Re-use selects layers to reuse from the re-
mained ones. During the Skip phase, each multi-head at-
tention (MHA) and feed-forward network (FFN) sub-block
is individually evaluated for its importance using a T2I
diffusion-tailored metric. The sub-blocks are then ranked
based on their significance. To optimize the pruning pro-
cess, blocks with low importance are removed sequentially
while exploring multiple possible combinations using a
beam search-based algorithm. The Re-use phase evaluates
each layer to reuse a layer based on the metric leveraged in
Skip phase to the original output, ensuring that important
information is conserved, thus reducing performance loss.
The overall framework of Skrr is depicted in Fig. 4.

3.1. Skip Algorithm

Feasibility of skipping blocks. Prior work (Men et al.,
2024; Yang et al., 2024; Zhang et al., 2024) shows trans-
former blocks can be pruned based on output similarity in
LLMs. We extend this analysis to text encoders in diffusion
models, especially T5-XXL (Raffel et al., 2020), widely
used in T2I models, as shown in Fig. 2a. We observed a high
degree of similarity between the hidden states of adjacent

(a) Original image. (b) 7th, 22th removed. (c) 3rd, 5th removed.

Figure 3. (a) An image is created by the PixArt-Σ dense text en-
coder using the prompt “A car made out of vegetables.” with
||f∅||2 = 0.03. For image (b), the 7th and 22th sub-blocks are
excluded, resulting in Metric1 = 0.15, Metric2 = 0.002, and
||f∅||2 = 0.19. Image (c) is generated by removing the 3rd and
5th sub-blocks, producing Metric1 = 0.11, Metric2 = 0.04, and
||f∅||2 = 3.34. Despite Metric1 being higher in (c), the large
||f∅||2 value compared to (b) leads to an abnormal image. Notably,
Metric2 more accurately indicates differences in image quality.

blocks. This strong similarity underscores the redundancy
in the model and confirms the potential to prune blocks
without significantly compromising performance.

Discrepancy metric. For effective block removal, it is
crucial to evaluate impact of pruning each block on output.
A strong metric must be defined to measure text embedding
changes of post-removal. Given that text embeddings affect
image quality in text-to-image models, choosing the right
metric is vital. Current T2I diffusion models predominantly
employ transformer frameworks to synthesize images from
input noise and text embeddings. However, text embeddings
from the output of the text encoder are not used as is. They
undergo alignment through a single linear layer or multi-
layer perceptron (MLP), which is represented as:

f = proj(E(c; θtext.); θdenoise.), (1)

where c is the input prompt, E(·; θtext.) is the text encoder
parameterized with θtext., proj(·; θdenoise.) is the projection
layer in the denoising module for condition vector from the
text encoder. Using the features extracted in this manner,
the importance of a block can be evaluated by comparing
the similarity between the feature fdense of the dense model
and the feature fskip of the model that skips (prunes) a block.
A commonly used metric in prior studies (Men et al., 2024;
Yang et al., 2024; Zhang et al., 2024) for measuring discrep-
ancy is cosine similarity, which is formulated as:

Metric1(fdense, fskip) = 1−
fdense · fskip

||fdense||2||fskip||2
(2)

Another metric worth considering is the mean-squared error
(MSE) between two vectors, which differs from angular
metrics by accounting for both the direction (angle) and the
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(b) Illustration of Re-use phase.

Figure 4. The visualization of overall framework of Skrr. (a) shows the Skip phase, which repeatedly assesses each sub-block by
determining the output discrepancy (Disc.) between the dense and skipped models using a calibration dataset (Calib. data). To account for
block interactions, it keeps the top k options with the smallest discrepancies and uses beam search for refined selection. (b) presents the
Re-use phase, evaluating if recycling remaining block instead of skipped sub-blocks results in a smaller output discrepancy. If so, hidden
states are fed back into the chosen layers. This two-phase approach efficiently reduces model size with minimal T2I performance loss.

magnitude of the vectors. The MSE is formulated as:

Metric2(fdense, fskip) =
1

d

d∑
i=1

(f i
dense − f i

skip)
2, (3)

where d is the dimension of the output feature vectors fdense
and fskip, and f i represents the i-th component of vector
f . Metric1 considers only the angle between vectors, while
Metric2 integrates both the angle and magnitude, offering
a more comprehensive evaluation of output discrepancies
between dense and skipped models (Zhang et al., 2024).
Therefore, we chose Metric2 to assess the discrepancies.

Null condition discrepancy. In diffusion generative mod-
els, guidance is essential to produce high-quality images. A
prevalent approach is classifier-free guidance (CFG) (Ho
& Salimans, 2021), which improves conditional synthesis
by utilizing unconditional scores. This technique derives an
unconditional score from a null condition, extrapolates it
with the conditional score, and is formulated as follows:

ϵ̃(xt, z) = (1 + w)ϵ(xt, fc)− wϵ(xt, f∅), (4)

where ϵ(·, ·) is the denoising score network, xt is a noisy
sample at timestep t, fc denotes the condition vector from
Eq. (1), f∅ represents the null condition vector, and w is
the guidance scale. While guidance improves image quality,
excessive scaling may cause over-saturation or artifacts. We
observed that pruning certain text encoder blocks ampli-
fies its norm by over 100× compared to the dense version,

leading to abnormal images. As illustrated in Fig. 3, prun-
ing even two blocks significantly increases ||f∅||2, causing
abnormalities shown in Fig. 3c. Thus, discrepancies in f∅
must be considered. Notably, in Fig. 3c, Metric1 failed to
assess image quality, while Metric2 reported smaller values
for Fig. 3b, confirming its reliability and effectiveness.

Beam search-based strategy. Most blockwise pruning
methods perform (1) rank the importance of the block per
layer and pruning in order (Men et al., 2024), or (2) perform
sequential pruning while re-evaluating blocks (Yang et al.,
2024; Zhang et al., 2024). The first method is efficient, but
may ignore block interactions and lead to suboptimal re-
sults. The second method acknowledges interactions among
blocks, yet its greedy approach can still lead to suboptimal
results. To address these issues, we propose a novel method
akin to beam search, which evaluates multiple pruning paths
concurrently to better account for block interactions, achiev-
ing more effective pruning without degrading performance.

Algorithm. To synthesize the proposed approach, we in-
troduce the Skip algorithm in Algorithm 1. Before delv-
ing into the specifics, we define two key discrepancy met-
rics: Dfc , derived from Metric2, and Df∅ , representing
Metric2 with null inputs. The algorithm is inspired by a
beam search (Freitag & Al-Onaizan, 2017), iterating over
each unskipped sub-block while maintaining the k beams
with the smallest sum of Dfcand Df∅ . This process is re-
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Algorithm 1 Skip Algorithm

Require: Calibration dataset C, dense modelM, null input
c∅, number of layers L, beam size k

Ensure: Skip index list S∗
1: S ← [ ]
2: B ← {(0,S)}, S∗ ← S
3: while ∃(D,S) ∈ B such that |S| < L do
4: Bnew ← ∅
5: for each (D,S) ∈ B do
6: for each layer index i /∈ S do
7: S ′ ← Append(S, i)
8: M̂ ← Prune(M,S ′)
9: D′ ← GetDiscrepancy(M,M̂, C, c∅)

10: Bnew ← Bnew ∪ {(D′,S ′)}
11: end for
12: end for
13: Update Bnew to smallest k candidates with D
14: (D∗,S∗)← argmin(D′,S′) D

′ in B
15: end while
16: return S∗

Function Definitions:
1: GetDiscrepancy(M,M̂, C, c∅):
2: Dfc ← MSE(M(C),M̂(C))
3: Df∅ ← MSE(M(c∅),M̂(c∅))
4: return Dfc +Df∅

peated from the k beams, iteratively updating them to ensure
smaller D. Upon traversing all blocks, the algorithm pro-
duces a list of Skip indices S∗, effectively capturing inter-
block interactions. Finally, the blocks are pruned sequen-
tially according to the S∗ to achieve the desired sparsity.

3.2. Re-use Algorithm

Feasibility of reusing blocks. Despite extensive research
on methods such as recurrent networks (Sherstinsky, 2020;
Gu & Dao, 2023) which loop the output of the network back
into the input for efficiency, the practice of reusing specific
layers in neural networks by reintegrating hidden states into
internal layers remains understudied. We conducted a feasi-
bility study to investigate whether the internal components
of the T2I diffusion text encoder serve analogous functions
(see Fig. 2b). We randomly sampled tokens from the embed-
ding, passed them through each transformer block as a fixed
input, and measured the similarity of their output. The re-
sults indicate significant similarity between adjacent blocks,
suggesting that performance can be restored by reintroduc-
ing non-omitted layers into adjacent skipped layers. We also
verified the existence of condition for Re-use that achieves
a tighter error bound compared to Skip alone. The existence
is formalized in Theorem 3.2, which theoretically demon-
strates the advantages of incorporating the Re-use phase. To
establish this result, we first introduce the following lemma.

Algorithm 2 Re-use Algorithm

Require: Calibration dataset C, dense modelM, null input
c∅, skip indices list S, re-use indices dictionaryR

Ensure: Re-use indices dictionaryR
1: R ← ∅, M̂ ← Prune(M,S)
2: DM ← GetDiscrepancy(M,M̂, C, c∅)
3: for each i ∈ S do
4: l← max{j < i | j /∈ S}, r ← min{j > i | j /∈ S}
5: M̂l ← Update(M̂,R∪ {i : l})
6: M̂r ← Update(M̂,R∪ {i : r})
7: DM ← GetDiscrepancy(M,M̂, C, c∅)
8: Dl ← GetDiscrepancy(M,M̂l, C, c∅)
9: Dr ← GetDiscrepancy(M,M̂r, C, c∅)

10: if Dl < DM ∧Dl < Dr then
11: R← R∪ {i : l}
12: else if Dr < DM ∧Dr < Dl then
13: R← R∪ {i : r}
14: end if
15: M̂ ← Update(M̂,R)
16: end for
17: returnR

Lemma 3.1 (Error bound of two transformers). LetM :
(x, θ) 7→ Rd be an L-block transformer with input x ∈ Rd

and parameter set θ = (θ1, . . . , θL), defined as:

M =
(
(FL + I) ◦ (FL−1 + I) ◦ · · · ◦ (F1 + I)

)
(5)

where Fi : (zi, θi) 7→ Rd is the i-th block with parameters
θi, and zi ∈ Rd. Assume that Fi is Li-Lipschitz in zi and
Mi-Lipschitz in θi. Then, for any two parameter sets θ =
(θ1, . . . , θL) and θ̂ = (θ̂1, . . . , θ̂L), the following holds:∥∥M(x; θ)−M(x; θ̂)

∥∥
≤

L∑
i=1

( L∏
k=i+1

(1 + Lk)

)
Mi

∥∥θi − θ̂i
∥∥ := U

(6)

The proof for Lemma 3.1 is in the Appendix Sec. A.1. With
the lemma, we can prove the following theorem.

Theorem 3.2 (Tighter error bound of Re-use). Under the
assumptions of Lemma 3.1, let θ∗i be the parameters of the
reused Fi. Define USkip as the error bound for the com-
pressed model with Skip alone and USkip, Re-use as the error
bound for the compressed model with Skip and Re-use. If
∥θi − θ∗i ∥ < ∥θi∥, then the following holds:

USkip, Re-use < USkip. (7)

This theorem establishes the theoretical feasibility of Re-
use by showing a existence of condition under which the
error bound becomes tight with its application. The proof
for Theorem 3.2 is shown in the Appendix Sec. A.2.
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Table 1. Quantitative comparisons of Skrr with baselines. We compared Skrr with the baselines of ShortGPT, LaCo, and FinerCut under
three different sparsity scenarios on PixArt-Σ. The results show that Skrr reliably maintains image fidelity and performs comparable to
the dense model across all given sparsity levels. Unlike ShortGPT and LaCo, FinerCut and Skrr use sub-block pruning, hindering direct
sparsity level alignment. Sparsity levels were matched as closely as possible for fair evaluation, reflecting how much the compressed
model’s parameters differ from the dense encoder. (↑ / ↓ denotes that a higher / lower metric is favorable.)

Method Sparsity FID ↓ CLIP ↑ DreamSim ↑ GenEval ↑
(%) Single Two Count. Colors Pos. Color attr. Overall

Dense 0.0 22.89 0.314 1.0 0.988 0.616 0.475 0.795 0.108 0.255 0.539

ShortGPT
24.3 24.96 0.309 0.753 0.944 0.381 0.431 0.715 0.033 0.083 0.431
32.4 27.28 0.294 0.651 0.834 0.197 0.291 0.537 0.048 0.038 0.324
40.5 55.26 0.215 0.357 0.306 0.025 0.090 0.100 0.0 0.0 0.087

LaCo
24.3 19.45 0.311 0.726 0.909 0.336 0.394 0.713 0.065 0.128 0.424
32.4 24.70 0.303 0.677 0.781 0.227 0.250 0.606 0.043 0.040 0.325
40.5 21.60 0.291 0.620 0.784 0.162 0.150 0.489 0.030 0.033 0.275

FinerCut
26.3 20.66 0.313 0.798 0.947 0.465 0.394 0.737 0.103 0.105 0.458
32.2 20.49 0.313 0.771 0.903 0.409 0.344 0.697 0.078 0.128 0.426
41.7 20.36 0.308 0.731 0.841 0.306 0.306 0.628 0.050 0.073 0.367

Skrr (Ours)
27.0 20.15 0.315 0.800 0.956 0.434 0.425 0.763 0.095 0.145 0.471
32.4 20.19 0.313 0.775 0.928 0.397 0.413 0.774 0.100 0.118 0.455
41.9 19.93 0.312 0.741 0.913 0.410 0.450 0.755 0.055 0.068 0.442

Algorithm. The Re-use algorithm provided in Algo-
rithm 2 enhances performance of pruned models by rein-
troducing adjacent layers for skipped layers. Starting with
pruning based on skip indices S, it evaluates each skipped
block for reuse with discrepancy score D between pruned
and dense model outputs under three configurations: current
state, reuse of the previous sub-block, and reuse of the sub-
sequent sub-block. The configuration with the smallest D is
selected, ensuring alignment with the dense model. MHA
and FFN sub-blocks are reused as their respective types,
maintaining consistency and functionality. The sub-block
with the lowest discrepancy is reintroduced, iteratively up-
dating the dictionary for Re-useR until all skipped layers
are evaluated. This results in a refined dictionaryR, allow-
ing efficient compression while maintaining performance.

4. Experiments
Baselines. To evaluate the performance of Skrr, we com-
pared multiple LLM-based blockwise pruning techniques
for T2I synthesis, including ShortGPT (Men et al., 2024),
LaCo (Yang et al., 2024) and FinerCut (Zhang et al., 2024).
Pruning in diffusion pipelines specifically targets the T5-
XXL (Raffel et al., 2020), which constitutes most of the
parameter size. Detailed configurations and implementation
specifics are available in Appendix Sec. B.1 and Sec. B.2.

Dataset. Most blockwise pruning methods rely on a cali-
bration dataset to identify and remove less influential blocks.
To this end, we constructed a calibration set by sampling 1k
text prompts from the CC12M (Changpinyo et al., 2021),

specifically tailored for T2I synthesis. The detailed configu-
ration and example are provided in Appendix Sec. B.3.

4.1. Quantitative results

Metrics. We evaluated the performance of the Skrr and
baseline models with four metrics: Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017), CLIP (Radford et al.,
2021) score and DreamSim (Fu et al., 2023) score with
MS-COCO (Lin et al., 2014) 30k validation set, along-
side GenEval (Ghosh et al., 2024). FID measures the real
versus generated image similarity using Inception-v3 fea-
tures (Szegedy et al., 2016). The CLIP score measures the
semantic alignment of the image-text. DreamSim assesses
the composition and color similarity in pruned text encoders
versus the original. GenEval measures pruned text encoders’
effects on T2I synthesis across six dimensions: single object,
two objects, counting, color accuracy, positional alignment,
and color attribution. See Appendix Sec. B.4 for details.

T2I synthesis performance comparison. We evaluated
the T2I synthesis performance of Skrr against various base-
lines and metrics, as shown in Table 1. ShortGPT maintains
performance at low sparsity, but its performance deteriorates
rapidly as sparsity increases. A similar pattern is observed
for LaCo. FinerCut exhibits a more gradual decline in per-
formance compared to other baselines, but the generated im-
ages still show a significant drop in GenEval scores. In con-
trast, Skrr demonstrates performance comparable to dense
models in all the sparsity levels, achieving high fidelity
while preserving strong text alignment metrics especially in
high-sparsity settings. Interestingly, in some cases, the FID
score for compressed models improves, while DreamSim,
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FinerCut Skrr (Ours)

“A vast galaxy with swirling nebulae in vivid reds, purples, and golds, and a radiant, glowing planet with rings reflecting light like a prism.”

“A lively fountain square where people play musical instruments, with rainbows refracting in the mist.”

“A child holding a lantern with a softly glowing golden light, standing in a field of tall grass under a deep indigo sky filled with sparkling stars.”

Dense ShortGPT LaCo
Pi
xA
rt-
Σ

“A clock with intricate gears exposed, frozen in time.”
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“A young artist with paint-splattered hands sitting cross-legged on the floor of a brightly lit studio. She’s wearing round glasses and a 
colorful apron, surrounded by unfinished canvases and jars of paintbrushes. Her focused expression hints at a masterpiece in progress.”
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Figure 5. Comparison of images generated with baseline and Skrr-compressed text encoders across PixArt-Σ, Stable Diffusion 3 (SD3),
and FLUX.1-dev. At low sparsity (level 1–24.3% for ShortGPT and Laco, 26.3% for FinerCut, and 27.0% for Skrr), both methods perform
comparably to dense models, but Skrr outperforms at higher sparsity(level 2–32.4% for ShortGPT and Laco, 32.2% for FinerCut, and
32.4% for Skrr, level 3–40.5% for ShortGPT and Laco, 41.7% for FinerCut, and 41.9% for Skrr), maintaining alignment to dense model
and preserving details in the prompt such as “glasses”, “colorful apron”, and “paint-splattered hands”, where baseline methods fail.

CLIP, and GenEval scores degrade. This indicates that com-
pressing text encoders preserves or boosts image quality,
while text alignment declines. We provide further detailed
analysis in Sec. 5. Experimental results for FLUX.1-schell
with higher sparsity levels (50%) and additional benchmarks
are provided in Appendix Sec. C.6.

Computational cost. To evaluate the efficiency of Skrr,
we compared the computational cost of dense and pruned
models. We measured the number of parameters, memory
usage, and total FLOPs within the PixArt-Σ pipeline, with

the model precision standardized to Bfloat16. As shown
in Table 2, Skrr significantly reduces the parameters and
memory usage similar to other baselines compared to dense
model. While its FLOPs are slightly higher than the other
baselines, this is negligible, since the text encoder accounts
for only a small portion (0.6%) of the pipeline’s total FLOPs.

4.2. Qualitative results

We present qualitative results that demonstrate the perfor-
mance of T2I synthesis using Skrr-compressed text en-
coders, extending the experiments to SD3 and FLUX, state-
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Table 2. Number of parameters (Param.), memory usage (Mem.),
and FLOPs were evaluated on PixArt-Σ across pruning methods,
considering the entire pipeline to analyze each strategy’s impact
on computational cost. All metrics were measured at the maximum
sparsity achieved by each pruning method.

Method Sparsity (%) Param. (B) Mem. (GB) TFLOPs

Dense 0.0 5.42 10.18 91.94

ShortGPT 40.5 3.49 6.59 91.79
FinerCut 41.7 3.43 6.48 91.74

Skrr (Ours) 41.9 3.43 6.46 91.90

“Two red balloons tied to a mailbox on a sunny suburban street.”

Dense Skip + Re-use (Skrr)

Pi
xA

rt-
Σ

“A young artist with paint-splattered hands sitting cross-legged on the floor of a brightly lit 
studio. She’s wearing round glasses and a colorful apron, surrounded by unfinished canvases 

and jars of paintbrushes. Her focused expression hints at a masterpiece in progress.”
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Figure 6. Ablation study on Re-use. Without Re-use, Skip alone
leads to images that often misalign with the prompt, while Re-use
ensures more faithful adherence to the prompt.

of-the-art diffusion models. As shown in Fig. 5, ShortGPT
achieves satisfactory image quality at low sparsity, but di-
verges significantly at higher sparsity levels, failing to align
with input text at sparsity over 40% (level 3). LaCo and
FinerCut maintain image fidelity across sparsity levels but
show reduced alignment with the dense model. In contrast,
Skrr consistently preserves both image quality and align-
ment, closely resembling the outputs of dense models. For
SD3 and FLUX, which use multiple text encoders, image
fidelity remains intact at higher sparsity levels, but similarity
to dense encoder output decreases. These results highlight
Skrr’s robustness in preserving image quality and alignment
to original image while exhibiting consistent behavior across
models under varying sparsity conditions.

4.3. Ablation study

We conducted an ablation study to evaluate the contribution
of each component in the Skrr framework. Specifically, we
analyzed the effectiveness of Re-use, highlighting its role
in minimizing performance degradation from Skip. We also
examined the size of the beam, demonstrating its effective-
ness in block selection. The experiments were carried out on
PixArt-Σ and a subset of the MS-COCO (Lin et al., 2014)
validation dataset with the highest sparsity. We provide ad-
ditional ablation study in Appendix Sec. C.5.

Table 3. T2I performance with various beam size k. While larger
k values incur higher computational costs for the candidate search,
they enhance T2I performance. (k = 1 is a greedy approach.)

Sparsity
k CLIP DreamSim GenEval

(%) Single. Count. Colors.

41.9 1 0.310 0.737 0.900 0.372 0.739
41.9 2 0.312 0.757 0.912 0.450 0.731
41.9 3 0.313 0.746 0.912 0.450 0.755
40.7 4 0.310 0.739 0.925 0.328 0.707

Influence of Re-use. The Re-use phase addresses perfor-
mance degradation from the Skip phase, optimizing within
memory constraints. Its impact was assessed by comparing
model performance with and without Re-use. As shown in
Fig. 6, Skip alone preserves high fidelity but may fail to
accurately reflect the text prompt. In contrast, incorporating
Re-use produces images closely resembling those from the
dense model, ensuring better alignment with the prompt.

Influence of beam search. We performed an ablation
study that evaluated the effect of the beam search at dif-
ferent values of k, as shown in Table 3. As k increases,
performance initially improves and then decreases. This
trend is consistent with previous findings (Cohen & Beck,
2019; He et al., 2023), which observed similar behavior in
LLM decoding in which performance increases and then
deteriorates as the size of the beam increases. Based on this
observation, we selected the optimal beam size k = 3.

5. Discussion
Previously, we noted better FID results with T2I synthe-
sis when using a text encoder with skipped layers. Beyond
CFG, other guidance methods in diffusion models include
perturbed attention guidance (PAG) (Ahn et al., 2024) and
autoguidance (Karras et al., 2024), both of which approxi-
mate the unconditional score by modifications of denoising
networks. We propose that layer skipping or merging affects
the null text embedding similar to these methods. To verify
this hypothesis, we perturbed f∅, as described below.

f̂∅ = λz + f∅, z ∼ N (0, I), (8)

where z is a random vector sampled from normal distribu-
tion and λ is small scalar value. The FID and CLIP scores
of the original model and the unconditional output with
small perturbations applied to f∅ were measured on the MS-
COCO 30k dataset. The results show that the FID decreases,
indicating that the fidelity improved when perturbations are
introduced to the unconditional feature f∅. Detailed results
and configurations are provided in Appendix Sec. C.3.
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6. Conclusion
In this paper, we introduce Skip and Re-use Layers (Skrr),
an effective compression method for the text encoder in
text-to-image (T2I) diffusion models. Skrr integrates three
key components: (1) a pruning metric based on the Skrr dot
product to identify redundant sub-blocks, (2) a beam search-
based algorithm to account for interactions between trans-
former blocks during pruning, and (3) a re-use mechanism
that mitigates performance degradation by leveraging the re-
maining layers to recover lost capacity from skipped blocks
with theoretical supports. Extensive experiments demon-
strate that Skrr consistently outperforms existing blockwise
pruning techniques for text encoder compression in image
synthesis tasks, achieving qualitatively and quantitatively su-
perior results. Additionally, our analysis reveals that pruning
or merging layers not only reduces model complexity but
can also enhance certain aspects of performance. We further
analyze these improvements from the perspective of model
guidance, offering insights into how structural adjustments
contribute to more effective T2I generation.

Impact Statement
Text-to-image (T2I) synthesis models are powerful tools
that can enable creative expression, education, and accessi-
bility—but they also raise important societal concerns, such
as potential misuse in misinformation, surveillance, or deep-
fake generation. While our work does not directly advance
the fidelity or expressiveness of T2I models, it focuses in-
stead on improving their memory efficiency by introducing
Skrr, a method for pruning text encoders. This makes exist-
ing models more accessible in settings with limited hard-
ware, such as mobile or edge devices, and could support
broader, more equitable access to generative tools. However,
we recognize that making these models easier to deploy
may also lower the threshold for harmful or irresponsible
use. These concerns are not the primary focus of our work,
but they are important to consider as the field progresses.
We encourage complementary research and governance ef-
forts aimed at ensuring that the benefits of more efficient
generative models are realized in socially responsible ways.
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A. Proofs
A.1. Proof of Lemma 3.1

Lemma 3.1 (Error bound of two transformers). LetM : (x, θ) 7→ Rd be an L-block transformer with input x ∈ Rd and
parameters θ = (θ1, . . . , θL), defined as:

M =
(
(FL + I) ◦ (FL−1 + I) ◦ · · · ◦ (F1 + I)

)
, (A1)

where Fi : (zi, θi) 7→ zi+1 is the i-th block with parameters θi, and zi+1 ∈ Rd.

With each block Fi being Li-Lipschitz in the input that satisfies follows.:

||Fi(z; θi)− Fi(z
′; θi)|| ≤ Li||z − z′|| (A2)

And Mi-Lipschitz in the parameters which satisfies follows.:

||Fi(z; θi)− Fi(z; θ
′
i)|| ≤Mi||θi − θ′i|| (A3)

Then, for any two parameter sets θ = (θ1, . . . , θL) and θ̂ = (θ̂1, . . . , θ̂L), the following holds:

||M(x; θ)−M(x; θ̂)|| ≤
L∑

i=1

[(
L∏

k=i+1

(1 + Lk)

)
Mi||θi − θ̂i||

]
(A4)

Proof. With Eq. A1, we can formulate the difference of two hidden states between dense model and modified model as
follows.:

||zi+1 − ẑi+1|| = ||[zi + F (zi; θi)]− [ẑi + F (ẑi; θ̂i)]|| (A5)

By the triangle inequality:
||zi+1 − ẑi+1|| ≤ ||zi − ẑi||+ ||F (zi; θi)− F (ẑi; θ̂i)||︸ ︷︷ ︸

(A)

(A6)

We now split term (A) with the assumptions in Eq. A2 and Eq. A3:

(A) = ||F (zi; θi)− F (ẑi; θ̂i)|| (A7)

≤ ||Fi(zi; θi)− Fi(ẑ; θi)||+ ||Fi(ẑi; θi)− Fi(ẑi; θ̂i)|| (A8)

≤ Li||zi − ẑi||︸ ︷︷ ︸
input Lipschitz

+ Mi||θi − θ̂i||︸ ︷︷ ︸
parameter Lipschitz

(A9)

So combining,
||zi+1 − ẑi+1|| ≤ ||zi − ẑi||+ Li||zi − ẑi||+Mi||θi − θ̂i|| (A10)

Hence,
||zi+1 − ẑi+1|| ≤ (1 + Li)||zi − ẑi||+Mi||θi − θ̂i|| (A11)

Define the error at block i as
Ei = ||zi − ẑi|| (A12)

Eq. A11 becomes
Ei+1 ≤ (1 + Li)Ei +Mi||θi − θ̂i|| (A13)

We start from E1 = ||z1 − ẑ1|| = ||x− x|| = 0 (since both netowrks see the same input x). Thus:

E2 ≤ (1 + L1)E1 +M1||θ1 − θ̂1|| = M1||θ1 − θ̂1|| (A14)

E3 ≤ (1 + L2)E2 +M2||θ1 − θ̂1|| ≤ (1 + L2)[M1||θ1 − θ̂1||+M2||θ2 − θ̂2||] (A15)

If we do recursive telescoping over all blocks, we get

EL+1 = ||zL+1 − ẑL+1|| ≤
L∑

i=1

[(
L∏

k=i+1

(1 + Lk)

)
Mi||θi − θ̂i||

]
(A16)
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SinceM(x; θ) = zL+1 andM(x; θ̂) = ẑL+1, we have shown:

||M(x; θ)−M(x; θ̂)|| = ||zL+1 − ẑL+1|| ≤
L∑

i=1

[(
L∏

k=i+1

(1 + Lk)

)
Mi||θi − θ̂i||

]
(A17)

A.2. Proof of Theorem 3.2

Theorem 3.2 (Tighter error bound of Re-use). Under the same assumptions in Lemma 3.1, let θi denote the i-th block of a
transformer that is skipped, θ∗i represent the corresponding Re-used block, USkip is a error bound for compressed model with
Skip alone, and USkip, Re-use is a error bound for a compressed model with skip and reuse. If following condition is satisfied,

||θi − θ∗i || < ||θi|| (A18)

then, the following inequality holds:
USkip, Re-use < USkip (A19)

Proof. With Lemma 3.1, we can formulate the error bound of compressed model as follows:

||M(x; θ)−M(x; θ̂)|| ≤
L∑

i=1

Ci||θi − θ̂i|| (A20)

where Ci is a constant for each i-th block. For the unskipped block, θi = θ̂i, ||θi − θ̂i|| = 0. So, we define a parameter set
θ̂Skip that exclude θi in the parameter set θ. And we can rewrite the Lemma 3.1 as follows:

||M(x; θ)−M(x; θ̂Skip)|| ≤
∑
i∈S

Ci||θi − θ̂i|| (A21)

where S is a set of skipped (pruned) block indices. And skipped block can be represented as follows:

θ̂i,Skip = 0 (A22)

Then, we can manipulate the error bound Eq. A21 with following.

||M(x; θ)−M(x; θ̂Skip)|| ≤
∑
i∈S

Ci||θi|| = USkip (A23)

Re-use substitute the skipped weight to the weight of adjacent block:

θ̂i,Re-use = θ∗i (A24)

If we make set of i that satisfies Eq. A18 and denote asR then apply Re-use,

||M(x; θ)−M(x; θ̂Skip, Re-use)|| <
∑

i∈S∧i/∈R

Ci||θi||+
∑
j∈R

Cj ||θj − θ∗j || = USkip, Re-use (A25)

Since theR consists of block indices that satisfies Eq. A18, we have shown:

USkip, Re-use =
∑

i∈S∧i/∈R

Ci||θi||+
∑
j∈R

Cj ||θj − θ∗j || <
∑
k∈S

Ck||θk|| = USkip (A26)
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B. Detailed Experimental Setup
B.1. Baseline configurations

Table A1. Block indices ordered by the Block Influence (BI) score obtained from ShortGPT with our calibration dataset. Blocks with
lower BI scores are ranked earlier, while those with higher BI scores are ranked later. During block pruning, blocks with the lowest BI
scores are pruned first, according to the specified pruning ratio.

Order of block index

10, 11, 8, 9, 12, 13, 5, 14, 6, 4, 3, 7, 15, 17, 16, 18, 2, 19, 20, 21, 22, 1, 23, 0

ShortGPT (Men et al., 2024) ShortGPT calculates the Block Influence (BI) score by measuring cosine similarity between
intermediate features of each layer, extracted from the calibration data, and then taking its complement. We calculated the
BI scores using the 1k calibration subset of the CC12M dataset that we constructed and sorted the blocks in ascending order
based on their BI scores. The ordered block indices are presented in Table A1.

LaCo (Yang et al., 2024) LaCo presents an algorithm that merges adjacent transformer layers on the basis of the cosine
similarity between their output features and those of the original model. If similarity exceeds a predefined threshold, the
layers are merged to reduce the size of the model. However, our experiments revealed that LaCo’s performance is highly
sensitive to its hyperparameter settings. In some cases, the algorithm failed to effectively reduce the number of parameters.

To ensure a fair comparison, we conducted thorough and extensive experiments to identify the optimal hyperparameters that
maximize LaCo’s performance in the Text-to-Image (T2I) diffusion model. The selected hyperparameters are as follows:
Layer collapse interval I = 2, Number of layers to mergeM = 2, First layer to merge L = 1, Last layer to mergeH = 24,
cosine similarity threshold T = 0.7.

We applied LaCo by continuously merging layers until the compressed model achieved the desired target sparsity.

Table A2. Sub-block indices ordered with MSE metrics from FinerCut with our calibration dataset. For the efficiency, we extracted top-24
sub-block indices for pruning. During the pruning process, blocks with the lowest MSE are pruned first, according to the specified pruning
ratio.

Order of sub-block index

46, 5, 11, 6, 47, 44, 20, 19, 18, 45, 40, 41, 1, 32, 31, 17, 24, 23, 3, 42, 43, 30, 38, 37

FinerCut (Zhang et al., 2024) FinerCut employs a finer-grained blockwise pruning strategy based on the structural
decomposition of transformer blocks into two distinct sub-blocks: Multi-Head Attention (MHA) and Feed-Forward Network
(FFN) sub-blocks. To assess the importance of each sub-block, FinerCut originally proposed various evaluation metrics: 1)
cosine similarity, 2) mean-squared error (MSE), and 3) Jensen-Shannon divergence (JSD). In its original implementation
for auto-regressive LLMs, FinerCut adopted JSD after evaluating the effectiveness of these metrics. However, since the
text encoder in the T2I diffusion model lacks a language modeling head, metrics based on perplexity and JSD could not be
applied. For the fair comparison, we implemented FinerCut using MSE as the sole metric to evaluate sub-block importance,
which is the closest metric with our discrepancy metric. We also conducted experiments of FinerCut with cosine similarity
in Sec. C.6.

The sorted sub-block indices determined by FinerCut are presented in Table A2. The even indices represents the MHA
blocks and the odd indices denote the FFN blocks. Due to FinerCut’s sub-block-level pruning granularity, it was not possible
to achieve the exact sparsity ratios as ShortGPT and LaCo. Therefore, pruning was carried out up to the sub-block index that
most closely matched the target sparsity for a fair comparison.

Skrr (Ours) This section details the order of indices determined during the Skip phase of Skrr. Because the projection
module is incorporated into the denoising module of each diffusion model, the sub-block indices vary across different
diffusion models. We executed the Skip phase for all models, and the resulting order of indices for each model is presented
in the Table A3. This provides insight into how the indices are prioritized during the Skip phase for various diffusion
architectures.
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Additionally, the re-use indices of Skrr in PixArt-Σ are presented in Table A4, Table A5, and Table A6. The re-use indices
were independently computed using the skip indices for each sparsity level, and overall, the later blocks exhibited a tendency
not to be reused.

Table A3. Sub-block indices ordered with discrepancy metric D from Skrr with our calibration dataset in PixArt-Σ, Stable Diffusion 3
(SD3), and FLUX.1-dev. For the efficiency, we extracted top-24 sub-block indices for pruning. During the pruning process, blocks with
the lowest discrepancy are pruned first, according to the specified pruning ratio.

Model Order of sub-blocks

PixArt-Σ 46, 5, 6, 47, 44, 2, 11, 24, 23, 17, 18, 45, 10, 30, 29, 40, 39, 38, 37, 42, 25, 22, 43, 36
SD3 46, 5, 45, 6, 11, 2, 22, 23, 17, 18, 30, 29, 43, 44, 20, 1, 41, 42, 40, 39, 38, 37, 21, 16

FLUX.1-dev 46, 45, 5, 6, 11, 20, 19, 22, 23, 30, 29, 47, 2, 44, 32, 31, 18, 17, 37, 36, 43, 40, 39, 42

Skipped Block Re-used Block
2 4
5 7
6 -
11 13
17 19
18 16
23 21
24 -
44 -
45 -
46 -
47 -

Table A4. Skrr Re-use indices of sparsity
level 1 in PixArt-Σ.

Skipped Block Re-used Block
2 4
5 7
6 4
10 -
11 13
17 19
18 20
23 21
24 -
29 -
30 -
39 -
40 -
44 -
45 -
46 -
47 -

Table A5. Skrr Re-use indices of sparsity
level 2 in PixArt-Σ.

Skipped Block Re-used Block
2 0
5 7
6 4
10 12
11 9
17 19
18 16
23 21
24 -
25 27
29 -
30 -
37 -
38 -
39 -
40 -
42 -
44 -
45 -
46 -
47 -

Table A6. Skrr Re-use indices of sparsity
level 3 in PixArt-Σ.

B.2. Diffusion model and text encoder

For the quantitative comparison, we performed experiments on two diffusion transformer (Peebles & Xie, 2023) (DiT) text
encoders: PixArt-Σ (Chen et al., 2024). PixArt-Σ employs the T5-XXL model (Raffel et al., 2020) as its text encoder. We
have also conducted experiments on compressing text encoders that leverages several text encoders. For example, Stable
Diffusion 3 (SD3) leverages CLIP-L, CLIP-G, and T5-XXL. The results of compressing multiple text encoders are presented
in the Sec. C.5. For quantitative and qualitative evaluations, we measured discrepancy and generated images using Bfloat16
precision with the pretrained weights PixArt-alpha/PixArt-Sigma-XL-2-1024-MS obtained from the Hugging
Face Diffusers library. For PixArt-Σ, all images were generated in the resolution of 512×512. Furthermore, the FLUX model
and SD3, included in the qualitative results, was evaluated using the stabilityai/stable-diffusion-3-medium
and black-forest-labs/FLUX.1-dev weights from the Hugging Face Diffusers library. The text encoder configura-
tion and inference precision for both models were consistent with the aforementioned setup, using the Bfloat16 precision and
applying the same pruning strategy to ensure a fair and consistent evaluation. Additionally, we fixed the number of function
evaluations (NFE) to 20 across all diffusion models. All other hyperparameters, such as the classifier-free guidance (Ho &
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Salimans, 2021) scale, were set to the default value. All experiments were performed on a single Nvidia A100 or RTX 4090
GPU.

B.3. Calibration dataset

We constructed a calibration set derived from the CC12M (Changpinyo et al., 2021) dataset to identify blocks for pruning.
While existing LLM-based methods typically utilize calibration sets such as the Common Crawl’s web corpus (Raffel et al.,
2020) (C4), SlimPajama (Soboleva et al., 2023) and WikiText (Merity et al., 2016), primarily focusing on perplexity-based
performance metrics, these approaches are not directly applicable to T2I models. To address this gap, we curated a calibration
set specifically tailored for the T2I text encoder by selecting only clean captions and semantically rich prompts ranging from
150 to 250 tokens from the CC12M image-text paired dataset. This selection ensures a more effective calibration for image
synthesis tasks. Representative examples of prompts from the constructed dataset are provided in Table A7.

B.4. Metrics

Fréchet Inception Distance (FID) (Heusel et al., 2017) score The Fréchet Inception Distance (FID) is a widely used
metric for evaluating the performance of image generative models by quantifying the similarity between the distributions
of real and generated images. Specifically, FID measures the Fréchet distance between feature representations extracted
from a pre-trained image classification model, typically the Inception-V3 model. This approach leverages the model’s rich
intermediate features to capture high-level image statistics. The FID score is formally defined as follows:

dF (N (µ,Σ),N (µ′,Σ′)) = ||µ− µ′||22 + tr
(
Σ+ Σ′ + 2(ΣΣ′)

1
2

)
(A27)

where µ and Σ are the mean and covariance of the feature representations of real images, µ′ and Σ′ are the mean and
covariance of the feature representations of generated images. A lower FID score indicates that the generated images are
more similar to the real images in both quality and diversity.

CLIP (Radford et al., 2021) score The CLIP score evaluates the semantic alignment between a given text prompt and the
image generated from that prompt by measuring the cosine similarity between their CLIP embeddings. This metric leverages
a CLIP model trained on extensive image-text pairs to capture cross-modal relationships. The CLIP score can be formally
defined as:

CLIP(I, T ) = cos (Eimage(I), Etext(T )) =
Eimage(I) · Etext(T )

||Eimage(I)|||Etext(T )||
(A28)

where I is the generated image, T is the text prompt, Eimage(·) represents the CLIP image encoder, and Etext(·) denotes the
CLIP text encoder. The cosine similarity captures how well the generated image aligns with the semantic content of the text
prompt. For our experiments, we leveraged the weights of the openai/clip-vit-base-patch32 model from the
Hugging Face library to calculate the CLIP score.

DreamSim (Fu et al., 2023) score The DreamSim score quantifies the semantic similarity at the mid-level between two
images by evaluating their compositional, stylistic, and color characteristics. It quantifies how closely the overall structure
and visual attributes of the images align. Formally, the DreamSim score can be expressed as Eq. A29:

DreamSim(Iref, Ipru) = 1− distDreamSim(Iref, Ipru), distDreamSim(·, ·) ∈ [0, 1] (A29)

where Iref represents the image generated using the original text encoder, and Ipru denotes the image generated using the
pruned text encoder. The function distDreamSim(·, ·) computes the normalized semantic distance between the two images, as
output by the DreamSim model. By subtracting this distance from 1, the DreamSim score reflects higher similarity with
higher values, effectively capturing the semantic consistency between the original and pruned models’ outputs.

GenEval (Ghosh et al., 2024) GenEval is a comprehensive evaluation metric designed to assess the degree to which a T2I
generative model aligns generated images with input text prompts. In this study, GenEval was employed to evaluate whether
the image synthesis results produced by the compressed text encoder accurately reflect the intended textual descriptions.
The GenEval metric comprises six sub-metrics:
1. Single Object Generation – Assesses the model’s ability to generate images from prompts containing a single object (e.g.,
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Table A7. Examples of prompts from the calibration set across various lengths are presented. These text prompts are sampled from the
CC12M dataset, featuring rich and descriptive expressions with lengths optimized for calibration. This selection ensures the prompts are
semantically meaningful and well-suited for effective text-to-image model calibration.

Example prompts in calibration dataset

1. A collection of photography equipment neatly arranged on a wooden surface. Items include a camera, smartphone,
tablet, drone, portable power bank, tripod, cleaning kit, strap, case, and backpack. The warm wooden background
contrasts with the modern gear.
2. A moment at a subway station with a vintage train numbered “7” at the platform. The platform has safety barriers
and a yellow line, illuminated by fluorescent lights. Text reads “last stop for the 7 train” and credits the photographer.
3. A modern living room with a minimalist design. A pendant light provides a warm glow. A wooden table holds
a glass of water, a book, a smartphone, and a notebook. A white cabinet and a cityscape view complete the cozy
atmosphere.
4. A person wearing a white t-shirt with the text “A Day to Remember” in pink and black lettering. The shirt features
a black collar and short sleeves, displayed plainly for product showcasing.
5. A vibrant digital artwork of a stylized cityscape. Buildings vary in color and pattern, resembling a patchwork quilt,
creating a dense, lively urban environment.
6. A small modern bathroom with brick-patterned walls and tiled flooring. A white sink under a window, a glass
shower enclosure, and a toilet create a rustic yet clean look.
7. A vintage light-colored train car with blue and white stripes is parked on a track under a metal canopy. Metal stairs
lead to the entrance, possibly part of a museum exhibit.
8. A wall with a playful quote: “In this house we are real, we make mistakes, we say I’m sorry, we give hugs, we give
second chances, we forgive, we laugh a lot, we love each other, we are a family.” A guitar leaning against the wall
adds a cozy, homey touch.
9. A vibrant bouquet of flowers arranged in a clear glass vase. the bouquet consists of various types of flowers,
including hydrangea, calla lilies, roses, and gerbera daisies, with burgundy berries interspersed among them. the
flowers are in shades of pink and purple, creating a striking contrast. the arrangement is set against a plain, light-colored
background, which accentuates the colors and textures of the flowers. the style of the image is a close-up photograph
that captures the details of the floral arrangement.
10. The memorial church at stanford university, a large, ornate building with a prominent cross at the top, illuminated
at night. the facade is adorned with intricate mosaics and sculptures, including a central figure that appears to be a
religious figure, possibly a saint or deity. the church’s architecture is reminiscent of gothic and romanesque styles,
with pointed arches and a large central archway that leads to the entrance. the surrounding area is dimly lit, with the
church standing out as a beacon of light in the darkness.
11. A serene lakeside setting with a houseboat that resembles a private yacht. the boat is equipped with a dining area
featuring a table set for four with blue tableware, and a bar area with a blender, wine glasses, and a bottle of wine.
the deck is furnished with multiple lounge chairs and a dining table, all under a retractable awning. the houseboat is
docked near a rocky shoreline with a clear blue sky and a majestic red rock formation in the distance, suggesting a
location like lake powell. the overall atmosphere is one of relaxation and leisure, ideal for a vacation or getaway.
12. A graphic design with a stylized representation of a face, possibly a deity, with a serene expression. the face is
framed by a green border with a white outline and a blue background. above the face, there is a crescent moon and a
symbol that resembles a peace sign. below the face, the word “chill” is prominently displayed in bold, white capital
letters. the overall style of the image is modern and graphic, with a clear emphasis on the word “chill” suggesting a
theme of relaxation or tranquility.

“a photo of a giraffe”).
2. Two Objects Generation – Evaluates the model’s ability to correctly generate images from prompts with two distinct
objects (e.g., “a photo of a knife and a stop sign”).
3. Counting – Measures whether the model can accurately represent the specified number of objects (e.g. “a photo of three
apples”).
4. Colors - Verifies whether the generated image correctly reflects the color specified in the prompt (e.g., “a photo of a pink
car”).
5. Position – Tests the model’s understanding of spatial relationships described in the prompt (e.g., “a photo of a sofa under
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Table A8. Sparsity ratio of the text encoder, parameter count (Param.), memory usage (Mem.), FLOPs ratio of text encoder (T5-XXL)
with respect to the total pipline, and total TFLOPs of the pipline were evaluated on SD3 across pruning methods, considering the entire
pipeline to analyze each strategy’s impact on computational cost. All metrics were measured at the maximum sparsity achieved by each
pruning method and NFE with 28.

Method Sparsity (%) Param. (B) Mem. (GB) FLOPs (%) TFLOPs

Dense 0.0 7.66 14.49 0.41 174.2

ShortGPT 40.5 5.73 10.93 0.32 174.1
LaCo 40.5 5.73 10.82 0.32 174.1

FinerCut 41.7 5.67 10.82 0.30 174.0
Skrr (Ours) 41.9 5.73 10.93 0.35 174.1

a cup”).
6. Color Attribution – Assesses the correct assignment of specified colors to multiple objects (e.g., “a photo of a black car
and a green parking meter”).
For evaluation, we generated images using a fixed random seed, producing 553 distinct prompts with four images per prompt,
resulting in a total of 2,212 images. This setup ensured consistent and reproducible evaluation across all sub-metrics.

B.5. Ablation study setup

Due to constraints in our experimental environment, it was not feasible to evaluate the entire MS-COCO 30k image dataset
for the ablation study. Instead, we performed the study using a 1k subset. Given that both the CLIP score and the DreamSim
score effectively capture the impact of text encoder pruning, we focus our experiments on evaluating various configurations
of these two metrics within the ablation study. Furthermore, for GenEval, experiments were conducted on the entire set. The
experiments discussed in the Sec. C.5 were conducted using the same experimental setup as described above.

C. Additional Experiments
C.1. Interaction between blocks

In addition to the block pairs shown in Fig. 3, we identified additional pairs that exhibit interactions. These block pairs
consistently maintain cosine similarity; however, their norms change significantly. We provide several qualitative results
that highlight these interactions in Fig. A1 which is experimented with PixArt-Σ. For cases where k > 2, the number of
combinations increases to 48!

k!(48−k)! , making exhaustive experimentation computationally infeasible. As a result, we limit
our analysis to a subset of two-block interactions.

C.2. Computational cost on different diffusion models

In the main paper, we report the computational cost only for PixArt-Σ. In this section, we extend the analysis to include the
computational cost of dense, baselines, and Skrr-compressed models on Stable Diffusion 3 (SD3). Since SD3 contains more
parameters and a more computationally intensive denoising module compared to PixArt-Σ, the text encoder consumes fewer
FLOPs ratio in the total pipeline. However, the text encoder still accounts for significant memory usage. The detailed results
are provided in Table A8. At the highest sparsity level, FinerCut achieves the lowest parameter count, memory usage, and
FLOPs due to its slightly higher sparsity. Skrr exhibits the same parameter count and memory consumption as ShortGPT
or LaCo at the same sparsity level (40.7%). While Skrr incurs a slightly higher FLOP count than other baselines due to
the re-use mechanism, the additional computational cost is minimal, accounting for less than 0.05% of the entire pipeline
or under 0.1 TFLOPS. Despite this, Skrr still demands less computation than the dense model. These results underscore
ability of Skrr to perform T2I synthesis in a computationally efficient manner, even when applied to models with varying
complexities.

C.3. Perturbation to the null condition feature

We conducted an experiment to evaluate the impact of perturbations on f∅ and their effect on the FID and CLIP score.
Using the PixArt-Σ model, we applied a small scalar parameter λ = 10−2 and generated images for the MS-COCO
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Dense

<Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.=

3!" skip 5#$ skip 3!", 5#$ skip 13#$ skip 15#$ skip 13#$, 15#$ skip

<Game-Art - An island with different geographical properties and multiple small cities floating in space.=

<Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.=

<Happy dreamy owl monster sitting on a tree bench, colorful glittering particles, forest background, detailed feathers.=

Figure A1. Examples illustrate various block interactions. When individual blocks are skipped, the generated images remain highly similar
to those produced by the dense model, showing minimal impact. However, when two blocks are skipped simultaneously, the image is
severely degraded, demonstrating the presence of significant interactions between blocks.

30k validation set. The results demonstrated that the perturbed f∅ produced a lower FID score (22.89 → 20.65) and a
comparable CLIP score (0.314→ 0.314) to the original model. Furthermore, we provide a qualitative comparison between
the images generated with the original null condition f∅ and those created using the perturbed feature vector f̂∅ in Fig. A2.

C.4. Applying Re-use to baselines

To further validate the effectiveness of Re-use, we conducted experiments to evaluate its compatibility with other block-wise
pruning methods in a plug-and-play manner. Among the baselines considered for these experiments, ShortGPT and FinerCut
employed block-pruning techniques, allowing us to apply Re-use and carry out the evaluations. ShortGPT prunes layer
normalization, MHA, and FFN as a single unit, enabling us to perform Re-use on adjacent whole blocks. Similarly, FinerCut,
which operates at the sub-block level like Skrr, also allowed the application of Re-use. The results of these experiments are
presented in Fig. A3 and Fig. A4. The blocks re-used by shortGPT and Finercut are presented in Table A9 and Table A10,
respectively. As shown in the results, Re-use demonstrated superior performance, further substantiating its effectiveness in
alignment with both the experimental and theoretical findings presented earlier.

C.5. Additional ablation study

Effectiveness of Re-use. In this section, we provide additional experimental results to demonstrate the effectiveness of
Re-use. This mechanism effectively mitigates the performance degradation caused by Skip by utilizing the remaining blocks
in the model. To evaluate its impact, we performed extensive quantitative and qualitative experiments. Quantitatively, we
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Original Perturbed Original Perturbed Original Perturbed

<Young man wearing glasses lounging on a sofa 

with three white laptop computers on his lap.=

<A watery glass jar full of blooming flowers= <A woman carrying two skis and a couple of 

poles.=

<Apple in and over-flowing a bowl on a 

windowsill with a rose in a vase.=

<Dinosaur statue in a park with various kites 

flying through the air.=

<A family is sitting around a dinner table.=

<A narrow hotel room with two made up beds.= <A man holding a brown dog and a video 

camera.=

<A small plane flying through a cloudy blue sky.=

<There are many men preparing to cut a red 

ribbon=

<A golden clock rhino sculpture sitting on top of 

a fireplace.=

<A woman sitting on the back of a couch next to 

a man wearing glasses.=

<Small bird sitting on a skateboard posed in front 

of dark blue background cloth.=

<A guy stops himself from falling off of his 

skateboard.=

<A hotdog is sitting with fries in a paper car on a 

plate.=

Figure A2. Images generated from the same seed under the different null condition (original vs. perturbed) reveal notable differences.
While the original model occasionally exhibits poor fidelity or omits objects specified in the prompt, the images generated using the
perturbed null condition feature demonstrate higher fidelity, more accurate representation of the given prompt, and improved conditional
image synthesis performance. All image pairs were generated with the same seed.
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Dense ShortGPT ShortGPT + Re-use Dense ShortGPT ShortGPT + Re-use

P
ix
A
rt
-£

<Three giraffes standing amongst a copse of trees.= <Several people sitting around a table in a small room with a laptop, books and papers.=

<A knife and a pizza cut into slices on the plate= <a close up of a foam box of food=

<A crowd of young children sitting next to each other.= <A large green and yellow truck parked next to a similar green and yellow truck.=

<A young boy wearing a colorful umbrella hat.= <The lunch plate includes both meat and vegetable choices.=

<A man standing next to another man wearing headphones.= <large mustard yellow commercial airplane parked in the airport.=

<A cat is curled up, asleep, on a chair.= <A red motorcycle with a back seat parked on the side of a road.=

<A double red bus parked on a street.= <A motorcycle parked outside in a parking lot near the beach.=

<A motorcycle is parked in a bushy field.= <A blue double decker bus that says Garage on it.=

Figure A3. Qualitative results of applying Re-use to ShortGPT. At high sparsity levels, ShortGPT struggles to generate high-fidelity
images. Incorporating Re-use restores fidelity, text adherence, and alignment with the dense model.

21



Skrr: Skip and Re-use Text Encoder Layers for Memory Efficient Text-to-Image Generation

Dense FinerCut FinerCut + Re-use Dense FinerCut FinerCut + Re-use

<A child stops after taking a bite of a slice of pizza.= <Someone picks up a slice of fresh pizza with one hand.=

<A person on a motor bike on a road.= <a close up of a woman wearing jewelry and a boat in the background=

<The airplane is taking off the runway at the airport.= <A couple of older men sitting on top of a bench.=

<A young woman riding skis down a ski slope while holding ski poles.= <Cauliflower, carrots, and broccoli are arranged in a vegetable bowl.=

<A close up of a vase with many flowers.= <A man riding a snowboard on top of a snow covered slope.=

<A view of a traffic street filled with cars and motorcycles.= <A room filled with clutter and a laptop computer.=

<A slice of pizza sitting on a plate on top of a box.= <A double red bus parked on a street.=

<A close up of a cat on a rug on the ground.= <A yellow duck boat floating on top of a lake.=
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Figure A4. Qualitative results of applying Re-use to FinerCut. While FinerCut performs well compares other baselines in maintaining
fidelity and text alignment, its alignment with the dense model decreases. Incorporating Re-use effectively restores this alignment.
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Skipped Block Re-used Block
4 7
5 7
6 7
8 7
9 7
10 7
11 7
12 7
13 7
14 7

Table A9. ShortGPT re-use indices

Skipped Block Re-used Block
1 7
3 -
5 -
6 4
11 9
17 21
18 16
19 15
20 16
23 21
24 -
31 29
32 -
40 -
41 -
42 -
44 -
45 -
46 -
47 -

Table A10. Finercut re-use indices

measured the CLIP, DreamSim, and GenEval scores of the PixArt-Σ model with and without Re-use in the maximum
sparsity. The results, presented in Table A11, show that Re-use enhances the CLIP, Dreamsim and GenEval scores. Although
minor performance degradation was observed in other GenEval scores, the high performance achieved in challenging metrics
like counting underscores the effectiveness of Re-use, especially in scenarios where the text encoder’s capability plays a
critical role.

In addition to the quantitative findings and qualitative examples presented in the main paper, we further confirmed that
Re-use outperforms Skip alone in a variety of settings. These results are illustrated in Fig. A5 for PixArt-Σ and Fig. A6 for
FLUX.1-dev. These visualizations reinforce the effectiveness of Re-use in generating images that align closely with text
prompts, while maintaining model-agnostic behavior. The results demonstrate that Re-use not only enhances adherence to
textual descriptions but also improves the performance of dense models across diverse scenarios.

Table A11. Quantitative ablation study for Re-use with PixArt-Σ. T2I synthesis performance with Re-use demonstrates that it effectively
restores performance degraded by pruning, achieving excellent recovery without incurring additional memory overhead.

Re-use CLIP DreamSim GenEval

Single Two. Count. Colors Pos. Color attr. Overall

✗ 0.311 0.745 0.928 0.379 0.409 0.758 0.065 0.088 0.438
✓ 0.312 0.746 0.913 0.409 0.450 0.755 0.055 0.068 0.442

Compressing multiple text encoders. Modern text-to-image (T2I) diffusion generative models frequently employ multiple
text encoders to enhance their performance. A notable example is Stable Diffusion 3 (SD3), which incorporates CLIP-L,
CLIP-G, and T5-XXL text encoders. In the experiments in the main article, we focused on compressing the T5-XXL text
encoder, which is the largest and has the highest parameter count. Extending this approach, we evaluated the performance of
the model when compressing all text encoders simultaneously. Specifically, for SD3, we applied compression to CLIP-L
(30.6% sparsity), CLIP-G (30.3% sparsity) and T5-XXL (41.9% sparsity).

The quantitative results, summarized in Table A12, reveal that although the CLIP and GenEval scores experience slight
reductions, they remain sufficiently comparable to those of the dense model. Furthermore, qualitative results, illustrated
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Dense

<Three books stacked neatly on a desk, their spines displaying bold, colorful 

titles.=

Skip only Skip + Re-use (Skrr)

<Four vintage teacups stacked precariously on a matching saucer set.=

<Two dolphins leaping out of the ocean under a bright blue sky.=

<Three oranges placed on a blue ceramic bowl on a rustic wooden table.=

Dense

<Two striped socks hanging on a clothesline in the wind.=

Skip only Skip + Re-use (Skrr)

<Two paper cranes folded from patterned origami paper, sitting on a 

windowsill.=

<Three books stacked neatly on a desk, their spines displaying bold, colorful 

titles.=

<A serene countryside with rolling fields, sheep grazing, and a small stone 

bridge.=

Figure A5. Qualitative results on Re-use. Images generated with PixArt-Σ and text encoder (T5-XXL) compressed by the full Skrr
framework (dense, Skip only, and Skip with Re-use) are compared. With Skip only, performance noticeably degrades, particularly for
detailed prompts or tasks requiring strong text encoder capabilities, such as counting, resulting in deviations from dense model outputs.
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Dense

<A sculptor chiseling a marble statue in an open studio, dust and small fragments 

scattering with each precise strike. Sunlight reflects off the smooth, polished surfaces of 

finished pieces nearby.=

Skip only Skip + Re-use (Skrr)

<An ancient cliffside temple with ornate pillars, warm sunset lighting, and overgrown 

greenery.=

<A young woman with short, auburn hair sitting at a café table, reading a novel while 

sipping on a cappuccino. The sunlight streams through the window, casting a warm glow 

on her face as she pauses to reflect on the story.=

<A beekeeper in a white suit tending to a hive on a sunny farm. Bees buzz around as he 

carefully inspects a honeycomb, the  golden liquid glistening in the light.=

Dense

<Floating green cliffs with cascading waterfalls at sunset, surrounded by soft clouds and 

vibrant colors in the sky.=

Skip only Skip + Re-use (Skrr)

<A scientist in a laboratory surrounded by glowing vials and advanced equipment, 

carefully pipetting a blue liquid into a test tube. Her lab coat is slightly wrinkled, and 

safety goggles rest on her forehead.=

<A gardener planting seedlings in a lush community garden, surrounded by rows of 

vegetables and flowers. A watering can rests beside her as she gently pats the soil around 

the new plants.=

<A young woman painting a mural on the wall of an orphanage, her hair tied back in a 

loose bun. Children gather around her, some helping with brushes, while others giggle 

and point at the growing artwork.=

Figure A6. Qualitative results on Re-use. Images generated with FLUX.1-dev and text encoder (T5-XXL) compressed by the full Skrr
framework (dense, Skip only, and Skip with Re-use) are compared. When only Skip is used, some prompts may not be accurately reflected,
leading to images that deviate from those generated by the dense model or even shift to an animated style rather than a realistic one.
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in Fig. A7, demonstrate that images generated by the compressed model using Skrr on multiple text encoders exhibit
remarkable similarity to those generated by the dense model. These findings indicate that compressing multiple text encoders
simultaneously does not significantly compromise the model’s ability to generate high-quality, text-aligned images, thus
validating the robustness of the compression approach.

Table A12. Quantitative ablation study for compressing multiple text encoders with Stable Diffusion 3. The second row presents the
evaluation results of the model where only the T5 text encoder is compressed, while the third row corresponds to the model in which all
three text encoders—T5, CLIP-L, and CLIP-G—are compressed.

Compressed CLIP DreamSim GenEval

Single Two. Count. Colors Pos. Color attr. Overall

Dense 0.318 1.0 0.994 0.869 0.600 0.856 0.280 0.538 0.689
T5 0.317 0.811 0.959 0.773 0.500 0.803 0.210 0.423 0.611
All 0.313 0.717 0.991 0.654 0.534 0.835 0.105 0.353 0.579

Skrr without projection module. To measure the discrepancy in Skrr, we tailored the evaluation for the T2I diffusion
model by analyzing features extracted from the text encoder after projection through the projection module used in the
denoising process. In this section, we present both quantitative and qualitative results to validate the effectiveness of
incorporating the projection module. We evaluated the performance of the PixArt-Σ model compressed with Skrr, excluding
the projection module. The results, summarized in Table A13, reveal that, while performance is largely preserved without
the projection module, a slight degradation occurs due to loss of information. This degradation occurs because the omission
of the projection module ignores crucial components that are influential in the image generation process.

Table A13. Quantitative results of the ablation study on the projection module. Applying the projection improves CLIP score, DreamSim,
and various GenEval tasks, demonstrating its significant impact on T2I generation performance when extracting features for discrepancy
measurement.

Projection CLIP DreamSim GenEval

Single Two. Count. Colors Pos. Color attr. Overall

✗ 0.305 0.708 0.884 0.366 0.266 0.620 0.070 0.078 0.381
✓ 0.312 0.746 0.913 0.409 0.450 0.755 0.055 0.068 0.442

This trend is also reflected in the qualitative results shown in Fig. A8. The images generated with the projection module
exhibit a higher degree of similarity to those produced by the dense model compared to the images generated without
it. These findings underscore the importance of the projection module in preserving key features necessary for accurate
text-to-image generation, thereby proving its effectiveness in maintaining model performance and fidelity.

Qualitative results of beam size In the main manuscript, we quantitatively analyzed the performance variation with
respect to the beam size k. Here, we provide qualitative results to further illustrate its impact on image generation. As
shown in Fig. A9, increasing the beam size leads to better alignment between the generated images and the dense model,
demonstrating the effectiveness of proper beam sizes in improving generation quality, but slight decline in performance as
the beam size grows.

C.6. Additional quantitative results

Baseline with other metric. FinerCut employs cosine similarity and Jensen-Shannon Divergence (JSD) in addition to the
MSE used in our implementation. However, since the text encoder lacks a language head, JSD is not applicable. Moreover,
FinerCut’s reported results indicate that MSE outperforms cosine similarity, leading us to adopt it in our implementation.
To ensure a fair comparison, we reimplemented FinerCut using cosine similarity and evaluated its performance using FID,
CLIP, DreamSim, and GenEval, as presented in Table A14. Consistent with FinerCut’s findings, cosine similarity yielded
better performance compared to MSE. Consequently, we used the MSE-based FinerCut implementation as a baseline for an
equitable comparison that shows higher performance.
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Dense

<Two zebras nuzzle together in a wooded area.= <Two brown bears sitting on top of a black and white checkered bed.=

<A clock sitting on top of a wooden desk.= <The old, adult elephant stands near a wire fence.=

<An individual pizza with cheese, pineapple and sauce.= <Three brown cows grazing on a muddy grass field.=

<A brown and white dog sitting in a black leather chair.= <The infamous Big Ben clock tower sitting under a cloudy blue 

sky.=

<A herd of sheep standing on a grass covered hillside.= <An adult polar bear is swimming in the water.=

<A couple of giraffe standing next to each other.= <Two brown bears swimming together in the water.=

<A shops table filled with apples oranges and other fruits.= <This pizza is square and has pepperoni and mushrooms.=

<A brown teddy bear sitting in the middle of a road.= <A man in a wetsuit on a surfboard in the ocean.=
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Figure A7. Qualitative results of Skrr-compressed text encoders in Stable Diffusion 3. We compare compressing only the Dense model’s
output and T5-XXL (T5) versus compressing all encoders (T5, CLIP-L, and CLIP-G). Skrr maintains high image fidelity and text-image
alignment across both cases.
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Dense

<The airplane is taking off the runway at the airport.= <A man wearing goggles and standing in the snow.=

<A female in a green top and a laptop.= <A lit up counter with two fancy sinks on it.=

<Tree is a female tennis player that is playing on the court.= <A person standing in front of a plate of food.=

<A little girl in a public bathroom for kids.= <A batter standing in the batter's box waiting to hit the baseball.=

<A man using a pair of scissors to cut a pizza= <A balding man with glasses, standing near a bridge.=

<A fancy dish on a white plate at a restaurant.= <A bunch of sheep are standing in a snowy field.=

<A man performing on a skateboard ramp jump.= <Two yellowish green vases sitting on a counter.=

<A clock on side of building with skyline in background.= <A man holding a smart phone in his right hand.=

No proj. Proj. Dense No proj. Proj.
P
ix
A
rt
-£

Figure A8. Qualitative comparison of using a projection layer versus no projection in PixArt-Σ. Without projection (No Proj.), text-image
alignment remains similar, but the generated image deviates from the dense model’s output. With projection (Proj.), both text-image
alignment and image fidelity closely match the dense model.
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Dense

<A woman is helping a child put on skis.=

<A traffic sign has been vandalized to look like a scary face.=

<An airport filled with planes sitting on tarmacs.=

<Tree is a female tennis player that is playing on the court.=

<A suitcase that is on the ground with some shoes.=

<People hold flying kites in the air by the water.=

k=1
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k=2 k=3 k=4

Figure A9. Qualitative analysis of the impact of beam size k on image generation quality. As shown, increasing the beam size enhances
the alignment between generated images and the dense model, resulting in improved visual coherence and fidelity. Larger beam sizes
allow for a more exhaustive exploration of the search space, leading to more refined and higher-quality outputs. These observations further
support our quantitative findings presented in the main paper, demonstrating the effectiveness of using larger beam sizes.
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Table A14. Quantitative comparison of FinerCut similarity metrics, including cosine similarity and MSE, evaluated using FID, CLIP,
DreamSim, and GenEval. The results confirm that MSE outperforms cosine similarity, which is consistent with the finding of ours.(↑ / ↓
denotes that a higher / lower metric is favorable).

Method Sparsity FID ↓ CLIP ↑ DreamSim ↑ GenEval ↑
(%) Single Two Count. Colors Pos. Color attr. Overall

Dense 0.0 22.89 0.314 1.0 0.988 0.616 0.475 0.795 0.108 0.255 0.539

FinerCut (cos.)
26.3 19.64 0.311 0.745 0.925 0.394 0.363 0.657 0.060 0.085 0.414
32.2 21.16 0.306 0.689 0.875 0.346 0.322 0.620 0.043 0.058 0.377
41.7 21.84 0.306 0.671 0.847 0.275 0.256 0.625 0.053 0.033 0.348

FinerCut (MSE)
26.3 20.15 0.315 0.800 0.947 0.465 0.394 0.737 0.103 0.105 0.458
32.2 20.19 0.313 0.775 0.903 0.409 0.344 0.697 0.078 0.128 0.426
41.7 19.93 0.312 0.741 0.841 0.306 0.306 0.628 0.050 0.073 0.367

Skrr (Ours)
27.0 20.15 0.315 0.800 0.956 0.434 0.425 0.763 0.095 0.145 0.471
32.4 20.19 0.313 0.775 0.928 0.397 0.413 0.774 0.100 0.118 0.455
41.9 19.93 0.312 0.741 0.913 0.410 0.450 0.755 0.055 0.068 0.442

Comparison with additional benchmark. In the main paper, we provided a comprehensive comparison using metrics
such as FID, CLIP score, DreamSim, and GenEval. To further investigate the effectiveness of Skrr, we conducted additional
experiments using benchmarks including T2I-CompBench (Huang et al., 2023b) and DSG (Cho et al., 2024) scores, as
presented in Table A15. T2I-CompBench consists of various subsets, where images are generated from task-specific prompts
and evaluated using a vision-language model. Since some subtasks in T2I-CompBench overlap with those in GenEval, we
focused on the Complex, Shape, and Texture subsets, which are not included in GenEval. The DSG benchmark enables
more accurate and extensive performance evaluation by measuring T2I performance through graph-based representations. It
is composed of eight subsets. To assess the performance of Skrr, we evaluated it across all subsets on the DSG-1k dataset.
The results demonstrate that Skrr significantly preserves performance compared to other text encoder compression baselines
and are consistent with the quantitative comparisons presented in the main paper.

Comparison with additional base model. In the main script, we conducted a quantitative comparison using PixArt-Σ,
one of the best open-sourced models. We extended this experiment to a larger model, FLUX.1-shnell, and the results are
presented in Table A16. FLUX.1-shnell is derived from FLUX.1-dev by applying timestep distillation, enabling faster
sampling and making it more sensitive to the quality of the text encoder. Our results show that Skrr consistently outperforms
other text encoder compression baselines in preserving performance, consistent with the observations made using PixArt-Σ.

Comparison with extreme sparsity. In the main paper, we evaluated performance across three sparsity levels, with the
maximum sparsity set to the low 40% range. We extended these experiments to investigate how each baseline behaves under
more extreme sparsity conditions, exceeding 50%. The results, presented in Table A17, show that while other baselines
suffer from significant degradation in image fidelity—exhibiting higher FID and lower T2I performance—under extreme
sparsity, Skrr maintains high image quality and exhibits only a gradual performance drop. This further demonstrates the
effectiveness of the Re-use phase in preserving generation quality even under severe compression.

C.7. Additional qualitative results

In this section, we present additional qualitative results to further illustrate the performance of our approach. We define
the model compressed with 20%-30% sparsity as sparsity level 1, 30%-40% as sparsity level 2, and 40%-50% as sparsity
level 3. The qualitative comparison for sparsity level 1 is shown in Fig. A10, while comparisons for sparsity level 2 are
presented in Fig. A11 and Fig. A12. Finally, Fig. A13 and Fig. A14 illustrate the comparisons for sparsity level 3. The
results demonstrate that Skrr generates outputs that are more closely aligned with the prompts and more consistent with the
outputs of the dense model compared to other baselines. All presented results were generated using PixArt-Σ and are part of
a dataset comprising 30,000 images, which were produced for FID measurements.

Additionally, we provide a qualitative comparison of the text encoders compressed by each compression method across all
sparsity levels, juxtaposed with the images generated by the dense model. By comparing images generated with the same
seed at sparsity levels 1, 2, and 3, as defined above, we can assess the degree of deviation from the original image as the
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Table A15. Quantitative comparisons of Skrr with baselines with additional benchmark. We compared Skrr with the baselines of LaCo, and
FinerCut under sparsity level 3 on PixArt-Σ. We conducted evaluations on three subsets—Complex (Comp.), Shape, and Texture—from
T2I CompBench, which are orthogonal to GenEval. Additionally, we performed experiments on all sets from the DSG benchmark,
including TIFA, Paragraph (Para.), Relation (Rel.), Count, Real user (Real.), Pose, Defying (Def.), and Text. (↑ / ↓ denotes that a higher /
lower metric is favorable.)

Method Sparsity T2I-CompBench ↑ DSG-1k ↑
(%) Comp. Shape Texture TIFA Para. Rel. Count Real. Pose Def. Text Overall

Dense 0.0 0.5137 0.4595 0.5715 0.879 0.886 0.836 0.740 0.600 0.626 0.808 0.683 0.761

LaCo 40.5 0.3127 0.3155 0.3370 0.763 0.812 0.630 0.602 0.518 0.594 0.595 0.582 0.649
FinerCut 41.7 0.4162 0.3146 0.4155 0.715 0.661 0.716 0.569 0.470 0.585 0.549 0.502 0.597

Skrr (Ours) 41.9 0.4438 0.3756 0.4721 0.797 0.791 0.757 0.636 0.537 0.553 0.691 0.605 0.667

Table A16. Quantitative comparisons of Skrr with baselines with FLUX.1-schnell, evaluated using FID, CLIP, DreamSim, and GenEval.
The results confirm that our method Skrr consistently outperforms other baselines even with state-of-the-art T2I diffusion models.(↑ / ↓
denotes that a higher / lower metric is favorable).

Method Sparsity FID ↓ CLIP ↑ DreamSim ↑ GenEval ↑
(%) Single Two Count. Colors Pos. Color attr. Overall

Dense 0.0 20.45 0.312 1.0 0.994 0.879 0.603 0.738 0.280 0.500 0.666

LaCo 40.5 28.67 0.292 0.631 0.756 0.275 0.275 0.372 0.025 0.053 0.293
FinerCut 41.7 38.87 0.268 0.536 0.522 0.169 0.072 0.298 0.008 0.008 0.179

Skrr (Ours) 41.9 24.28 0.300 0.698 0.925 0.439 0.300 0.617 0.058 0.053 0.399

Table A17. Quantitative comparisons of Skrr with baselines with PixArt-Σ under extreme sparsity, evaluated using FID, CLIP, DreamSim,
and GenEval. The results confirm that our method Skrr consistently outperforms other baselines even with sparsity over 50%.(↑ / ↓
denotes that a higher / lower metric is favorable).

Method Sparsity FID ↓ CLIP ↑ DreamSim ↑ GenEval ↑
(%) Single Two Count. Colors Pos. Color attr. Overall

Dense 0.0 22.89 0.314 1.0 0.988 0.616 0.475 0.795 0.108 0.255 0.539

LaCo 48.6 280.3 0.194 0.170 0.003 0.0 0.0 0.0 0.0 0.0 0.001
FinerCut 51.3 154.7 0.191 0.176 0.078 0.008 0.0 0.027 0.0 0.0 0.019

Skrr (Ours) 51.4 20.04 0.307 0.699 0.888 0.333 0.366 0.686 0.038 0.055 0.394
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sparsity increases. These comparisons are illustrated in Fig. A15 and Fig. A16. The results reveal that, while the baseline
methods occasionally generate images similar to those from the dense model at low sparsity, the differences become more
pronounced as sparsity levels increase. In contrast, the model compressed using Skrr consistently maintains a high degree of
similarity to the original images across all sparsity levels, demonstrating its robustness.

D. Limitations
In this section, we address the limitations of Skrr. While Skrr effectively preserves Text-to-Image (T2I) performance during
pruning, its performance deteriorates noticeably at extreme sparsity levels (> 60%). This degradation is likely due to a
significant reduction in the representational capacity of the text encoder as the number of parameters becomes excessively
limited. However, such a sparsity could still provide additional memory efficiency through complementary techniques such
as weight quantization. Another limitation is that Skrr does not achieve performance improvements beyond that of the
original dense model. While pruning the text encoder can enhance certain image quality metrics, such as improving FID
scores, we observed a consistent decline in performance on benchmarks like CLIP score and GenEval as sparsity increased.
Finally, the beam-search-based approach introduced in the skip phase of Skrr incurs additional computation compared to
other methods. Let L denote the number of transformer blocks and k the beam size, methods such as ShortGPT and LaCo
have a time complexity of O(L), while FinerCut has a complexity of O(L2). Skrr exhibits a complexity of O(kL2), but
since k ≪ L in typical settings, the additional computational overhead remains relatively low. Addressing these limitations
would be an interesting future work.
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Dense ShortGPT LaCo FinerCut Skrr (Ours)

<A bronze statue with a neck tie around its neck.=

<A stuffed animal tied to something with a chain on the ground.=

<A man running towards a kick ball on a field.=

<A brown and white cow lying in a green pasture.=

<A person with a tie and a suit=.

<A pizza sitting on top of a plate on a table.=

Figure A10. Qualitative comparison of images generated by models compressed to sparsity range 20%-30% (sparsity level 1) using
ShortGPT, LaCo, FinerCut, and Skrr, alongside images generated by dense models. Skrr demonstrates a remarkable ability to produce
images closely resembling those from the dense model in the majority of cases.
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Dense ShortGPT LaCo FinerCut Skrr (Ours)

=A couple of doughnuts are wrapped in paper.=

<A group of people sitting at tables next to each other.=

<A cat is lying on a white bedsheet.=

<Two brown bears embracing each other on top of a a dirt ground.=

<A brown dog laying on a pillow on the floor.=

<A jumbo jet airplane parked with a person checking it.=

Figure A11. Qualitative comparison of images generated by models compressed to sparsity range 30%-40% (sparsity level 2) using
ShortGPT, LaCo, FinerCut, and Skrr, alongside images generated by dense models. Skrr demonstrates a remarkable ability to produce
images closely resembling those from the dense model in the majority of cases.
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Dense ShortGPT LaCo FinerCut Skrr (Ours)

<A man holding a tennis racquet into a tennis court.=

<Elephants stand in a large expanse of grass.=

<A small kitten is walking on a computer keyboard.=

<The two traffic lights are placed on a pole on the ground.=

<A bowl with some noodles inside of it.=

<A train that is on a large rail way.=

Figure A12. Qualitative comparison of images generated by models compressed to sparsity range 30%-40% (sparsity level 2) using
ShortGPT, LaCo, FinerCut, and Skrr, alongside images generated by dense models. Skrr demonstrates a remarkable ability to produce
images closely resembling those from the dense model in the majority of cases.
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Dense ShortGPT LaCo FinerCut Skrr (Ours)

<A zebra standing on top of a dirt field.=

<A little girl smiling widely for the camera=

<A lot of blue and yellow umbrellas sitting under a clock.=

<A black cat is standing on a small desk.=

<A smiling man sitting in a fancy restaurant.=

<Two zebras nuzzle together in a wooded area.=

Figure A13. Qualitative comparison of images generated by models compressed to sparsity range 40%-50% (sparsity level 3) using
ShortGPT, LaCo, FinerCut, and Skrr, alongside images generated by dense models. Skrr demonstrates a remarkable ability to produce
images closely resembling those from the dense model in the majority of cases.
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Dense ShortGPT LaCo FinerCut Skrr (Ours)

<a stuffed teddy bear in a pink dress holding a stuffed bouquet of roses=

<A bunch of sheep are standing in a snow field.=

<A box of apples sits in a marketplace.=

<A plate of food that is on a table.=

<There is a snow boarder doing a trick in the air.=

<A man standing in front of a flat screen TV.=

Figure A14. Qualitative comparison of images generated by models compressed to sparsity range 40%-50% (sparsity level 3) using
ShortGPT, LaCo, FinerCut, and Skrr, alongside images generated by dense models. Skrr demonstrates a remarkable ability to produce
images closely resembling those from the dense model in the majority of cases.
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LaCo FinerCut Skrr (Ours)

Dense

<A cat is sitting on a desk next to a computer.=
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LaCo FinerCut Skrr (Ours)ShortGPT

<A brown teddy bear sitting in the middle of the road.=

Figure A15. Qualitative comparison of images generated by models compressed to various sparsity level using ShortGPT, LaCo, FinerCut,
and Skrr, alongside images generated by dense models. Skrr demonstrates a remarkable ability to produce images closely resembling
those from the dense model in all the sparsity levels. Notably, the lighting and composition of objects in the images retains even after
harsh pruning to the text encoder.
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<A domestic cat lounges on a quilt covering a bed.=
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<A cat laying on a laptop and looking like it has glowing eyes.=

Figure A16. Qualitative comparison of images generated by models compressed to various sparsity level using ShortGPT, LaCo, FinerCut,
and Skrr, alongside images generated by dense models. Skrr demonstrates a remarkable ability to produce images closely resembling
those from the dense model in all the sparsity levels. Notably, the lighting and composition of objects in the images retains even after
harsh pruning to the text encoder.
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