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Abstract

This paper investigates how LLMs encode in-001
puts with typos. We hypothesize that specific002
neurons and attention heads recognize typos003
and fix them internally using local and global004
contexts. We introduce a method to identify005
typo neurons and typo heads that work ac-006
tively when inputs contain typos. Our experi-007
mental results suggest the following: 1) LLMs008
can fix typos with local contexts when the typo009
neurons in either the early or late layers are acti-010
vated, even if those in the other are not. 2) Typo011
neurons in the middle layers are responsible for012
the core of typo-fixing with global contexts.013
3) Typo heads fix typos by widely considering014
the context not focusing on specific tokens. 4)015
Typo neurons and typo heads work not only for016
typo-fixing but also for understanding general017
contexts.018

1 Introduction019

Inputs for real applications using large language020

models (LLMs) sometimes contain typographical021

errors (typos) (Zheng and Saparov, 2023; Wang022

et al., 2024a; Zhu et al., 2023). LLMs often make023

correct answers on inputs with typos (Wang et al.,024

2024a), which implies that LLMs can “fix” typos025

to recover the initially intended meaning. How-026

ever, LLMs sometimes imperfectly fix the meaning027

against typos, which might “damage” the perfor-028

mance of LLMs on downstream tasks (Zhuo et al.,029

2023; Wang et al., 2023; Zhu et al., 2023; Edman030

et al., 2024). To reduce the impact of typos on031

LLMs, it is essential to understand both their ro-032

bustness against typos and the reasons for perfor-033

mance degradation caused by typos more deeply.034

Existing studies have primarily focused on the035

surface-level exhibition of performance degra-036

dation due to typos (Wang et al., 2023; Zhu037

et al., 2023) and methods for improving robust-038

ness against typos (Zheng and Saparov, 2023; Zhuo039

et al., 2023; Almagro et al., 2023). Few studies040

have investigated how typos affect LLM’s inner 041

workings (Kaplan et al., 2024; García-Carrasco 042

et al., 2024b). However, previous work focused 043

on cases where the input contains only a few sub- 044

words and a typo. Therefore, they examined typo- 045

fixing working with only local contexts. In contrast, 046

studies have reported that the performance of typo 047

correction can be improved by observing longer 048

(global) contexts (Li et al., 2020; Ji et al., 2021). 049

This implies that LLMs might see global contexts 050

when handling typo inputs. 051

Based on these previous works, we hypothesize 052

that LLMs with the Transformer-based decoder 053

also fix typos along two axes: typo-fixing with lo- 054

cal contexts, which focuses on nearby subwords, 055

and typo-fixing with global contexts, which under- 056

stands longer contextual information. To verify 057

this hypothesis, we investigated neurons (typo neu- 058

rons) and attention heads (typo heads) in LLMs 059

that provide robustness against typos through the 060

following steps. First, we investigated the inner 061

workings against typos in contextualized words 062

using a word identification task (§3). Then, we 063

propose a method to identify typo neurons (§4) and 064

typo heads (§5). Subsequently, we analyze the dif- 065

ferences in their behavior between cases where the 066

model is damaged by typos and cases or not. 067

We conducted experiments using Gemma 068

2 (Team et al., 2024), Qwen 2.5 (Yang et al., 2024), 069

and two of the Llama 3 (AI@Meta, 2024) family to 070

investigate the inner workings when inputs contain 071

typos. Our findings suggest the following: 072

• LLMs can fix typos when the typo neurons in 073

either the early or late layers, both of which 074

focus on local contexts, are activated, even if 075

those in the other are not. 076

• Typo neurons in the middle layers are respon- 077

sible for typo-fixing considering global con- 078

texts, regardless of the models. 079

• Typo heads fix typos using the local and global 080

contexts, not focusing on specific tokens. 081
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• Typo neurons and typo heads not only fix ty-082

pos but also understand general grammatical083

or morphological features.084

2 Related work085

2.1 Analysis of LLMs against Typos086

Typos are mistakes in writing or typing letters, cat-087

egorized into insertion, deletion, substitution, and088

reordering (Gao et al., 2018). Research on the ro-089

bustness of LLMs regards typos as a perturbation.090

Typos change the token sequence obtained through091

the tokenization process. Changing the token se-092

quence potentially leads to a different output, even093

if the sentence is the same (Tsuji et al., 2024). Most094

existing LLM studies about typos focus on measur-095

ing the robustness against perturbed inputs (Wang096

et al., 2021, 2023; Zhu et al., 2023; Edman et al.,097

2024) or modifying the architecture or prompts098

to improve robustness (Zhuo et al., 2023; Zheng099

and Saparov, 2023; Almagro et al., 2023). Chai100

et al. (2024) reported that the larger models are101

more robust to typos. Before the LLM era, re-102

searchers corrected typos using specific models for103

typo-correction (Li et al., 2020; Ji et al., 2021).104

2.2 LLM’s Interpretability105

The feed-forward network (FFN) layer in the Trans-106

former (Vaswani, 2017) has two linear layers sep-107

arated by an activation function. Recent studies108

regard the output of the activation function as “neu-109

rons” that store knowledge (Geva et al., 2021).110

It has been reported that some neurons promote111

specific tasks (Wang et al., 2022, 2024c), knowl-112

edge (Dai et al., 2022; Bau et al., 2019; Gurnee113

et al., 2024), and behaviors (Hiraoka and Inui,114

2024; Wang et al., 2024b; Chen et al., 2024).115

Some attention heads also respond to specific116

knowledge (Gould et al., 2024; Voita et al., 2019;117

García-Carrasco et al., 2024b) or behaviors (Mc-118

Dougall et al., 2024; Crosbie and Shutova, 2024).119

Additionally, some heads are responsible for merg-120

ing multiple subwords of a word (Correia et al.,121

2019; Ferrando and Voita, 2024).122

There are various methods to investigate LLM’s123

interpretability. Some measure contributions to124

the residual stream (García-Carrasco et al., 2024a;125

Hanna et al., 2024), while others observe intermedi-126

ate predictions (nostalgebraist, 2020; Kaplan et al.,127

2024), graph the inference process (Ferrando and128

Voita, 2024), or directly observe activations (Wang129

et al., 2022; Hiraoka and Inui, 2024; Wang et al.,130

2024c). We hypothesize that typo neurons are a 131

type of skill neurons. Therefore we use the direct 132

activation observation method, following previous 133

studies on skill neurons (Wang et al., 2022; Hiraoka 134

and Inui, 2024). Mosbach et al. (2024) concludes 135

that understanding the inner workings is important 136

to improve the model performance. 137

Lad et al. (2024) divides LLMs into four stages. 138

The early layers convert token-level representations 139

into entity-level representations with local contexts 140

as Detokenization. The early middle layers build 141

representations with global contexts as Feature En- 142

gineering. The late middle layers, convert current 143

representations into next token representations as 144

Prediction Ensembling. Finally, the late layers re- 145

move the noise and refine the distribution of the 146

next token as Residual Sharpening. Elhage et al. 147

(2022) reports that the late layers perform the op- 148

posite function of the early layers’ Detokenization, 149

converting entity-level representations into token- 150

level representations as Retokenization. 151

Kaplan et al. (2024) reveals which layers are 152

responsible for typo-fixing. However, they only 153

focused on isolated words as inputs by layer-level 154

observation. We focus on neurons and heads and 155

experiment with global contexts. 156

3 Preliminary 157

We created a dataset that LLMs can solve without 158

typos (§3.2). Then, we applied typos to the dataset 159

(§3.3) and conducted a preliminary experiment to 160

observe accuracy when inputs include typos (§3.4). 161

Next, we identify typo neurons and reveal their spe- 162

cific roles (§4). Similarly, we conduct analogous 163

experiments for attention heads (§4). 164

3.1 Models 165

We used Google’s Gemma 2 (Team et al., 2024) 166

with 2B, 9B, and 27B parameters, Meta’s Llama 167

3.2 (AI@Meta, 2024) with 1B and 3B parameters, 168

Meta’s Llama 3.1 with 8B parameters, and Qwen’s 169

Qwen 2.5 (Yang et al., 2024) with 3B, 7B, 14B, 170

32B parameters; Gemma 2 27B and Qwen 2.5 171

32B were loaded in bfloat16, while the others were 172

loaded in float321. We conducted all experiments 173

using greedy generation. 174

3.2 Clean Datasets without Typos 175

We used a word identification task in which LLMs 176

infer a single word from a given definition. Since 177

1We described our computing environment in Appendix A.
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Figure 1: The dataset overview (left), an overview of an input example to LLM (middle), and the visualization of
Mx for calculating neurons activation score sxn (right).

typo-fixing relies on vocabulary knowledge, it is178

crucial to use a task that directly reflects the LLMs’179

vocabulary knowledge, such as word identification.180

Moreover, we avoided tasks requiring complex rea-181

soning, such as NLI, as variations in sample dif-182

ficulty could hinder a clear observation of typo-183

related phenomena.184

For instance, we feed the definition of the word185

as input, like “a young swan”, to an LLM, and then186

the model is expected to output the corresponding187

word “cygnet”. Following Greco et al. (2024), we188

extracted 62,643 word-definition pairs from Word-189

Net (Fellbaum, 2005)2. We created the dataset with190

these pairs. We designed a prompt so that LLMs191

can solve this task by predicting tokens following192

outputs, as shown in the middle part of Figure 1.193

For our analysis, we need a dataset composed194

of samples that LLMs can correctly answer when195

the samples do not include typos. Therefore, we196

extracted the top 5,000 or 1,000 word-definition197

pairs after sorting the samples by descending order198

of likelihood for the correct words3. Note that we199

created a unique dataset for each model.200

3.3 Generating Inputs with Typos201

3.3.1 Typo Dataset202

To focus on text with typos, we generated inputs203

with typos from the definition part of the clean204

dataset created in §3.2. We selected the top t most205

important tokens depending on their importance206

2WordNet via NLTK (Bird and Loper, 2004) ver.3.9.1.
3Due to Llama 3.2 1B’s worse performance, we could not

extract 5,000 pairs for the Llama 3 family. Therefore, we
extract 1,000 pairs for the Llama 3 family.

scores on the word identification task. Then, we 207

injected a random single letter or digit into each 208

selected token as a typo. The importance scores 209

were calculated with the method used in Wang et al. 210

(2023); Li et al. (2019), with the smallest models 211

among ones that share the same tokenizer (e.g., 212

Gemma 2 2B for Gemma 2 or Llama 3.2 1B for 213

Llama 3 family). Specifically, we obtained the im- 214

portance scores by performing back-propagation 215

while predicting words from their definitions. This 216

process assigns higher gradients to tokens that are 217

important to predict the correct answer. For exam- 218

ple, consider the sentence “a young swan” with 219

t = 2 and the top two most important words are 220

“young” and “swan.” In this case, we inject random 221

letters such as “e” and “5” into random positions4 222

of each word, which results in “a youneg s5wan.” 223

3.3.2 Split Dataset 224

We often obtain a different number of subwords 225

when tokenizing typo inputs compared to clean 226

inputs. For instance, the tokenizer encodes the 227

word “young” into a single token, but it tokenizes 228

the typo version “youneg” into two tokens (e.g., 229

“you / neg”). When comparing the inner workings 230

when LLMs encode the clean inputs and the typo 231

inputs, the difference in the token length might 232

prevent appropriate analysis5. 233

4We exclude the positions before the spaces to avoid the
situation where a typo would appear at the end of the previous
token rather than within the target token.

5Kaplan et al. (2024) reported that there are inner workings
to fix the original token from differently tokenized subwords.
We need to exclude the effect of this factor to deeply focus on
the typo-related inner workings.
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Figure 2: Accuracy on the word identification task with
different numbers of typos t.

To divide typo-related inner workings into the234

factor corresponding to typos and the one to tok-235

enization difference, we created the “split dataset”236

in addition to the “typo dataset” mentioned in237

§3.3.1. The split dataset contains samples tok-238

enized into the same number of tokens as the one239

with typos. For example, when the typo dataset240

has a sample whose tokenized sequence is “a / you241

/ neg / swan”, an example of counterparts in the242

split dataset is “a / y / oung / swan” whose length243

is equivalent to the one of the typo version. We can244

obtain the various tokenization candidates using245

the tokenizer and we randomly selected one candi-246

date with the same length as the typo input. This247

process is shown in Figure 1 (left).248

3.4 Preliminary Experiment249

To examine the impact of typos on the model perfor-250

mance, we applied typos to t tokens (1 ≤ t ≤ 16)251

and analyzed the change in accuracy.252

Figure 2 shows the preliminary experimental253

results. The accuracy of t = 0 indicates the per-254

formance of the clean data without typos. Since255

the clean data consists of samples that each model256

can answer correctly, the accuracy for all models257

is 1.0. As shown in the figure, the larger models258

maintain higher accuracy than the smaller models259

even with many typos. This result supports the260

existing work reporting that the larger model has261

robustness against typos (Chai et al., 2024). This262

preliminary result also indicates that the robustness263

of larger models against typos is insufficient, re-264

sulting in a performance drop. We conclude that265

typos damage performance, but larger LLMs have266

some robustness against typos, which motivates267

us to investigate the typo-related inner workings.268

Furthermore, this leads us to a deep analysis of the269

reasons for the differences in robustness against270

typos by model sizes for further improvement.271

4 Typo Neurons 272

Some FFN layers have been found to combine mul- 273

tiple tokens into a single representation vector (Ka- 274

plan et al., 2024; Elhage et al., 2022; Lad et al., 275

2024). Additionally, it has been reported that cer- 276

tain neurons within LLMs function as “skill neu- 277

rons” with specific roles (Wang et al., 2022). In 278

this section, we investigate the existence of typo 279

neurons, a particular type of skill neuron that is 280

responsible for recognizing and fixing typos. 281

4.1 Method to Identify Typo Neurons 282

Following the approach of Hiraoka and Inui (2024), 283

we compare the activation values of neurons be- 284

tween clean inputs and typo inputs to identify neu- 285

rons that specifically respond to typos. Let x ∈ X 286

be a sample of the dataset, where x is a sequence of 287

|x| tokens: x = w1, ..., wm, ..., w|x|. Each sample 288

comprises the prompt (e.g., “Q. What is ... A. This 289

is ”) and the answer (e.g., “cygnet”). 290

The activation value sXn of a neuron n when 291

feeding a dataset X is defined as the following: 292

sXn =
1

|X|
∑
x∈X

(
1

|Mx|
∑

m∈Mx

f(xm1 , n)

)
, (1) 293

where |X| is the number of samples in the dataset. 294

f(xm1 , n) is a function calculating the activation 295

value of the neuron n corresponding to wm when 296

the LLM reads the input xm1 = w1, ..., wm. Mx is 297

a set of indices that indicates the token positions, 298

and |Mx| is the number of indices. We define Mx 299

as the indices comprising the answer word tokens 300

and t important words. 301

For example, in Figure 1, Mx for the clean in- 302

put is composed of “young” and the apostrophe 303

before “cygnet”, while Mx for the typo input is 304

composed of “you”, “neg”, and the apostrophe and 305

for the split input is “y”, “oung”, and the apos- 306

trophe. In the figure, tokens comprising Mx are 307

indicated with an orange background. 308

We obtain the responsibility of neurons special- 309

ized to the typo inputs separated from clean and 310

split inputs with the following score ∆n: 311

∆n = s
Xtypo
n −max

(
sXclean
n , s

Xsplit
n

)
, (2) 312

where Xtypo, Xclean, and Xsplit are the typo, clean, 313

and the split datasets, respectively. 314

A larger ∆n indicates the neuron n that responds 315

specifically to typos but not clean inputs or split 316

inputs. Among the neurons, the top K neurons 317

based on ∆n scores are identified as typo neurons. 318
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Figure 3: Distribution of ∆n (upper) and percentage of typo neurons per layer (lower) with t = 1. The left figures
are for Gemma 2, the center figures are for Llama 3 family and the right figures are for Qwen 2.5.

4.2 Experimental Results319

This section investigates the typo neurons found320

with the method introduced in §4.1. We used the321

number of typos t = 1. Appendix C additionally322

describes the results for t = 16.323

Figure 3 shows the distribution of ∆n and the324

distribution of the typo neurons in each layer. We325

extracted the top 0.5% of neurons with the highest326

∆n as the typo neurons. The average (Ave) and327

standard deviation (SD) in Figure 3 indicate that a328

few neurons have significantly larger scores than329

others, similar to knowledge and skill neurons (Dai330

et al., 2022; Wang et al., 2022).331

For the distribution of neurons, Llama 3 family332

and Qwen 2.5 have many typo neurons in the late333

layers(i.e., from 0.8 to 1.0). In contrast, Gemma 2334

models have many typo neurons in the early layers335

(i.e., from 0.0 to 0.2), and few are in the late layers.336

Especially in the 9B and 27B models, the largest337

number of typo neurons exist in the early layers.338

According to Lad et al. (2024), the late layers per-339

form Residual Sharpening, which removes noise340

from representations. Considering typos as noise,341

it is natural that many typo neurons are in the late342

layers. Besides, Elhage et al. (2022) reports that the343

early layers are responsible for Detokenization that344

converts raw token representations into coherent345

entities (e.g., words), while the late layers perform346

Retokenization that converts them back into token-347

level representations. These suggest that Gemma348

2 fixes typos as Detokenization, while LLaMA 3349

family and Qwen 2.5 fix typos as Retokenization.350

Since both processes use local contexts, we can see351

the variety of the balance in responsibility between352

the early and late layers. As shown in Appendix C,353

with many typos, typo neurons in the late layers 354

of Gemma 2 models also increased. This indicates 355

that the distribution of responsibility between the 356

early and late layers is adaptable. 357

In the middle layers (i.e., 0.2-0.8), all models 358

have many typo neurons. This suggests that these 359

layers play a common role in typo-fixing across 360

models. Since the early middle layers create rep- 361

resentations depending on global contexts with at- 362

tention heads as Feature Engineering and the late 363

middle layers convert current representations to 364

next token representations as Prediction Ensem- 365

bling (Lad et al., 2024), typo-fixing in these layers 366

seem to focus on recognition of global contexts in 367

contrast to the early and late layers. 368

4.3 Discussion 369

While the experimental results in §4.2 suggest the 370

existence of typo neurons, their impact has not been 371

clarified. Then, in this section, we investigate their 372

specific impact, focusing primarily on Gemma 2. 373

4.3.1 Neuron ablation 374

We expect typo neurons to work typo-fixing. There- 375

fore, ablating them should result in a remarkable 376

decrease in performance for typo inputs while not 377

affecting the performance for clean inputs. 378

We test this hypothesis by conducting ablation 379

experiments on typo neurons and randomly se- 380

lected neurons of Gemma 2 models. Appendix D 381

discusses the results of the ablation study for other 382

models. From a dataset of 5,000 samples, 100 ran- 383

domly selected samples were used to identify typo 384

neurons. Then, we evaluate the performance of the 385

word identification task using the remaining 4,900 386

samples by deactivating the identified neurons. 387
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Clean
Dataset

Typo
Dataset

Gemma 2 2B 1.00 0.86
⊖ Random Neurons 0.98 0.87
⊖ Typo Neurons 0.84 0.73

Gemma 2 9B 1.00 0.93
⊖ Random Neurons 0.99 0.96
⊖ Typo Neurons 0.93 0.90

Gemma 2 27B 1.00 0.95
⊖ Random Neurons 0.98 0.94
⊖ Typo Neurons 0.96 0.91

Table 1: Accuracy of the word identification task with
neuron ablation on clean and typo datasets. “⊖ Ran-
dom/Typo Neurons” indicates the performance by ablat-
ing random and typo neurons, respectively.

Figure 4: Distribution of typo neurons per layer for
samples damaged or not. Values above the black line
indicate many typo neurons activated when the LLMs
predicted correct words.

Following §4.2, we identified the top 0.5% of388

neurons as typo neurons. We also randomly se-389

lected 0.5% of neurons as a baseline. Deactivation390

was performed by setting the output values of the391

neurons to zero. The experiments were conducted392

for the clean inputs and the typo inputs with t = 1.393

Table 1 shows the experimental results. For typo394

inputs, performance remained largely unchanged395

when random neurons were ablated, regardless396

of the model. However, performance decreased397

when typo neurons were ablated. This suggests398

that a small number of typo neurons play an impor-399

tant role in typo-fixing for typo inputs. For clean400

datasets, the ablation of typo neurons also resulted401

in a larger performance decrease than the random402

neuron ablation. This indicates that typo neurons403

may not exclusively act on typos but could also404

play a crucial role in processing general grammati-405

cal or morphological features. We can see similar406

results with the other models (Appendix D).407

4.3.2 Neurons for Typo-fixing408

The experiments in §4.2 sought typo neurons by409

comparing clean and typo inputs without consid-410

ering whether the LLMs could correctly solve the 411

task with typo inputs. This section focuses on the 412

difference in typo neurons between cases where the 413

LLMs answer with typos correctly and incorrectly. 414

From the dataset of 5,000 samples, we extracted 415

100 samples where typos did not damage the in- 416

ferences and the correct word was predicted. Sim- 417

ilarly, we extracted another 100 samples where 418

typos damaged the inferences and led to incorrect 419

word prediction. We compared differences in the 420

activation of typo neurons in these two groups. We 421

conducted this experiment with t = 1 and com- 422

pared the difference in the layer distribution of the 423

typo neurons that have the top 0.5% ∆n. 424

Figure 4 shows the result. In the 9B and 27B 425

models, the number of typo neurons in the early 426

layers increases when incorrect inferences are pre- 427

dicted. This suggests that some neurons in the early 428

layers might play other roles than typo-related phe- 429

nomena, and activation of those neurons prevents 430

correct recognition of typos. In the 2B model, when 431

the model fails to fix typos, typo neurons in the 432

middle-middle layers are activated. This suggests 433

that the strong activations observed in the middle- 434

middle layers of Gemma 2 2B in §4.2 are due to 435

neurons damaged by typos rather than contributing 436

to typo-fixing. Across all models, more typo neu- 437

rons in the early middle layer (e.g., 0.2-0.4) were 438

activated when typos did not damage inferences. 439

This indicates the importance of typo neurons in 440

the early middle layers. 441

5 Typo Heads 442

5.1 Method to Identify Typo Heads 443

Typo-fixing may not solely depend on neurons but 444

subword merging by attention heads (Correia et al., 445

2019; Ferrando and Voita, 2024) and is based on 446

understanding local and global contexts. We as- 447

sume two types of such heads for typo inputs: 1) 448

the one focusing on important tokens and 2) the 449

one widely attending contexts. 450

In this section, we investigate the attention heads 451

specialized to typo inputs by comparing attention 452

maps. Herein, we calculated the KL divergence 453

between a uniform distribution and the rows of at- 454

tention maps by considering them as a probability 455

distribution. The KL divergence increases mono- 456

tonically with the number of tokens, which can 457

result in higher values for typo inputs or split in- 458

puts, as they often have more tokens than clean 459

inputs. We alleviate this problem by normalizing 460
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Figure 5: Distribution of ∆h for each model with t = 1. The heat map colors are centered around 0, and the tick
mark closest to 0 on the positive side of the heat bar represents the maximum ∆h. The left figures are for Gemma 2,
the center figures are for Llama 3 family and the right figures are for Qwen 2.5.

Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

Average -0.0045 -0.0042 -0.0032 -0.0040 -0.0039 -0.0049 -0.0043 -0.0053 -0.0047 -0.0050
SD 0.0038 0.0041 0.0049 0.0045 0.0040 0.0044 0.0046 0.0056 0.0052 0.0057

Table 2: The average and standard deviation (SD) of ∆h.

the KL divergence with the maximum score log2m,461

defined as follows:462

sXh =
1

|X|
∑
x∈X

(∑
m

(
DKL(Px,m,h||Um)

log2m

))
,

(3)463

where DKL(·) is the function that returns the KL464

divergence, Um is a uniform distribution over m465

elements. Px,m,h is the m-th row of the attention466

map output by head h for the token sequence x. In467

decoder models, attention scores for the m-th token468

and each token from the first to the m-th token sum469

to 1. Unlike neurons, for the calculation of typo470

head identification, we did not narrow down the471

tokens to calculate and used all tokens in prompts.472

Similar to Eq. (2) in neurons, the responsibility473

score of the heads to the typos is defined as follows: 474

∆h = s
Xtypo

h −max
(
sXclean
h , s

Xsplit

h

)
, (4) 475

where Xtypo, Xclean, and Xsplit are the typo, clean, 476

and split datasets, respectively. A large abso- 477

lute value of ∆h indicates that the head behaves 478

much differently for typo inputs than for clean 479

ones. Specifically, a large positive ∆h indicates 480

the head that focuses on specific tokens for typo- 481

fixing, while a large negative ∆h indicates the head 482

that widely attends contexts for typo-fixing. We 483

identified the top J heads with the highest absolute 484

value of ∆h as typo heads. 485

5.2 Experimental Results 486

We used the number of typos t = 1. Appendices E 487

and F discuss other settings. As shown in Figure 5, 488
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Clean
Dataset

Typo
Dataset

Gemma 2 2B 1.00 0.86
⊖ Random Heads 0.87 0.80
⊖ Typo Heads 0.81 0.75

Gemma 2 9B 1.00 0.93
⊖ Random Heads 0.80 0.76
⊖ Typo Heads 0.89 0.81

Gemma 2 27B 1.00 0.95
⊖ Random Heads 0.35 0.33
⊖ Typo Heads 0.69 0.67

Table 3: Accuracy of the word identification task with
head ablation on clean and typo datasets. “⊖ Random
Heads” and “⊖ Typo Heads” indicate the performance
by ablating random and typo heads, respectively.

the differences between the maximum and absolute489

minimum scores are approximately 10 times in490

all models. The average and standard deviation491

in Table 2 also indicate that few heads near the492

minimum ∆h are distinctive. These results suggest493

that heads recognize and fix typos by observing the494

wider context, not by focusing on specific tokens.495

As the model size increases, the proportion of496

heads with ∆h close to zero increases. This con-497

trasts with the results in §4.2, where model dif-498

ferences contributed to the difference in the distri-499

bution of typo neurons. However, we can see a500

similar trend between the distributions of typo neu-501

rons and typo heads in very early layers (∼ 10%502

layers from the first layer). For instance, Gemma 2503

has some heads with large ∆h in these layers while504

the Llama3 family and Qwen 2.5 do not. This trend505

among models is similar to the one in the distribu-506

tion of typo neurons (see Figure 3).507

5.3 Discussion508

In this section, we investigate the specific impact509

and behavior of typo heads, focusing primarily on510

Gemma 2 similar to §4.3.511

5.3.1 Head Ablation512

Following the approach in §4.3.1, we identified513

typo heads in Gemma 2 using 100 randomly se-514

lected samples of the dataset. Then, we ablated515

these identified typo heads and measured the ac-516

curacy on the remaining 4,900 samples. Since the517

total number of heads is smaller than neurons, we518

identified the top 1.5% of heads as typo heads (e.g.,519

J = 3, 10, 22 for 2B, 9B, 27B, respectively). We520

also randomly selected 1.5% of heads as a base-521

line. We performed ablation by setting all attention522

scores of the selected heads to 0. The experiments523

were conducted for the clean inputs and the typo524

inputs with t = 1. We described the results of the 525

ablation study for other models in Appendix G. 526

Table 3 shows the experimental result. In the 9B 527

and 27B models, the ablation of random heads sig- 528

nificantly damages the performance in both clean 529

and typo datasets compared to the typo heads, 530

while the ablation of typo heads also degrades the 531

performance to some degree. This suggests that 532

typo heads are less important in typo-fixing than 533

other heads, while typo neurons have an important 534

role for both typo and clean inputs in §4.3.1. In 535

contrast, for the 2B model, which has fewer heads, 536

the ablation of typo heads resulted in a greater 537

decrease in accuracy than the ablation of random 538

heads. This suggests that when the number of heads 539

and parameters are limited, they are actively used 540

for typo-fixing. 541

In summary, the importance of typo heads is 542

minor in larger models but higher in smaller mod- 543

els. Additionally, since the ablation of typo heads 544

also reduces accuracy on clean datasets, typo heads 545

may play a role in processing general contextual 546

information like typo neurons. 547

6 Conclusion 548

This paper investigated how the neurons and heads 549

of Transformer-based LLMs respond to typo inputs. 550

Experimental results show that LLMs can fix typos 551

with local contexts when the typo neurons in either 552

the early or late layers are activated even if those 553

in the other are not. While they fix typos by recog- 554

nizing local contexts, typo neurons in the middle 555

layer are responsible for the core of typo-fixing 556

with global contexts. Typo heads fix typos using 557

the context widely rather than focusing on specific 558

tokens. Additionally, typo heads are more critical 559

for smaller models than for larger models. 560

Our findings indicate that Transformer-based 561

LLMs fix typos with not only local but also global 562

contexts, which suggests that improving typo ro- 563

bustness requires approaches that emphasize recog- 564

nition of both local and global contexts. The re- 565

sults of the ablation study show that typo-fixing 566

is related to general grammatical or morphologi- 567

cal recognition, which suggests that methods for 568

improving typo robustness may also enhance gen- 569

eral contextual recognition performance. These 570

findings also suggest that aiming at improving gen- 571

eral contextual recognition could contribute to typo 572

robustness. 573
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Limitation574

This work focuses on the investigation of typo-575

related inner workings. We believe our findings576

will help develop applications to alleviate the per-577

formance decrease caused by typo inputs. How-578

ever, the discussion of a concrete method for this579

application is out of the scope of this paper. Our580

analysis was limited to Gemma 2, Llama 3 fam-581

ily, and Qwen 2.5 models and examined models582

with sizes up to 32B. Larger models or LLMs with583

different architectures may have different proper-584

ties. For hyperparameters, our experiments were585

performed only at t ∈ {1, 16}. Furthermore, our586

experiments focused on a specific task, and models587

may show different properties in a wider variety588

of tasks. We ran all experiments only once, al-589

though there was randomness in applying typos590

and conducting some experiments. For typo neu-591

rons, models were observed to have either more592

typo neurons in the early layers or more in the late593

layers. This may be due to differences in training594

methods or datasets. However, the true reason re-595

mains unclear. Additionally, our method mostly596

detected neurons and heads that respond to inputs597

with typos. However, it cannot distinguish between598

those that contribute to typo-fixing and those that599

are damaged by typos.600
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A Computing Environment 846

We used NVIDIA A100 40GB×2 for Gemma 2 847

and Llama 3.1 8B, NVIDIA A100 80GB×1 for 848

Qwen 2.5, and NVIDIA RTX 3060×1 for Llama 849

3.1 1B and 3B. 850

B Models Using the Same Tokenizer 851

Since LLMs using the same tokenizer share their 852

vocabulary, the impact of typos could be similar. 853

To compare LLMs using the same tokenizer un- 854

der similar settings, we constructed datasets for 855

such models so that they contain as many identical 856

samples as possible. 857

C Typo Neurons for Many Typos 858

In §4.2, we reported the results for t = 1. Here, we 859

describe the behavior of typo neurons with t = 16, 860

where many typos are introduced. Since we are 861

comparing t = 1, which contains a minimal num- 862

ber of typos, with t = 16, which has an unreal- 863

istically high number of typos, it is expected that 864

the behavior for real-world typos would fall some- 865

where between them. 866

Figure 6 (upper) shows that the maximum value 867

of ∆n increases across all models. This indicates 868

that typo neurons respond more strongly as the 869

number of typos increases. Since the average and 870

standard deviation remain close to zero, it suggests 871

that even in such environments, most neurons acti- 872

vate similarly to those with clean input. 873

For the Llama 3 family and Qwen 2.5, the pro- 874

portion of typo neurons in the late layers increases 875

further, while there are few typo neurons in other 876

layers. However, We extracted only the top 0.5% 877

of neurons with the highest ∆n as the typo neu- 878

rons. Therefore, even if neurons in other layers are 879

activated similarly to those in t = 1, a significant 880

increase in typo neuron activation in the late layers 881

could cause a ranking inversion of ∆n. This leads 882

to the possibility that some activated neurons are 883

not extracted as the typo neurons. 884

To address this, we redefine typo neurons by 885

extracting neurons with ∆n values greater than the 886

minimum ∆n of the typo neurons in t = 1 for each 887

model. In other words, we extracted neurons that 888

activate equally to or greater than the typo neurons 889

in t = 1 as typo neurons. Figure 7 shows the 890

layer-wise distribution of typo neurons under this 891

new criterion. This shows that while typo neurons 892

increase in the late layers of Llama 3 family and 893

Qwen 2.5, they also increase significantly in the 894
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Figure 6: Distribution of ∆n (upper) and percentage of typo neurons per layer (lower) with t = 16. The left figures
are for Gemma 2, the center figures are for Llama 3 family and the right figures are for Qwen 2.5.

Figure 7: Percentage of typo neurons per layer with t = 16 when we extracted neurons that activate greater than the
typo neurons at t = 1 as typo neurons. The left figures are for Llama 3 family, the center figures are for Qwen 2.5
and the right figures are for Gemma 2.

middle layers. For Gemma 2, the typo neurons in895

the early layers decrease, while those in the late896

layers increase even in Figure 7. This suggests897

that both the early and late layers are responsible898

for recognizing local contexts and the balance of899

responsibility between them can shift.900

The number of typo neurons in Qwen 2.5 32B901

and Gemma 2 27B does not increase compared to902

the case of t = 1 in §4.2, while the number of903

typo neurons in most other models significantly904

increases in Figure 7. This suggests that typo neu-905

rons in larger models can fix typos regardless of906

the number of typos.907

D Neuron Ablation for Other Models908

In §4.3.1, we reported the results for Gemma 2.909

Here, we examined the ablation study for typo neu-910

rons in the Llama 3 family and Qwen 2.5.911

Table 4 shows that the results of the ablation912

study are consistent, while there were differences913

in typo neuron distributions across models. In all914

models, ablating random neurons did not reduce915

accuracy on the typo dataset. In contrast, ablating916

typo neurons led to a drop in accuracy on both 917

the clean and typo datasets. This indicates that 918

typo neurons may not exclusively act on typos but 919

could also play a crucial role in processing general 920

grammatical or morphological features, regardless 921

of the model. 922

E Typo Heads for Many Typos 923

Similar to Appendix C, while §5.2 reported for 924

t = 1, here we describe the behavior of typo heads 925

under the t = 16 setting. 926

Table 5 shows that ∆h shifts significantly in the 927

negative direction at t = 16 compared to t = 1. the 928

minimum values in Figure 8 also shows this transi- 929

tion. Additionally, the increase in dark blue areas 930

in Figure 8 indicates that more heads respond rel- 931

atively strongly. However, the difference between 932

t = 1 and t = 16 for typo heads is smaller than for 933

typo neurons. 934

F Typo Heads for Qwen 2.5 14B 935

Figure 9 shows the distribution of ∆h for Qwen 936

2.5 14B, which was not included in §5.2 and Ap- 937
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Figure 8: Distribution of ∆h for each model with t = 16. The heat map colors are centered around 0, and the tick
mark closest to 0 on the positive side of the heat bar represents the maximum ∆h. The left figures are for Gemma 2,
the center figures are for Llama 3 family and the right figures are for Qwen 2.5.

pendix E due to space constraints. The results are938

consistent with those of other models and model939

sizes, as the initial layers contain fewer typo heads,940

and the distribution of typo heads is sparser than in941

smaller models.942

G Head Ablation for Other Models943

Similar to Appendix D, we examined the ablation944

study for typo heads in the Llama 3 family and945

Qwen 2.5.946

In Table 6, both ablations significantly degraded947

the model’s capability in the Llama 3 family, Qwen948

2.5 14B and Qwen 2.5 32B, making it difficult to949

determine the importance of typo heads. In con-950

trast, in Qwen 2.5 3B and Qwen 2.5 7B, the abla-951

tion of typo heads decreases accuracy more than952

the ablation of random heads. Compared to §5.3.1,953

where ablation of typo heads in the 9B model had954

little impact on accuracy, this suggests that typo955

heads remain important even in the middle model956

in Qwen 2.5, which has few typo neurons and typo957

heads in the early layers.958

H Visualization of Typo Heads. 959

Figure 10 shows the attention maps for each input, 960

using the top 1.5% of heads with the highest ab- 961

solute value of ∆h scores in Gemma 2 9B as typo 962

heads. 963

The typo head in Layer 2 Head 11 recognizes 964

sentence boundaries. This head is not a head that 965

contributes to typo-fixing but is damaged by typos. 966

Our method has a limitation in that it cannot distin- 967

guish between heads that contribute to typo-fixing 968

and those that are damaged by typos. The typo 969

head in Layer 5 Head 7 responds to semantic con- 970

nections and fixes typos by leveraging synonyms. 971

This is a typical typo-fixing mechanism of early 972

middle layers described above, which is a recogni- 973

tion of global contexts. The typo head in Layer 30 974

Head 3 fixes typos by recognizing local contexts. 975

Additionally, most typo heads strongly attend to 976

’<bos>’. 977
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Clean
Dataset

Typo
Dataset

Llama 3.2 1B 1.00 0.69
⊖ Random Neurons 0.91 0.61
⊖ Typo Neurons 0.73 0.46

Llama 3.2 3B 1.00 0.90
⊖ Random Neurons 0.97 0.89
⊖ Typo Neurons 0.87 0.79

Llama 3.1 8B 1.00 0.94
⊖ Random Neurons 0.99 0.93
⊖ Typo Neurons 0.83 0.80

Qwen 2.5 3B 1.00 0.92
⊖ Random Neurons 0.99 0.91
⊖ Typo Neurons 0.84 0.71

Qwen 2.5 7B 1.00 0.92
⊖ Random Neurons 0.98 0.92
⊖ Typo Neurons 0.86 0.80

Qwen 2.5 14B 1.00 0.95
⊖ Random Heads 0.99 0.94
⊖ Typo Heads 0.92 0.82

Qwen 2.5 32B 1.00 0.96
⊖ Random Neurons 0.99 0.96
⊖ Typo Neurons 0.93 0.85

Table 4: Accuracy of the word identification task with
neuron ablation on clean and typo datasets. “⊖ Random
Neurons” and “⊖ Typo Neurons” indicate the perfor-
mance by ablating random and typo neurons, respec-
tively.

I Future Work978

This paper focuses on the investigation of typo-979

related inner workings. Therefore, we do not pro-980

vide any methods to improve LLM’s robustness981

against typos. However, our findings imply how to982

create more robust LLMs against typos.983

Our findings indicate that typo neurons in the984

early or late layers of Transformer-based LLMs fix985

typos with local contexts, while typo neurons in the986

middle layers fix typos with global contexts. The987

model’s robustness against typos may enhanced by988

a mechanism that gives more importance to nearby989

tokens in the early and late layers and to distant990

tokens in the middle layers.991

Furthermore, the results of the ablation study992

show that typo-fixing is related to general gram-993

matical or morphological recognition, which sug-994

gests that methods for improving general contex-995

tual recognition could contribute to typo robustness.996

For example, a potential research direction could997

be investigating how additional training on tasks998

such as grammatical error correction or determin-999

ing whether a given subword is part of a specific1000

word affects robustness against typos.1001

Figure 9: Distribution of ∆h for Qwen 2.5 14B. The
heat map colors are centered around 0, and the tick mark
closest to 0 on the positive side of the heat bar represents
the maximum ∆h.
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Gemma 2 Llama 3.2 Llama 3.1 Qwen 2.5
2B 9B 27B 1B 3B 8B 3B 7B 14B 32B

Average -0.0295 -0.0276 -0.0221 -0.0330 -0.0295 -0.0368 -0.0347 -0.0401 -0.0343 -0.0369
Standard
Deviation 0.0317 0.0335 0.0394 0.0442 0.0383 0.0398 0.0557 0.0434 0.0420 0.0452

Table 5: The average and standard deviation of ∆h with t = 16.

Figure 10: Visualization of typo heads in the 9B model. The word definition in the clean input is “not refined or
processed,” and the correct answer is “unrefined”. The word “processed” was changed with a typo to “pbrocessed.”

Clean
Dataset

Typo
Dataset

Llama 3.2 1B 1.00 0.69
⊖ Random Heads 0.07 0.04
⊖ Typo Heads 0.00 0.00

Llama 3.2 3B 1.00 0.90
⊖ Random Heads 0.10 0.10
⊖ Typo Heads 0.18 0.17

Llama 3.1 8B 1.00 0.94
⊖ Random Heads 0.09 0.08
⊖ Typo Heads 0.10 0.09

Qwen 2.5 3B 1.00 0.92
⊖ Random Heads 0.97 0.88
⊖ Typo Heads 0.46 0.41

Qwen 2.5 7B 1.00 0.92
⊖ Random Heads 0.55 0.53
⊖ Typo Heads 0.39 0.37

Qwen 2.5 14B 1.00 0.95
⊖ Random Heads 0.09 0.09
⊖ Typo Heads 0.13 0.12

Qwen 2.5 32B 1.00 0.96
⊖ Random Heads 0.18 0.16
⊖ Typo Heads 0.15 0.15

Table 6: Accuracy of the word identification task with
head ablation on clean and typo datasets. “⊖ Random
Heads” and “⊖ Typo Heads” indicate the performance
by ablating random and typo heads, respectively.
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