
Published as a conference paper at ICLR 2024

UNI-O4: UNIFYING ONLINE AND OFFLINE DEEP
REINFORCEMENT LEARNING WITH MULTI-STEP ON-
POLICY OPTIMIZATION

Kun Lei1 Zhengmao He14∗ Chenhao Lu2∗ Kaizhe Hu12 Yang Gao123 Huazhe Xu123

1 Shanghai Qi Zhi Institute. 2 Tsinghua University, IIIS. 3 Shanghai AI Lab.
4 The Hong Kong University of Science and Technology (Guangzhou).
leikun980116@gmail.com, huazhe_xu@mail.tsinghua.edu.cn

ABSTRACT

Combining offline and online reinforcement learning (RL) is crucial for efficient
and safe learning. However, previous approaches treat offline and online learning
as separate procedures, resulting in redundant designs and limited performance.
We ask: Can we achieve straightforward yet effective offline and online learn-
ing without introducing extra conservatism or regularization? In this study, we
propose Uni-O4, which utilizes an on-policy objective for both offline and online
learning. Owning to the alignment of objectives in two phases, the RL agent can
transfer between offline and online learning seamlessly. This property enhances
the flexibility of the learning paradigm, allowing for arbitrary combinations of pre-
training, fine-tuning, offline, and online learning. In the offline phase, specifically,
Uni-O4 leverages diverse ensemble policies to address the mismatch issues be-
tween the estimated behavior policy and the offline dataset. Through a simple of-
fline policy evaluation (OPE) approach, Uni-O4 can achieve multi-step policy im-
provement safely. We demonstrate that by employing the method above, the fusion
of these two paradigms can yield superior offline initialization as well as stable and
rapid online fine-tuning capabilities. Through real-world robot tasks, we highlight
the benefits of this paradigm for rapid deployment in challenging, previously un-
seen real-world environments. Additionally, through comprehensive evaluations
using numerous simulated benchmarks, we substantiate that our method achieves
state-of-the-art performance in both offline and offline-to-online fine-tuning learn-
ing. Our website: https://lei-kun.github.io/uni-o4/

1 INTRODUCTION

Imagine a scenario where a reinforcement learning robot needs to function and improve itself in the
real world, the policy of the robot might go through the pipeline of training online in a simulator,
then offline with real-world data, and lastly online in the real world. However, current reinforcement
learning algorithms usually focus on specific stages of learning, which sophisticates the effort to train
robots with a single unified framework.

Online RL algorithms require a substantial amount of interaction and exploration to attain strong
performance, which is prohibitive in many real-world applications. Offline RL, in which agents
learn from a fixed dataset generated by other behavior policies, is a potential solution. However, the
policy trained purely by offline RL usually fails to acquire optimality due to limited exploration or
poor out-of-distribution (OOD) value estimation.

A natural idea is to combine offline and online RL, which entails a common paradigm of using
an offline RL algorithm to warm-start the policy and the value function with a subsequent online
RL stage to further boost the performance. Although the paradigm of pre-training and fine-tuning
is widely adopted in other machine learning domains such as computer vision (He et al., 2022)
and natural language processing (Devlin et al., 2019), its direct application to RL is non-trivial.
The reasons can be summarized as follows: firstly, offline RL algorithms require regularization

∗Equal contribution.

1

https://lei-kun.github.io/uni-o4/

Published as a conference paper at ICLR 2024

(referred to as conservatism (Kumar et al., 2020) or policy constraints (Kostrikov et al., 2021)) for
RL algorithms to avoid erroneous generalization to OOD data. However, when the policies and value
functions trained with these regularizations are used as initialization for online learning, they could
lead to fine-tuning instability due to the distribution shift. Previous works have attempted to address
these challenges by employing conservative learning, introducing additional policy constraints (Nair
et al., 2020; Kostrikov et al., 2021; Zheng et al., 2022; Wu et al.),Q-ensemble (Lee et al., 2021; Zhao
et al., 2023b), or incorporating other value or policy regularization terms (Nakamoto et al., 2023;
Zhang et al., 2023; Li et al., 2023) during the online learning stage. However, these methods may still
suffer from an initial performance drop or asymptotical suboptimality (Wu et al.; Nakamoto et al.,
2023; Li et al., 2023) in the online stage due to the conservatism inherited from offline RL training.

0 50 100 150 200
Environment Steps (×5e3)

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

MoJoCo Locomotion

On-policy (Ours)
CQL
SAC
off2on

(a) Normalized Return

0 50 100 150
Environment Steps (×5e3)

20

0

20

40

Av
er

ag
e

va
lu

e

Medium Tasks

On-policy (V)
CQL (Q)
SAC (Q)
Off2on (Q)
Offline dataset

(b) Average value

Figure 1: (a) Normalized return curves of online fine-
tuning and offline initialized scores on all Mojoco
tasks. (b) Average V or Q -values of value functions
on Hopper and Walker2d -medium tasks.

The objective of offline-to-online RL al-
gorithms is to strike a trade-off between
fine-tuning stability and asymptotical op-
timality. Challenges arise from the inher-
ent conservatism during the offline stage
and the difficulties associated with off-
policy evaluation during the offline-to-
online stage. To provide a clearer under-
standing, we track the average values of
the V and Q functions during fine-tuning
with four different methods. As depicted
in Figure 1(b), SAC (off-policy) and CQL
(conservatism) are used to fine-tune the
policy trained by CQL offline. Off2on (Hong et al., 2022) is a Q ensemble-based fine-tuning method.
CQL shows minimal improvement over Q value due to over-conservatism, leading to suboptimal-
ity. The Q value of Off2on and SAC improve faster, but both of them face performance drops and
unstable training during the initial stage. In contrast, Uni-O4 presents steady and rapid improve-
ment in the V values as the fine-tuning performance progresses, emerging as a favorable choice for
achieving both stable and efficient fine-tuning.

Recently, the work on Behavior Proximal Policy Optimization (BPPO) (Zhuang et al., 2023) has
made significant advancements by adopting the PPO (Schulman et al., 2017) objective with advan-
tage replacement to achieve offline monotonic policy improvement. This has resulted in improved
offline performance compared to one-step offline algorithms (Brandfonbrener et al., 2021). How-
ever, BPPO heavily relies on online evaluation to validate the improvement of the behavior policy,
introducing risks and additional costs.

At the heart of this paper is an on-policy optimization method that unifies both offline and online
training without extra regularization, which we term Uni-O4. Motivated by BPPO, we employ
the on-policy PPO objective to optimize both offline and online RL, aligning the objectives in both
phases seamlessly. Our approach leverages an offline policy evaluation (OPE) stage to evaluate the
updated policy and achieve multi-step policy improvement. OPE demonstrates appealing evaluation
performance comparable to online evaluation methods. We further address the mismatch problem
between the offline dataset and the estimated behavior policy by using ensemble policies and encour-
aging policy diversity. In this way, Uni-O4 significantly enhances the offline performance compared
to BPPO, without the need for online evaluation.

After offline optimization, a standard online PPO learning stage follows to leverage the pretrained
policy and value function. Such an algorithm enables a seamless transit between offline and online
learning while achieving superior performance and efficiency against current approaches in both
offline and offline-to-online scenarios.

To summarize, our main contribution lies in Uni-O4, which demonstrates the remarkable efficiency
of the on-policy RL algorithm in offline and offline-to-online learning. Uni-O4 gets rid of the sub-
optimality and instability issues in current offline-to-online literature. Because of the unified design,
it can be scaled up to more complex fine-tuning settings, such as online (simulator)-offline (real-
world)-and online (real-world), which is useful for alleviating the sim-to-real gap in robot learning.
We evaluate Uni-O4 across real-world legged robots and numerous D4RL (Fu et al., 2020) tasks. For
simulated tasks, experimental results show that Uni-O4 outperforms both SOTA offline and offline-

2

Published as a conference paper at ICLR 2024

to-online RL algorithms. Furthermore, Uni-O4 excels in real-world experiments, showcasing its
ability to fine-tune policies and adapt to challenging unseen environments with minimal interaction,
surpassing SOTA sim2real and offline-to-online methods.

2 PRELIMINARIES

Online reinforcement learning. We consider the Markov decision process (MDP) M =
{S,A, r, p, d0, γ}, with state space S, action space A, reward function r(s, a), transition dynam-
ics p, initial state distribution d0(s0) and discount factor γ.

In this paper, we consider on-policy RL algorithms, which typically utilize an estimator of the policy
gradient and plug it into a stochastic gradient ascent algorithm. Among these algorithms, PPO
(Schulman et al., 2017) introduces a conservative policy iteration term with importance sampling:

Jk (π) = Es∼ρπ(·),a∼πk(·|s) [min (r(π)Aπk
(s, a), clip (r(π), 1− ϵ, 1 + ϵ)Aπk

(s, a))] , (1)

where ρπ is the stationary distribution of states under policy π,Aπk
(st, at) is the advantage function

where subscript k denotes the policy iteration number, r(π) = π(a|s)
πk(a|s) denotes the importance

sampling ratio between the target policy π and behavior policy πk, clip(·) is a conservatism operation
that constrains the ratio, and hyper-parameter ϵ is used to adjust the degree of conservatism.

Offline reinforcement learning. Offline RL focuses on addressing the extrapolation error due to
querying the action-value function with regard to the OOD actions (Fujimoto et al., 2018; Kumar
et al., 2020). Implicit Q-learning (IQL) (Kostrikov et al., 2021) revise the SARSA objective as an
asymmetric L2 loss to estimate the maximum Q-value over in-distribution data, followed by an
advantage-based policy extraction. Specifically, the losses of the state-value and Q-value functions
are as follows:

L(V) = E(s,a)∼D

[
Lτ2

(
Q̂(s, a)− V (s)

)]
, (2)

L(Q) = E(s,a,s′)∼D[(r(s, a) + γV (s′)−Q(s, a))
2
], (3)

where Q̂ denotes the target Q function (Mnih et al., 2013), and Lτ2(u) is the expectile loss with
intensity τ ∈ [0.5, 1): Lτ2(u) = |τ−1(u < 0)|u2. Based on dataset support constraints, IQL has the
capability to reconstruct the optimal value function (Kostrikov et al., 2021), i.e., limτ→1Qτ (s, a) =
Q∗(s, a). In this work, we exploit the desirable property to facilitate multi-step policy optimization
and recover the optimal policy. Qτ and Vτ are the optimal solution obtained from Equation 3 and 2.
We use Q̂τ and V̂τ to denote the value functions obtained through gradient-based optimization.

Based on one-step policy evaluation, Zhuang et al. (2023) employ an on-policy PPO objective to
perform offline monotonic policy improvement:

Jk (π) = Es∼ρD(·),a∼πk(·|s) [min (r(π)Aπk
(s, a), clip (r(π), 1− ϵ, 1 + ϵ)Aπk

(s, a))] . (4)

The only distinction between Equation 4 and 1 is that the state distribution is replaced by ρD (·) =∑T
t=0 γ

tP (st = s|D) and P (st = s|D) is the probability of the t-th state equaling to s in the offline
dataset. Due to the advantage of this objective, BPPO is able to surpass the performance of the
estimated behavior policy π̂β . However, they update the behavior policy πk by querying online
evaluation, which contradicts the purpose of offline RL.

Offline policy evaluation. Off-policy evaluation techniques, such as fitted Q evaluation (FQE)
(Paine et al., 2020), weighted importance sampling (WIS) (Voloshin et al., 2019), and approxi-
mate model (AM) (Jiang & Li, 2016), are commonly employed for model selection in offline RL.
Typically, these methods require partitioning the offline dataset into training and validation sets to
evaluate policies trained by offline RL algorithms. The selected hyperparameters are then used for
retraining. In this work, we propose a straightforward offline policy evaluation method based on
AM and one-step Q evaluation without data partition and retraining. Given an offline dataset, we
train an estimated dynamics model T̂ using the maximum likelihood objective:

minT̂E(s,a,s)∼D[−logT̂ (s′|s, a)]. (5)

The estimated transition model T̂ is employed to perform H-step Monte-Carlo rollouts
{s0, a0, . . . , sH , aH} for offline policy evaluation.

3

Published as a conference paper at ICLR 2024

3 METHOD

In this section, we formally introduce our method, Uni-O4, which offers various training paradigms,
including pure offline, offline-to-online, and online-to-offline-to-online settings. In the offline-to-
online setting, our framework comprises three stages: 1) the supervised learning stage, 2) the multi-
step policy improvement stage, and 3) the online fine-tuning stage, as illustrated in Figure 2.

3.1 ENSEMBLE BEHAVIOR CLONING WITH DISAGREEMENT-BASED REGULARIZATION

We aim to avoid extra conservatism and off-policy evaluation during both offline and offline-to-
online RL learning. To this end, our entire method is built upon PPO algorithm. We start by re-
covering the behavior policy πβ that collects the offline dataset. A straightforward approach used in
Zhuang et al. (2023) is optimizing the behavior cloning objective to approximate an empirical policy
π̂β . However, this approach leads to a mismatch in the state-action support between the estimated π̂β
and πβ due to the presence of diverse behavior policies in the dataset D. To address this mismatch
issue, we propose an ensemble behavior cloning approach with disagreement regularization, aiming
to learn diverse behaviors as initialization for policy improvement. Specifically, we learn a set of
policies

∏
n = {π̂1

β , . . . , π̂
n
β} to recover the behavior policy πβ . To encourage diversity among the

policies, we jointly train them using the BC loss augmented by the negative disagreement penalty
between each policy π̂iβ and the combined policy f({π̂jβ}j∈[n]).

Proposition 1. Given the dataset D and policies
∏
n, the distance over π̂iβ(·|s) and f({π̂jβ(·|s)})

can be expressed as DKL

(
π̂iβ(·|s)||

f({π̂j
β(·|s)})
Z(s)

)
, where Z(s) is the normalized coefficient.

The average KL divergence over π̂iβ(·|s) and f({π̂jβ(·|s)}) can be approximated by sampling (Schul-
man et al., 2015a). In the offline setting, we further approximate this distance constraint by sam-
pling actions from the dataset D instead of from π̂iβ . Meanwhile, we choose f({π̂jβ(a|s)}) =

max1⩽j⩽n π̂
j
β(a|s) motivated by Ghosh et al. (2021).

Theorem 1. Given the distance KL
(
π̂iβ(a|s)||

max1⩽j⩽n π̂
j
β(a|s)

Z(s)

)
, we can derive the following

bound: KL
(
π̂iβ(a|s)||

max1⩽j⩽n π̂
j
β(a|s)

Z(s)

)
⩾
∫
a
da π̂iβ(a|s) log

π̂i
β(a|s)

max1⩽j⩽n π̂
j
β(a|s)

.

The proof and the definition of Z(s) are presented in Appendix A.1. Then, we can enhance the
diversity among behavior policies by optimizing the lower bound:

Maximize:J(π̂iβ) = E(s,a)∼Dlogπ̂iβ(a|s) + αE(s,a)∼D log

(
π̂iβ(a|s)

max1⩽j⩽n π̂
j
β(a|s)

)
, (6)

where α is a hyper-parameter. In the subsequent experimental section, we empirically demonstrate
that the policy ensemble can mitigate the mismatch issues between the estimated behavior policies
and the offline dataset, especially for capturing the multi-modality, thereby substantially enhancing
the performance of Uni-O4.

3.2 MULTI-STEP POLICY ENSEMBLE OPTIMIZATION

In this work, we propose a simple offline policy evaluation (OPE) method to achieve multi-step
policy improvement, in contrast to the frequent online evaluations required in BPPO (Zhuang et al.,
2023). In this way, Uni-O4 can better follow the setting of offline RL.

For each behavior policy, Uni-O4 performs policy gradient optimization similar to Equation 4, but
we aim to achieve multi-step policy optimization via querying OPE. The clipped surrogate objective
for each policy is given as follows. Since we add the iteration number as a subscript for behavior
policies, we overload the notion of behavior policies as πik rather than π̂iβ , i.e., πi0 := π̂iβ .

Jk
(
πi
)
= Es∼ρD(·),a∼πi

k(·|s)

[
min

(
r(πi)Aπi

k
(s, a), clip

(
r(πi), 1− ϵ, 1 + ϵ

)
Aπi

k
(s, a)

)]
, (7)

4

Published as a conference paper at ICLR 2024

Supervised Learning

𝒟

AM-Q

Πn

𝜋𝑘
1

𝜋𝑘
2

𝜋𝑘
3

𝜋𝑘+1
2

Offline Multi-Step Optimization

√

𝒟

Online Fine-Tuning

Rollouts
𝑠, 𝑟 𝑎

𝜏1, …

Update

KL

𝜋𝑘+1

𝜋𝑘+2

{𝑠1, 𝑎1, … , 𝑠𝐻 , 𝑎𝐻}𝑁

𝑇

𝑇

√××

Πn
𝑉𝜋𝑘+1

Fixed
𝑂𝑂𝑆𝒟

①

②

③

𝑄𝜏 & 𝑉𝜏 𝐴𝜏

𝑄𝜏

𝑉𝜏
③

Optimization
Replacement

OPE

Figure 2: Uni-O4 employs supervised learning to learn the components for initializing the subse-
quent phase. In offline multi-step optimization phase (middle), policies query AM-Q to determine
whether to replace the behavior policies after a certain number of training steps. For instance, AM-Q
allows π2 to replace its behavior policy with its target policy but rejects the others. Subsequently,
one policy is selected as the initialization for online fine-tuning. Specifically, OOSD indicates out-
of-support of dataset.

where superscript i specify the index of ensemble policies, and subscript k is the iteration number,
and r(πi) = πi(a|s)

πi
k(a|s)

denotes the probability ratio between the target policy πi and behavior policy

πik. If we set k = 0, i.e., fixing the estimated behavior policy by Equation 6 for action sampling, this
method will degenerate to one-step RL. However, this will lead to sub-optimal policies because the
target policy is constrained to be close to the estimated behavior policy by the clip function and the
performance is heavily dependent on the accuracy of the estimated behavior policy.

Offline policy evaluation for multi-step policy improvement. For achieving multi-step policy im-
provement safely, we update the behavior policies by querying OPE. Specifically, our OPE method
combines the approximate model (AM) and fitted Q evaluation (AM-Q).
Definition 1. Given the true transition model T and optimal value functionQ∗, we define the AM-Q
as: J(π) = E(s,a)∼(T,π)

[∑H−1
t=0 Q∗(st, at)

]
, where H is the horizon length.

In the offline setting, however, the agent does not have access to the true model and Q∗. But Qτ
approaches Q∗ based on the dataset support constraints. We fit T̂ and Q̂τ by Equation 5 and 3. In
this way, the practical AM-Q can be expressed as Ĵτ (π) = E(s,a)∼(T̂ ,π)

[∑H−1
t=0 Q̂τ (st, at)

]
. Thus,

the OPE bias is mainly coming from the transition model approximation.

Theorem 2. Given the estimated T̂ and Q̂τ , we can derive the following bound: |J(π, T) −
J(π, T̂)| ⩽ Qmax

H(H−1)
2

√
2DKL(Tπρ||T̂ πρ), where we assume Q̂τ is bounded by Qmax.

The proof is presented in Appendix A.2. BPPO (Zhuang et al., 2023) have derived the offline
monotonical improvement bound (their Theorem 3) between the target policy and behavior policy,
i.e., πk+1 and πk. However, since the behavior policy is updated iteratively, this bound can result in
cumulative errors that disrupt the desired monotonicity. Consequently, this bound cannot be directly
utilized in the offline setting. This limitation is the reason why BPPO requires online evaluation to
ensure performance improvement when replacing the behavior policy with the target policy. Given
the OPE bound, we can replace the online evaluation with AM-Q to guarantee monotonicity.

Consequently, AM-Q becomes a computationally efficient OPE method, as it only requires running
all state-action pairs as input, resulting in an inference complexity of O(NH), where N is the
trajectory number and no extra fitting requirements. In this way, the behavior policy πik is replaced
by the target policy πi and the iteration number becomes to k+1 if OPE satisfies Ĵτ (πi)−Ĵτ (πik) >
0. We will evaluate the accuracy of the AM-Q in the following experimental section.

We compute the advantage function by (Q̂τ−V̂τ) rather than the GAE (Schulman et al., 2015b) used
in online PPO due to the prohibition of the interaction with environments. Intuitively, This alterna-
tive and clip function can be naturally regarded as conservative terms for offline policy optimization.
While multi-step policy optimization performs exploration to discover the optimal policies, the ad-
vantage function and clip function constrain the policy improvement in the trust region. After the

5

Published as a conference paper at ICLR 2024

policy improvement phase, one policy is chosen by querying OPE with minimal evaluation budgets
in Appendix A.13.

Online PPO fine-tuning. The policy and value function obtained by offline training is directly used
as initialization for a standard online PPO algorithm. The overall workflow of our algorithm is listed
in Algorithm 2 of Appendix A.13. There is no extra conservative regularization or replay buffer
balance strategy in the whole offline and offline-to-online training. Benefitted from the preferable
properties of the on-policy algorithms, the proposed algorithm is very simple and efficient.

4 RELATED WORK

Offline-to-online RL. PEX (Zhang et al., 2023) introduce policy regularization through expansion
and adopt a Boltzmann action selection scheme. Lee et al. (2021), Zhao et al. (2023a) and Zhao
et al. (2023b) utilizes an ensemble of pessimistic value functions to address distributional shift,
which can be seen as an implicit form of conservatism. Nakamoto et al. (2023) trains an additional
value function to alleviate over-conservatism issues arising from the initialized value function in the
offline phase. Niu et al. (2022) introduces a dynamics-aware policy evaluation scheme to solve the
dynamic gap between the source and target domains. Li et al. (2023) propose a policy regularization
term for trust region-style updates. Yu & Zhang (2023) leverages a standard actor-critic algorithm
for aligning offline-to-online learning. Ball et al. (2023) and Zheng et al. (2023) take advantage
of offline and online data for online learning. Guo et al. (2023) propose an uncertainty-guided
method for efficient exploration during online fine-tuning. Also, the offline pertaining and online
fine-tuning paradigm has been proved helpful in the visual RL (Ze et al., 2023a;b; Lin et al., 2023)
and transformer-based offline RL methods (Zheng et al., 2022; Hu et al., 2023).

5 EXPERIMENTS

We conduct numerous experiments on both simulators and real-world robots to answer the following
questions: 1) Can the proposed algorithm achieve better offline RL performance and subsequently
higher fine-tuning efficiency compared to previous SOTA methods? 2) Does the algorithm lead to
better asymptotic performance? 3) Can the proposed offline policy evaluation (OPE) method provide
an accurate estimation for multi-step policy improvement? 4) Do the ensemble behavior policies
provide a more comprehensive state-action support over the offline dataset for policy improvement?
5) Can the algorithm work well on some complex tasks of real-world robot learning?

Environment CQL TD3+BC Onestep RL IQL COMBO BPPO ATAC BC Ours

halfcheetah-medium-v2 44.0 48.3 48.4 47.4 54.2 44.0 54.3 42.1 52.6±0.4
hopper-medium-v2 58.5 59.3 59.6 66.3 97.2 93.9 102.8 52.8 104.4±0.6
walker2d-medium-v2 72.5 83.7 81.8 78.3 81.9 83.6 91.0 74.0 90.2±1.4
halfcheetah-medium-replay 45.5 44.6 38.1 44.2 55.1 41.0 49.5 34.9 44.3±0.7
hopper-medium-replay 95.0 60.9 97.5 94.7 89.5 92.5 102.8 25.7 103.2±0.8
walker2d-medium-replay 77.2 81.8 49.5 73.9 56.0 77.6 94.1 18.8 98.4±1.6
halfcheetah-medium-expert 91.6 90.7 93.4 86.7 90.0 92.5 95.5 54.9 93.8±1.3
hopper-medium-expert 105.4 98.0 103.3 91.5 111.1 112.8 112.6 52.6 111.4±1.5
walker2d-medium-expert 108.8 110.1 113.0 109.6 103.3 113.1 116.3 107.7 118.1±2.2

locomotion total 698.5 677.4 684.6 692.4 738.3 751.0 818.9 463.5 816.4±10.5

pen-human 37.5 8.4 90.7 71.5 41.3* 117.8 79.3 65.8 115.2±10.7
hammer-human 4.4 2.0 0.2 1.4 9.6* 14.9 6.7 2.6 24.7±4.4
door-human 9.9 0.5 -0.1 4.3 5.2* 25.9 8.7 4.3 27.1±1.3
relocate-human 0.2 -0.3 2.1 0.1 0.1* 4.8 0.3 0.2 1.7±0.6
pen-cloned 39.2 41.5 60.0 37.3 24.6* 110.8 73.9 60.7 101.3±19.3
hammer-cloned 2.1 0.8 2.0 2.1 3.3* 8.9 2.3 0.4 7.0±0.9
door-cloned 0.4 -0.4 0.4 1.6 0.27* 6.2 8.2 0.9 10.2±2.6
relocate-cloned -0.1 -0.3 -0.1 -0.2 -0.2* 1.9 0.8 0.1 1.4±0.2

Adroit total 93.6 52.2 155.2 118.1 84.2 291.4 180.2 135.0 288.6±40.0

kitchen-complete 43.8 0.0 2.0 62.5 3.5* 91.5 2.0* 68.3 93.6±2.5
kitchen-partial 49.8 22.5 35.5 46.3 1.2* 57.0 0.0* 32.5 58.3±3.6
kitchen-mixed 51.0 25.0 28.0 51.0 1.4* 62.5 1.0* 47.5 65.0±4.6

kitchen total 144.6 47.5 65.5 159.8 6.1 211.0 3.0 148.3 216.9±10.7

Total 936.7 777.1 905.3 970.3 828.6 1253.4 1002.1 746.8 1322.0±61.2

Table 1: Results on D4RL Gym locomotion, Adroit, and Kitchen tasks. We bold the best results
and ours is calculated by averaging mean returns over 10 evaluation trajectories and five random
seeds. Most of the results are extracted from the original papers, and * indicates that the results are
reproduced by running the provided source code.

6

Published as a conference paper at ICLR 2024

5.1 MAIN RESULTS

Baselines. We compare Uni-O4 with previous SOTA offline and offline-to-online algorithms. For
offline RL, we consider iterative methods like CQL, (Kumar et al., 2020), TD3+BC (Fujimoto & Gu,
2021) and ATAC (Cheng et al., 2022), onestep methods such as Onestep RL (Brandfonbrener et al.,
2021) and IQL (Kostrikov et al., 2021), model-based RL approaches COMBO (Yu et al., 2021), and
supervised learning methods (Chen et al., 2021) and (Emmons et al., 2021). For offline-to-online,
we include direct methods: IQL (Kostrikov et al., 2021), CQL (Kumar et al., 2020), ODT (Zheng
et al., 2022), and AWAC (Nair et al., 2020); regularization methods: PEX (Zhang et al., 2023), SPOT
(Wu et al.) and Cal-ql (Nakamoto et al., 2023); Q-ensemble based methods: Off2on (Lee et al.,
2021); and Scratch: training PPO from scratch. For real-world robot tasks, we consider using IQL
and walk these ways (WTW) (Margolis & Agrawal, 2023), a strong RL method for quadrupedal
locomotion, as baselines for comparison. See Apeendix A.5 for more details about the experiment
settings and hyperparameter selection.

We first answer whether Uni-O4 can achieve competitive offline performance, which may serve as
the initialization of online fine-tuning. We compare Uni-O4 with SOTA offline RL algorithms.
As shown in Table 1, Uni-O4 outperforms all algorithms on 14 out of the 20 tasks. Notably,
Uni-O4 surpasses all one-step algorithms, including one-step RL and IQL, which constrain the
policy to stay close to the behavior policy. In contrast, Uni-O4 achieves multi-step policy im-
provement in a trust region by querying OPE, and benefits from the natural constraints, i.e.,
clip function and one-step policy evaluation. Additionally, Uni-O4 performs better than most
iterative and model-based algorithms. While ATAC achieves comparable performance to Uni-
O4 on MuJocCo locomotion tasks, it lags behind on the more challenging Adroit and Kitchen
tasks. BPPO demonstrates promising results on Adroit and Kitchen tasks. However, it heav-
ily relies on online policy evaluation for policy improvement despite being an offline method.

Table 2: Results of on Antmaze tasks. In BC column, the symbol * indicates that we use filter BC
to recover the behavior policy. All results are extracted from the original paper except ours.

Env CQL TD3+BC Onestep IQL DT RvS-R RvS-G BC Ours

Umaze-v2 74.0 78.6 64. 3 87.5 65.6 64.4 65.4 54.6 93.7±3.2
Umaze-diverse-v2 84.0 71.4 60.7 62.2 51.2 70.1 60.9 48.2 83.5±11.1
Medium-play-v2 61.2 10.6 0.3 71.2 1.0 4.5 58.1 22.0* 75.2±4.4
Medium-diverse-v2 53.7 3.0 0.0 70.0 0.6 7.7 67.3 13.6* 72.2±3.8
Large-play-v2 15.8 0.2 0.0 39.6 0.0 3.5 32.4 35.3* 64.9±2.5
Large-diverse-v2 14.9 0.0 0.0 47.5 0.2 3.7 36.9 29.4* 58.7±3.0

Total 303.6 163.8 61.0 378.0 118.6 153.9 321.0 236.7 447.9±28.1

0 50 100 150 200
Environment Steps (×5e3)

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

MoJoCo Locomotion

0 50 100 150 200
Environment Steps (×5e3)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

Adroit

Figure 3: Aggregated learning curves of various approaches
on the MuJoCo locomotion and Adroit manipulation tasks.
It shares legend with Figure 4 for simplicity.

To further evaluate Uni-O4, we con-
ducted additional experiments on
Antmaze tasks, which request the al-
gorithm to deal with multi-task learn-
ing and sparse rewards. The results,
presented in Table 2, demonstrate
that Uni-O4 outperforms the majority
of one-step, iterative, and supervised
learning approaches. Overall, Uni-
O4 achieves an impressive 79.4%
improvement over 26 tasks based on
estimated behavior policies. These
findings underscore the capability of
Uni-O4 to serve as a satisfactory initialization for online fine-tuning.

Next, we conduct experiments to demonstrate the online fine-tuning performance of Uni-O4. We run
1M environment steps for all methods. The learning curves of normalized returns are presented in
Figure 3 and 4. As observed, methods that inherit conservatism and policy constraints from the of-
fline phase, namely CQL, IQL, and AWAC, exhibit relatively stable behavior but struggle to achieve
high performance, only to converge towards the offline performance of Uni-O4 on certain tasks.
The policy regularization method (PEX) displays instability and initially experiences a performance
drop on most tasks, failing to attain high performance compared to conservative methods. Addi-
tionally, Q-ensemble-based method (off2on) can be considered an implicitly conservative approach,
outperforming other baselines on MuJoCo tasks but not performing well on the more challenging
Adroit tasks. Moreover, these ensemble-based methods entail significant computational overhead

7

Published as a conference paper at ICLR 2024

(18 hours vs. 30 minutes (Uni-O4), see Figure 25(c) in Appendix A.12), making it unacceptable
for real-world robot learning. Overall, Uni-O4 exhibits an integration of stability, consistency, and
efficiency, eclipsing all baseline methods with its unified training scheme.

0 50 100 150 200
Environment Steps (×5e3)

0
20
40
60
80

100
120
140

No
rm

al
ize

d
Re

tu
rn

pen-human-v1

0 50 100 150 200
Environment Steps (×5e3)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hammer-human-v1

0 50 100 150 200
Environment Steps (×5e3)

0

10

20

30

40

50

60

No
rm

al
ize

d
Re

tu
rn

door-human-v1

0 50 100 150 200
Environment Steps (×5e3)

0

20

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-v2

0 50 100 150 200
Environment Steps (×5e3)

20

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-replay-v2

0 50 100 150 200
Environment Steps (×5e3)

0
20
40
60
80

100
120
140

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-expert-v2

0 50 100 150 200
Environment Steps (×5e3)

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hopper-medium-v2

0 50 100 150 200
Environment Steps (×5e3)

20

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

hopper-medium-replay-v2

0 50 100 150 200
Environment Steps (×5e3)

0

20

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

hopper-medium-expert-v2

0 50 100 150 200
Environment Steps (×5e3)

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-v2

0 50 100 150 200
Environment Steps (×5e3)

0

20

40

60

80

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-replay-v2

0 50 100 150 200
Environment Steps (×5e3)

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-expert-v2

Figure 4: The learning curves of various methods on Adroit and MuJoCo locomotion tasks are
presented across five different seeds. The solid lines indicate the mean performance, while the
shaded regions represent the corresponding standard deviation.

5.2 APPLICATIONS ON REAL-WORLD ROBOTS

Bridging the sim-to-real gap is a widely recognized challenge in robot learning. Previous studies
(Tobin et al., 2017; Yang et al., 2021; Rudin et al., 2022; Margolis & Agrawal, 2023) tackled this
issue by employing domain randomization, which involves training the agent in multiple random-
ized environments simultaneously. However, this approach comes with computational overhead and
poses challenges when applied to real-world environments that are difficult to model in simulators.
To address this issue, we propose to leverage Uni-O4 in an online-offline-online framework. The
agent is initially pretrained in simulators (online), followed by fine-tuning on real-world robots (of-
fline and online), as illustrated in Figure 5(a). For more detailed information, see Appendix A.4.

In our experiments, we initiate with a policy pre-trained online in a simulator, proficient in navigat-
ing level terrains in the real world. However, when tested on a latex mattress, the policy struggled
to generalize effectively to elastic terrains, resulting in overturns (first row in Figure 5(a)). The
complexity arises as the material properties of the mattress pose significant challenges to simulate
accurately. To counteract this, we collect offline data prior to the overturning incidents and fine-tune
the policy using our method, enabling successful navigation on the mattress (second row in Figure
5(a)). Subsequently, we enhance running speed by performing online fine-tuning of this adapted
policy in the real world (third row in Figure 5(a)). This methodology can be ubiquitously applied for
deploying real-world solutions in environments tough to simulate, such as sandy or wetlands, show-
casing the adaptability and effectiveness of our approach in handling challenging terrains, ultimately
proving the superior versatility and efficacy of our method over existing solutions.

After being fine-tuned using the collected offline dataset (180,000 environment steps), the robot is
able to run on the latex mattress at a low speed. Comparing the results shown in Figure 5(b), the poli-
cies trained by WTW and IQL struggle to adapt to this challenging terrain, resulting in significantly
lower average returns as they are unable to move forward smoothly. However, when switching to
a high-speed scenario, the policy fine-tuned by the offline dataset performs poorly, as depicted in
Figure 5(c), resulting in crashes. Subsequently, after being further fine-tuned online (100,000 envi-
ronment steps), the robot achieves a speed of 1.62m/s (as measured by RealSense sensors). Overall,
the proposed fine-tuning method can achieve significant performance improvements in both offline

8

Published as a conference paper at ICLR 2024

(a) Online-offline-online setting

Pretrain IQL Sim2Real Ours
Methods

0

20

40

60

Av
er

ag
e

Re
tu

rn

(b) Low speed testing

IQL Sim2RealOurs-off. Ours-on.
Methods

0

20

40

60

Av
er

ag
e

Re
tu

rn

(c) High speed testing

Figure 5: Real-world experiments: (a) the workflow of Uni-O4 (b) Testing all methods with low-
speed commands. The reported results are averaged over five trials, with each trial having a maxi-
mum of 1000 time steps. (c) Testing all methods with high-speed commands, see Appendix A.4.

and online phases, requiring only minimal interaction. In this way, offline fine-tuning ensures safety
for real-world robots, while online fine-tuning continues to enhance their performance.

5.3 ABLATION STUDY

OPE analysis. To assess the accuracy of the proposed OPE method, AM-Q, we perform experiments
on all MuJoCo tasks. In parallel to the execution of OPE, we conduct the online evaluation and
consider it as the ground truth for calculating the accuracy of OPE estimates. Furthermore, we also
tested the accuracy within a specific margin of error. As depicted in Figure 6(a), the OPE accuracy
reaches approximately 80%. When allowing for a 20% estimation error, the accuracy approaches
95%. This demonstrates the reliable evaluation of AM-Q for multi-step policy improvement.

Hyper-parameter analysis. We evaluated the disagreement penalty coefficient α and ensemble
size in Figure 6(b) and 6(c), respectively. These two hyper-parameters were determined through
experiments conducted on all MoJoCo tasks. From the results, it is evident that a minor disagree-
ment penalty yields better results compared to having no penalty or using larger ones as behavior
policy initialization. As for the ensemble size, we chose 4 as a trade-off between performance and
computational efficiency, which resulted in only a small increase in training time. These findings
demonstrate that the policies trained using Equation 6 offer better support over the offline dataset
than a single policy. To further substantiate these phenomenons, we conduct several analyses on
these two methods, as shown in Figure 12, 13, 14, 15, and 16 of Appendix A.6. The results clearly
support the selection of key hyper-parameters.

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

1.0

1.2

OP
E

Ac
cu

ra
cy 0.78

0.86 0.91 0.95

MuJoCo Locomotion

(a) OPE ablation

0 5 10 15 20
Gradient Steps (×500)

50

60

70

80

90

No
rm

al
ize

d
Re

tu
rn

MoJoCo Locomotion

alpha=0.0
alpha=0.1
alpha=0.5

(b) Alpha ablation

1 4 8
Policy Number

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

86.85 90.62 90.72
MuJoCo Locomotion

(c) Ensemble ablation (d) Optimality analysis

Figure 6: Ablation study on on all MoJoCo tasks, refer to Figures 26, 27, 28, and 29 in Appendix
A.14 for all results. For the ablation study of key design choices of Uni-O4, see Appendix A.11.

Optimality analysis. As an on-policy training baseline, we running PPO for three million steps
in the MoJoCo Locomotion environments. As depicted in Figure 6(d), once surpassing the offline
performance, the improvement plateaus. In contrast, our fine-tuning method demonstrates rapid
performance improvement, demonstrating its stable and efficient fine-tuning capabilities.

6 CONCLUSION

We introduce Uni-O4, which employs an on-policy algorithm to facilitate a seamless transition
between offline and online learning. In the offline learning stage, a policy ensemble enjoys multi-step
policy improvement by querying a proposed sample offline policy evaluation procedure. Leveraging
the superior offline initialization, a standard online policy gradient algorithm continuously enhances
performance monotonically. The advantageous property of the on-policy algorithm allows Uni-O4
to scale effectively to various offline and online fine-tuning scenarios across different tasks, making
it a promising candidate for various offline-to-online real robot tasks.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We highly appreciate Jiacheng You for his valuable suggestions and discussions on Theorems 1 and
2, and Zifeng Zhuang for the helpful discussions during the rebuttal round.

REFERENCES

PhilipJ. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. Feb 2023.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
for offline reinforcement learning. In International Conference on Machine Learning, pp. 3852–
3878. PMLR, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North, Jan 2019. doi: 10.18653/v1/n19-1423. URL http://dx.doi.org/10.18653/
v1/n19-1423.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and
trpo. In International conference on learning representations, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv: Learning,arXiv: Learning, Dec 2018.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
without entropy. arXiv preprint arXiv:2301.02328, 2023.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in
Neural Information Processing Systems, 34:25502–25515, 2021.

Siyuan Guo, Yanchao Sun, Jifeng Hu, Sili Huang, Hechang Chen, Haiyin Piao, Lichao Sun, and
Yi Chang. A simple unified uncertainty-guided framework for offline-to-online reinforcement
learning. arXiv preprint arXiv:2306.07541, 2023.

Nico Gürtler, Sebastian Blaes, Pavel Kolev, Felix Widmaier, Manuel Wüthrich, Stefan Bauer, Bern-
hard Schölkopf, and Georg Martius. Benchmarking offline reinforcement learning on real-robot
hardware. arXiv preprint arXiv:2307.15690, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

10

http://dx.doi.org/10.18653/v1/n19-1423
http://dx.doi.org/10.18653/v1/n19-1423

Published as a conference paper at ICLR 2024

Joey Hong, Aviral Kumar, and Sergey Levine. Confidence-conditioned value functions for offline
reinforcement learning. Dec 2022.

Zhang-Wei Hong, Aviral Kumar, Sathwik Karnik, Abhishek Bhandwaldar, Akash Srivastava, Joni
Pajarinen, Romain Laroche, Abhishek Gupta, and Pulkit Agrawal. Beyond uniform sampling:
Offline reinforcement learning with imbalanced datasets. arXiv preprint arXiv:2310.04413, 2023.

Kaizhe Hu, Ray Chen Zheng, Yang Gao, and Huazhe Xu. Decision transformer under random frame
dropping. ArXiv, abs/2303.03391, 2023.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
International Conference on Machine Learning, pp. 652–661. PMLR, 2016.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

SeungHyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. 5th Annual Conference
on Robot Learning,5th Annual Conference on Robot Learning, Jun 2021.

Jianxiong Li, Xiao Hu, Haoran Xu, Jingjing Liu, Xianyuan Zhan, and Ya-Qin Zhang. Proto: Iterative
policy regularized offline-to-online reinforcement learning. arXiv preprint arXiv:2305.15669,
2023.

Xingyu Lin, John So, Sashwat Mahalingam, Fangchen Liu, and Pieter Abbeel. SpawnNet: Learning
Generalizable Visuomotor Skills from Pre-trained Networks. arXiv e-prints, 2023.

Gabriel B Margolis and Pulkit Agrawal. Walk these ways: Tuning robot control for generalization
with multiplicity of behavior. In Conference on Robot Learning, pp. 22–31. PMLR, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Ashvin Nair, Brian Zhu, Gokul Narayanan, Eugen Solowjow, and Sergey Levine. Learning on the
job: self-rewarding offline-to-online finetuning for industrial insertion of novel connectors from
vision. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 7154–
7161. IEEE, 2023.

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. arXiv preprint arXiv:2303.05479, 2023.

Haoyi Niu, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming HU, Xianyuan Zhan, et al. When to trust
your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning. Advances in
Neural Information Processing Systems, 35:36599–36612, 2022.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander
Novikov, Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement
learning. arXiv preprint arXiv:2007.09055, 2020.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on Robot Learning, pp. 91–100.
PMLR, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015a.

11

Published as a conference paper at ICLR 2024

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Laura Smith, J Chase Kew, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey Levine. Legged robots
that keep on learning: Fine-tuning locomotion policies in the real world. In 2022 International
Conference on Robotics and Automation (ICRA), pp. 1593–1599. IEEE, 2022a.

Laura Smith, Ilya Kostrikov, and Sergey Levine. A walk in the park: Learning to walk in 20 minutes
with model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022b.

Laura Smith, Yunhao Cao, and Sergey Levine. Grow your limits: Continuous improvement with
real-world rl for robotic locomotion. arXiv preprint arXiv:2310.17634, 2023.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
CORL: Research-oriented deep offline reinforcement learning library. In 3rd Offline RL Work-
shop: Offline RL as a ”Launchpad”, 2022. URL https://openreview.net/forum?id=
SyAS49bBcv.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy policy
evaluation for reinforcement learning. arXiv preprint arXiv:1911.06854, 2019.

Jianren Wang, Sudeep Dasari, Mohan Kumar Srirama, Shubham Tulsiani, and Abhinav Gupta. Ma-
nipulate by seeing: Creating manipulation controllers from pre-trained representations. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3859–3868, 2023.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline rl with no ood actions: In-sample learning via implicit value regularization.
arXiv preprint arXiv:2303.15810, 2023.

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Ro-
bust offline reinforcement learning via conservative smoothing. Advances in Neural Information
Processing Systems, 35:23851–23866, 2022.

Ruihan Yang, Minghao Zhang, Nicklas Hansen, Huazhe Xu, and Xiaolong Wang. Learning
vision-guided quadrupedal locomotion end-to-end with cross-modal transformers. arXiv preprint
arXiv:2107.03996, 2021.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Zishun Yu and Xinhua Zhang. Actor-critic alignment for offline-to-online reinforcement learning.
2023.

Yanjie Ze, Nicklas Hansen, Yinbo Chen, Mohit Jain, and Xiaolong Wang. Visual reinforcement
learning with self-supervised 3d representations. RA-L, 2023a.

Yanjie Ze, Yuyao Liu, Ruizhe Shi, Jiaxin Qin, Zhecheng Yuan, Jiashun Wang, and Huazhe Xu.
H-index: Visual reinforcement learning with hand-informed representations for dexterous manip-
ulation. NeurIPS, 2023b.

12

https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=SyAS49bBcv

Published as a conference paper at ICLR 2024

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Kai Zhao, Yi Ma, Jinyi Liu, HAO Jianye, Yan Zheng, and Zhaopeng Meng. Improving offline-
to-online reinforcement learning with q-ensembles. In ICML Workshop on New Frontiers in
Learning, Control, and Dynamical Systems, 2023a.

Kai Zhao, Yi Ma, Jinyi Liu, Yan Zheng, and Zhaopeng Meng. Ensemble-based offline-to-online
reinforcement learning: From pessimistic learning to optimistic exploration. arXiv preprint
arXiv:2306.06871, 2023b.

Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy
learning for offline-to-online reinforcement learning. arXiv preprint arXiv:2303.07693, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

Gaoyue Zhou, Liyiming Ke, Siddhartha Srinivasa, Abhinav Gupta, Aravind Rajeswaran, and Vikash
Kumar. Real world offline reinforcement learning with realistic data source. In 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 7176–7183. IEEE, 2023.

Zifeng Zhuang, Kun Lei, Jinxin Liu, Donglin Wang, and Yilang Guo. Behavior proximal policy
optimization. arXiv preprint arXiv:2302.11312, 2023.

13

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. First let:

Z(s) =

∫
a

da max
1⩽j⩽n

πj(a|s), (8)

then we have:

Z(s) ⩽
∫
a

da

n∑
j=1

πj(a|s) =
n∑
j=1

∫
a

da πj(a|s) =
n∑
j=1

1 = n, (9)

and

Z(s) ⩾
∫
a

da
1

n

n∑
j=1

πj(a|s) = 1 (10)

Based on Equation 9 and 10, we can derive the following bound:

KL
(
πi(a|s)||

max1⩽j⩽n πj(a|s)
Z(s)

)
=

∫
a

da πi(a|s) log
πi(a|s)

max1⩽j⩽n πj(a|s)
Z(s)

=

∫
a

da πi(a|s)
(
log

πi(a|s)
max1⩽j⩽n πj(a|s)

+ logZ(s)

)
⩾
∫
a

da πi(a|s)
(
log

πi(a|s)
max1⩽j⩽n πj(a|s)

+ log 1

)
=

∫
a

da πi(a|s) log
πi(a|s)

max1⩽j⩽n πj(a|s)
,

(11)

and

KL
(
πi(a|s)||

max1⩽j⩽n πj(a|s)
Z(s)

)
⩽
∫
a

da πi(a|s)
(
log

πi(a|s)
max1⩽j⩽n πj(a|s)

)
+ log n (12)

A.2 PROOF OF THEOREM 2

Proof. We first define AM-Q as:

J(π) = E(s,a)∼(T,π)

[
H−1∑
t=0

Q∗(st, at)

]
(13)

In this work, we use the optimal solutionQτ to approximateQ∗ due to limτ→1Qτ (s, a) = Q∗(s, a).
However, we just can get Q̂τ by gradient-based optimization. And, the agent does not have access
to the true model. Thus, the practical AM-Q is:

Ĵτ (π) = E(s,a)∼(T̂ ,π)

[
H−1∑
t=0

Q̂τ (st, at)

]
, (14)

which can be estimated by N trajectories with horizon H-steps.

Without loss of generality, let (X,σ(X)) be a measurable space and ν : σ(X) → R⩾0 be a non-
negative measure. This choice allows us to consider any state distribution (X = S) or state-action
distribution (X = S×A) denoted by µ, which is a probability measure on (X,σ(X)). Furthermore,
µ is absolutely continuous with respect to νX , meaning that for any E ∈ σ(X), if νX(E) = 0, then
µ(E) = 0.

14

Published as a conference paper at ICLR 2024

By applying the Radon-Nikodym theorem, we conclude that there exists a unique (up to almost
everywhere equivalence) Lebesgue νX -integrable function fµ : σ(X) → R such that:

µ(E) =

∫
E

fµ(x)dνX(x),∀E ∈ σ(X) (15)

Furthermore, let’s consider the set MX consisting of all finite signed measures on (X,σ(X)) that
are absolutely continuous with respect to νX . It can be easily verified that MX forms a linear space
over the field of real numbers R.

Using the Radon-Nikodym theorem once again, for any ψ ∈ MX , there exists a νX -integrable
function gψ : σ(X) → R such that

ψ(E) =

∫
E

gψ(x)dνX(x),∀E ∈ σ(X) (16)

Furthermore, the function gψ is unique up to almost everywhere equivalence. Since gψ is νX -
integrable, we can establish that |gψ| is also νX -integrable. As a result, we can define the norm of ψ
as the total variation norm.

∥ψ∥ = sup
P

∑
E∈P

|ψ(E)| =
∫
X

|gψ(x)|dνX(x) (17)

Here, P ⊂ σ(X) represents an arbitrary countable partition of X .

Note: If for all E ∈ σ(X), ψ(E) ⩾ 0, then it is guaranteed that ψ(X) = ∥ψ∥.

By definition, for any probability measure µ, we have ∥µ∥ = 1.

A policy π can be defined as a linear operator from MS to MS×A, where specifically p(s, a) =
π(a|s)p(s).
The transition operator T can be defined as a linear operator from MS×A to MS , where specifically
p(s′) =

∑
s, aT (s′|s, a)p(s, a).

Since T maps any probability measure to a probability measure. For any µ ∈ MS×A, as long as
∀E ∈ σ(S × A), µ(E) ⩾ 0 and µ(S × A) = ∥µ∥ = 1, it follows that ∀E ∈ σ(S), (Tµ)(E) ⩾ 0
and (Tµ)(S) = ∥Tµ∥ = 1

This immediately implies ∥T∥ ⩾ 1. To prove ∥T∥ ⩽ 1, let’s assume there exists µ0 ∈ MS×A, µ0 ̸=
0, such that ∥Tµ0∥ > ∥µ0∥, without loss of generality, assume ∥µ0∥ = 1

Define |µ0| such that for any ∀E ∈ σ(S × A), |µ0|(E) =
∫
E
|gµ0

(x)|dνS×A(x) ⩾
max(0, µ0(E),−µ0(E))

We have ∥|µ0|∥ = |µ0|(S) = 1. Hence, T |µ0|(E) ⩾ 0,∀E ∈ σ(S), and(T |µ0|)(S) = ∥T |µ0|∥ = 1

Assuming |µ0| − µ0 = 0, we have µ0(E) ⩾ 0,∀E ∈ σ(S × A) and ∥µ0∥ = 1. However, this
contradicts the assumption that ∥Tµ0∥ > ∥µ0∥ = 1

Let’s consider µ+ = |µ0|−µ0

∥|µ0|−µ0∥ , we have µ+(E) ⩾ 0,∀E ∈ σ(S ×A) and ∥µ+∥ = 1

Similarly, we can take µ− = |µ0|+µ0

∥|µ0|+µ0∥ , satisfying µ−(E) ⩾ 0,∀E ∈ σ(S ×A) and ∥µ−∥ = 1

Therefore, (Tµ±)(E) ⩾ 0,∀E ∈ σ(S). Consequently, (T (|µ0| ∓ µ0))(E) ⩾ 0,∀E ∈ σ(S)

Hence, we have ±(Tµ0)(E) ⩽ (T |µ0|)(E),∀E ∈ σ(S)

Since gTµ0
is νS-integrable, it is also measurable.

We can define E+ = g−1
Tµ0

([0,+∞)) ∈ σ(S), E− = g−1
Tµ0

((−∞, 0)) ∈ σ(S).

15

Published as a conference paper at ICLR 2024

We have:

∥Tµ0∥ =

∫
S

|gTµ0(x)|dνS(x)

=

∫
E+

gTµ0
(x)dνS(x)−

∫
E+

gTµ0
(x)dνS(x)

= (Tµ0)(E+)− (Tµ0)(E−)

⩽ (T |µ0|)(E+) + (T |µ0|)(E−)

= (T |µ0|)(E+ ∪ E−) = (T |µ0|)(S) = 1 (18)

The contradiction arises from the inequality∥Tµ0∥ > ∥µ0∥ = 1 leading to the conclusion that
∥T∥ = 1.

Similarly, we can derive that ∥π∥ = 1. Consequently, the norm of their composition ∥πT∥ ⩽ 1.

Now let’s consider a function R : S ×A→ R defined on S ×A. We define the performance metric
J(π, T) as follows:

J(π, T) = E(a0,s1,a1,...,sH−1,aH−1)∼(π,T),s0∼ρ

[
H−1∑
t=0

R(st, at)

]
(19)

Using the definition of expectation, let:

λ =

H−1∑
t=0

(πT)tπρ. (20)

Then, we have:

J(π, T) =

∫
S×A

R(s, a)dλ(s, a) (21)

Now let’s consider different T1, T2 and their corresponding λ1, λ2, as well as the corresponding
g1, g2 associated with λ, we have:

∥(πT1)tπρ− (πT2)
tπρ∥ = ∥((πT1)t−1 + (πT1)

t−2(πT2) + · · ·+ (πT2)
t−1)(πT1 − πT2)πρ∥

⩽ ∥(πT1)t−1 + (πT1)
t−2(πT2) + · · ·+ (πT2)

t−1∥∥πT1πρ− πT2πρ∥
⩽ (∥(πT1)t−1∥+ · · ·+ ∥(πT2)t−1∥)∥πT1πρ− πT2πρ∥
⩽ (∥πT1∥t−1 + · · ·+ ∥πT2∥t−1)∥πT1πρ− πT2πρ∥
= t∥πT1πρ− πT2πρ∥
= t∥π(T1πρ− T2πρ)∥
⩽ t∥π∥∥T1πρ− T2πρ∥
= t∥T1πρ− T2πρ∥ (22)

16

Published as a conference paper at ICLR 2024

Therefore, we have:

∥λ1 − λ2∥ =

∥∥∥∥∥
H−1∑
t=0

(πT1)
tπρ−

H−1∑
t=0

(πT2)
tπρ

∥∥∥∥∥
⩽

∥∥∥∥∥
H−1∑
t=0

(πT1)
tπρ−

H−1∑
t=0

(πT2)
tπρ

∥∥∥∥∥
=

∥∥∥∥∥
H−1∑
t=0

(πT1)
tπρ−

H−1∑
t=0

(πT2)
tπρ

∥∥∥∥∥
⩽
H−1∑
t=0

∥(πT1)tπρ− (πT2)
tπρ∥

⩽
H−1∑
t=0

t∥T1πρ− T2πρ∥

=
H(H − 1)

2
∥T1πρ− T2πρ∥ (23)

Suppose that:|R(s, a)| ⩽ Rmax,∀(s, a) ∈ S ×A

|J(π, T1)− J(π, T2)| =
∣∣∣∣∫
S×A

R(s, a)dλ1(s, a)−
∫
S×A

R(s, a)dλ2(s, a)

∣∣∣∣
=

∣∣∣∣∫
S×A

R(s, a)g1(s, a)dν(s, a)−
∫
S×A

R(s, a)g2(s, a)dν(s, a)

∣∣∣∣
=

∣∣∣∣∫
S×A

R(s, a)(g1(s, a)− g2(s, a))dν(s, a)

∣∣∣∣
⩽
∫
S×A

|R(s, a)||g1(s, a)− g2(s, a)|dν(s, a)

⩽ Rmax

∫
S×A

|g1(s, a)− g2(s, a)|dν(s, a)

= Rmax∥λ1 − λ2∥
⩽ RmaxH

2∥T1πρ− T2πρ∥ (24)

According to Pinsker’s inequality, we have: ∥T1πρ− T2πρ∥ ⩽
√
2DKL(T1πρ||T2πρ). Therefore,

we have: |J(π, T1)− J(π, T2)| ⩽ Rmax
H(H−1)

2

√
2DKL(T1πρ||T2πρ)

A.3 RELATED WORK TO REAL-WORLD ROBOT LEARNING.

Real-world robot learning presents numerous challenges, including efficiency, safety, and autonomy.
One possible approach is to pretrain in a simulator and then deploy on real robots, but this approach
is hindered by the sim-to-real gap. To tackle these challenges, recent work suggests combining
in-simulator pretraining with real-world fine-tuning Smith et al. (2022a) using deep reinforcement
learning, or pure real-world learning (Smith et al., 2022b; 2023). Additionally, Gürtler et al. (2023)
introduces a benchmark dataset for manipulation tasks, where real robot data is collected using a
policy trained in simulators and then used to train a new policy using SOTA offline RL algorithms.

A.4 DETAILED INFORMATION OF REAL-WORLD ROBOTS

Here, we present detailed information about the learning setting of Uni-O4 on the real-world robot
tasks, showcasing its ability to excel in real-world robot applications. Our approach introduces
a novel process of online pretraining in simulators, followed by offline and online fine-tuning on
real-world robots. In the offline fine-tuning phase, specifically, we deploy the pretrained policy
on real-world robots to collect datasets in more challenging environments. As a result of fine-
tuning the offline dataset, the policy becomes capable of ruining at a low speed in these demanding

17

Published as a conference paper at ICLR 2024

Online Pretrain (Simulator) Offline Fine-tune (Real-world) Online Fine-tune (Real-world)

𝜋𝑘

Rollout(s)

s, r

Update

𝜋𝑘+1

𝜋𝑘+1

a

𝜋𝑘

Rollout (s)

s, r

Update

𝜋𝑘+1

𝜋𝑘+1

a

𝜋𝑝𝑟𝑒
𝜋𝑝𝑟𝑒

Rollout (s)

s, r

learn

𝜋𝑜𝑓𝑓
Data collected with 𝜋𝑝𝑟𝑒

a

buffer

𝐷 𝜋𝑜𝑓𝑓

rollout data rollout data rollout data

Figure 7: The workflow of our online-offline-online fine-tuning framework.

environments. Subsequently, we proceed with online fine-tuning to achieve further performance
improvement. The whole workflow is presented in Figure 7. Overall, offline fine-tuning proves
the safety of real-world robot learning, while online learning undergoes policy improvement. This
paradigm showcases sample-efficient fine-tuning and safe robot learning.

In detail, the hardware utilized primarily includes the Unitree Go1 quadruped, RealSense T265
sensor, and a latex mattress. We deploy our algorithm on the Unitree Go1 quadruped and choose a
latex mattress as the deployment environment. The RealSense T265 sensor is employed to measure
the robot’s speed along the x, y, and yaw axes for reward calculation. Subsequently, we provide
comprehensive definitions and outline the learning process in the subsequent sections.

A.4.1 STATE AND ACTION SPACES

In this subsection, we give the definition of the policy inputs and action space of both simulated
and real-world quadruped environments in the learning process. The input to the policy is a 5-step
history of observations o which includes the gravity vector in the body frame gt ∈ SO(3), joint state
sjoint
t ∈ R24 (joint position and velocity of each leg joint), last action at−1 ∈ R12, the command
ct ∈ R14, global timing reference tt ∈ R and the timing reference variables of 4 legs tleg ∈ R4. The
policy outputs the target position of the leg joint at ∈ R12, and the PD controller is then used to
calculate the torque. The relative notion is listed in Table 4.

A.4.2 REWARD FUNCTION

During pre-training, we use the same reward function as Margolis & Agrawal (2023). In the subse-
quent offline policy optimization and online fine-tuning stages, we use the following reward func-
tion, as shown in Table 3. We calculate the total reward as rpos · exp(cnegrneg) where rpos is the sum
of positive reward terms and rneg is the sum of negative reward terms (we use cneg = 0.02). Each
term is summarized in Table 3 and the relative notion is listed in Table 4.

Table 3: Reward terms for Offline and offline-to-online learning.
Term Expression Weight

xy velocity tracking exp

{
−

∣∣∣vxy − vcmd
xy

∣∣∣2 /σvxy

}
0.02

yaw velocity tracking exp

{
−

(
ωz − ωcmd

z

)2
/σωz

}
0.01

z velocity v2
z −4 × 10−4

joint torques |τ |2 −2 × 10−5

joint velocities |q̇|2 −2 × 10−5

joint accelerations |q̈|2 −5 × 10−9

action smoothing |at−1 − at|2 −2 × 10−3

A.4.3 OFFLINE AND OFFLINE-TO-ONLINE LEARNING

In this section, we will provide a comprehensive explanation of the learning procedures involved in
the suggested approach. As shown in Figure 7, the difference between this framework and Algorithm
2 is the behavior policies are directly initialized from the simulator pretraining rather than estimated
using BC. In this manner, the policy can be trained to adapt to the challenging target environments

18

Published as a conference paper at ICLR 2024

Table 4: Notation.
Parameter Definition Units Dimension

Robot State
q Joint Angles rad 12
q̇ Joint Velocities rad/s 12
q̈ Joint Accelerations rad/s2 12
τ Joint Torques Nm 12
vxy The velocity of the robot’s xy axis. m/s 2
ωz Angular velocity of robot z axis. rad/s 1
vz The velocity of the robot’s z axis. m/s 1
vcmd
xy The command velocity of the robot’s xy axis. m/s 2

ωcmd
z Command angular velocity of robot z axis. rad/s 1

vcmd
z The command velocity of the robot’s z axis. m/s 1

Control Policy
o Policy Observation - 58 × 5
a Policy Action - 12

Simulator pretrained:

IQL offline trained:

Sim2Real:

Our offline fine-tuned:

Figure 8: Deployment on a latex mattress with low speed (1m/s commands of the x aixs) by various
methods. The trails from top to bottom are tested by simulator pretrained, IQL offline trained,
Sim2Real, and our offline fine-tuned policies, respectively.

19

Published as a conference paper at ICLR 2024

Sim2Real:

IQL online fine-tuned:

Ours offline fine-tuned:

Our online fine-tuned:

Figure 9: Deployment on a latex mattress with low speed (2m/s commands of the x aix) by various
methods. The trails from top to bottom are tested by Sim2Real, IQL online fine-tuned, our offline
fine-tuned, and our online fine-tuned policies, respectively.

with minimal real-world data collection. In the offline fine-tuning phase, we also encourage the
policy to learn diverse behaviors. Thus, we revise Equation 7 with disagreement penalty as:

Jk
(
πi
)
= Jk

(
πi
)
+ αEs∼D[DKL(π̂

i(·|s)||f({π̂
j(·|s)

Z(s)
}))], (25)

where the combined policy is the same as Equation 6.

For the online simulator pretraining, we initially trained a policy using the standard online PPO in
IsaacGym, accumulating approximately seven million environment steps (training time is around 10
minutes using environment parallelism in IsaacGym). Notably, our training was solely conducted on
flat ground without employing domain randomization. Subsequently, we deploy this policy on the
real-world robot. As depicted in Figure 5(b) and 8, the performance on the latex mattress exhibited
limitations, rendering it difficult to traverse distances greater than a few meters. Furthermore, the
robot’s feet were prone to sinking into the mattress, leading to instability and potential falls.

To address this challenge, we implemented offline fine-tuning by gathering approximately 180,000
step data at a frequency of 50 Hz. Each episode consisted of 1,000 steps, and we subsequently
conducted offline policy optimization. The fine-tuned policy was then deployed onto the robot,
enabling it to navigate the latex mattress with increased freedom at a low speed of approximately
0.8m/s, illustrated in Figure 8.

While the deployed policy, fine-tuned through offline methods, successfully runs in this demanding
terrain, it faces limitations in tracking higher-speed commands. To overcome this, we proceed with
online fine-tuning. After 100,000 step interactions, the robot achieved the ability to traverse the
mattress at a higher speed (1.6m/s), shown in Figure 9. In contrast, both the WTW and IQL
methods exhibit limitations in adapting to the challenging environment at low or high speeds. See
uni-o4.github.io for full videos.

20

uni-o4.github.io

Published as a conference paper at ICLR 2024

A.4.4 PSEUDO-CODE OF UNI-O4 FOR ONLINE-OFFLINE-ONLINE SETTING

In this section, we present the pseudo-code of the online-offline-to-online fine-tuning on real-world
robots, outlined in Algorithm 27.

Algorithm 1 On-policy policy optimization: Uni-O4
Online training stage:
1: Initialize the policy π and V -function;
2: for iteration j = 1, 2, · · · do
3: Run policy in the target environment for T timesteps
4: Compute advantage by GAE (Schulman et al., 2015b);
5: Update the policy by objective 1 and value by MSE loss for multiple epochs;
6: end for

Supervised learning stage:
7: Initialize the policy ensemble {πi

0}i∈[n] from online stage (set πi
β = πi

0);
8: Calculate value Q̂τ and V̂τ by 3; 2;
9: Estimate the transition model T̂ by 5;

Offline policy optimization stage:
10: for iteration j = 1, 2, · · · do
11: Approximate advantage by Q̂τ − V̂τ

12: Update each policy πi by maximizing objective 25;
13: if j%C == 0 then
14: Perform OPE for each policy by AM-Q;
15: for policy id i ∈ 1, . . . , n do
16: if Ĵτ (π

i) > Ĵτ (π
i
k) then

17: Set πi
k ← πi& its k = k + 1;

18: end if
19: end for
20: end if
21: end for
Online fine-tuning stage:
22: Initialize the policy π and V -function from offline stage;
23: for iteration j = 1, 2, · · · do
24: Run policy in the target environment for T timesteps
25: Compute advantage by GAE (Schulman et al., 2015b);
26: Update the policy by objective 1 and value by MSE loss for multiple epochs;
27: end for

A.4.5 REAL-WORLD ROBOT BASELINE IMPLEMENTATION

We consider two baselines in the real-world robot fine-tuning setting. The first baseline is the sim-
to-real work called "walk-these-way" [13]. This method focuses on quadruped locomotion and
demonstrates the ability to be deployed across various terrains such as grassland, slopes, and stairs,
without the need for additional training in each specific environment. This remarkable generalization
capability is achieved through extensive randomization of environments and a substantial amount of
training data, totaling approximately 2 billion environment steps. However, it should be noted that
this method is highly data-inefficient and encounters challenges when attempting to model complex
or challenging deployment environments accurately. Thus, we include this baseline in our compar-
ison to highlight the significance of real-world fine-tuning and emphasize the sample efficiency of
our online-offline-online paradigm. For WTW, we directly deploy the open-source policy trained
with environment steps in the simulator.

The second baseline we consider is IQL, which is an offline-to-online method. We emphasize that
IQL is regarded as a strong baseline for real-world robot fine-tining tasks (Zhou et al., 2023). Several
studies (Zhou et al., 2023; Wang et al., 2023; Gürtler et al., 2023; Nair et al., 2023) have utilized IQL
for fine-tuning real-world robots in an offline pretraining and online fine-tuning paradigm. In this
work, we follow the offline-to-online paradigm of IQL as a baseline, aligning with these previous
studies. For the IQL implementation, we begin by training IQL offline using a collected dataset for
1 million steps. We save multiple checkpoints during this training phase for evaluation purposes.
Hyper-parameter tuning is performed during the offline training process. Specifically, we set τ = 0.7

21

Published as a conference paper at ICLR 2024

for value function training and β = 5 for policy extraction. Once the offline training is complete,
we evaluate the checkpoints and select the one that exhibits the best performance for online fine-
tuning, using the same set of hyper-parameters. To ensure fairness, we fine-tune the policy for an
equal number of environment steps with Uni-O4. Following the online fine-tuning, we deploy the
fine-tuned policy for comparison.

A.5 EXPERIMENTAL SETUP DETAILS

A.5.1 ENVIRONMENT SETTINGS

Figure 10: The suite of tasks examined in this work is illustrated successively: MoJoCo Locomotion,
Adroit, Kitchen, Antmaze, simulated and real-world quadruped robots.

This study involves the evaluation of Uni-O4 using both simulated and real-world robot tasks, exam-
ining its performance in both offline and offline-to-online fine-tuning scenarios. The visualization
of these domains can be seen in Figure 10. For the simulated tasks, we utilized publicly available
datasets from the D4RL benchmark suite (Fu et al., 2020).

Sim2Real quadruped robots. We employ quadruped robots to assess the effectiveness of the pro-
posed fine-tuning framework, which comprises three primary stages: online pretraining (simulator),
offline fine-tuning (real-world), and online fine-tuning (real-world). A comprehensive description
of the experimental setup and training specifics can be found in Section A.4.

MoJoCo Locomotion Gym. We focus on three locomotion tasks using the MuJoCo physics simu-
lator: HalfCheetah, Walker2d, and Hopper. The objective of each task is to achieve maximum for-
ward movement while minimizing control costs. We consider three types of datasets. The medium
datasets include rollouts from medium-level policies. The medium-replay datasets comprise all
samples collected during the training of a medium-level agent from scratch. Lastly, the medium-
expert datasets consist of rollouts from both medium-level and expert-level policies, with an equal
distribution from each.

Adroit. The dexterous manipulation tasks are highly challenging with sparse reward signals. The
offline data used for these tasks is multi-modal, consisting of a small set of human demonstrations
and a larger set of trajectories generated by a behavior-cloned policy trained on the human data. We
use the rigorous evaluation criteria in Kostrikov et al. (2021) to evaluate all methods. This evaluation
criteria focuses on completion speed rather than success rate. This means that the efficiency and
speed at which the tasks are completed are prioritized over the mere achievement of the final goal.

22

Published as a conference paper at ICLR 2024

Antmaze. In these Antmaze navigation tasks, the reward is represented by a binary variable that
indicates whether the agent has successfully reached the goal or not. Once the agent reaches the
goal, the episode terminates. To evaluate the performance, we use the normalized return, which is
defined by Fu et al. (2020). Specifically, we conducted 50 trials to assess the agent’s performance.

Kitchen. This environment includes various common household items such as a microwave, kettle,
overhead light, cabinets, and an oven. The primary objective of each task within this domain is to
interact with these items to achieve a desired goal configuration. This domain serves as a benchmark
for assessing the impact of multitask behavior in a realistic non-navigation environment. Baseline

Table 5: Values of hyperparameters
Hyperparameters Values

Q network 1024-1024
V network 256-256-256

Policy network 512-256-128 for quadruped robots
256-256-256 for others

Transition model network 200-200-200-200 for MuJoCo Locomotion tasks
400-400-400-400 for others

Offline policy improvement learning rate 1× 10−4 for MuJoCo Locomotion and quadruped robot tasks
1× 10−5 for Adroit, Antmaze, and Kitchen tasks

Offline clip ratio 0.25
Online clip ratio 0.1

Online learning rate 3× 10−5 for MuJoCo Locomotion and quadruped robot tasks
8× 10−6 for Adroit tasks

Gamma 0.99
Online Lamda 0.95

Rollout steps H for OPE

1000 steps for MoJoCo Locomotion
150 steps for Antmaze
4 steps for Kitchen
20 steps for Quadruped robots

implementation details. For CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), AWAC(Nair
et al., 2020), Cal-ql(Nakamoto et al., 2023), and SAC (Haarnoja et al., 2018), we use the imple-
mentation provided by Tarasov et al. (2022) with default hyperparameters. For Off2on(Lee et al.,
2021), COMBO(Yu et al., 2021), ATAC(Cheng et al., 2022), and PEX(Zhang et al., 2023), we use
the authors’ implementation with official hyperparameters.

A.5.2 HYPERPARAMETERS DETAILS

Here, we provide the detailed hyperparameters used in offline and offline-to-online fine-tuning
phases, repetitively. We use Adam as an optimizer. For the network architectures of Q,V, π, and T̂
are listed in Table 5.

Offline phase. As described in Algorithm 2, our offline learning algorithm contains two main
phases: 1) the supervised learning stage; 2) the multi-step policy improvement stage. In supervised
stage, we train behavior policy for 4 × 105 gradient steps using learning rate 10−4, train Q and V
networks for 2×106 gradient steps using learning rate 10−4. Specifically, we updateQ and V in the
manner of IQL, thus we use the same value of coefficient τ in Kostrikov et al. (2021), i.e., τ = 0.9
for Antmaze tasks and 0.7 for others, except for hopper-medium-expert and halfcheetah-medium-
expert. Because we found that τ = 0.5 is best for these tasks. We train the dynamic model for
1 × 106 gradient steps with learning rate 3 × 10−4. In the policy improvement stage, we conduct
10,000 gradient steps for each policy, in which OPE is queried per 100 steps. Learning rates are
listed in Table 5.

Online phase. The policy and V value function are initialized from offline phases. Then, we update
the policy and value for 1× 106 environment steps for the simulated tasks, and 1× 105 environment
steps for real-world robot tasks. The values of key hyperparameters are listed in Table 5. For
real-world robot tasks, the hyperparameters of online simulator-based pretraining are followed by
Margolis & Agrawal (2023).

23

Published as a conference paper at ICLR 2024

A
c

tio
n

 lik
e

lih
o

o
d

A
c

tio
n

 lik
e

lih
o

o
d

(a) Standard BC (b) Ensemble BC

High-return actionLow-return action

Figure 11: Motivation example of the ensemble behavior policies. The gray line represents the action
distribution of the dataset (πD) which demonstrates multi-modality. The main mode is primarily
composed of low-return actions, represented by the yellow dots. Conversely, the subdominant mode
consists of low-density but high-return actions, denoted by the green dots. (a) Standard behavior
cloning (BC) is susceptible to imitating the high-density but low-return actions, resulting in a bias
towards fitting the main mode. (b) Ensemble BC approach learns diverse behavior policies that are
more likely to cover all modes present in the dataset.

A.6 POLICY ENSEMBLE ANALYSIS

In Section 5.3, we conducted an analysis on the number of ensembles and the penalty hyperparam-
eter on MoJoCo tasks. The results demonstrated that our proposed policy ensemble-based method
outperforms its counterparts in terms of offline performance. To further explore the reason why
diverse policies are helpful to explore higher performance policies. We provide a simple motivation
example in Figure 11 to give a clearer view. There is a presence of multi-modality within a diverse
dataset. In such a scenario, standard behavior cloning (BC) is susceptible to imitating the high-
density but low-return actions, resulting in a bias towards fitting the main mode. However, during
the offline multi-step optimization stage, the policy optimization is constrained by the clip function,
making it difficult for the policy to escape this mode. Consequently, this can lead to a sub-optimal
policy as it becomes unable to explore the high-return action region.

In contrast, our ensemble BC approach learns diverse behavior policies that are more likely to cover
all modes present in the dataset. This facilitates exploration of the high-return region, enabling the
discovery of the optimal policy. To validate our point of view, we conduct experiments to answer
the following questions:

Does ensemble policies provide better support over the offline dataset? We visualized the re-
lationship between state-action pairs obtained from a single policy and the offline dataset, as well
as between those obtained from the combined policy ensemble used in Section 3.1 and the offline
dataset. As depicted in Figure 12, we can observe that the state-action pairs supported by ensemble
policies exhibit stronger correspondence with the ones projected from the offline dataset. In com-
parison to Figure 12(a), where the points of the two categories are more scattered, the points of two
colors in Figure 12(b) have a greater overlap. This observation further confirms that the policy en-
semble offers more comprehensive support over the offline dataset, ultimately leading to improved
performance.

Does behavior cloning with a disagreement penalty help in learning diverse behaviors? We
conduct an analysis to determine if the behavior cloning loss with a disagreement penalty can suc-
cessfully learn diverse behavior policies. The results, depicted in Figure 13 and 14, demonstrate that
the behavior policies learned using α = 0.1 exhibit significantly greater diversity compared to their
counterparts.

Does diverse policies help in exploring optimal policies? To answer this, we investigate whether
the diverse policies help to explore the high-return actions region in the dataset, which is a crucial
factor for enhancing performance in offline learning (Hong et al., 2023). We visualize the action
distribution of the policies learned during the offline multi-step optimization phase on two tasks.
As depicted in Figure 15 and 16, the learned policies effectively encompass the high-return actions
region. This indicates that diverse policies have a greater potential for exploring optimal policies,
thereby improving the overall learning process.

24

Published as a conference paper at ICLR 2024

Figure 12: We embed a set of state-action pairs of offline dataset and different behavior policies into
a 2D space using t-SNE. We highlight the region of mismatch between the dataset and the policies.

Figure 13: The distribution comparison of learned behavior policies across various disagreement
penalty coefficients on the MoJoCo Locomotion domain is illustrated, specifically for α = 0.0 (top)
and α = 0.1 (bottom). For simplicity, only the first dimension of actions is visualized.

Figure 14: The distribution comparison of learned behavior policies across various disagreement
penalty coefficients on the Adroit domain is illustrated, specifically for α = 0.0 (top) and α = 0.1
(bottom). For simplicity, only the first dimension of actions is visualized.

25

Published as a conference paper at ICLR 2024

(a) Dim 1 (b) Dim 2 (c) Dim 3

(d) Dim 4 (e) Dim 5 (f) Dim 6
Figure 15: The distribution of each action dimension in the policies learned during the offline multi-
step optimization phase on the walker2d−medium− replay− v2 task. Specifically, we visualize
the top 50 high-return actions from the offline dataset, highlighting the diversity of policies and their
ability to explore and reach the region of high-return actions.

(a) Dim 1 (b) Dim 2 (c) Dim 3

Figure 16: The distribution of each action dimension in the policies learned during the offline multi-
step optimization phase on the hopper −medium − replay − v2 task. Specifically, we visualize
the top 50 high-return actions from the offline dataset, highlighting the diversity of policies and their
ability to explore and reach the region of high-return actions.

26

Published as a conference paper at ICLR 2024

A.7 EXTRA OFFLINE COMPARISON

In this section, we have added the Diffusion-QL (Wang et al., 2022), RORL (Yang et al., 2022), XQL
(Garg et al., 2023), SQL (Xu et al., 2023) as strong baseline for comparison. Upon inspecting Table
6, it becomes evident that Uni-O4 outperforms all other methods in terms of the total score across all
tasks. Furthermore, Uni-O4 outperforms all other methods in 16 out of 26 individual tasks. While
RORL surpasses Uni-O4 in the total score for MoJoCo Locomotion tasks, it performs worse than
Uni-O4 in the other three domains and exhibits limited effectiveness in the Kitchen domain.

Table 6: Extra comparison on D4RL tasks with other state-of-the-art baselines.
Environment Diffusion-QL (Wang et al., 2022) RORL (Yang et al., 2022) XQL (Garg et al., 2023) SQL (Xu et al., 2023) Ours

halfcheetah-medium-v2 51.1 66.8 48.3 48.3 52.6
hopper-medium-v2 90.5 104.8 74.2 75.5 104.4
walker2d-medium-v2 87.0 102.4 84.2 84.2 90.2
halfcheetah-medium-replay 47.8 61.9 45.2 44.8 44.3
hopper-medium-replay 101.3 102.8 100.7 99.7 103.2
walker2d-medium-replay 95.5 90.4 82.2 81.2 98.4
halfcheetah-medium-expert 96.8 107.8 94.2 94.0 93.8
hopper-medium-expert 111.1 112.7 111.2 111.8 111.4
walker2d-medium-expert 110.1 121.2 112.7 110.0 118.1

locomotion total 791.2 870.8 752.9 749.5 816.4

Umaze-v2 93.4 96.7 93.8 92.2 93.7
Umaze-diverse-v2 66.2 90.7 82.0 74.0 83.5
Medium-play-v2 76.6 76.3 76.0 80.2 75.2
Medium-diverse-v2 78.6 69.3 73.6 79.1 72.2
Large-play-v2 46.4 16.3 46.5 53.2 64.9
Large-diverse-v2 56.6 41.0 49.0 52.3 58.7

Antmaze total 417.8 390.3 420.9 431.0 448.2

pen-human 72.8 33.7 85.5 89.2 108.2
hammer-human 4.3 2.3 8.2 3.8 24.7
door-human 6.9 3.8 11.5 7.2 27.1
relocate-human 0.0 0.0 0.2 0.2 1.7
pen-cloned 57.3 35.7 53.9 69.8 101.3
hammer-cloned 2.1 1.7 4.3 2.1 7.0
door-cloned 4.1 -0.1 5.9 4.8 10.2
relocate-cloned 0.0 0.0 -0.2 -0.1 1.4

Adroit total 147.5 77.1 169.3 177.0 281.6

kitchen-complete 84.0 0.3 82.4 76.4 93.6
kitchen-partial 60.5 0.0 73.7 72.5 58.3
kitchen-mixed 62.6 0.0 62.5 67.4 65.0

kitchen total 207.0 0.3 218.6 216.3 216.9

Total 1563.5 1338.5 1140.8 1573.8 1763.1

A.8 EXTRA OFFLINE-TO-ONLINE RESULTS ON D4RL TASKS

In Figure 4, the results demonstrate that Uni-O4 achieves effective initialization based on subopti-
mal datasets for online fine-tuning. Leveraging the favorable properties of on-policy RL, Uni-O4
consistently enhances performance without any drop in performance. In this section, we conduct
experiments to explore the performance of Uni-O4 on random datasets. As depicted in Figure 17,
Uni-O4 exhibits rapid performance improvement with a modest initialization.

Furthermore, Figure 18 and 19 present a comparison on more challenging tasks, such as the multi-
task kitchen with a long horizon and adroit hand with sparse rewards. Uni-O4 not only achieves
better initialization performance but also demonstrates further performance improvements. Uni-O4
outperforms all baselines significantly, showcasing its superiority in tackling these demanding tasks.

A.9 THE COMPARISON BETWEEN Q̂τ AND Qπk
IN UNI-O4

In this section, we conduct experiments to investigate why we chose Q̂τ instead of Qπk
in this

work. In OPE and the computation of the advantage function, it is common to fit Qπk
during policy

improvement. However, in the offline setting, both policy optimization and evaluation depend on the
fitted Q-function. This can lead to overestimation due to off-policy estimation and the distribution
shift present in offline RL. As depicted in Figure 20, increasing the steps of off-policy estimation

27

Published as a conference paper at ICLR 2024

0 50 100 150
Environment Steps (×5e3)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hopper-random-v2
ODT
off2on
SPOT
Ours

(a)

0 50 100 150
Environment Steps (×5e3)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

walker2d-random-v2
ODT
off2on
SPOT
Ours

(b)

0 50 100 150
Environment Steps (×5e3)

0

20

40

60

80

No
rm

al
ize

d
Re

tu
rn

halfcheetah-random-v2
ODT
off2on
SPOT
Ours

(c)

Figure 17: The experimental results on D4RL random dataset. The dotted line indicates offline
initialization performance.

0 10 20 30 40 50
Environment Steps (×1e4)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

kitchen-complete-v0

PEX
Cal-ql
off2on
SPOT

(a)

0 10 20 30 40 50
Environment Steps (×1e4)

0

20

40

60

80

No
rm

al
ize

d
Re

tu
rn

kitchen-mixed-v0

PEX
Cal-ql
off2on
SPOT

(b)

0 10 20 30 40 50
Environment Steps (×1e4)

0

20

40

60
No

rm
al

ize
d

Re
tu

rn

kitchen-partial-v0

PEX
Cal-ql
off2on
SPOT

(c)

Figure 18: The experimental results on D4RL Kitchen dataset.

0 50 100 150
Environment Steps (×5e3)

0

25

50

75

100

125

150

No
rm

al
ize

d
Re

tu
rn

pen-cloned-v1

ODT
PEX
Cal-ql
off2on
SPOT
Ours

(a)

0 50 100 150
Environment Steps (×5e3)

0

10

20

30

40

50

60

No
rm

al
ize

d
Re

tu
rn

door-cloned-v1
ODT
PEX
Cal-ql
off2on
SPOT
Ours

(b)

0 50 100 150
Environment Steps (×5e3)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hammer-cloned-v1
ODT
PEX
Cal-ql
off2on
SPOT
Ours

(c)

Figure 19: The experimental results on D4RL adroit cloned tasks.

28

Published as a conference paper at ICLR 2024

results in worse performance. Conversely, using a smaller step, or even relying solely on Qπβ
, can

lead to suboptimal outcomes.

On the other hand, Q̂τ offers a favorable choice as it approximates the optimalQ∗ while considering
the constraints imposed by the dataset support. As demonstrated, the selection of Q̂τ significantly
outperforms the iterative updating of the Q-function.

0 5 10 15 20
Gradient Steps (×500)

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hopper-medium-replay-v2

Uni-O4
step=20
step=200
step=2000
step=20000

(a) Dim 1

0 5 10 15 20
Gradient Steps (×500)

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-replay-v2

Uni-O4
step=20
step=200
step=2000
step=20000

(b) Dim 2

0 5 10 15 20
Gradient Steps (×500)

30.0

32.5

35.0

37.5

40.0

42.5

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-replay-v2

Uni-O4
step=20
step=200
step=2000
step=20000

(c) Dim 3

Figure 20: The comparison between Q̂τ and Qπk
in Uni-O4. Uni-O4 represents that Q̂τ is used as

a component of AM-Q and to compute the advantage function. Additionally, the steps of 20, 200,
2000, and 20000 represent the number of iterations required to fit πk following the replacement of
the behavior policy.

A.10 THE DESIGN CHOICES OF ENSEMBLE BEHAVIOR POLICIES FOR MULTI-STEP POLICY
OPTIMIATION

A.11 DESIGN CHOICES ABLATION STUDY

In our evaluation, we apply the well-known ’code-level optimization’ (Engstrom et al., 2019) tech-
niques of PPO to enhance the performance of Uni-O4. Followed by the implementation of online
PPO and BPPO (Zhuang et al., 2023), we use learning rate and clip ration decay, orthogonal ini-
tialization, state normalization, reward scaling, Tanh activation function, and mini-batch advantage
normalization in Uni-O4. In this study, we specifically analyze the design choices as follows.

Reward scaling: Instead of directly using rewards from the environment in the objective, the PPO
implementation employs a scaling scheme based on discounting. In this scheme, the rewards are
divided by the standard deviation of a rolling discounted sum of the rewards, without subtracting
and re-adding the mean. For more details, please refer to Engstrom et al. (2019).

State Normalization: Similarly to the treatment of rewards, the raw states are not directly fed into
the policies. Instead, the states are normalized by the mean and variance calculated from the offline
dataset instead of the initial mean-zero and variance-one vectors in standard PPO.

Tanh activations: The Tanh activation function are used between layers in the policy.

Value function clipping: For value network training, we use the PPO-like objective:

LV = max
[
(Vθt − Vtarg)

2
,
(
clip

(
Vθt , Vθt−1

− ε, Vθt−1
+ ε
)
− Vtarg

)2]
,

where Vθ is clipped around the previous value estimates (and ε is fixed to the same value as the value
used to clip probability ratios in the PPO loss function.

As illustrated in Figures 21, 22, and 23, these design choices consistently exhibit enhanced perfor-
mance compared to their alternatives on various tasks, including walker2d-medium, medium-replay,
and medium-expert. Notably, the design choices of state normalization, reward scaling, and Tanh
activation function show particularly significant benefits on the medium-replay tasks. Furthermore,
the performance does not significantly vary with the design choice of value function clip.

A.12 RUNNING TIME ANALYSIS

In this section, we analyze the runtime for both the offline and online phases.

29

Published as a conference paper at ICLR 2024

0 50 100 150
Environment Steps (×5e3)

20

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-v2

State norm
Without state norm

0 50 100 150
Environment Steps (×5e3)

60
70
80
90

100
110
120
130

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-replay-v2

State norm
Without state norm

0 50 100 150
Environment Steps (×5e3)

80

100

120

140

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-expert-v2

State norm
Without state norm

Figure 21: Ablation study on state normalization during online fine-tuning.

0 50 100 150
Environment Steps (×5e3)

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-v2

Reward scaling
Without reward scaling

0 50 100 150
Environment Steps (×5e3)

20

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-replay-v2

Reward scaling
Without reward scaling

0 50 100 150
Environment Steps (×5e3)

80

100

120

140

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-expert-v2

Reward scaling
Without reward scaling

Figure 22: Ablation study on reward scaling during online fine-tuning.

0 50 100 150
Environment Steps (×5e3)

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-v2
Tanh
Relu

0 50 100 150
Environment Steps (×5e3)

40

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-replay-v2

Tanh
Relu

0 50 100 150
Environment Steps (×5e3)

60

80

100

120

140

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-expert-v2

Tanh
Relu

Figure 23: Ablation study on activation function during online fine-tuning.

0 50 100 150
Environment Steps (×5e3)

60

80

100

120

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-v2

clip value
without clip value

0 50 100 150
Environment Steps (×5e3)

40

60

80

100

120

140

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-replay-v2

clip value
without clip value

0 50 100 150
Environment Steps (×5e3)

80

100

120

140

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-expert-v2

clip value
without clip value

Figure 24: Ablation study on value function clip during online fine-tuning.

30

Published as a conference paper at ICLR 2024

In the offline pretraining phase, as illustrated in Figure 25(a), the running time during offline training
shows a minor increase with the number of policies. This slight increment in time is deemed ac-
ceptable, given the significant performance improvement achieved. We also measure the pretraining
time for all methods in Figure 25(b). RORL, Diffusion-QL, CQL, and off2on methods require more
than 7 hours, while the remaining methods complete within 5 hours.

Moving on to the online fine-tuning phase, we measure the fine-tuning time for all methods. As
illustrated in Figure 25(c), theQ-ensemble-based method (off2on) takes over 1000 minutes, whereas
Uni-O4 only requires 30 minutes to complete the fine-tuning phase. The other baselines range from
approximately 200 to 400 minutes, all significantly slower than our method. These results highlight
the simplicity and efficiency of Uni-O4 in terms of runtime.

All experiments are conducted on the workstation with eight NVIDIA A40 GPUs and four AMD
EPYC 7542 32-Core CPUs.

1 2 4 8
Policy number

0

50

100

150

200

250

300

Ru
nn

in
g

tim
e

(m
in

ut
es

)

RORL Diff-QLs CqL off2on Ours SQL SPOT IQL AWAC ODT PEX
Methods

0

200

400

600

800

1000

1200

1400

1600

1800

Ru
nn

in
g

tim
e

(m
in

ut
es

)

off2on Cal-ql Cql PEX AWAC IQL Ours
Methods

0

200

400

600

800

1000

Ru
nn

in
g

tim
e

(m
in

ut
es

)

Figure 25: Running time analysis. Left: the comparison of running time over ensemble size. Middle:
running time of various methods during offline pretraining. Right running time of various methods
during online fine-tuning.

A.13 PSEUDO-CODE OF UNI-O4

In this section, we present the pseudo-code for the offline-to-online stages, outlined in Algorithm 2.

To perform online fine-tuning, we select a single policy from the ensemble of policies by querying
AM-Q based on its proven accurate evaluation performance, as demonstrated in Section 5.3. For
instance, when allowing a 25% permitted error, the evaluation accuracy reaches approximately 95%.
Alternatively, we can choose the top-k policies with the highest evaluation scores. These selected
policies are then evaluated through interaction with the respective environments. Specifically, we
choose k = 2 for Mujoco locomotion and k = 3 for the Adroit and Kitchen domains. Based on the
OPE scores, the interactions with the environments can be conducted more safely, while keeping the
budgets minimal.

31

Published as a conference paper at ICLR 2024

Algorithm 2 On-policy policy optimization: Uni-O4
Supervised learning stage:
1: Estimate policy ensemble {πi

0}i∈[n] by 6 (set πi
β = πi

0);
2: Calculate value Q̂τ and V̂τ by 3; 2;
3: Estimate the transition model T̂ by 5;

Offline policy optimization stage:
4: for iteration j = 1, 2, · · · do
5: Approximate advantage by Q̂τ − V̂τ

6: Update each policy πi by maximizing objective 7;
7: if j%C == 0 then
8: Perform OPE for each policy by AM-Q;
9: for policy id i ∈ 1, . . . , n do

10: if Ĵτ (π
i) > Ĵτ (π

i
k) then

11: Set πi
k ← πi& its k = k + 1;

12: end if
13: end for
14: end if
15: end for
Online fine-tuning stage:
16: Initialize the policy π and V -function from offline stage;
17: for iteration j = 1, 2, · · · do
18: Run policy in the target environment for T timesteps
19: Compute advantage by GAE (Schulman et al., 2015b);
20: Update the policy by objective 1 and value by MSE loss for multiple epochs;
21: end for

A.14 FULL RESULTS OF ABLATION STUDY

Here, we provide the full results of Section 5.3. Figure 26, 27, 28, and 29 present the learning
curves of ablation on OPE accuracy, hyperparameter α, the number of ensemble policies, and the
optimality on MuJoCo tasks.

32

Published as a conference paper at ICLR 2024

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

1.0

OP
E

Ac
cu

ra
cy

walker2d-medium-v2

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

OP
E

Ac
cu

ra
cy

walker2d-medium-replay-v2

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

1.0

OP
E

Ac
cu

ra
cy

walker2d-medium-expert-v2

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

1.0

OP
E

Ac
cu

ra
cy

hopper-medium-v2

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

OP
E

Ac
cu

ra
cy

hopper-medium-replay-v2

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

1.0

OP
E

Ac
cu

ra
cy

hopper-medium-expert-v2

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

1.0

OP
E

Ac
cu

ra
cy

halfcheetah-medium-v2

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

OP
E

Ac
cu

ra
cy

halfcheetah-medium-replay-v2

0.0% 5% 10% 20%
Permitted Error

0.0

0.2

0.4

0.6

0.8

1.0

OP
E

Ac
cu

ra
cy

halfcheetah-medium-expert-v2

Figure 26: Full results of offline policy evaluation accuracy ablation study.

0 5 10 15 20
Gradient Steps (×500)

70

75

80

85

90

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-v2

alpha=0.0
alpha=0.1
alpha=0.5

0 5 10 15 20
Gradient Steps (×500)

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-replay-v2

alpha=0.0
alpha=0.1
alpha=0.5

0 5 10 15 20
Gradient Steps (×500)

95

100

105

110

115

120

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-expert-v2

alpha=0.0
alpha=0.1
alpha=0.5

0 5 10 15 20
Gradient Steps (×500)

40

50

60

70

80

90

100

No
rm

al
ize

d
Re

tu
rn

hopper-medium-v2

alpha=0.0
alpha=0.1
alpha=0.5

0 5 10 15 20
Gradient Steps (×500)

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hopper-medium-replay-v2

alpha=0.0
alpha=0.1
alpha=0.5

0 5 10 15 20
Gradient Steps (×500)

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hopper-medium-expert-v2

alpha=0.0
alpha=0.1
alpha=0.5

0 5 10 15 20
Gradient Steps (×500)

42

44

46

48

50

52

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-v2

alpha=0.0
alpha=0.1
alpha=0.5

0 5 10 15 20
Gradient Steps (×500)

25

30

35

40

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-replay-v2

alpha=0.0
alpha=0.1
alpha=0.5

0 5 10 15 20
Gradient Steps (×500)

65

70

75

80

85

90

95

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-expert-v2

alpha=0.0
alpha=0.1
alpha=0.5

Figure 27: Full results of alpha ablation study.

33

Published as a conference paper at ICLR 2024

1 4 8
Policy Number

0

20

40

60

80

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-v2

1 4 8
Policy Number

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-replay-v2

1 4 8
Policy Number

0

25

50

75

100

No
rm

al
ize

d
Re

tu
rn

walker2d-medium-expert-v2

1 4 8
Policy Number

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hopper-medium-v2

1 4 8
Policy Number

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hopper-medium-replay-v2

1 4 8
Policy Number

0

20

40

60

80

100

No
rm

al
ize

d
Re

tu
rn

hopper-medium-expert-v2

1 4 8
Policy Number

0

10

20

30

40

50

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-v2

1 4 8
Policy Number

0

10

20

30

40

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-replay-v2

1 4 8
Policy Number

0

20

40

60

80

No
rm

al
ize

d
Re

tu
rn

halfcheetah-medium-expert-v2

Figure 28: Full results of ensemble ablation study.

0 200 400
Environment Steps (×5e3)

0

25

50

75

100

125

No
rm

al
ize

d
Sc

or
es

walker2d-medium-v2

Ours
Scratch

0 200 400
Environment Steps (×5e3)

0
25
50
75

100
125

No
rm

al
ize

d
Sc

or
es

walker2d-medium-replay-v2

Ours
Scratch

0 200 400
Environment Steps (×5e3)

0

50

100

No
rm

al
ize

d
Sc

or
es

walker2d-medium-expert-v2

Ours
Scratch

0 200 400
Environment Steps (×5e3)

0

25

50

75

100

No
rm

al
ize

d
Sc

or
es

hopper-medium-v2

Ours
Scratch

0 200 400
Environment Steps (×5e3)

0

25

50

75

100

No
rm

al
ize

d
Sc

or
es

hopper-medium-replay-v2

Ours
Scratch

0 200 400
Environment Steps (×5e3)

0

25

50

75

100

No
rm

al
ize

d
Sc

or
es

hopper-medium-expert-v2

Ours
Scratch

0 200 400
Environment Steps (×5e3)

0

20

40

60

80

No
rm

al
ize

d
Sc

or
es

halfcheetah-medium-v2

Ours
Scratch

0 200 400
Environment Steps (×5e3)

0

20

40

60

No
rm

al
ize

d
Sc

or
es

halfcheetah-medium-replay-v2

Ours
Scratch

0 200 400
Environment Steps (×5e3)

0

20

40

60

80

100

No
rm

al
ize

d
Sc

or
es

halfcheetah-medium-expert-v2

Ours
Scratch

Figure 29: Full results of optimality analysis.

34

	Introduction
	Preliminaries
	Method
	Ensemble behavior cloning with disagreement-based regularization
	Multi-step policy ensemble optimization

	Related work
	Experiments
	Main results
	Applications on real-world robots
	Ablation study

	Conclusion
	Appendix
	Proof of THEOREM 1
	Proof of THEOREM 2
	Related work to real-world robot learning.
	Detailed information of real-world robots
	State and action spaces
	Reward function
	Offline and offline-to-online learning
	Pseudo-code of Uni-O4 for online-offline-online setting
	Real-world robot baseline implementation

	Experimental Setup Details
	Environment Settings
	Hyperparameters details

	Policy ensemble analysis
	Extra offline comparison
	Extra offline-to-online results on D4RL tasks
	The comparison between Q"0362Q and Qk in Uni-O4
	The design choices of ensemble behavior policies for multi-step policy optimiation
	Design choices ablation study
	Running time analysis
	Pseudo-code of Uni-O4
	Full results of ablation study

