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Abstract

We study the relationship between gradient-based
optimization of parametric models (e.g., neural
networks) and optimization of linear combina-
tions of random features. Our main result shows
that if a parametric model can be learned using
mini-batch stochastic gradient descent (bSGD)
without making assumptions about the data distri-
bution, then with high probability, the target func-
tion can also be approximated using a polynomial-
sized combination of random features. The size
of this combination depends on the number of
gradient steps and numerical precision used in the
bSGD process. This finding reveals fundamental
limitations of distribution-free learning in neural
networks trained by gradient descent, highlighting
why making assumptions about data distributions
is often crucial in practice. Along the way, we
also introduce a new theoretical framework called
average probabilistic dimension complexity (adc),
which extends the probabilistic dimension com-
plexity developed by Kamath et al. (2020). We
prove that adc has a polynomial relationship with
statistical query dimension, and use this relation-
ship to demonstrate an infinite separation between
adc and standard dimension complexity.

1. Introduction

Theoretically, learning neural networks is computationally
hard in the worst case. However, the practice of modern
deep learning has demonstrated the remarkable power of
gradient-based optimization of neural networks. Why does
gradient descent over neural networks work so well in prac-
tice, despite theoretical pessimism? A full answer to this
question is still missing in the science of deep learning.

One possible source of the computational hardness in the-
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oretical studies is the goal of distribution-free learning. In
distribution-free learning, the goal is to design algorithms
that can learn a target function f from a class F without
making strong assumptions about the distribution of the
input examples. Specifically, let p be an arbitrary distribu-
tion over the input domain, and let (z, f(x)) be an example
drawn from p. A distribution-free learning algorithm must
succeed in approximating f for any choice of p. This stands
in contrast to distribution-specific learning, where the al-
gorithm is designed with prior knowledge about the input
distribution, often leading to more efficient and practical
solutions. While distribution-free learning is a desirable
goal, it is often computationally challenging, as it requires
the algorithm to handle worst-case scenarios.

This work, in a nutshell. In this work, we discover a
surprising relationship between distribution-free learning
with gradient descent over differentiable parametric model
classes and random feature representations. Informally
speaking, we show the following implication. Let F be
a class of target functions. Assume that a differentiable
parametric model class can be successfully optimized in
a distribution-free manner by mini-batch gradient descent
to approximate all f € F. Let u be a target distribution
over F. Then, with high probability over f ~ u, f can be
approximated by a linear combination of random features.
Importantly, the number of random features necessary to
include in this linear combination is upper bounded by a
polynomial function of the number of optimization steps of
gradient descent.

This result, as stated, sounds like a very strong positive
result: could we now replace SGD on complex networks
with optimization of simpler random features model? This is
the positive interpretation of the result. However, we know
that random features are limited in their expressive power.
So, another (and we believe better) way to understand this
result is as a statement on the limitation of distribution-free
SGD. Indeed, our result, more formally described on the
next page, reveals a fundamental limitation of distribution-
free learning:

If a function class is learnable in a distribution-
free manner by gradient descent, then most func-
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tions in the class must have a relatively simple
random feature representation.

This limitation has a clear connection to the practice of
deep learning, as we discuss next. Specifically, our result
provides a theoretical foundation for the observation that
distributional assumptions are crucial for the success of
gradient-based optimization.

The theoretical value of this result. A common finding in
the practice of Machine Learning is that making appropriate
distributional assumptions often leads to dramatically better
learning outcomes. For example, it has been shown both
empirically and theoretically that, when examples are drawn
from the uniform distribution, learning parity functions—
Boolean functions that compute the parity (XOR) of a subset
of input bits—can be extremely difficult for gradient descent
on neural networks. However, the same task becomes much
easier under biased product distributions over the input do-
main (see e.g., Malach & Shalev-Shwartz (2019)).

Parity functions are a cornerstone of computational learn-
ing theory due to the fact that, despite their simplicity, they
exhibit exponential hardness under many learning frame-
works (e.g., statistical queries and random features). Parity
functions are also useful as informative special cases when
studying difficult topics in deep learning theory. For exam-
ple, parity functions have been recently used to study length
complexity of chain-of-thought in autoregressive models
(Malach, 2023), hidden progress in gradient descent (Barak
et al., 2022), and pareto frontiers in width, initialization and
computation of gradient descent (Edelman et al., 2023).

In contrast, our result helps explain the phenomenon, instead
of just demonstrating it for the case of learning parity func-
tions. We bring to light the fact that distribution-free learn-
ing with gradient descent essentially “collapses” to learning
linear combinations of random features, in the average case.
To ground this in the specific case of parity functions, we
comment that random parities are well known to be compu-
tationally hard to learn using linear combinations of random
features (even in the average case). Thus, our result provides
a consistent explanation for why distribution-free learning
of parities with gradient descent is hard, in terms of the well-
known hardness of learning parities with random features.
Again, note that random parities are not hard to learn with
gradient descent in the distribution-specific case.

Main theorem in more detail. Let us now describe the
main theorem contributed by this work in more detail. We
consider a differentiable parametric hypothesis class H,
which has p parameters w = (w;---w,) € RP and a
bounded output range. Let f, be the function in H corre-
sponding to parameters set to w. Suppose that data is gener-
ated according to a source distribution Dy ,, which samples

unlabeled data x in a domain X, according to an unknown
example distribution p, and labels the data with values in
{+£1}, according to a target function f : X — {£1}.

Roughly, our main result is the following. Let F be a class
of target functions and let A(X) be the set of distributions
over domain X. Suppose it is possible to distribution-freely
learn an accurate model fy~ € H for some unknown source
distribution Dy, € {Dy, : f € F,p € A(X)} (with re-
spect to to squared loss, for any f and p) by mini-batch SGD
with parameters 7', ¢, p. Then, given any prior distribution
w over F, there exists a random feature distribution £ such
that:

¢ For random features ¢ --- ¢4 ~ &, there exists a
weight vector v such that

sz‘(ﬁi ~ f

i<d

under 0/1 loss with respect to p, with probability
99/100 (over p).

* It holds that d < poly(T'p/c).

Here, T is the number of clipped mini-batch gradient up-
dates, p is the number of parameters in the differentiable
model, ¢ € (0, 1] controls the granularity of the mini-batch
gradient estimates. We note that the batch size must satisfy
certain a lower bound roughly polylogarithmic in Tp (for
constant c).

At the end of the technical overview (section 3), we state the
main theorem in full mathematical formality as Theorem
3.3.

Techniques and further contributions. To prove the
main theorem, we use a series of transformations between
different learning paradigms and complexity measures.

* First we use a transformation from bSGD algorithms
(with a certain maximum precision—these can be
thought of as noisy gradients) to statistical query (SQ)
learning methods, which was proved by Abbe et al.
(2021). This allows us to then relate poly(T'p), a
polynomial function of the product of parameters and
bSGD steps, to the statistical query dimension of the
class of target functions that label the source distribu-
tion. This is done using the characterization of Blum
et al. (1994).

* Following this, we use ideas from communication com-
plexity, particularly those related to discrepancy and
the 2-party norm of a function, to relate statistical query
dimension to the probability of being able to weakly
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approximate a source distribution by sampling a sin-
gle random feature (we call this the Random Feature
lemma). This step employs new mathematical tech-
niques that resemble the circuit learning algorithms of
Karchmer (2024a;b).

* Next, we also introduce a new technique that uses
boosting techniques, such as Adaboost (Freund &
Schapire, 1997; Domingo et al., 2000), as construc-
tive proofs of the fact that we can combine these weak
approximators into a strong approximator: a linear
combination of a relatively small number of random
features.

Along the way, we introduce a new notion of dimension
complexity called average probabilistic dimension complex-
ity. This notion relaxes both the standard notion (Ben-David
et al., 2002), and the probabilistic notion (Kamath et al.,
2020). Average probabilistic dimension complexity pre-
cisely captures the quantity of interest in this paper: the
number of features needed to approximate a given function
class, with high probability, over some prior distribution
over the function class. Thus, as a further contribution, we
give an “infinite” separation between average probabilistic
dimension complexity, and standard dimension complex-
ity. Previously, only an exponential separation was known
between the intermediate notion, probabilistic dimension
complexity, and standard dimension complexity, from Ka-
math et al. (2020). Kamath et al. (2020) highlighted as an
open problem to resolve whether or not an infinite separa-
tion exists between probabilistic and standard dimension
complexity. Our relaxed notion of average probabilistic
dimension complexity is sufficient for an affirmative reso-
lution, but we also show that there may exist complexity-
theoretic barriers to demonstrating that our relaxed notion
is necessary for the separation.

2. Related Work

Many related works analyze the relationship between gra-
dient descent on wide neural networks and linear learning
with random features (LLRF). Much of this line of work is
based on the following idea, which we now illustrate using
a simple one-layer neural network:

d
R(z) & va((wi, x) +b;) D

The d neurons are identified by their weights w; and bias b;,
o is an activation function, and the top layer applies a linear
combination by weights u;.

When d is really large and the weights are randomly initial-
ized, it can be shown that applying gradient descent over

these parameters effectively changes the weight on the bot-
tom layer, w;, b; by a tiny amount (Chizat et al., 2019).
This means that when gradient descent for a small bounded
number of steps is used to learn R, essentially, the bottom
layers could have remained fixed after random initialization.
Thus, in this case, learning the overparameterized network
is effectively the same as learning the linear combination of
some random features of the form o ((w;, ) +b;), for which
known techniques suffice to prove optimal convergence. All
in all, this allows Andoni et al. (2014); Daniely (2017); Du
et al. (2018; 2019); Li & Liang (2018); Allen-Zhu et al.
(2019) (among others) to derive provable guarantees for
learning overparameterized neural networks by analyzing
them as one would analyze linear learning with random
features (LLRF).

It is worth mentioning that the Neural Tangent Kernel (NTK,
Jacot et al. (2018)) is a bit more subtle. The NTK approach
goes beyond considering the features of the top layer. In-
stead, NTK constructs a kernel matrix where each entry
represents the dot product between the gradients of the net-
work output with respect to the parameters, evaluated at two
different data points. This kernel matrix effectively encodes
the similarity between data points in the high-dimensional
gradient feature space (the feature map representation is
the gradient of the neural net with respect to the model
parameters at a certain training point).

The main difference between this line of work and ours is
that we show the collapse of the learning capabilities of
distribution-free gradient descent, while the above line work
uses a connection to LLRF to illustrate sow gradient descent
can learn.

3. Technical Overview and Theorem
Statements

In this section we introduce and formally define the relevant
technical settings, and finish with full statements of our
main theorem and other results. After that, we provide a
bird’s eye view of our path to proving the main theorem.

Let F be a class of target concepts f : X — {+1}. Let
Di, € DF ={Dy : f € F,p € A(X)} be a source
distribution which samples unlabeled data x in a domain
X, according to an example distribution p over domain X,
and labels the data according to some f € F. We consider
generally speaking learning functions f : X — {£1} over
an input space X, with the objective of minimizing the
population loss:

‘C’Df‘p(f) £ E(z,y)NDf,p [e(f(x)v y)}

with respect to a source distribution Dy , over X x {£1},
where ¢ : R x {£1} — R>( is a loss function.

In this work, we take the loss function to be either the
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squared-loss: 4y (3, y) = %(gjfy)2 or 0-11oss: £p1 (9, y) =
1[y # y]. We write Lo1 and L4 to denote population loss.

3.1. Learning Paradigms

In this work, we consider learning of differentiable paramet-
ric hypothesis classes such as feed-forward neural networks.
A p-parameter differentiable model w = (w1, --wp) is a
function fw : X — [—1,1], and for every z € X there
is a gradient V, fw () on almost every w € RP (not in-
cluding sets of measure 0). Note the bounded range of the
mode. We say that H is a differentiable parametric hypoth-
esis class with p parameters if every h € H is written as a
differentiable model with p parameters.

Mini-batch stochastic gradient descent. We consider
learning of differentiable parametric hypothesis classes by
mini-batch stochastic gradient descent (bSGD). Our setting
is the same as Abbe et al. (2021) and we adopt some of their
notation and their definitions.

For a differentiable f,,, an initial distribution VW over
RP, a gradient precision ¢ € (0,1), a mini-batch size
b, and a stepsize -y, the bSGD paradigm iteratively com-
putes new parametric models at a timestep ¢ defined by
w(©® ~ W and w**D « w() — ~g,. For a mini batch
B, ~ p’, the function g, is the c-approximate clipped gra-
dient Vg, (fow) 2 150 [V, (fon)]1 where []; de-
notes the entry-wise clipping over values to the interval
[—1,1]. The clipped gradient in [—1, 1] is a c-approximate
rounding if each entry of the the clipped gradient is an inte-
ger multiple of c and ||g; — Vg, (fw®)|oo < 3c/4.

We say that a learning algorithm A is a bSGD(T, ¢, b, p)
method for a differentiable parametric hypothesis class with
p parameters if works by computed bSGD for T" updates on
the p-parameter differentiable model, with c-approximate
gradient clipping and batch size b, and beginning from
initialization distribution V. The algorithm A ensures
distribution-free e-accuracy if for any source distribution
D¢, € Dr, fw < Asatisfies E [sup LPre (fw(z))} <e
The expectation is taken over the random initialization of
fw( and the selections of the mini-batches. The supremum
is taken over all valid c-approximate gradient clippings.

‘We refer the reader to section 2 of Abbe et al. (2021) for
discussion on some of the modelling/design choices taken
in defining the bSGD model.

Statistical query learning and SQ dimension. We con-
sider statistical query learning. A learning algorithm A is
said to be a SQ(k, ) method if in k iterations, it produces
a statistical query ¢; : X x {1} — [—1,1] at iteration
t, which then gets a response v; from an oracle, and then
after k iterations outputs a candidate hypothesis f : X — R.
Each successive statistical query ¢; is allowed to depend on

internal randomness and all prior statistical queries ¢, for
r < t. The algorithm A ensures distribution-free e-accuracy
if for any source distribution Dy , € Dr, h < A satisfies
E [sup LP##(h)| < e, where the supremum is taken over
all valid responses v, to each query ¢, which are those that
satisfy | E, [¢¢(z, y)] — v¢] < 7. The expectation is taken
over the internal randomness of A.

If statistical query responses have some maximum degree
of precision ¢ (i.e., v; € [—1,1] is an integer multiple of
¢ € (0, 1)), then a statistical query ¢ : X — [—1,1] can be
converted into a series of ¢ = log(1/c) statistical queries
®;--- P, 0 X — {£1} (note the Boolean range). This
is done by asking individually for the expected value of
each bit in the bit representation, and applying linearity to
reconstruct the total expectation.

Complexity of linear learning with random features.
Kamath et al. (2020) introduced a probabilistic variant of
dimension complexity Ben-David et al. (2002) to in order
to study the complexity of optimizing a linear combination
over random features to fit a source distribution.

Let H be a hypothesis class consisting of functions of the
form i : X — R, and ¢ be an implicit loss function (to be
stated explicitly in context).

Definition 3.1 (Probabilistic dimension complexity). The
quantity dc. () is the smallest positive integer d such that
there exists a distribution &£ over feature maps ¢ : X — R9,
such that for every p over X, and every i € H,

JE, | qnf L7 ((w,0))| <€ 0

We use the notation (w, ¢) to denote the function defined

(w,6)(x) = 3 wio ().

Clearly, showing an upper bound on the probabilistic dimen-
sion complexity d of a hypothesis class is sufficient to reduce
learning source distribution to learning the optimal linear
combination over the d-dimensional feature map implied by
the upper bound.

Complexity of linear learning with random features and
aprior. We introduce an average-case analogue of prob-
abilistic dimension complexity. Let ¢ be an implicit loss
function (to be stated explicitly in context).

Definition 3.2 (Average probabilistic dimension complex-
ity). The quantity adc. s(u), given a prior distribution 4
over a hypothesis class H, is the smallest positive integer
d such that there exists a distribution £ over embeddings
¢ : X — R? such that

Pr |Vp: E | inf LP"(h <e|l>1-9¢
hf#{ r: E, |:wnel]Rd£ ( ,<W,¢>>)] 6]
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Clearly, showing an upper bound on the average probabilis-
tic dimension complexity d of a hypothesis class is sufficient
to reduce learning source distribution to learning the linear
combination over the d-dimensional feature map implied by
the upper bound, which is optimal for a large probability
mass of H.

We discuss at length the motivation of average probabilis-
tic dimension complexity in the context of the dimension
complexity literature in the Appendix, Section B.

3.2. Main Theorem Statement

We can now state our main theorem, which demonstrates
that, with respect to any prior distribution , the learnability
of a large probability mass of data generating source distri-
butions that are efficiently accurately learnable by bSGD,
could potentially be analyzed as efficiently accurately learn-
able by the LLRF method.

Let T,b,p € Z, c € (0, 1] be such that be? > Q(log T'p/§).
Let H be a differentiable parametric hypothesis class, where
each model fy, : X — [—1,1] has p parameters w =
(wq -+ -wp). Let F be a class of target concepts f : X —
{x1}. Let Dy, € D ={Ds, : f € F,p € A(X)}
be a source distribution which samples unlabeled data x in
a domain X, according to an example distribution p, and
labels the data according to some f € F. Let p be a prior
distribution over F.

Define err(A,Dy,,) £ inf. [E [sup,_ 4 LP7#(h)] <€].
That is, the infimum over e such that the algorithm A ensures
distribution-free e-accuracy on D; ,, where the expectation
is over the random initialization of the differentiable model
and the mini-batches. distribution-free e-accuracy on Dy ,
is measured with respect to some loss function ¢°. Let
U (5,y) = 5(5 —y)% Let £, (9, y) = 1[g # yl.
Theorem 3.3 (Main theorem). Suppose there exists a learn-
ing algorithm Aynscp that is a bSGD(T, ¢, b, p) method,
and err(Avscep, Dy,p) < 1/10 for every source distribu-
tion Dy, € Dy with respect to qu. Then, there exists
positive integer d < poly(Tp/c?) such that there exists a
distribution € over embeddings ¢ : X — RY, such that for
arbitrarily small constants €, > 0:

. . 'thp _
o [Vp' e Lvlgugd Lor (<W’¢>)} = 6} =10
In other words, for any prior distribution p over F,
adce (1) < poly(Tp/c?).

A Note on Gradient Precision. It is worth mentioning
that a result analogous to the above theorem, but for gradi-
ent descent with arbitrarily fine precision, is not possible.
Indeed, our theorem would not hold if there were no restric-
tion on the precision of the gradients. To see this, we can

borrow from the work of Abbe et al. (2021). They show
in Theorem 1la of their paper that (distribution-free) PAC-
learning algorithms can be simulated by (distribution-free)
bSGD algorithms, when allowed fine enough gradient pre-
cision c¢. Specifically, when ¢ < 1/8b. Using this theorem,
it follows that for b, ¢ such that ¢ < 1/8b, then bSGD can
learn parities in the distribution-free case. From here, we
can conclude that our transformation from bSGD to random
features cannot hold for b, ¢ such that ¢ < 1/8b, since the
size of the implied random feature representation would
violate SQ dimension lower bounds for parities.

3.3. Technical Tools

Now, we define some technical concepts, theorems, and
quantities of interest that are useful in proving our results.
Using those, we will then outline the path we will take to
prove Theorem 3.3 via modular proof of the theorem.

Relation Between SQ-Learning and bSGD. Abbe et al.
(2021) show that SQ-learning is as powerful as bSGD meth-
ods in the following sense.

Theorem 3.4 (Thm 1c. of Abbe et al. (2021)). Let £(g,y) =
%(g —y)% LetT,b,p € Z, ¢ € (0,1] be such that bc® >
Q(log T'p/d). For every learning algorithm Avscp that is a
bSGD(T, ¢, b, p) method, there exists a learning algorithm
Agq which is a SQ(T'p, ¢/8) method, such that for every
source distribution Dy ,,

err(ASQ, Df,p) < err(AbSGD, 'Dﬁp) +46

In words, this theorem says that when setting batch-size
and gradient precision appropriately, mini-batch SGD algo-
rithms can be converted into SQ-learning algorithms that
suffer only a small additive loss of accuracy, and the number
of statistical queries is the product of the number of batch
gradient updates and the size of the differentiable model.

SQ-learning Characterized by SQ dimension. The com-
plexity of SQ-learning itself can also be captured by a simple
combinatorial parameter called the SQ dimension (see Blum
et al. (1994)).

Consider now a function h : X — {%1} over a finite
domain X. A hypothesis class H is a set of hypotheses
h:X — {x1}.

Definition 3.5 (Statistical query dimension). Let p be a
distribution over domain X . The statistical query dimension
over p of H, denoted sq(H, p), is the largest number d such
that there exists d functions f1, - - - fq € H that satisfy, for

alli # j:

ISR

E [@)f@) <

We define sq(H) = max, sq(H, p).
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The relationship between query complexity in the SQ-
learning model and SQ dimension proved by Blum et al.
(1994) is the following. We state their result using our
notation and terminology.

Theorem 3.6 (Blum et al. (1994)). Let d = sq(H) and
Lo1(9,y) = 1[g # y]. If A is a SQ(k,T) method that is

2
distribution-free 1/2 — T-accurate, then k > %

Communication Complexity. Our proofs use as tools
many ideas from the theory of communication complexity.
We will introduce the necessary notation, definitions and
concepts in the Appendix, section D. We refer the reader to
Kushilevitz & Nisan (1996) for more of the basics.

3.4. Separations Between Dimension Complexities

As a corollary of Theorem 4.1, we make some possible
progress towards answering the open question left by Ka-
math et al. (2020). We recall their question was whether
there exists a hypothesis class H, which satisfies for 0/1
loss, and some functions f, f' : N — N, both expressions
de(H) € O(f(n)) and de.(H) € O(1/f'(€))?

Our result, shows that the answer is yes, if we take adcg 5
instead of dcﬁ.

Corollary 3.7 (Infinite Separation between adcf, s and deh.
There exists a hypothesis class H, with domain {£1}" and
range {+1}, which satisfies for 0/1 loss and any prior dis-
tribution p over H, and arbitrarily small constant 6 > 0:

e de(H) € 220

o adc. 5(H) € O(1/e).

This separation follows immediately from Theorem 4.1 and
a theorem of Sherstov (2008a), which is concerned with the
family of Zarankiewicz matrices. We refer to the Appendix
section A and B for the details and a definition of dc(#).

4. Modular Proof of Theorem 3.3

To prove Theorem 3.3, we use the relationships introduced
in the previous section to reduce our goal to proving the
following standalone theorem.

Theorem 4.1. Let F be a function class, p a distribution
over F, and let consider Lyq loss. We have:

adce,s(11) < O(sq(F)*+)
where €, > 0 are arbitrarily small constants.

We will prove Theorem 4.1 in the next section. For now, we
prove Theorem 3.3 assuming Theorem 4.1.

Proof of Theorem 3.3. First, observe that under the condi-
tions of Theorem 3.3, Theorem 3.4 implies that for the
assumed algorithm Apscp, which is a bSGD(T), ¢, b, p)
method, there exists a learning algorithm Agq which is
a SQ(Tp, ¢/8) method, such that for every source distribu-
tion Dy ,,

err(AsQ, vap) < err(AbSGD, Dﬁp) + 4.

Now, by Theorem 3.6, we know that since ASQ is a
SQ(T'p, ¢/8) method that is distribution-free € 4 d-accurate,
then Tp > (dc?/64 — 1)/2 > Q(dc?), where d = sq(F).
Rearranging, we conclude that d < O(Tp/c?).

We can now invoke Theorem 4.1 to conclude that
adc, (1) < poly(T'p/c?), where adc, s() is with respect
to K(n . O

Remark. The explicit conclusion of Theorem 3.3 is that
with high probability over f ~ p, the source distribution
can be e-approximated with respect to ,Cé)lf * by a linear
combination of poly(T'p/c) random features (w, ¢). This
implies that the corresponding learned parametric model
fw+ can also be O(e)- approximated with respect to Eg{ .
by a linear combination of poly(T’p/c) random features.
This follows from the fact that we are considering source
distributions that have a deterministic labelling function and
because the learned parametric model fy -« : X — [—1,1]
has a bounded range, which means that per-sample squared
loss is at most 2.

5. Outline of Proof of Theorem 4.1

We present an outline of our proof of Theorem 4.1, which
we defer in full to the appendix.

* (Step 1; Section A.1). We will apply a theorem of
Sherstov (2008b), to conclude that statistical query
dimension of a function class F controls the reciprocal
of the correlation of A (the sign matrix representation
of F) and 2-bit 2-party deterministic communication
protocols. Here, correlation is measure with respect to
a product distribution over the rows and columns of A.
This induces a prior p over the hypothesis class and a
distribution p over unlabeled inputs.

* (Step 2; Section A.2). We will use the results of step
1 and an analysis inspired by Karchmer (2024b) to
show a Random Feature lemma. Our Random Feature
lemma essentially says that, for every prior i, with high
probability over target function f ~ p, then for every
example distribution p, there exists a feature distribu-
tion pu7€%* over features, such that ;17" samples weak
approximators for the target function f (with respect
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to p). The predictive accuracy of the weak approxima-
tor is 1/2 — =, where « is a polynomial function of

1/sq(F).

* (Step 3; Section A.3). We will employ a new analysis
technique, which uses boosting theorems such as Ad-
aboost as constructive proofs of the fact that a relatively
small linear combination of weakly predictive random
features can approximate a given concept under the

prior p.

6. Conclusion

Our results show that distribution-free gradient-based learn-
ing of parametric models collapses to optimization of linear
combinations of random features, in the average case. This
indicates limits on the capabilities of neural networks with-
out distributional assumptions and explains why tasks such
as parity learning remain hard under these conditions. We
also introduce average probabilistic dimension complexity
(adc), which admits an infinite separation from standard
dimension complexity and clarifies the importance of distri-
butional assumptions for gradient-based methods.

Practical implications. When designing learning algo-
rithms, there is often a tension between making them work
for all possible distributions (distribution-free) versus opti-
mizing for expected scenarios (distribution-specific). Our
result suggests that pursuing distribution-free guarantees
may come at a substantial cost in terms of model expres-
siveness. This provides theoretical support for the common
practice of incorporating domain knowledge and distribu-
tional assumptions into model design. What does this imply
for the design of future learning algorithms? Our work sug-
gests that embracing distributional assumptions may be key
to unlocking the full potential of gradient-based optimiza-
tion.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proof of Theorem 4.1

In this section we will prove Theorem 4.1.

Notation. 1In all of the proof, we abuse notation and write sq(A) to denote the statistical query dimension of the function
class represented by the sign matrix A € {:tl}'f IXIX] This sign matrix has rows indexed my concepts f € F, and columns
indexed by x € X. For any function class F, we will always write its sign matrix representation simply as A. We will use
the notation A(f; x) to represent the entry of A at row f and column . We will also write A(f;-) to denote the entire row
f, which can be viewed as a table of values of the concept f € F.

We refer to Appendix section D for more preliminaries on the communication complexity used in this section.

A.1. Applying Sherstov’s theorem

We make use of a theorem due to Sherstov (2008b). This theorem says that if the statistical query dimension of a sign matrix
A is polynomial, then the reciprocal of the discrepancy of A, minimized over product distributions over F x X, is also
polynomial.

Theorem A.1 (Sherstov (2008b) - Thm. 7.1). Let A € {:I:l}‘F IXIX1 be the sign matrix representation of a function class F.
We have that:

< 8sq(A)?

1 1
—sq(l) < ———
5%a(4) < disc” (A)

Lemma A.2. Let A be a sign matrix. If disc™ (A) > ~, then there exists a 2-bit distributional communication protocol T
for A over product distributions with correlation . In other words, for any product distribution C,

E [W(x,y)A(x;y)]‘ >y
(z,y)~C

Using Lemma A.2 (see proof in Appendix, section D) and Sherstov’s theorem, we get the following combined lemma.

Lemma A.3. Let A € {£1}71XIXI be the sign matrix representation of a function class F. Let ( = (u, p) be any product
distribution over F X X, inducing a distribution over A. There exists a 2-bit distributional communication protocol w for A
over ¢ with correlation 1/8sq(A)?. In other words, for any product distribution (,

1
E [x(f,z) A(f;2)]| > ——= 3
GE  [r(fm) Alf; )] Ssq(A)2 G)
Proof. By Theorem A.1, we know that disc™ (A) > 1/8sq(A)?. Then by Lemma A.2 expression (3) follows. O

A.2. Random Feature lemma

We can use Lemma A.3 to prove our Random Feature lemma. Our Random Feature lemma essentially says that, for every
prior i, with high probability over f ~ p, then for any example distribution p, there exists a feature distribution ugeat which
samples weak predictors for the target function f (with respect to p).

We now state the Random Feature lemma.

Lemma A.4 (Random Feature lemma). Let A € {il}‘}- XIX1 be the sign matrix representation of a hypothesis class F.
Let p be a distribution over F, let £ be 0/1 loss with respect to an example distribution p, and let 6 > 0. It holds that, with
probability at least 1 — § over f ~ p, for all p, there exists ,ugeat such that:

Ds.p
Pgeut ‘COlf’ (fl) <

P —Q(5a(4) )| 2 2 (sa(4) )

1
2
Proof. We begin by considering the following procedure.

We will demonstrate that this procedure is a randomized predictor for the unknown target f (which is sampled according to
prior 1) on an input point z (which is sampled according to example distribution p). In other words, we will show that for

9
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Algorithm 1 Predict(z)
1: input: point z; example oracle access to function f ~ u, with respect to example distribution p.
2: Sample g ~ p.
3: Sample (z, f(x)) from example oracle.
4: predict: g(z) - g(x) - f(x)

the unknown target f, it holds that, for an € to be defined later:

Pr [Predict(z) = f(z)} >

f~p,z~p,Predict

+ e “

DN | =

After demonstrating (4), we will then use (4) to derive the conclusion of the present lemma.

Towards (4). Let A € {#1}71*IX| be the sign matrix representation of a function class F. Let x be a prior over F, and
let p be an example distribution over X. We will show that,

1

* OGaA)y)

Pr |predict(z) = f(z)] >
frop,zp

N | =

Consider the function Eval(r,w), which takes as input random strings r and w, and uses them to sample (a string
representation of) f ~ p and z ~ p, and then outputs f(z). Recall that by Lemma A.2, there exists a 2-bit distributional
communication protocol 7 for the sign matrix A over a product distribution (y, p) with correlation 1/8sq(A)?. In other
words, for any product distribution (u, p),

1
E w(f,x)- A(f;x)]| >
par, T2 AU 2 oy
Therefore, by substitution,
B [n(f.2)-Bval(nw)| 2 o
LB 7(f2) Bval(nw Z Sq(A)?
frze(usp)
By Theorem D.6, for every function F': {0,1} x {0,1} — {£1},
Cor(f. 1) = max [E [ (2) - w(a)]| < 2°- Ro(F)/* )

welle |z

for x uniformly distributed over {0, 1} x {0, 1}. Note, II. is the class of ¢-bit communication protocols, which is defined in
the Appendix, section D. Hence,

1
< Ry(Eval)= E Eval(re,,we,
Oa(A)) < Ry(Eval) B H val(re,we,)

w1, w2~U |e1,e2€{1,2}

Manipulating the RHS we can see that:

1

Osa(A)F) =

[9(2) - g(z) - f(z) - f(2)]

E
frg~n
Z,x~p

< E [predict(z)- f(2)]
Predict
zeep, fop

This implies that Predict is a randomized predictor for the unknown target f, which satisfies:

1

" OGaa)y)

Pr Predict(z) = f(z)] > (6)

fr~p,z~p,Predict

1
2

10



The Power of Random Features and the Limits of Distribution-Free Gradient Descent

Using (4) to conclude lemma A.4. We will combine (4) and a subtle “averaging” argument to conclude lemma A.4.

Lemma A.5 (“Averaging argument,” see lemma A.11 of Arora & Barak (2009)). If a random variable X € [0, 1], and
E [X] = p, then for any ¢ < 1,

1—
PriX <e¢p] < P
1—cp

Let us consider Predict to be a deterministic function that maps z and random bits r to a value in {£1}. The random bits
r encompass what is necessary to sample all random variables in the course of running Predict (e.g., g ~ u, and a sample
from the example oracle). We can then conclude from (6) and lemma A.5 that there exists many “good” random strings:

1 1
OGa(A)¥) | = OGa(A)F)

Pr {Pr {Predictf(z;r) = f(z)| > L +
frpr | zp 2
Note that the deterministic version of Predict described so far uses random bits r to sample = ~ p in line 1, but then
would need oracle access to f to obtain the value of f(x). We need to remove this need, and can do so as follows. Observe
that the prediction output of Predict is g(z)g(z) f(z). Thus, the predictor predicts g(z) and negates that prediction if and
only if g(z) f(x) = —1. Now, g(z) f(z) is a Bernoulli random variable, which can be considered independent of z, g and f.
The mean p of this random variable depends on p. Hence, we can sample this random variable directly, instead of using
oracle access to f. Thus, under this version of Predict, we include the random coins to sample the Bernoulli inside r,
and again apply lemma A.5 to now instead conclude:

Pr {Pr [Predictp(z;r) = f(z)| >

fropr [zp

+ e 2 o 9

Note that now Predict depends on p but not the example oracle.

From here, we would like to show that:

Pr {Pr {Pr [Predict,(z;r) = f(2)] > 1 —i—e] > e] >1-96 (8)
foop v [zp 2

where § is a small positive constant, and we use ¢ in place of O(sq(A)~®) to streamline notation. Note that, (8) holds for
any prior .

To show this we assume, for the sake of contradiction, that the set of functions f for which

Pr | Pr [Predict,(z;r) = f(2)] > %—i—e <e )
r o |z~p

has probability greater than ¢ under p. That is,

1
fPr Pr | Pr [Predict,(z;r) = f(2)] > 3 +e|l <€l >0
frow [ T [zp

Now, let 11/ be a new distribution over functions f defined as the conditional distribution of y restricted to this “bad” set.
Formally, for any set .S of functions,

/ren _ M(SNBad)

where

Bad:{f

lir [Pr [Predict,(z;r) = f(2)] > % +e] < e}

z~p -
Note that, since p (Bad) > 4, 1/ is a well-defined probability distribution.

11
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We can now compute the joint probability under p':
. 1
Pr | Pr [Predict,(z;r) = f(2)] > - +¢€
frop',r | zvp 2

For each f in the support of x’, we have:

Pr [Pr [Predict,(z;r) = f(2)] > ;Jre} <€

r |[z~p -

Therefore,

Efopw {lir Lflrp [Predict,(z;r) = f(2)] > % _|_€H <e

We now apply this towards the contradiction. Inequality (7) states that for any distribution u (including ), we have:

Pr [Pr [Predict,(z;r) = f(2)] > % —|—e] >e

frop x| 2vp
This leads to a contradiction because under 4/, the probability is less than e, whereas it must be at least €.

Therefore, the set Bad has small measure. Indeed, the contradiction implies that our assumption about the size of Bad must
be false. Therefore, the measure of Bad under ;1 must be at most §:

Pr [Pr {Pr [Predict,(z;r) = f(2)] > 1 Jre] < e] <46
frp | v |2zep 2

Equivalently, the probability that f is such that

Pr Llil; [Predict,(z;r) = f(2)] > ;—i—e} >e

is at least 1 — 4:

NN

fPr {Pr {Pr [Predict,(z;r) = f(2)] > Jre] > e] >1-96
~p | o |z~p

Now, sampling a string of random bits r and then hard-coding it into Predict, induces a distribution over functions. Note
that, this distribution is potentially different for each example distribution p, because Predict samples p. Therefore, we
can take this distribution over functions as ,uﬁe‘”, and conclude that,

1
Pr |Vp3ule®t . Pr L)< =
o l PR freopdeet ot “(f) < 2

A.3. Proof of Theorem 4.1 via Constructive Boosting

Now that we have the Random Feature lemma, we prove Theorem 4.1. In order to do so, we will use equivalence of
weak-to-strong learning in the PAC-setting.

Theorem A.6 (Adaboost—Freund & Schapire (1997) (see also Karbasi & Larsen (2024))). Let O be an oracle that accepts
an example distribution p' over X and returns a y-weak learner f** with respect to 0-1 loss. There exists an algorithm
BOOST that, for any example distribution p, makes ©(y~2) queries to © and outputs g : X — {1} such that, for any
h € H, and any €, > 0,

Pr [ED’W’(g) <e>1-46

g<BOOST®

12
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Here, © hides logarithmic factors in 1/0,1/¢, 1/, and the vc dimension of the class that O outputs weak learners from.
Moreover, the final hypothesis g found by BOOST is of the form

CIC!

g(z) = sign Z w; % () . weR, PP 0

%

Proof of Thm. 4.1. To prove the statement, we need to show that, given a prior y over a function class F, the smallest
positive integer d such that there exists a distribution £ over embeddings ¢ : X — RY, such that

Pr [Vp: E | inf £Pre(si , <el>1-96
b { p: K, ngw (sign((w ¢>))} < 6] 2
is at most O (e~ sq(F)16+€) for arbitrarily small ¢ > 0. Specifically, we will show this when & is defined as the probabilistic
process that samples embedding ¢ by sampling fi,-- - f} ~ ,u}ff“t, e uﬁj“t, for some d < O(sq(F)?*°!) and outputting
their direct product (f7, - - - f}). Observe that the underlying example distribution may be different for each f;. We will
illuminate how each p; is chosen.

To prove this, first let us apply the Random Feature lemma to the conditions of the present theorem, to conclude that,

1
Pr [Vp3pfeat . Pr Lo (f) <5
oo p 2K, froopeat 01 (f>_2

Q(SQ(f)S)] > Q(SQ(F)S)] >1-4

Establishing this essentially gives a weak learning algorithm for each example distribution p. To see this, observe that the
above equation says that, with probability 1 — § over f ~ p, for every p, f' ~ ,u};e“t weakly approximates f over p with
probability (sq(F)®). The weak approximator has a population loss 1 — v for v > Q(sq(F)~®). We call it a y-weak
approximator. Also, we call f’ that satisfy this event “good.”

Under this weak approximator interpretation of the Random Feature lemma, it becomes clear that we should sample

fl f~ pgf‘”, e ugj‘” for successive p; in accordance with a standard weak-to-strong accuracy boosting algorithm

such as Adaboost.

If we do this, then by Theorem A.6, we can constructively derive, for any p, a linear combination w such that,

Lote(g) <ef2 : g(x) 2 sign ((w,0)) (10)
feat

b1 o ng‘” for the appropriate p;. Note, also from Theorem A.6, w € RO, Thus, we

will conclude the desired statement by upper bounding the number of samples we need from successive ugf“t (i.e., the
quantity d) as follows.

given enough samples from p

Let D denote random variable of the number of features we need to sample until we can find a linear combination of features
g to satisfy eq. (10). We compute the expected value of D. We can analyze by “rounds.” At round 0, there is a pool of
Z = O~(7_2) example distributions which require a y-weak approximator. Now, at each round r, suppose a single random
feature f’ is sampled from u};fat as a potential y-weak approximator for p,.. We progress to the next round if a y-weak
approximator is sampled for p,., and remove p, from the pool of distributions which needs an approximator. Hence, round r

indicates that r y-weak approximators have been found, and Z — r remain in the pool. We terminate if we reach round Z.
At each round,
D 1 _ _
Pr L5 (1) < 5 - Q(sa(F) ) | 2 2 (sa(F) )

f/N,U“j:Eat
Hence the expected number of samples from u}:eat needed to satisfy the event that at least one of the samples is “good” is
O(sa(F )8)~ Then, since Z = O~(’y’2), the expected number of samples to get a “good” feature for each of the Z example
distribution is O(sq(F)®) - O(sq(F)'6) = O(sq(F)?*Oh).

‘We thus conclude,

fPNrH [E[D] < O(sq(F)***M)] =146

13
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By the Markov inequality,

a N

Pr {Pr [D >
foen | D

~Q<sq<f>24-01>} < e/2] >1-4

Combining this with (10), we have:

P Vp: E .f‘Cvaﬂ' < >1_4§
fi{ g LVIQW (Slgn(<W7¢>))} e] >

for d < O(%sq(F)?+01). O

B. Average Probabilistic Dimension Complexity
B.1. Background

Towards understanding the limits or the power of learning linear combinations over features, one of the fundamental
quantities of interest is the dimension complexity of a hypothesis class (see e.g. Ben-David et al. (2002)). Roughly, the
dimension complexity of a hypothesis class H full of functions h : X — R is the least positive d € Z such that there
exists a feature map ¢ : X — R, such that for every h € H there exists a linear combination w € R? which satisfies
h(z) = (w,¢(x)) forallz € X.

More formally:

Definition B.1 (Standard dimension complexity). The quantity dc(#) is the smallest positive integer d such that there exists
a feature map ¢ : X — R<, such that for every p over X, and every h € H,

inf LPme ((w, ¢)) Y

weRd

Showing an upper bound on the dimension complexity d of a hypothesis class is thus sufficient to reduce a Machine Learning
problem to linear learning over the d-dimensional feature map implied by the upper bound. The smaller is d, the more
efficient learning can be (in terms of sample complexity, for example).

However, this standard notion of dimension complexity is in some sense “overkill” for this reduction. It was pointed out by
Kamath et al. (2020) that the standard dimension complexity is not necessary for Machine Learning, since for effective
Machine Learning, one only needs to design a feature map that allows for e-approximation by a linear combination of the
features, for each function in the hypothesis class. This also means that not only are upper bounds on dimension complexity
overkill, but lower bounds do not necessarily rule out efficient learning.

B.2. Probabilistic dimension complexity

In light of this, Kamath et al. (2020) introduced probabilistic variants of dimension complexity to get closer to the notion of
dimension complexity that is necessary and sufficient for this reduction. Mainly, their definition subs out exact representation
by a linear combination in favor of e-approximation. The following is their definition:

Definition B.2 (Probabilistic dimension complexity). The quantity dc.(#) is the smallest positive integer d such that there
exists a distribution £ over feature maps ¢ : X — R¢, such that for every p over X, and every h € #,

E | inf £Pre < 12
E, | Jnf L70((w, )| <e (12)

Only requiring e-approximation also means that the definition can allow for a distribution £ over feature maps (for free, in a
sense). This further opens up the possibility of using probabilistic dimension complexity to study the LLRF method.

The immediate question concerning probabilistic dimension complexity is whether it can be significantly smaller than
standard dimension complexity. This is an important question because a yes answer would present a hypothesis class for
which a lower bound on its dimension complexity would not necessarily rule out the effectiveness of the LLRF method.
Indeed, Kamath et al. (2020) demonstrate this very possibility by giving an exponential separation between the probabilistic
and standard dimension complexity.

14
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Theorem B.3 (Thm 6. of Kamath et al. (2020)). There exists a hypothesis class H, with domain {+1}"™ and range {1},
which satisfies for 0/1 loss:

e de(H) € 290%)
e de.(H) € O(n/e).

It remains unknown whether there exists an “infinite” separation between standard dimension complexity and probabilistic
dimension complexity. In fact, Kamath et al. (2020) explicitly leave it as an open question: does there exists a hypothesis
class H, which satisfies for 0/1 loss, and some functions f, f' : N = N, d¢(H) € O(f(n)) and de.(H) € O(1/f'(€))?

B.3. Average Probabilistic Dimension Complexity

The definition of probabilistic dimension complexity maintains universal quantification over possible hypotheses h € H (this
quantifier was unchanged from standard dimension complexity). In other words, there still needs to exist one distribution
over feature maps such that for every h € H, (12) holds.

As we alluded to previously, in this work, we point out that while universal quantification of H is desirable, this also makes
it easier to prove a lower bound by constructing a pathological Machine Learning problem, when at the same time it is
possible that all other instances of the Machine Learning problem have significantly lower complexity. This would make the
lower bound hard to apply in practical situations—rarely would hypothesis functions be chosen “adversarially,” (wherein
universal guarantees would be the go-to).

In summary, while (Kamath et al. (2020) argued that) standard dimension complexity is overkill for a reduction to the LLRF
method, we now point out that probabilistic dimension complexity might still be overkill for a reduction to the LLRF method
in practical situations.

A more practical setting might be the average-case or “Bayesian view,” where the learning problem is not necessarily chosen
by an adversary (universal quantification), but instead by a randomized process known to the learner. The randomized
process is the prior for the learner. Hence, we introduce a further relaxation of dimension complexity, where the new goal is
probabilistic guarantees over both the accuracy, and the hypothesis class.! We define dimension complexity in this setting
as follows:

Definition B.4 (Average probabilistic dimension complexity). The quantity adc, s(4), given a prior distribution x over a
hypothesis class #, is the smallest positive integer d such that there exists a distribution £ over embeddings ¢ : X — R?,
such that

Pr |Vp: E | inf £Pre <e|l>1-94
hfu[ p: E Lvlng (<W,¢>)} < e} >

After defining average probabilistic dimension complexity, we would hope to find hypothesis class that has very low average
probabilistic dimension complexity—even lower than its probabilistic dimension complexity, and hopefully much lower than
standard dimension complexity. This would formally motivate our definition, and it would shed light on when the LLRF
method might still be effective on most instances of a Machine Learning problem, or when the learner has an accurate prior.

C. Results on Average Probabilistic DC vs. Standard DC

Consider hypothesis functions & : X — {£1} over a finite domain X. A hypothesis class H is a set of concepts
h: X — {£1}. As mentioned previously, one of our main theorems proves that average probabilistic dimension complexity
is polynomially related to statistical query dimension. Thus we recall the definition of statistical query dimension.

Definition C.1 (Statistical query dimension). Let p be a distribution over domain X . The statistical query dimension over p
of H, denoted sq(H, p), is the largest number d such that there exists d functions fi, - - - fq € H that satisfy, for all ¢ # j:

IS

B ()] <
We define sq(#) = max, sq(H, p).

'We can also view the average probabilistic dimension complexity as probabilistic dimension complexity of a large probability mass
of hypotheses in the class H (with respect to the prior p).
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We recall our main theorem from the body of the paper.

Theorem C.2 (Restated Theorem 4.1). Let H be a hypothesis class, p a distribution over H, and let { be 0 — 1 loss. We
have:
adee 5(n) < O(sq(H)**")

where €, > 0 are arbitrarily small constants.

Infinite separation between adcg s and dcf. Asan application of Theorem 4.1, we make some possible progress towards
answering the open question left by Kamath et al. (2020). We recall there question was whether there exists a hypothesis
class H, which satisfies for 0/1 loss, and some functions f, f' : N — N, d¢(H) € O(f(n)) and dc.(H) € O(1/f'(€))?

Our result, shows that the answer is yes, if we take adcfﬁ instead of dcf.

Corollary C.3 (Infinite Separation between adcf,(; and dc’). There exists a hypothesis class H, with domain {+1}" and
range {£1}, which satisfies for 0/1 loss and any prior distribution p over H, and arbitrarily small constant § > 0:

« de(H) € 290D
o ade. 5(H) € O(1/e).

This separation follows immediately from Theorem 4.1 and a theorem of Sherstov (2008a), which is concerned with the
following family of matrices.

Definition C.4 (Zarankiewicz Matrices). Let Z(N, ¢) denote the class of N x N sign matrices that never have any ¢ X ¢
sub-matrix with all of its entries set to 1.

Theorem C.5. Let € > 0 be an arbitrary constant. We have,
VA€ Z(N,2[€]) : sq(A) € O(1)
JA e Z(N,2[€]) : de(A) € Q(N'9)

C.1. Towards Infinite Separation Between Probabilistic DC and Standard DC

In the previous section, we used Theorem 4.1, to prove an infinite separation between average probabilistic dimension
complexity and dimension complexity. On the other hand, for probabilistic dimension complexity, Kamath et al. (2020) gave
“just” an exponential separation (O(n) vs. 2(")). Thus, in this section, we consider whether or not it is possible to improve
the separation of Kamath et al. (2020) to infinite. This was posed explicitly as an open problem by Kamath et al. (2020).

Said differently, we would like to understand if the relaxation from probabilistic dimension complexity to average probabilis-
tic dimension complexity is necessary (and not merely sufficient) to prove an infinite separation with respect to dimension
complexity.

As a first try towards proving that the relaxation is indeed necessary, we might try to again use Zarankiewicz matrices to
show that there exists A € Z(N, ¢) such that dc.(A) € Q(f(V)) for a super-constant function f.

Unfortunately, if we go deeper in understanding Zarankiewicz matrices, we can see that this approach is not viable. Towards
Theorem C.5, Sherstov uses a result of Ben-David et al. (2002) to obtain the dimension complexity lower bound on a matrix
in the Zarankiewicz family. However, as Sherstov (2008a) notes, Ben-David et al. (2002) actually something stronger. They
show that, for a fixed ¢ € Z, all but vanishing fraction of Z(N, c) have dimension complexity Q(N'~2/¢). This implies
that, given € = 0,

A~Uni§§(N,c)) [dee(A) € Q(f(N))] = 0.99 (13)

for f(N) = N1=¢.

Therefore, a random Zarankiewicz matrix has large dimension complexity. As a result, trying to prove (13) for e > 0 is
actually impossible, even for [ € o(N 1-2/ ¢). To see this, observe that if we did show that, then this would essentially
be a proof of adc. s(Unif(Z(N,c))) € Q(f(N)). By Theorem 4.1, we now understand this statement to be false, for
super-constant f'!
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C.2. Barrier to Separation of Average Probabilistic DC and Probabilistic DC

Beyond the case of Zarankiewicz matrices, in general, it seems it will be difficult to prove that there exists H, p such that
adee s (u)°Y < de.(H) (14)

In this section, we formalize this by demonstrating a barrier to proving (14), if we also restrict the separation to occur on a

bounded L1-norm version of average probabilistic dimension complexity.

Definition C.6 (Bounded norm adc, 5()). The quantity adcl; s(11), given a prior u over a hypothesis class H, is the smallest
positive integer d such that there exists a distribution £ over embeddings ¢ : X — R?, such that

Pr |Vp: E inf  LPre((w, <e|l>1-9¢
By |V B |, £7e ()| <] 2
w 1§b

Here, ||w||; = > Iwal.

We note that both Theorem 3.3 and the separation (Corollary C.3) actually apply to adci’y s(1), for b < poly(sq(H)).

For now, we will prove a complexity-theoretic barrier, based on the long-time difficulty of proving super polynomial
threshold circuit size lower bounds.

Theorem C.7 (Complexity-theoretic barrier). Let b < on' for some constant 0 < € < 1. Suppose that
adel 5(1)* V) < de.(H)

holds. Then, depth-2 threshold circuits computing Eval(H) : (h, &) — h(z) require superpolynomial size (where h, x are
binary encodings of h € H and z € X).

To do so, we use a theorem due to Alman & Williams (2017) which relates circuits size of depth-2 threshold circuits of

evaluating a hypothesis class, and the probabilistic dimension complexity of the class.

Lemma C.8 (Alman & Williams (2017)). If Eval(H) : (ﬁ, Z) — h(x) (where h, x are binary encodings of h € H and
x € X)is computable by a depth-2 threshold circuit of size s, then:

s” log® (M| - IXII))

€

dee(H) <O (

Proof of Theorem C.7. 1If it is true that, for b < 2”14, for every ‘H and p over H, there exists some constant v > 0 such
that,

ve(H)" < ade? 5(u)
then, if we prove that there exists H, ¢ such that

adc?, 5(u)*() < deo(H)

then we deduce that,

ve(H)*M < de.(H) (15)

When (15) holds, we can apply Lemma C.8 to conclude that

ve(H)*) < 0 (52 log®(|H] - |X|)>

€

where s is circuit size of a depth-2 threshold circuit computing Eval(#). Choosing H appropriately, this implies a
super-polynomial lower bound on s for Eval(H).
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Thus, it remains to show that for every H, and p over H, there exists some constant v > 0 such that,

ve(H)" < ade? (1)

To prove this, we negate towards contradiction. Suppose that there exists #, i such that for every constant v > 0, it
holds that ve(H)? > adcl; s(1). Then, for H the class of parities, and x the uniform distribution, we get that for every +,

adcle” s(1) < ve(H)Y < n". Using this bound on adcz, s(11), we can now derive a distributional communication protocol for
parities, whose complexity violates known lower bounds of Q(n).

The protocol for computing the communication matrix A(h, x) for parities works as follows. The player who owns
samples the embedding ¢ ~ £ guaranteed by adcg s() < n?. The player then computes ¢(x), and then sends the results to
the player who owns h. This player then computes the linear combination of ¢(x), which e-approximates i(x), which is
also guaranteed by adcl;(;(y) <n’.

; ey’
since we stipulated that b < 2"175, we see that A € HE’7 for c = O(nl_s), which gives the desired contradiction, and
concludes the theorem.

Since adcle’}(;(u) < n7, this protocol for A gives that A € TI¢ _, for ¢ = log(b) (see section D for definition of IIS . ). Finally,

O

Remark. We note that, by inspection of Adaboost, the weights of the linear combination in our construction in Theorem
4.1 are bounded. Hence, the above theorem indicates that if we want to avoid the complexity-theoretic barrier, then we
need a different technique or construction to prove that our construction and relaxation was necessary to get the infinite
separation.

D. Communication Complexity Preliminaries

Let A be a sign matrix (one with entries taking only values in {41}). We define the discrepancy of a sign matrix. Let X, Y,
be two sets indexing the rows and columns of A. We write A(z;y) to denote the entry of A indexedby z € X,y € Y. A
rectangle R is the set B x C for B C X, C' C Y. For a fixed distribution ¢ over X x Y, the discrepancy of A with respect
to ( is defined as

disc¢(A) £ max Z C(z,y) - Alz;y)
R

(z,y)ER

As a special case, we define discrepancy over product distributions

disc*(A) £ mCin disce (A)

subject to the constraint that ( is product distribution over X x Y.

D.1. Communication Models

It is well known that discrepancy of a sign matrix is related to the communication complexity of the sign matrix. We define
models of communication now.

The 2-party communication model is the following. There are 2 parties, each having unbounded computational power, who
try to collectively compute a function. The input to the function is separated into 2 segments, and the i party sees the ‘"
segment. The parties can send each other direct messages.

Each party may transmit messages according to a fixed protocol. The protocol determines, for every sequence of bits
transmitted up to that point (the transcript), whether the protocol is finished (as a function of the transcript), or if, and which,
party writes next (as a function of the transcript) and what that party transmits (as a function of the transcript and the input of
that party). Finally, the last bit transmitted is the output of the protocol, which is a value in {4-1}. The complexity measure
of the protocol is the total number of bits transmitted by the parties.

Definition D.1 (I1. class). II. is defined to be the class of functions f : {0,1} x {0,1} — {%1} that can be computed by a
2-party deterministic communication protocol with complexity c.
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Frequently it is useful to think of f as being represented by a sign matrix, where A(z;y) £ f(x,y). Hence, we may abuse
notation and write that A € II...

A model more relaxed than deterministic communication is distributional communication.
Definition D.2 (Distributional II.). The distributional 2-party communication model allows the protocol to err on certain
inputs. Fix a distribution p over {0,1} x {0,1}. A function f : {0,1} x {0,1} — {#£1} is in ITS , if there exists a
communication protocol 7 € Il such that

E  [r(z1,22) - flz1,22)] 2 29

(z1,22)~p

Distributional communication complexity can be thought of as correlation with II..

Definition D.3 (Boolean function correlation). Define Cor(f, A) £ maxpen [E [f(x) - h(z)]
distribution ¢ over the domain.

, where z is sampled from a

When we want to measure correlation between two function classes, we have it defined as follows:

Definition D.4 (Boolean function correlation). Define Cor(C, A) £ min jec maxpen |[E [f(2) - h(z)]
from a distribution ¢ over the domain.

, Where x is sampled

D.2. Discrepancy vs. 2-bit Communication

Proof of Lemma A.2. Let R’ be the rectangle that witnesses the maximum value of

> @) - Alxiy)

(z,y)ER’

with respect to the worst-case product distribution ¢’. We construct 7 as follows. Alice and Bob, receiving as input = and y
respectively, which are sampled according to ¢’, each send a bit indicating whether or not their respective input is contained
in R'. If both inputs are contained in R’, then they output a bit according to the bias over A projected to R’ induced by (’.
Otherwise, they output a random bit.

First, observe that the output of this protocol by definition satisfies

VB e nAE] = ¥ ) Elrey) Al
oy (z,y)€R

Now, with probability (p + 1)/2, for a certain p € [—1, 1], m(x,y) = A(x;y). Thus, for (z,y) € R, n(z,y) - A(z;y) =
with probability (p+1)/2. Therefore E, [7(x,y) - A(z;y)] = (p+1)/2—(1—(p+1)/2) = (p+1)/2—1+(p+1)/2)
Hence,

1
D.

E [w(x,ym(x;y)]':p Y (e

(@,y)~¢’ ()R

Note that p is chosen in the proposed protocol specifically so that this implies:

E [W(%y)-A(x;y)]’: S ey Ay)

(zy)~¢’ ()R

Recalling the definition of discrepancy:

disc™ (A) = Z (z,y) - A(z;y)
(z,y)ER
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If we apply this definition and the conditions of the theorem, we then get that:

E [n(z,y)A(z;y)]| =~
(z,y)~¢’

D.3. 2-party Norm

Additionally, an important quantity we will consider is the 2-party norm of a function, Rs(f), which is defined to be the
expected product of a function computed on a list of correlated inputs.

Definition D.5 (2-party norm). For f : {0,1} x {0,1} — {£1}, the 2-party norm of f is defined as

Ro(f) 2 E I rere) (16)

w?:$8)$%)xéw{07l}n €1 526{0 1}

For us, the most important property of Ry (f) is that it upper bounds the correlation of f with functions computable by
deterministic 2-party communication protocols. We denote by II. the set of all f : {0,1} x {0,1} — {£1} that have
deterministic 2-party communication protocols with cost at most c.

Chung & Tetali (1993); Raz (2000); Viola & Wigderson (2007) all demonstrate the following bound:
Theorem D.6. For every function f :{0,1} x {0,1} — {£1},
Cor(f, 1) = max |E[f(z) - m(2)]| < 2° Ra(f)"/*

well, |z

Sor x uniformly distributed over {0,1} x {0, 1}.
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