
MAgNet: Mesh Agnostic Neural PDE Solver

Oussama Boussif 1 Dan Assouline 1 Loubna Benabbou 2 Yoshua Bengio 1 3 4

Abstract
The computational complexity of classical numer-
ical methods for solving Partial Differential Equa-
tions (PDEs) scales significantly as the resolution
increases. When it comes to climate predictions,
fine spatio-temporal resolutions are required to
resolve all turbulent scales in the fluid simula-
tions. This makes the task of accurately resolving
these scales computationally out of reach even
with modern supercomputers. As a result, cli-
mate modelers solve these PDEs on grids that are
too coarse (3km to 200km on each side), which
hinders the accuracy and usefulness of the pre-
dictions. In this paper, we leverage the recent ad-
vances in Implicit Neural Representations (INR)
to design a novel architecture that predicts the
spatially continuous solution of a PDE given a
spatial position query. By augmenting coordinate-
based architectures with Graph Neural Networks
(GNN), we enable zero-shot generalization to new
non-uniform meshes and long-term predictions up
to 250 frames ahead that are physically consistent.
Our Mesh Agnostic Neural PDE Solver (MAg-
Net) is able to make accurate predictions across
a variety of PDE simulation datasets and com-
pares favorably with existing baselines. Moreover,
MAgNet generalizes well to different meshes and
resolutions up to four times those trained on1.

1. Introduction
Partial Differential Equations (PDEs) describe the contin-
uous evolution of multiple variables, e.g. over time and/or
space. They arise everywhere in physics, from quantum
mechanics to heat transfer and have several engineering
applications in fluid and solid mechanics. However, most

*Equal contribution 1Mila - Québec AI Institute, Canada
2Université du Québec à Rimouski, Canada 3DIRO, Université
de Montréal, Canada 4CIFAR Senior Fellow. Correspondence to:
Oussama Boussif <oussama.boussif@mila.quebec>.

2nd AI4Science Workshop at the 39 th International Conference on
Machine Learning (ICML), 2022. Copyright 2022 by the author(s).

1Code and dataset can be found on: https://github.
com/jaggbow/magnet

PDEs can’t be solved analytically, so it is necessary to resort
to numerical methods. Since the introduction of computers,
many numerical approximations were implemented, and
new fields emerged such as Computational Fluid Mechanics
(CFD) (Richardson & Lynch, 2007). The most famous nu-
merical approximation scheme is the Finite Element Method
(FEM) (Courant, 1943; Hrennikoff, 1941). In the FEM, the
PDE is discretized along with its domain, and the problem
is transformed into solving a set of matrix equations. How-
ever, the computational complexity scales significantly with
the resolution. For climate predictions, this number can be
quite significant if the desired error is to be reached, which
renders its use impractical.

In this paper, we propose to learn the continuous solutions
for spatio-temporal PDEs. Previous methods focused on
either generating fixed resolution predictions or generating
arbitrary resolution solutions on a fixed grid. PDE mod-
els based on Multi-Layer Perceptrons (MLPs) can gener-
ate solutions at any point of the domain (Dissanayake &
Phan-Thien, 1994; Lagaris et al., 1998; Raissi et al., 2017a).
However, without imposing a physics-motivated loss that
constrains the predictions to follow the smoothness bias re-
sulting from the PDE, MLPs become less competitive than
CNN-based approaches especially when the PDE solutions
have high-frequency information (Rahaman et al., 2018).

We leverage the recent advances in Implicit Neural Repre-
sentations ((Tancik et al., 2020), (Chen et al., 2020), (Jiang
et al., 2020)) and propose a general purpose model that can
not only learn solutions to a PDE with a resolution it was
trained on, but it can also perform zero-shot super-resolution
on irregular meshes. The added advantage is that we pro-
pose a general framework where we can make predictions
given any spatial position query for both grid-based archi-
tectures like CNNs and graph-based ones able to handle
sensors and predictions at arbitrary spatial positions.

Contributions Our main contributions are in the context
of machine learning for approximately but efficiently solv-
ing PDEs and can be summarized as follows:

• We propose a framework that enables grid-based and
graph-based architectures to generate continuous-space
PDE solutions given a spatial query at any position.

https://github.com/jaggbow/magnet
https://github.com/jaggbow/magnet

MAgNet: Mesh Agnostic Neural PDE Solver

• We show experimentally that this approach can gener-
alize to resolutions up to four times those seen during
training in zero-shot super-resolution tasks.

2. Related Work
Current solvers can require a lot of computations to generate
solutions on a fine spatio-temporal grid. When it comes to
climate predictions, General Circulation Models (GCM) are
typically used to make forecasts that span several decades
over the whole planet (Phillips, 1956). These GCMs use
PDEs to model the climate in the atmosphere-ocean-land
system and to solve these PDEs, classical numerical solvers
are used. However, the quality of predictions is bottlenecked
by the grid resolution that is in turn constrained by the avail-
able amount of computing power. Deep learning has re-
cently emerged as an alternative to these classical solvers
in hopes of generating data-driven predictions faster and
making approximations that do not just rely on lower resolu-
tion grids but also on the statistical regularities that underlie
the family of PDEs being considered. Using deep learning
also makes it possible to combine the information in actual
sensor data with the physical assumptions embedded in the
classical PDEs. All of this would enable practitioners to
increase the actual resolution further for the same compu-
tational budget, which in turn improves the quality of the
predictions.

Machine Learning for PDE Solving Dissanayake &
Phan-Thien (1994) published one of the first papers on PDE
solving using neural networks. They parameterized the so-
lutions to the Poisson and heat transfer equations using an
MLP and studied the evolution of the error with the mesh
size. Lagaris et al. (1998) used MLPs for solving PDEs
and ordinary differential equations. They wrote the solution
as a sum of two components where the first term satisfies
boundary conditions and is not learnable, and the second is
parameterized with an MLP and trained to satisfy the equa-
tions. In (Raissi et al., 2017a) the authors also parameterized
the solution to a PDE using an MLP that takes coordinates
as input. With the help of automatic differentiation, they
calculate the PDE residual and use its MSE loss along with
an MSE loss on the boundary conditions. In follow-up work,
Raissi et al. (2017b) also learn the parameters of the PDE
(e.g. Reynolds number for Navier-Stokes equations).

The recently introduced Neural Operators framework (Ko-
vachki et al., 2021; Li et al., 2020b;a) attempts to learn
operators between spaces of functions. Li et al. (2021) use
”Fourier Layers” to learn the solution to a PDE by framing
the problem as learning an operator from the space of initial
conditions to the space of the PDE solutions. Their model
can learn the solution to PDEs that lie on a uniform grid
while maintaining their performance in the zero-shot super-

resolution setting. In the same spirit, Jiang et al. (2020) de-
veloped a model based on Implicit Neural Representations
called ”MeshFreeFlowNet” where they upsample existing
PDE solutions to a higher resolution. They use 3D low-
resolution space-time tensors as inputs to a 3DUnet in order
to generate a feature map. Next, some points are sampled
uniformly from the corresponding high-resolution tensors
and fed to an MLP called ImNet (Chen & Zhang, 2018).
They train their model using a PDE residual loss and are
able to predict the flow field at any spatio-temporal coordi-
nate. Their approach is closest to the one we propose here.
The main difference is that we perform super-resolution on
the spatial queries and forecast the solution to a PDE instead
of only doing super-resolution on the existing sequence.

Brandstetter et al. (2022) use the message-passing paradigm
((Gilmer et al., 2017), (Watters et al., 2017), (Sanchez-
Gonzalez et al., 2020)) to solve 1D PDEs. They are able
to beat state-of-the-art Fourier Neural Operators (Li et al.,
2021) and classical WENO5 solvers while introducing the
”pushforward trick” that allows them to generate better long-
term rollouts. Moreover, they present an added advantage
over existing methods since they can learn PDE solutions
at any mesh. However, they are not able to generalize to
different resolutions.

Most machine learning approaches require data from a sim-
ulator in order to learn the required PDE solutions and that
can be expensive depending on the PDE and the resolution.
(Wandel et al., 2020) alleviate that requirement by using a
PDE loss.

Machine Learning for Turbulence Modeling Recent
years have known a surge in machine learning-based models
for modeling turbulence. Since it is expensive to resolve
all relevant scales, some methods were developed that only
solve large scales explicitly and separately model sub-grid
scales (SGS). Recently, Novati et al. (2021) used multi-agent
reinforcement learning to learn the dissipation coefficient
of the Smagorinsky SGS model (Smagorinsky, 1963) using
as reward the recovery of the statistical properties of Di-
rect Numerical Simulations (DNS). Rasp et al. (2018) used
MLPs to represent sub-grid processes in clouds and replace
previous parametrization models in a global general circula-
tion model. In the same fashion, Park & Choi (2021) used
MLPs to learn DNS sub-grid scale (SGS) stresses using
as input filtered flow variables in a turbulent channel flow.
Brenowitz & Bretherton (2018) use MLPs to predicts the
apparent sources of heat and moisture using coarse-grained
data and use a multi-step loss to optimize their model.Wang
et al. (2020) used one-layer CNNs to learn the spatial filter
in LES methods and the temporal filter in RANS as well as
the turbulent terms. A UNet (Ronneberger et al., 2015) is
then used as a decoder to get the flow velocity. (de Bezenac
et al., 2017) predict future frames by deforming the input

MAgNet: Mesh Agnostic Neural PDE Solver

sequence according to the advection-diffusion equation. It
yields good results for Sea-Surface Temperature predictions.

Stachenfeld et al. (2021) use the ”encode-process-decode”
(Sanchez-Gonzalez et al., 2018; 2020) paradigm along with
dilated convolutional networks to capture turbulent dynam-
ics seen in high-resolution solutions only by training on low
spatial and temporal resolutions. Their approach beats ex-
isting neural PDE solvers in addition to the state-of-the-art
Athena++ engine (Stone et al., 2020).

3. Methodology
We present the developed framework that leverages recent
advances in Implicit Neural Representations (INR) (Jiang
et al., 2020; Sitzmann et al., 2020; Chen et al., 2020; Tancik
et al., 2020) and draws inspiration from mesh-free methods
for PDE solving. We first start by giving a mathematical
definition of a PDE. Next, we showcase the proposed ”MAg-
Net” and derive two variants: A grid-based architecture and
a graph-based one.

3.1. Preliminaries

We define PDE as follows, using Dk to denote k-th order
derivatives:

Definition 3.1. (Evans, 2010) Let U denote an open subset
of Rn and k ≥ 1 an integer. An expression of the form:

L(Dku(x), Dk−1u(x), . . . ,u(x), x) = 0 ∀x ∈ U (1)

is called a k-th order system of PDEs, where L : Rmnk ×
Rmnk−1 × · · · × Rmn × Rm × U → Rm is given and
u : U → Rm,u = (u1, . . . , um) is the unknown function
to be characterized.

In this paper, we are interested in spatio-temporal PDEs. In
this class of PDEs, the domain is U = [0,+∞]× S (time
× space) where S ⊂ Rn, n ≥ 1 and, with Dk indicating
differentiation wrt x, any such PDE can be formulated as:

∂u
∂t = L(Dku(x), . . . ,u(x), x, t) ∀t ≥ 0,∀x ∈ S.
u(0, x) = g(x) ∀x ∈ S
Bu = 0 ∀t ≥ 0,∀x ∈ ∂S

(2)
Where ∂S is the boundary of S, B is a non-linear operator
enforcing boundary conditions on u and g : S → Rm

represents the initial condition constraints for the solution
u.

Numerical PDE simulations have enjoyed a great body of
innovations especially where their use is paramount in in-
dustrial applications and research. Mesh-based methods
like the FEM numerically compute the PDE solution on a
predefined mesh. However, when there are regions in the

PDE domain that present large discontinuities, the mesh
needs to be modified and provided with many more points
around that region in order to obtain acceptable approxi-
mations. Mesh-based methods typically solve this problem
by re-meshing in what is called Adaptive Mesh Refinement
(Berger & Oliger, 1984; Berger & Colella, 1989). However,
this process can be quite expensive, which is why mesh-free
methods have become an attractive option that goes around
these limitations.

3.2. MAgNet: Mesh-Agnostic Neural PDE Solver

3.2.1. ”ENCODE-INTERPOLATE-FORECAST”
FRAMEWORK

Let {x1, x2, . . . , xT } ∈ RC×N denote a sequence of T
frames that represents the ground-truth data coming from
a PDE simulator or real-world observations. C denotes
the number of physical channels, that is the number of
physical variables involved in the PDE and N is the number
of points in the mesh. These frames are defined on the
same mesh, that is the mesh does not change in time. We
call that mesh the parent mesh and denote its normalized
coordinates of dimensionality n by {pi}1≤i≤N ∈ [−1, 1]n.
Let {ci}1≤i≤M ∈ [−1, 1]n denote a set of M coordinates
representing the spatial queries. The task is to predict the
solution for subsequent time steps both at: (i) all coordinates
from the parent mesh {pi}1≤i≤N , and (ii) coordinates from
the spatial queries {ci}1≤i≤M . At test time, the model can
be queried at any spatially continuous coordinate within the
PDE domain to provide an estimate of the PDE solution at
those coordinates.

To perform the prediction, we first estimate the PDE solu-
tions at the spatial queries for the first T frames and then
use that to forecast the PDE solutions at the subsequent
timesteps at the query locations. We do this through three
stages (see Figure 1):

1. Encoding: The encoder takes as input the given PDE
solution {xt}1≤t≤T at each point of the parent mesh
{pi}1≤i≤N and generates a state-representation of orig-
inal frames, which can be referred to as embeddings,
and which we note {zt}1≤t≤T . This representation
will be used in the interpolation step to find the PDE
solution at the spatial queries {ci}1≤i≤M . Note that
in this encoding step, we can generate one embedding
for each frame such that we have T embeddings or
summarize all the information in the T frames into one
embedding. We will explain the methodology using
T embeddings, as it is easier to grasp the time dimen-
sion in this formulation, but the implementation has
been done using a summarized single embedding, as
mentioned in section 3.2.2. We also note that the em-
bedded mesh remains the same, i.e. we don’t change it

MAgNet: Mesh Agnostic Neural PDE Solver

Forecasting (GNN)

Nearest Neighbors

Interpolation

Encoder

DecoderMLP

Parent Mesh Parent Mesh Embedding

Spatial Queries

Figure 1. We illustrate the ”Encode-Interpolate-Forecast” framework of MAgNet. The parent mesh is fed to the encoder to generate the
parent mesh embedding. Next, we estimate the values at the spatial queries using the interpolation module that uses features from
both the parent mesh points and the parent mesh embedding points closest to these queries. Finally, the parent mesh observations
and interpolated values at spatial queries are gathered as nodes forming a new graph using nearest neighbors and the PDE solution is
forecast for all nodes (therefore all spatial locations) into the future using the forecasting module.

by upsampling or downsampling it.

2. Interpolation: We follow the same approach as Jiang
et al. (2020) and Chen et al. (2020) by performing an
interpolation in the feature space. Note that in case
we generate one representation that summarizes all T
frames into one, then zt = z for t = 1, . . . , T . Let
{tk}1≤k≤T denote the timesteps at which the xt are
generated.

For each spatial query ci, let N (ci) denote the nearest
points in the parent mesh pj . We generate an inter-
polation of the features zk[ci] at coordinates ci and at
timestep tk as follows:

zk[ci] =

∑
pj∈N (ci)

wjgθ(xk[pj], zk[pj], ci − pj , tk)∑
pj∈N (ci)

wj

(3)

For k = 1, . . . , T and i = 1, . . . ,M . zk[pj] and xk[pj]
denote the embedding and input frame at position pj
and time tk respectively. Moreover, wj are interpola-
tion weights and are positive and sum to one. Weights
are chosen such that points closer to the spatial query
have a higher contribution to the interpolated feature
than points farther away from the spatial query. The
gθ is an MLP. To get the PDE solution xk[ci] at coor-
dinate ci, we use a decoder dθ which is an MLP here:
xk[ci] = dθ(zk[ci]). In practice, the number of neigh-
bors that we choose is 2n where n is the dimensionality
of the coordinates.

3. Forecasting: Now that we generated the PDE solution
at the spatial queries ci for all the past frames, we
forecast the PDE solution at future time points at both

spatial queries and the parent mesh coordinates. Let G
denote the Nearest-Neighbors Graph (NNG) that has
as nodes all the N locations in the parent mesh (at
original coordinates {pi}1≤i≤N) as well as all the M
query points (at locations {ci}1≤i≤M), with edges that
include only the nearest neighbors of each node among
the N+M−1 others. This corresponds to a new mesh
represented by the graph G. Let {c′i}1≤i≤M+N denote
the corresponding new coordinates. We generate the
PDE solution for subsequent time steps on this graph
auto-regressively using a decoder ∆θ as follows:

xk+1[c
′
i] = xk[c

′
i]+(tk+1−tk)∆θ(xk[c

′
i], . . . , x1[c

′
i])
(4)

For k = T, T + 1, . . .

We train MAgNet by using two losses:

• Interpolation Loss: This loss makes sure that the inter-
polated points match the ground-truth and is computed
as follows:

Linterpolation =

∑M
i=1

∑T
k=1 ||x̂k[ci]− xk[ci]||1

T ×M
(5)

Where x̂k[ci] denotes the interpolated values generated
by the model at the spatial queries.

• Forecasting Loss: This loss makes sure that the model
predictions into the future are accurate. If H is the
horizon of the predictions, then we can express the loss
as follows:

MAgNet: Mesh Agnostic Neural PDE Solver

Lforecasting =

∑M+N
i=1

∑H
k=1 ||x̂k+T [c

′
i]− xk+T [c

′
i]||1

H × (M +N)
(6)

Where x̂k+T [c
′
i] denotes the forecasted values gener-

ated by the model at the graph G which combines both
spatial queries and the parent mesh.

The final loss is then expressed as:

L = Lforecasting + Linterpolation. (7)

3.2.2. IMPLEMENTATION DETAILS

In the previous section, we described the general MAgNet
framework. In this section, we present how we build the
inputs to MAgNet as well as the architectural choices for
the encoding, interpolation and forecasting modules and
suggest two main architectures: MAgNet[CNN] and MAg-
Net[GNN].

Data pre-processing : We first consider a mesh that con-
tains N ′ points (N ′ ≥ N). We randomly sample N points
from the mesh to form the parent mesh. During training,
M spatial queries are randomly sampled from the N ′ −N
remaining points. We tried multiple values of M (that is
the number of training spatial queries) to assess its impact
on the performance of the method within a sensitivity study
presented in in Section 4.4. The data pre-processing is
illustrated in Figure 2 .

MAgNet[CNN] : In this architecture, we follow Chen
et al. (2020) and adopt the EDSR architecture (Lim et al.,
2017) as our CNN encoder. We concatenate all frames
{xt}1≤t≤T in the channel dimension and feed that to our en-
coder in order to generate a single representation z. For the
forecasting module, we use the same GNN as in (Sanchez-
Gonzalez et al., 2020). A key advantage of this architecture
is that it effectively turns existing CNN architectures into
mesh-agnostic ones by querying them at any spatially con-
tinuous point of the PDE domain at test time.

MAgNet[GNN] : This model is similar to MAgNet[CNN]
except that instead of using a CNN as an encoder, we use a
GNN: the same architecture as in the forecasting module but
each architecture having its separate set of parameters. This
is better suited for encoding frames with irregular meshes.
Similarly to MAgNet[CNN], we generate a single represen-
tation z that summarizes all the information from the frames
{xt}1≤t≤T .

4. Results
In this section, we evaluate MAgNet’s performance against
the following baselines:

Fourier Neural Operators (FNO) (Li et al., 2021) : Con-
sidered the state-of-the-art model in neural PDE solving,
FNO casts the problem of PDE solving as learning an op-
erator from the space of initial conditions to the space of
the solutions. It is able to learn PDE solutions that lie on a
uniform grid and can do zero-shot super resolution.

Message-Passing Neural PDE Solvers (MPNN) (Brand-
stetter et al., 2022) : Graph Neural Networks have
been used to learn physical simulations with great success
(Sanchez-Gonzalez et al., 2020). Recently, they have been
used to learn solutions to PDEs (Brandstetter et al., 2022;
Sanchez-Gonzalez et al., 2020). MPNN-based GNNs cou-
pled with an autoregressive strategy demonstrate a superior
performance to FNO and are able to make long rollouts with
the help of the ”pushforward-trick” that only propagates
gradient of the last computed frame.

PDE Datasets We use three of MPNN’s PDE simula-
tions (Brandstetter et al., 2022) as our experimental testbed.
In the same fashion, we are interested in the following fam-
ily of PDEs:

[∂tu+ ∂x(αu

2 − β∂xu+ γ∂xxu)](t, x) = δ(t, x)

u(0, x) = δ(0, x)

δ(t, x) =
∑J

j=1 Aj sin(ωjt+ 2πljx/L+ ϕj)
(8)

Where J = 5, L = 16 and coefficients sampled uni-
formly in Aj ∈ [−0.5, 0.5], ωj ∈ [−.4,−0.4], ‘j ∈ 1, 2, 3,
ϕj ∈ [0, 2π) and periodic boundary conditions following
Brandstetter et al. (2022); Bar-Sinai et al. (2018). We denote
the temporal resolution as nt and and set it to nt = 250
for the entire study. During testing, all the models are
fed a history of T = 25 frames and produce a rollout of
nt − T = 225 frames in the future. Here, we present the
three datasets we work with:

• E1: Burgers equation without diffusion α = 1, β =
0, γ = 0

• E2: Burgers equation with variable diffusion α =
1, β = η, γ = 0 where η ∈ [0, 0.2]

• E3: Mixed scenario where α ∈ [0, 3], β ∈ [0, 0.4] and
γ ∈ [0, 1].

All training sets contain 2048 simulations and test sets con-
tain 128 simulations. All models are evaluated using the
Mean Absolute Error (MAE) on the rolled out predictions
averaged across time and space:

MAE =

∑nt−T
t=1

∑N
i=1 |xt[ci]− x̂t[ci]|

(nt − T)×N
. (9)

MAgNet: Mesh Agnostic Neural PDE Solver

1. Starting mesh 2. Sample a number of points randomly
to form the parent mesh.

The rest will be the spatial queries

3. From the spatial queries, randomly sample
a number of training spatial queries.

Training spatial queries can vary from a
sequence of frames to another.

Figure 2. We illustrate the data pre-processing pipeline. We sample points randomly from the starting mesh to form the parent mesh and
the remaining points form the spatial queries. Next, during training, we can sample from the spatial queries and form what we call
”training spatial queries”. The distinction is that the number of ”training spatial queries” can be less than the total number of spatial
queries and we investigate the impact of this number in Section 4.4.

(a) Zero-shot super-resolution perfor-
mance on E1 test.

(b) Zero-shot super-resolution perfor-
mance on E2 test.

(c) Zero-shot super-resolution perfor-
mance on E3 test.

Figure 3. We present the models predictive performance on Zero-shot super-resolution, with a training spatial resolution of nx = 50.
MAgNet[CNN] outperforms baselines on both E1 and E2 test sets but lags behind FNO on E3. Error bars represent one standard
deviation.

We train models for 250 epochs with early stopping with
a patience of 40 epochs. See Appendix B and D for more
implementation details.

For all the subsequent sections, nx and n′
x denote the train-

ing and testing set’s resolutions respectively. The temporal
resolution nt = 250 remains unchanged for all experiments.

4.1. General Performance On Regular Meshes

In this section, we compare MAgNet’s performance on all
three datasets. All models are trained on a resolution of
nx = 50 and the PDE solutions lie on a uniform grid. We
test zero-shot super-resolution on n′

x ∈ {40, 50, 100, 200}.
Results are summarized in Figure 3 and visualizations of the
predictions can be found in Appendix A. MAgNet[CNN]
outperforms both baselines on both E1 and E2 datasets

yet is slightly outperformed by FNO on E3 (Figure 3(c)).
Nonetheless, MAgNet[CNN]’s predictive performance stays
consistent up to n′

x = 200 while MPNN does not generalize
well to resolutions not seen during training.

4.2. Zero-Shot Super-Resolution on Irregular Meshes

In this section, we study how MAgNets compare against
the other baselines when it comes to making predictions on
irregular meshes. In order to do so, we take simulations
from the uniform-mesh E1 dataset with a resolution of 100
and run the following steps:

1. Let nx ∈ {30, 50, 70}.

2. For each simulation in the E1 dataset, randomly sample
the same subset of nx points: the mesh remains for

MAgNet: Mesh Agnostic Neural PDE Solver

each single simulation in the E1 dataset.

The procedure is the same for the test set but we instead
take the original E1 test set at a starting resolution of 200
and generate four test sets with irregular meshes for n′

x ∈
{40, 50, 100, 200}. This is different from the test set of the
previous section albeit considering the same resolution since
this one has irregular meshes. We summarize our findings
in Table 1.

MAgNet[GNN] performs better than MAgNet[CNN] on
irregular meshes which is expected since GNN encoders
are better suited for this task. However, surprisingly, even
though we use a CNN encoder for MAgNet[CNN], the
performance seems to be better in most cases not only com-
pared to FNO but also MPNN which is a graph-based archi-
tecture. This effectively shows that MAgNet can be used to
turn existing CNN architectures into mesh-agnostic solvers.
This is particularly interesting for meteorological applica-
tions where one needs to make predictions at the sub-grid
level (at a specific coordinate) while only having access to
measurements on a grid.

4.3. Out-Of-Distribution Generalization

We study the generalization capabilities of MAgNet[CNN]
to unseen simulations against FNO and MPNN. For this,
we create an additional test set that we name E4 which is
also a mixed scenario with α ∈ [6., 12.], β ∈ [0.4, 0.7] and
γ ∈ [1., 2.].

We train each of the three models on regular grids on E1, E2
and E3 for a training resolution of nx = 50 and report the
test set performance on E1, E2, E3 and E4. For example,
we would train on E1 and test on E1, E2, E3 and E4 and
then repeat the process for E2 and E3. We summarize our
findings in Figure 4. The results vary greatly depending
on which dataset the models were trained on. For E1 our
approach seems competitive in OOD regime while for E3 for
example, our approach suffers. MPNN, however seems to
exhibit an interesting behaviour when trained on E3. It can
performa relatively well on unseen E1 and E2 datasets and
even maintain that performance over different resolutions.

4.4. Ablation and Sensitivity studies

In this section, we study different architectural choices and
the sensitivity of key parameters in MAgNet.

Basic Interpolators vs Learned Interpolators We in-
vestigate the contribution of the interpolation module to
the general predictive performance of MAgNet. We com-
pare the MAgNet[CNN] architecture against three ablated
variants:

• KNN: We use K-Nearest-Neighbors interpolation (Qi

et al., 2017) on the original frames directly to obtain
the interpolated values at the spatial queries.

• Linear: We use Linear interpolation on the original
frames directly to obtain the interpolated values at the
spatial queries.

• Cubic: We use Cubic interpolation on the original
frames directly to obtain the interpolated values at the
spatial queries.

Everything else is kept the same. The evaluation is done
on the E1 dataset with regular meshes and a resolution of
nx = 50. Performance is tested on E1 with regular meshes
for test resolutions n′

x ∈ {40, 50, 100, 200}. Results are
summarized in Figure 5(a).

Effect of modeling interactions between the parent mesh
and the spatial query In section 3.2, we presented the de-
veloped method which can be used to generate solutions at
any spatial query through the ”Encode-Interpolate-Forecast”
framework. This means that we are free to choose any archi-
tecture for the three processes. In this section we investigate
the choice of the ”Forecast” architecture on the predictive
performance as well as zero-shot super-resolution capabil-
ities. We compare MAgNet[CNN] and a variant that uses
LSTM with attention ((Hochreiter & Schmidhuber, 1997;
Bahdanau et al., 2015) on the spatial queries only. Results
are shown in Table 2. We see that leveraging the interaction
between the coordinates from the spatial query and those
in the parent mesh enables the model to give predictions
consistent to different resolutions as opposed to generating
the solutions at these queries with no interaction.

Impact of the number of point samples during training
We study the impact of the number of spatial queries used
during training (M). We train MAgNet[GNN] on the E1
dataset with a resolution of nx = 50 on a uniform grid and
test on the same resolution. Our findings are summarized
in Figure5(b). Increasing the number of spatial queries in-
creases the predictive performance as expected. Moreover,
having many queries also decreases the variance of the re-
sults. When we have fewer points, the random sampling can
cause some of these points to be in regions that decrease
the loss faster than other regions, hence, the model’s per-
formance becomes sensitive to randomization. However,
this effect grows weaker as the number of queries increases
since they would uniformly cover more regions in the mesh.

5. Limitations and Future Work
In this paper we introduced a novel framework that we call
MAgNet for solving PDEs on any mesh, possibly irregular.
We proposed two variants of the architecture which gave

MAgNet: Mesh Agnostic Neural PDE Solver

nx = 30 nx = 50 nx = 70

Model n′
x = 40 n′

x = 50 n′
x = 100 n′

x = 200 n′
x = 40 n′

x = 50 n′
x = 100 n′

x = 200 n′
x = 40 n′

x = 50 n′
x = 100 n′

x = 200

FNO 0.2784 0.2471 0.2574 0.2501 0.3797 0.3324 0.3841 0.3821 0.2798 0.2341 0.2533 0.2605
MAgNet[CNN] 0.2081 0.1934 0.2063 0.2150 0.1869 0.1630 0.1599 0.1629 0.2237 0.1634 0.1385 0.1324

MPNN 0.2602 0.1601 0.3451 0.3667 0.3027 0.2521 0.3226 0.3243 0.2685 0.1541 0.3403 0.3570
MAgNet[GNN] 0.2422 0.2230 0.1938 0.1902 0.2302 0.1659 0.1590 0.1404 0.2400 0.1599 0.1398 0.1070

Table 1. We report the MAE per frame on the E1 dataset. We train all four models on three different resolutions nx ∈ {30, 50, 70} and
for each training resolution, we evaluate zero-shot super-resolution on irregular meshes for n′

x ∈ {40, 50, 100, 200}. We notice that even
when we use a CNN encoder, MAgNet not only performs better than the existing baselines, but its performance stays consistent across
different test resolutions. MAgNet with a CNN encoder beats MPNN even when using an encoder not suited for the task, which suggests
MAgNet successfully turns existing CNN architectures into mesh-agnostic ones.

Train
Test

E1

E1 E2 E3 E4

E2

E3

Figure 4. Results of Out-Of-Distribution and In-Distribution regimes. The diagonals of this table represent the In-Distribution regime
while any figure off the diagonal represents the Out-Of-Distribution regime. Our results show that our method can generalize well if
trained on certain datasets but suffer in other cases just like the other baselines.

promising results on benchmark datasets. We were effec-
tively able to beat graph-based and grid-based architectures
even when using the CNN variant of the proposed frame-

work, therefore suggesting a novel way of adapting existing
CNN architectures to make predictions on any mesh. A key
limitation of our work however, is the significance of the

MAgNet: Mesh Agnostic Neural PDE Solver

(a) Ablation study between learned interpolators (Ours)
and existing interpolation schemes.

(b) Sensitivity study to assess the impact of the number
of spatial queries seen during training.

Figure 5. In (a), we study the impact of having a learned interpolator as compared to basic ones. In (b), we assess the impact of the number
of spatial queries during training. Error bars represent one standard deviation in both plots.

Table 2. Mean Absolute Error (MAE) reported for models trained
on the E1 dataset with a resolution of nx = 50 on a uniform grid
and tested on the same dataset for nx ∈ {40, 50, 100, 200}. We
evaluate the effect of the Forecast module on the zero-shot super-
resolution capabilities. The model without interaction contains
an LSTM with attention (Bahdanau et al., 2015; Hochreiter &
Schmidhuber, 1997) for forecasting where spatial queries do not
interact with the parent mesh. The model with interaction has a
GNN that operates over the graph formed from the spatial-queries
and the parent mesh (MAgNet[CNN]).

Model nx = 40 nx = 50 nx = 100 nx = 200

Without Interaction 0.1650 0.0815 0.2810 0.4139
With Interaction 0.1079 0.1020 0.1142 0.1177

learned interpolator. Indeed, compared with a simple cubic
interpolation, the approach introduced here doesn’t seem
to offer a significant advantage and we leave improvement
regarding this point for future work. Another improvement
could be seen in the forecasting module. For now, MAgNet
forecasts using a first-order explicit time-stepping scheme
that is known to suffer from instability problems in numeri-
cal PDE and ODE solvers. Learned solvers seem to some-
how circumvent this limitation even when using large time
steps (Sanchez-Gonzalez et al., 2020; Brandstetter et al.,
2022; Stachenfeld et al., 2021). In a future work, we wish to
explore other time-stepping schemes such as the 4th order
Runge-Kutta method (Runge, 1895; Kutta, 1901) which is
commonly used for solving PDEs.

Software and Data
Our code and the dataset we used can be found at https:
//github.com/jaggbow/magnet

Acknowledgements
The authors would like to thank Shruti Mishra, Victor
Schmidt, Dianbo Liu and Ayoub Ajarra for their fruitful
discussions and useful insights. This work is financially
supported by the government of Quebec and Samsung.

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization,

2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
Bengio, Y. and LeCun, Y. (eds.), 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1409.
0473.

Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P.
Learning data driven discretizations for partial differential
equations. 2018. doi: 10.1073/pnas.1814058116.

Berger, M. and Colella, P. Local adaptive mesh refine-
ment for shock hydrodynamics. Journal of Computa-
tional Physics, 82(1):64–84, May 1989. doi: 10.1016/
0021-9991(89)90035-1. URL https://doi.org/
10.1016/0021-9991(89)90035-1.

Berger, M. J. and Oliger, J. Adaptive mesh refinement
for hyperbolic partial differential equations. Journal of
Computational Physics, 53(3):484–512, March 1984. doi:
10.1016/0021-9991(84)90073-1. URL https://doi.
org/10.1016/0021-9991(84)90073-1.

Brandstetter, J., Worrall, D., and Welling, M. Message
passing neural pde solvers, 2022.

https://github.com/jaggbow/magnet
https://github.com/jaggbow/magnet
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1016/0021-9991(84)90073-1

MAgNet: Mesh Agnostic Neural PDE Solver

Brenowitz, N. D. and Bretherton, C. S. Prognostic val-
idation of a neural network unified physics parameter-
ization. Geophysical Research Letters, 45(12):6289–
6298, June 2018. doi: 10.1029/2018gl078510. URL
https://doi.org/10.1029/2018gl078510.

Chen, Y., Liu, S., and Wang, X. Learning continuous image
representation with local implicit image function, 2020.

Chen, Z. and Zhang, H. Learning implicit fields for genera-
tive shape modeling, 2018.

Courant, R. Variational methods for the solution of prob-
lems of equilibrium and vibrations. Bulletin of the Amer-
ican Mathematical Society, 49(1):1–23, 1943. doi: 10.
1090/s0002-9904-1943-07818-4. URL https://doi.
org/10.1090/s0002-9904-1943-07818-4.

de Bezenac, E., Pajot, A., and Gallinari, P. Deep learn-
ing for physical processes: Incorporating prior scientific
knowledge, 2017.

Dissanayake, M. W. M. G. and Phan-Thien, N. Neural-
network-based approximations for solving partial differ-
ential equations. Communications in Numerical Meth-
ods in Engineering, 10(3):195–201, March 1994. doi:
10.1002/cnm.1640100303. URL https://doi.org/
10.1002/cnm.1640100303.

Evans, L. Partial Differential Equations. American Math-
ematical Society, March 2010. doi: 10.1090/gsm/019.
URL https://doi.org/10.1090/gsm/019.

Falcon, W., Borovec, J., Wälchli, A., Eggert, N., Schock,
J., Jordan, J., Skafte, N., Ir1dXD, Bereznyuk, V., Harris,
E., Tullie Murrell, Yu, P., Præsius, S., Addair, T., Zhong,
J., Lipin, D., Uchida, S., Shreyas Bapat, Schröter, H.,
Dayma, B., Karnachev, A., Akshay Kulkarni, Shunta
Komatsu, Martin.B, Jean-Baptiste SCHIRATTI, Mary, H.,
Byrne, D., Cristobal Eyzaguirre, Cinjon, and Bakhtin, A.
Pytorchlightning/pytorch-lightning: 0.7.6 release, 2020.
URL https://zenodo.org/record/3828935.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70, ICML’17, pp.
1263–1272. JMLR.org, 2017.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Hrennikoff, A. Solution of problems of elasticity by the
framework method. Journal of Applied Mechanics, 8(4):
A169–A175, December 1941. doi: 10.1115/1.4009129.
URL https://doi.org/10.1115/1.4009129.

Jiang, C. M., Esmaeilzadeh, S., Azizzadenesheli, K.,
Kashinath, K., Mustafa, M., Tchelepi, H. A., Marcus,
P., Prabhat, and Anandkumar, A. MeshfreeFlowNet:
A Physics-Constrained Deep Continuous Space-Time
Super-Resolution Framework. IEEE Press, 2020. ISBN
9781728199986.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2014.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces, 2021.

Kutta, W. Beitrag zur näherungsweisen Integration totaler
Differentialgleichungen. Zeit. Math. Phys., 46:435–53,
1901.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. Artificial neu-
ral networks for solving ordinary and partial differential
equations. IEEE transactions on neural networks, 9 5:
987–1000, 1998.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B.,
Stuart, A., Bhattacharya, K., and Anandkumar, A.
Multipole graph neural operator for parametric partial
differential equations. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Sys-
tems, volume 33, pp. 6755–6766. Curran Associates,
Inc., 2020b. URL https://proceedings.
neurips.cc/paper/2020/file/
4b21cf96d4cf612f239a6c322b10c8fe-Paper.
pdf.

Li, Z.-Y., Kovachki, N. B., Azizzadenesheli, K., Liu, B.,
Bhattacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. ArXiv, abs/2010.08895, 2021.

Lim, B., Son, S., Kim, H., Nah, S., and Lee, K. M. Enhanced
deep residual networks for single image super-resolution,
2017.

Novati, G., de Laroussilhe, H. L., and Koumout-
sakos, P. Automating turbulence modelling by multi-
agent reinforcement learning. Nature Machine Intel-
ligence, 3(1):87–96, January 2021. doi: 10.1038/
s42256-020-00272-0. URL https://doi.org/10.
1038/s42256-020-00272-0.

https://doi.org/10.1029/2018gl078510
https://doi.org/10.1090/s0002-9904-1943-07818-4
https://doi.org/10.1090/s0002-9904-1943-07818-4
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1090/gsm/019
https://zenodo.org/record/3828935
https://doi.org/10.1115/1.4009129
https://proceedings.neurips.cc/paper/2020/file/4b21cf96d4cf612f239a6c322b10c8fe-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4b21cf96d4cf612f239a6c322b10c8fe-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4b21cf96d4cf612f239a6c322b10c8fe-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4b21cf96d4cf612f239a6c322b10c8fe-Paper.pdf
https://doi.org/10.1038/s42256-020-00272-0
https://doi.org/10.1038/s42256-020-00272-0

MAgNet: Mesh Agnostic Neural PDE Solver

Park, J. and Choi, H. Toward neural-network-based large
eddy simulation: application to turbulent channel flow.
Journal of Fluid Mechanics, 914, March 2021. doi:
10.1017/jfm.2020.931. URL https://doi.org/10.
1017/jfm.2020.931.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Phillips, N. A. The general circulation of the atmosphere:
A numerical experiment. Quarterly Journal of the Royal
Meteorological Society, 82(352):123–164, April 1956.
doi: 10.1002/qj.49708235202. URL https://doi.
org/10.1002/qj.49708235202.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++: Deep
hierarchical feature learning on point sets in a metric
space, 2017.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F. A., Bengio, Y., and Courville, A. On the
spectral bias of neural networks. 2018.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics
informed deep learning (part i): Data-driven solutions of
nonlinear partial differential equations, 2017a.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics
informed deep learning (part ii): Data-driven discovery
of nonlinear partial differential equations, 2017b.

Rasp, S., Pritchard, M. S., and Gentine, P. Deep learning to
represent sub-grid processes in climate models. 2018.

Richardson, L. F. and Lynch, P. Weather Prediction by
Numerical Process. Cambridge University Press, 2007.
doi: 10.1017/cbo9780511618291. URL https://doi.
org/10.1017/cbo9780511618291.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Con-
volutional networks for biomedical image segmentation.
Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2015, May 2015.

Runge, C. Ueber die numerische auflsung von differential-
gleichungen. Mathematische Annalen, 46(2):167–178,
June 1895. doi: 10.1007/bf01446807. URL https:
//doi.org/10.1007/bf01446807.

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T.,
Merel, J., Riedmiller, M., Hadsell, R., and Battaglia, P.
Graph networks as learnable physics engines for infer-
ence and control, 2018.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. W. Learning to simulate
complex physics with graph networks, 2020.

Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell,
D. B., and Wetzstein, G. Implicit neural representations
with periodic activation functions, 2020.

Smagorinsky, J. General circulation experiments with the
primitive equations. Monthly Weather Review, 91(3):
99–164, March 1963. doi: 10.1175/1520-0493(1963)
091⟨0099:gcewtp⟩2.3.co;2. URL https://doi.
org/10.1175/1520-0493(1963)091<0099:
gcewtp>2.3.co;2.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer,
M., Pfaff, T., Godwin, J., Cui, C., Ho, S., Battaglia, P.,
and Sanchez-Gonzalez, A. Learned coarse models for
efficient turbulence simulation, 2021.

Stone, J. M., Tomida, K., White, C. J., and Felker, K. G.
The athena adaptive mesh refinement framework: Design
and magnetohydrodynamic solvers. The Astrophysical
Journal Supplement Series, 249(1):4, June 2020. doi: 10.
3847/1538-4365/ab929b. URL https://doi.org/
10.3847/1538-4365/ab929b.

Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron,
J. T., and Ng, R. Fourier features let networks learn high
frequency functions in low dimensional domains, 2020.

Wandel, N., Weinmann, M., and Klein, R. Learning in-
compressible fluid dynamics from scratch – towards fast,
differentiable fluid models that generalize, 2020.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and
Yu, R. Towards physics-informed deep learning for
turbulent flow prediction. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, July 2020. doi: 10.
1145/3394486.3403198. URL https://doi.org/
10.1145/3394486.3403198.

Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu,
R., and Tacchetti, A. Visual interaction networks:
Learning a physics simulator from video. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
8cbd005a556ccd4211ce43f309bc0eac-Paper.
pdf.

https://doi.org/10.1017/jfm.2020.931
https://doi.org/10.1017/jfm.2020.931
https://doi.org/10.1002/qj.49708235202
https://doi.org/10.1002/qj.49708235202
https://doi.org/10.1017/cbo9780511618291
https://doi.org/10.1017/cbo9780511618291
https://doi.org/10.1007/bf01446807
https://doi.org/10.1007/bf01446807
https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
https://doi.org/10.3847/1538-4365/ab929b
https://doi.org/10.3847/1538-4365/ab929b
https://doi.org/10.1145/3394486.3403198
https://doi.org/10.1145/3394486.3403198
https://proceedings.neurips.cc/paper/2017/file/8cbd005a556ccd4211ce43f309bc0eac-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8cbd005a556ccd4211ce43f309bc0eac-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8cbd005a556ccd4211ce43f309bc0eac-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8cbd005a556ccd4211ce43f309bc0eac-Paper.pdf

MAgNet: Mesh Agnostic Neural PDE Solver

A. Visualizations
Figures 6 and 7 show the models’ predictions on each of the test set resolutions n′

x ∈ {40, 50, 100, 200} on the E1 dataset.
MAgNet[CNN] predictions visually match the ground-truth’s while MPNN’s prediction degrade as the predictions are
advanced in time. The models shown here are the ones trained on uniform meshes.

Figure 6. Vizualisation of the models’ predictions on a simulation sample from the E1 dataset. We present visualizations for each of the
test resolutions n′

x ∈ {40, 50, 100, 200}. The temporal resolution is fixed at nt = 250. The x axis represents space and y axis represents
time. The arrow of time is from top to bottom.

B. Training details
We train all models for 250 epochs and early stopping with a patience of 40 epochs. All models are trained using Adam
Optimizer (Kingma & Ba, 2014) and the StepLR learning scheduler (Paszke et al., 2019) which decays the learning rate by a
factor k every Nsteps epochs. All models were trained on 5 random seeds ∈ {5, 10, 21, 42, 2022}. We use Pytorch (Paszke
et al., 2019) and Pytorch-Lightning (Falcon et al., 2020) for our implementations and we summarize all model’s training
hyper-parameters in Table 3.

Table 3. Training hyperparameters for FNO, MPNN, MAgNet[CNN] and MAgNet[GNN]

Parameters FNO MPNN MAgNet[CNN] MAgNet[GNN]

Learning Rate 0.001 0.001 0.001 0.001
Weight Decay 0 0 0 0
k 0.3 0.3 0.3 0.3
Nsteps 50 50 40 50
GPU RTX8000 RTX8000 RTX8000 RTX8000
Number of GPUs 1 1 2 2
Training duration (hours) 1 1 5 2.5

MAgNet: Mesh Agnostic Neural PDE Solver

Figure 7. Vizualisation of the models’ predictions on a simulation sample from the E1 dataset. We present visualizations for each of the
test resolutions n′

x ∈ {40, 50, 100, 200}. The temporal resolution is fixed at nt = 250. The x axis represents space and y axis represents
time. The arrow of time is from top to bottom.

C. Data efficiency
In this section, we study MAgNet[CNN], FNO and MPNN performance in terms of the size of the training data. We
present results for datasets E1, E2 and E3 where models are trained on a resolution of nx = 50 and tested on resolutions
nx ∈ {40, 50, 100, 200}. We present our results in Figure 8. Overall, our model seems more data efficient when it comes
to generalizing to unseen resolutions which suggests that it quickly learns the correct dynamics at a finer scale than the
baselines.

D. Architectural details
D.1. MAgNet[CNN]

Encoder Architecture We adapt the original EDSR (Lim et al., 2017) architecture to work on 1D signals instead of 2D
and use 4 residual blocks with a hidden dimension of 128.

Interpolation Module We use a 4 layers MLP with a hidden size of 64 followed by Layernorm (Ba et al., 2016) for gθ.
For dθ, we use a 4 layer MLP with a hidden size of 64

Forecasting Module We use the same architecture as in Sanchez-Gonzalez et al. (2020). The encoder module uses a
4 layer MLP with a hidden size of 64 and the latent dimension to 32. We use 5 message-passing steps (with the same
parameters for the MLP), the decoder also has a 4 layer MLP with hidden size of 64.

D.2. MAgNet[GNN]

Encoder Architecture We use the same architecture as in Sanchez-Gonzalez et al. (2020) but only keep the encoder and
processor. We also use 5 message-passing steps for the processor and use 4 layer MLP with hidden size of 128 and a latent
dimension of 128.

MAgNet: Mesh Agnostic Neural PDE Solver

(a) Training data efficiency performance for zero-shot super-resolution on E1 test.

(b) Training data efficiency performance for zero-shot super-resolution on E2 test.

(c) Training data efficiency performance for zero-shot super-resolution on E3 test.

Figure 8. We present the evolution of the models predictive performance on zero-shot super-resolution with the size of the training data.
MAgNet[CNN] is able to learn the correct dynamics even in the data-scarce regime which is reflected by its performance on unseen
resolutions. Error bars represent one standard deviation.

Interpolation Module We use a 4 layers MLP with a hidden size of 128 followed by Layernorm (Ba et al., 2016) for gθ.
For dθ, we use a 4 layer MLP with a hidden size of 128

Forecasting Module We use the same architecture as in Sanchez-Gonzalez et al. (2020). The encoder module uses a 4
layer MLP with a hidden size of 64 and the latent dimension set to 128. We use 5 message-passing steps for the processor
(with the same parameters for the MLP), the decoder also has a 4 layer MLP with hidden size of 128.

D.3. MPNN Brandstetter et al. (2022)

We use the same hyperparameters as in Brandstetter et al. (2022).

D.4. FNO (Li et al., 2021)

We use 5 Fourier Layers and 12 modes in Fourier space. We use a hidden channel size of 256.

