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ABSTRACT

The prevailing way to improve the generative capabilities of large language models
(LLMs) is via fine-tuning on instruction datasets (e.g., OpenHermes, OpenOrca).
These datasets have several limitations: they are costly to curate, might violate
user privacy agreements or terms of service of LLM providers, and are unclear
in terms of the task skills (e.g., “rules”) the model learns from their instruction
samples. In this work, we introduce COOKBOOK, a framework that uses data
generating templates—simple Python functions over random tokens—to produce
programmatic training data which improves LLM task performance. By defining
simple data generating functions that encode the underlying “rules” of generative
tasks, our framework can efficiently produce data without privacy concerns or the
need for extensive curation. In the single-task setting, we show that COOKBOOK is
effective across a wide range of tasks from document QA to entity disambiguation,
providing performance gains of up to 60.1 accuracy points. We extend COOKBOOK
to a multi-task setting, proposing an algorithm to optimally mix data from various
templates, thereby addressing the challenge of improving LLMs across a broad
range of tasks. On the standard multi-task GPT4ALL evaluation suite, we find
that, averaged across tasks, MISTRAL-7B fine-tuned using COOKBOOK is the
best 7B parameter instruction-tuned model, and, on an individual task level, is
the best performing model on 3/8 tasks. Finally, to analyze COOKBOOK, we
introduce the template alignment statistic as a novel metric for understanding how
training on template-generated data enhances model performance by adhering to
the task-specific rules encoded in the templates.

1 INTRODUCTION

Fine-tuning large language models (LLMs) on instruction datasets (Lian et al., 2023a; Longpre et al.,
2023; Achiam et al., 2023; "Teknium", 2023) can significantly improve LLM generative capabilities.
The success of these instruction datasets is typically attributed to their size, diversity, and degree
of human alignment (Wang et al., 2022a). However, it is unclear what is being learned from these
instruction datasets, specifically, what task “rules” the model learns from such data—i.e., does
training a model on document-based question answering (QA) examples truly teach the model how to
localize information in a passage? Additionally, due to their size and diversity, these datasets can be
time-consuming and expensive to curate. Recent alternatives such as user chat logs (i.e., shareGPT)
and LLM-generated data (Lian et al., 2023a; "Teknium", 2023) are cheaper but may violate user
privacy and the terms of service of LLM providers. In short, we lack a dataset curation method that
allows us to teach specific task rules, is inexpensive, and does not pose privacy or legal issues.

As a first step in addressing these challenges, we ask whether LLM capabilities can be improved by
using programmatic data: data generated by simple functions which encode the underlying rules of
a generative task. Consider the toy task of teaching the model how to copy sentences; for an input
sentence “The day is sunny.”, the output is “The day is sunny.” The task’s underlying rule, which is
that the input and output should be equal, can easily be converted into a data generating function by
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sampling identical strings for input and output, such as {input: “aabc”, output: “aabc”}. In contrast
to instruction-tuning datasets, this programmatic data can be generated cheaply and does not pose any
privacy or legal concerns. Notably, there is an explicit rule of how inputs and outputs are generated
that this data aims to teach the model, unlike in existing instruction datasets.

However, it is unclear how rules for complex open-ended generation tasks can be captured by data
generating functions. For example, document QA has many rules ranging from localization and
retrieval to contextual analysis—none of which clearly translate into a data generating function.
Given a set of natural language (NL) tasks, we wish to (1) know how to construct data generating
functions for each task rule, (2) combine rules to improve performance across several tasks at once,
and (3) understand if the taught rules will generalize to the respective downstream NL tasks.

We propose COOKBOOK, a framework that uses a data generating template (the “recipes”)—a simple
Python function—to produce programmatic training data for improving LLM performance on a given
task. These templates have two key properties: 1) they invoke task-specific data generating functions,
which specify how inputs and outputs are generated in order to approximate the given task’s rule, and
2) they operate over a random token space, which not only avoids privacy and legal concerns but also
facilitates ease of data specification. Importantly, while the data generating functions are task-specific,
they are composed using simple list operations—sampling, span selection, shuffling, replacement and
concatenation. For instance, consider the template for document QA (Figure 1), wherein one must
answer a question based on a document. One rule for solving this task is to localize the question in the
document and retrieve the correct answer from nearby. Our template first constructs the document as
a random sequence uniformly sampled over the token vocabulary. In order to instantiate the localize
and retrieve rule, our template samples the question as a small span of the document token sequence
and defines the answer as the span of tokens surrounding the question.

In the second part of our framework, we extend our template-based approach to the multi-task setting,
where we are interested in fine-tuning the model across data generated from several task templates to
improve many generative capabilities simultaneously—similar to what instruction datasets aim to
achieve with sample diversity. To construct a dataset using multiple templates, we need to determine
the proportions of their respective samples in the data mixture. One can set these proportions
manually through trial-and-error, but this can be resource-intensive. To automate this process, we
propose an aggregation algorithm which takes as input the downstream accuracy scores of models
fine-tuned on samples from individual templates and sets the proportions as the softmax of these
scores. Notably, these proportions are theoretically optimal under the assumption that accuracies
are linear in proportions, which we empirically validate. This approach, however, requires labeled
evaluation data to produce accuracy scores. We generalize the algorithm to the unlabeled data setting
by using weak supervision (WS) methods to estimate the accuracy of each template (Ratner et al.,
2019).

Given these templates, it is important to understand how the data generated by them impacts model
performance on downstream tasks. In the third part of our framework, we introduce template
alignment scorers that score how closely a given NL task sample’s input and output follow the
template’s data generating function. For example, in Figure 1 document QA’s alignment scorer
measures on an NL sample the fraction of the question’s words that are within a certain word radius of
the answer in the document, testing how well the localize and retrieve rule applies to NL data. These
scorers help us study if training on template-generated data improves performance by impacting
samples where we expect the template’s rule to be most applicable—samples with a high alignment
score. Using alignment scorers, we then propose a new metric, called the template alignment statistic,
to measure the extent to which the model’s improvement is due to the model better following the
template’s rule.

Empirically, COOKBOOK enables us to generate programmatic data that improves LLM performance
on generative tasks, and to our knowledge, we are the first to do so. Across 5 tasks (document
QA, retrieval, commonsense QA, entity matching, and entity disambiguation) we find that models
fine-tuned on data generated by our templates can improve performance on the corresponding NL
tasks by up to 60.1 accuracy points. We analyze our approach by using the template alignment
statistic to examine how performance relates to learning the intended rules and by studying individual
components of templates (data generating functions, random tokens). We find that the structure
imposed by the data generating function is critical for improving performance and that training on
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Figure 1: COOKBOOK. (1) Templates are constructed for a task by writing a data generating function
representative of a task rule. (2) Templates can be combined to improve multiple capabilities. (3) Template
alignment scorers help measure the degree to which the rule learned by the template improves LLM performance.

random tokens helps avoid reasoning shortcuts present in NL fine-tuning, given that the model already
has sufficient NL understanding.

Finally, in the multi-task setting, we evaluate our data mixing algorithm over COOKBOOK templates,
comparing performance of this fine-tuned model with models fine-tuned on existing instruction
datasets (e.g., OpenOrca, Open-Hermes, Capybara) using the standard multi-task GPT4ALL evalu-
ation suite. Averaged across tasks, we find that a model fine-tuned using the mixture of templates
obtained from our algorithm is the best 7B parameter instruction-tuned model, and, on an individual
task level, is the best performing model on 3 out of 8 tasks.

Roadmap. Section 2 presents related work. Section 3 describes the COOKBOOK framework,
including the procedures for constructing and combining templates. Section 4 presents our empirical
results, and section 5 introduces and measures the template alignment statistic, as well as analysis on
the role of random tokens and data generating rules. We conclude with a discussion in Section 6.

2 RELATED WORK

We present an abbreviated related work. A full treatment can be found in Appendix B. There is a
large body of work which studies instruction-tuning dataset creation, programmatic data generation,
and improving LLM generative capabilities. The current state-of-the art of instruction tuning datasets
focus on generating data using existing LLMs, reducing manual curation efforts but facing challenges
such as privacy and terms of service violations (Achiam et al., 2023; Lian et al., 2023a; Taori et al.,
2023; Luo et al., 2023; Li et al., 2023; Daniele & Suphavadeeprasit, 2023). Additionally, synthetic
data has proven beneficial for pretraining (via token-level tasks and data with latent structures) and
also for enhancing LLMs’ understanding and classification abilities through fine-tuning (Wu et al.,
2022; Papadimitriou & Jurafsky, 2020; Krishna et al., 2021; Bhatia et al., 2023).

3 COOKBOOK

We set up the problem of constructing templates and combining templates in Section 3.1. We then
describe our framework, COOKBOOK: templates for generating programmatic data that can improve
model abilities on generative tasks (Section 3.2). In Section 3.3, we show how to combine data from
several templates in the multi-task setting.

3.1 SETUP

Constructing templates. We are given a NL generative task T as input. Samples of T
have several components. Let I ∈ I be the NL instruction for the task, x ∈ X denote its
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def matching(noise: float):
e1 = random.sample(token_ids)
# inputs: use e1 to get e2
e2 = (e1.replace(k=1) if rand.random() < 0.5 

else e1.replace(k=noise))

# outputs: use e1 and e2 to get answer
answer = 'yes' if e1 ∩ e2 > (1-noise) else ‘no'

instruction = “Determine whether Product A and 
Product B are the same."
 
return f"""
{instruction}
Product A: {e1}
Product B: {e2}
Question: Are Product A and Product B the same?
Answer: {answer}"""

COMPARE

def commonsense_reasoning(overlap_len: int): 
 sent, c1, c2 = random.sample(token_ids)
# inputs: use sent to get c1 and c2

 c1 = c1 + random.sample(sent, k=overlap_len)
c2 = c2 + random.sample(token_ids, k=overlap_len)
choices = [c1, c2].shuffle()

# outputs: use sent and choices to get answer
 ans_idx = argmax([sent ∩ choices[0],sent ∩ choices[1]])
 answer = choices[ans_idx]
 
 instruction = "Select the correct choice.”
  
return f"""
{instruction}
{sent}
Choices:
- {choices[0]}
- {choices[1]}
Answer: {answer}"""

SELECT

Figure 2: Sample templates (pseudocode). Templates construct the inputs, outputs, and then return a formatted
sample. (Left) template for commonsense reasoning which generates two answer choices, where one choice (the
answer) has a greater token overlap to the sentence. (Right) template for entity matching, which generates two
entities which are labeled a match if their similarity is above a certain threshold.

inputs, and y ∈ Y denote the task output. Let fmtT () be the task formatter that formats the
text sample using x, y, adding in the instruction I at the beginning. Using document QA as
an example, x = {x1, x2} where x1 is the document and x2 is the question, y is the answer,
and fmtT (x, y, I) could be equal to f“Use the document to answer the question.
Document: {x1}. Question: {x2}. Answer: {y}”. Given this information
about T , we construct a template GT , a Python function that generates synthetic samples. The goal is
to design the template such that the generated samples can be used to fine-tune a model that does
well on T . More precisely, by fine-tuning a base model f : X → Y on n samples generated from GT

to yield fGT ,n, our goal is for fGT ,n to outperform f on T .

Combining templates. We have as input l templates GT = {GT1 , . . . , GTl
} generated using

COOKBOOK for tasks T1, . . . , Tl. We use these templates to generate n samples of programmatic
data with mixture ratio p = {p1, . . . , pl}. Define fGT ,np as the base model f fine-tuned on npi
samples generated by GTi

for all i ∈ [l]. Now, suppose there are m downstream evaluation tasks
T eval = {T eval

1 , . . . , T eval
m } (note that they may be different from the l tasks that the templates were

constructed for), and let acc(fGT ,np, T
eval
j ) be the accuracy of fGT ,np on T eval

j . Our goal is to
determine the p that maximizes fGT ,np’s average accuracy, maximize

p∈△l

1
m

∑m
j=1 acc(fGT ,np, T

eval
j ).

3.2 COOKBOOK TEMPLATES

We first describe the process by which a template generates a sample. Then, we present several
examples of COOKBOOK templates (7 total), explaining how their task-specific inputs and outputs
are defined using common operators.

Data generation process The data generation process involves (1) constructing the inputs, x̂, and
(2) constructing the outputs ŷ based on the inputs. The inputs are categorized into a parent input
and child inputs; the parent input is a randomly sampled sequence of tokens from the vocabulary,
and the child inputs are constructed from the parent input. The output is constructed from the parent
and child inputs using a function that approximates the task rule. The sample is then formatted as
fmtT (x̂, ŷ, I).

3.2.1 EXAMPLE TEMPLATES

We present example templates from three generative task families: selection, search, and comparison,
described below.

• Selection: Selection tasks involve choosing one of the given inputs (answer choices) as an output.
Examples include entity disambiguation, commonsense reasoning QA and multiple choice QA.
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• Search: Search tasks require extracting part of the input. Examples include document QA and
retrieval.

• Comparison: Comparison tasks involve outputting “yes” or “no” based on if some relation
among the inputs is present. An example is entity matching.

For each example template, we describe its inputs (parent, child) and outputs, as well as pseudocode
for the template’s data generation procedure. Across the tasks, we identify five operators for generating
inputs: random.sample(), random.shuffle(), get_span() (extract a random span from
a sequence of tokens), replace(k) (replace tokens in a sequence with probability k), and list
concatenation. Additional task templates can be found in Appendix A.

Document QA (Search) The task of document QA involves answering a question over a provided
textual context. We describe key components of the DOCUMENT-QA template below and show the
template in Figure 1.

• Inputs: “Document” is the parent input, and “Question” is the child input. “Document” is
generated as a sequence of randomly sampled tokens from the token vocabulary. “Question” is
generated as a subspan of “Document”.

• Outputs: “Answer” is the output which is generated by locating the “Question” in the “Document”
and returning the tokens within k indices of the location.

• Data generator: See “doc_QA_template” in Figure 1.

Commonsense Reasoning (Selection) The task of commonsense reasoning QA is to select the
answer choice which best completes the sentence. For example, given a sentence of “eating the most
sweets” and two choices of (1) “eat more vegetables” and (2) “eat more candy”, the correct answer
choice is “eat more candy”. We describe the key components of COMMONSENSE-SELECT below and
show the template in Figure 2.

• Inputs: “Sent” is the parent input, and “c1”, “c2” (“choices”) are the child inputs. “Sent” is
generated as a sequence of randomly sampled tokens from the token vocabulary. Both “c1” and
“c2” are generated as sequences of randomly sampled tokens from the token vocabulary. For “c2”
we append additional tokens which is a sequence of tokens sampled from “Sent”. “Choices” is
the list containing “c1” and “c2” which is randomly shuffled.

• Outputs: “Answer” is the index of “choices” which has the greatest overlap with “Sent”.
• Data generator: See “commonsense_reasoning” in left of Figure 2.

Entity Matching (Comparison) The task of entity matching is to determine whether two entities
are equivalent. We describe the key components of MATCHING below and show the template in
Figure 2.

• Inputs: The first entity “e1” is the parent input, and the second entity “e2” is the child input. “e1”
is generated as a sequence of randomly sampled tokens from the token vocabulary. With 50%
probability, “e2” is set to “e1” with a small amount of tokens replaced (as determined by the
“noise” threshold ); otherwise, “e2” is generated as a sequence of randomly sampled tokens from
the token vocabulary of the same length as “e1”.

• Outputs: “Answer” is determined by the amount of overlap between “e1” and “e2”. If the amount
of overlap is above a threshold, the outut is “yes”. If not, it is “no”.

• Data generator: See “matching” in right of Figure 2.

Note that across all tasks, outputs are constructed from inputs based on token overlap among the
inputs. However, we do not claim that the token overlap and the five operators above are necessary
components of a template; in section A.7 we present a poetry generation task and template, which
does not invoke most of these components.

3.3 COMBINING TEMPLATES

While we previously discussed how a template is constructed to help a model learn a single task, in
practice we often want models to improve on many tasks at once. We study how to set the proportion
by which we combine the programmatic data across several templates into a training dataset. First,
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Model arc_c arc_e boolq hellaswag lambada openbookqa piqa winogrande average
LLAMA-2-7B 46.25 74.58 77.74 75.99 73.92 44.20 79.11 69.14 67.61
LLAMA-2-7B-NH 49.74 76.09 80.00 77.72 72.99 46.40 79.76 70.01 69.09
MISTRAL-7B 54.10 79.50 83.49 81.12 75.59 44.40 82.05 73.88 71.76
MISTRAL-7B-ORCA 56.14 79.59 86.57 81.73 72.37 45.60 83.03 73.24 72.28
MISTRAL-7B-OH 59.98 81.65 86.73 81.77 73.90 44.20 82.70 73.56 73.06
COOKBOOK-LLAMA 48.04 76.77 79.20 76.04 77.10 43.40 78.56 69.30 68.55
COOKBOOK-MIST 57.76 83.21 85.23 80.99 78.23 44.00 82.32 74.27 73.25

Table 1: Performance on GPT4ALL benchmark. We denote our COOKBOOK-tuned MISTRAL-7B model that
uses our data proportions algorithm as COOKBOOK-MIST. Averaged across tasks, COOKBOOK-MIST is the best.
For baseline datasets, “NH” denotes NousHermes, “OH” is Open-Hermes, and “ORCA” is OpenOrca.

using a simple linearity assumption, we derive the optimal data proportions p⋆ that maximizes average
downstream accuracy of the COOKBOOK-tuned model. This approach requires evaluating models on
labeled data, so we present an extension where we can approximate p⋆ using unlabeled data via a
latent variable model inspired by weak supervision Ratner et al. (2019).

Optimal template-generated data proportions. Recall that our objective is to determine the
p that maximizes fT ,np’s average downstream accuracy, maximize

p∈△l

1
m

∑m
j=1 acc(fGT ,np, T

eval
j ).

To solve this problem, we impose a simple linear assumption: that acc(fGT ,np, T
eval
j ) =∑m

i=1 piacc(fGTi
,n, T

eval
j ) for all i ∈ [l]. That is, the accuracy of a model trained on a weighted

mixture is equal to the weighted average of models trained on each template, which we empirically
assess in Appendix C.2. We also add an entropy term H(p) = −

∑l
i=1 pi log pi with a weight η ≥ 0

to control how close to uniform p should be. Our optimization problem is now

maximize
p∈△l

1

m

m∑
j=1

l∑
i=1

piacc(fGTi
,n, T

eval
j ) + ηH(p). (1)

Solving this optimization problem yields the following solution.
Proposition 1. Define A ∈ Rl×m where Aij = acc(fGTi

,n, T
eval
j ). Let σi = exp( 1

mη

∑m
j=1 Aij)

for all i ∈ [l]. Then, the p⋆ that maximizes (1) is p⋆i = σi∑l
k=1 σk

for all i ∈ [l].

See Appendix C.3 for the proof. The computation of p⋆ is straightforward. We train one model per
template, fGTi

,n for each i ∈ [l]. We compute the average accuracy across the m downstream tasks
per model, and then compute the softmax over these accuracies to get the proportions p⋆ for how
many samples are needed from each template. See Algorithm 1 in Appendix C.1.

Extension to evaluation data without ground-truth outputs. Note that computing
acc(fGTi,n, T

eval
j ) requires evaluating on a dataset with ground-truth outputs. However, in practice

datasets are not often annotated with outputs, which requires us to estimate the accuracy of the model.
Since we have multiple individual models, we can frame them as noisy “voters” and cast accuracy
estimation as a weak supervision problem, a line of work that estimates labels given an unlabeled
dataset and several heuristic voters using latent variable models.We describe this extension of our
approach, which uses the MeTaL weak supervision algorithm (Ratner et al., 2019) in Appendix C.1.

4 EXPERIMENTAL EVALUATIONS

We evaluate the empirical performance of COOKBOOK in a general multi-task evaluation setting and
a single-task evaluation setting. Then, we show that COOKBOOK can be extended to creative tasks
(i.e., poetry generation) going beyond select, search, and compare tasks.

4.1 MULTI-TASK EVALUATION

We evaluate if the COOKBOOK framework can improve multiple generative capabilities at once. Here,
we compare COOKBOOK to SoTA instruction tuning datasets (e.g., OpenOrca, OpenHermes).

Our method. We fine-tune two pre-trained base models (LLAMA-2-7B (Touvron et al., 2023)
and MISTRAL-7B (Jiang et al., 2023)). The set of templates we consider is: MATCHING, ENTITY-
DISAMBIGUATION, MULTI-CHOICE-QA, and COMMONSENSE-SELECT (refer to Appendix A for
their constructions). We fine-tune each of the base models on the aforementioned templates using the
data proportions obtained using the approach in Section 3.3 (see Algorithm 1, 2).
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Evaluation datasets. We run our evals on the standard GPT4ALL (NomicAI) benchmark con-
sidered by many models (e.g., Mamba (Gu & Dao, 2023), Cerebras-GPT (Dey et al., 2023)). We
follow the standard evaluations for the benchmark reporting average accuracy for all tasks. We use
the standard EleutherAI LM Evaluation Harness library (LM eval) (Gao et al., 2023), for zero-shot
evaluations over the GPT4ALL benchmark. The LM eval harness provides a fixed set of prompt
formats for all tasks, generating accuracy and standard deviation metrics.

Baselines. As baselines we consider the base LLAMA-2-7B and MISTRAL-7B models. Addition-
ally, we compare against the current SoTA open-source instruction-tuned versions of these models
(OpenHermes-Mistral-7B (Teknium, 2023), Mistral-7B-OpenOrca (Lian et al., 2023b)) and the closed
source versions (Nous-Llama-2-7b (Research, 2023b), Nous-Capybara-7B (Research, 2023a)).

Results. Results for our multi-task evaluations can be found in Table 1. Averaging across tasks
we find that (1) our mixtures improve performance across model variants—Llama and Mistral (see
Table 1), (2) the template combining approach with no downstream ground-truth outputs described
in Section 3.3 is the best fine-tuned model on the benchmark suite (see COOKBOOK-MISTRAL and
Table 7), and (3) COOKBOOK-MISTRAL is the best performing model on 3/8 tasks.

4.2 SINGLE-TASK EVALUATION

This section evaluates single-task performance improvements from task-specific templates. We
consider two 1B parameter models: GPT-NEO-1.3B (Gao et al., 2020) and CEREBRAS-GPT-
1.3B (Dey et al., 2023).

DS CEREBRAS-BASE CEREBRAS-FEW CEREBRAS-FT COOKBOOK-CEREB
TYDIQA 9.90 ± 0.48 8.20 ± 1.85 42.30 ± 0.90 37.50 ± 1.19
SQUAD 32.10 ± 0.78 34.00 ± 3.40 64.80 ± 2.20 51.30 ± 1.00
PIQA 0.00 ± 0.00 47.50 ± 0.61 45.60 ± 0.79 52.80 ± 0.13
MS_MARCO 6.60 ± 0.49 14.40 ± 1.43 19.10 ± 0.62 18.70 ± 1.09
WINOGRANDE 0.17 ± 0.13 30.60 ± 20.00 50.90 ± 1.13 60.30 ± 0.79
BEER 18.40 ± 0.00 26.60 ± 0.00 26.60 ± 0.00 74.10 ± 0.00
ITUNES-AMAZON 40.00 ± 0.00 39.90 ± 0.28 44.00 ± 0.00 55.40 ± 0.00

Table 2: Single-task evaluations. Values reported are accuracy for all datasets with the exception of BEER
and ITUNES-AMAZON, where we report F1-score. COOKBOOK-tuned models are competitive with finetuned
models.

Our method. For each evaluation task, we generate data from the associated COOKBOOK template
(see Table 6 for the mapping between task and template) and fine-tune the base pre-trained model
using data generated from the template. In our data generating process, a new batch is sampled at
each step. Across tasks, we fine-tune models over an average of 4.2K datapoints.

Evaluation datasets. For our evaluations, we consider 7 tasks across the selection (PIQA, WINO-
GRANDE), search (TYDIQA, SQUAD, MS_MARCO) and comparison (BEER, ITUNES-AMAZON)
categories. For all tasks excluding BEER and ITUNES-AMAZON, for which we report F1-score, we
report accuracy. Table 5 in Appendix D.9 contains the statistics for the datasets.

Baselines. We compare our COOKBOOK-tuned models to three baselines: zero-shot, few-shot
(where k=3) in-context learning (ICL), and fine-tuning using task specific examples (128 samples).
Details of the hyperparameters used to train the baselines can be found in Appendix D.9.

Results. Table 2 shows the results for the CEREBRAS-GPT-1.3B model. We defer the results
for the GPT-NEO-1.3B model to Table 8 in Appendix D.9. Our results show that (1) COOKBOOK-
CEREB out-performs the zero-shot, ICL and fine-tuning baselines on 4/7 tasks, (2) performance of
COOKBOOK models can be 60.1 points better than base zero-shot performance, suggesting that while
the models were previously unable to do the task, they are now performant, (3) similar trends can be
seen across model families (see Appendix D.9).

4.3 POETRY GENERATION

In this section, we show that the COOKBOOK framework can be extended beyond the three task
families to more creative tasks such as poetry generation.
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Task. We create a poetry generation NL task wherein the model is prompted to write a poem with
a prespecified rhyme structure, say ABAB. We construct 30 topics covering a wide range of subjects
(e.g., shoe or cup) that the models are then prompted to generate a poem about. We measure how
well the model is able to follow the specified rhyme pattern when generating the poem.

Our method. We fine-tune the MISTRAL-7B model using a template designed for this poetry task;
see Appendix A for the exact template and examples of datapoints. We fine-tune the model for 500
steps with a batch size of 64 where each batch uses fresh samples from the templates. Our template
uses a dictionary of rhyme words, but does not use any examples of complete poems.

Results. When prompted to generate a 4 line poem with an ABAB rhyme scheme (given 2
in-context examples), base MISTRAL-7B has 20% accuracy, COOKBOOK-POEM has 60% accuracy
and GPT-4 has 50% accuracy. Sample poems can be found in Appendix D.2.

5 ANALYSIS OF COOKBOOK

First, to better understand how COOKBOOK-tuned models improve task performance by better
adhering to template rules, we propose the template alignment statistic and apply it to several
tasks. Then, we analyze the key components of COOKBOOK—namely the random tokens and data
generating functions — to better understand the effectiveness of the method.

5.1 TEMPLATE ALIGNMENT FRAMEWORK

We introduce the template alignment scorer, which measures how similar a NL sample and a template
are. We use this to define the template alignment statistic, which measures how better adherence to
the template’s rule is responsible for improved performance on the task.

Template Alignment Scorer Given a task T and its corresponding template GT as constructed
in Section 3, we propose an alignment scorer sGT

: X × Y → [0, 1]. The template-specific
scorer captures how well the input sample’s relationship between x and y follows that of GT ’s data
generating functions. We provide three examples below:

• Document QA: recall that the template selects a random span of a document as the question
and defines the answer as the span surrounding the question. sGT

scores a sample by finding
where the sample’s answer is located in the document and computing the fraction of words in the
question that are near the answer. Note that template-generated samples have a score of 1.

• Commonsense Reasoning: recall that the template generates two answer choices, with only one
choice containing a substring of the sentence. sGT

scores a sample by finding the words that
are unique to the two choices, measuring the minimum normalized embedding distance between
each choice’s unique words and the words in the goal, and computing the absolute value of the
difference between the two choices’ minimum distances to the input sentence. This quantity is
large if one answer choice has much higher word similarity to the input sentence than the other.
Note that when we use the hamming distance, template-generated samples have a score of 1.

• Entity Matching: recall that the template first generates one entity randomly, and then generates
the equivalent second entity to have overlap with the first one. sGT

scores a sample by simply
computing the word overlap between the two entities, which corresponds to how the template
generates equivalent entity pairs. Note that template-generated samples have a score equal to
1− noise_parameter when the entities are equivalent.

Template Alignment Statistic Next, we use the alignment scorer to relate model performance to
template rule adherence. Recall the base model f : X → Y and the COOKBOOK-tuned model fGT ,n.
Given task samples DT , let D+

T (GT ) = {(x, y) ∈ DT : f(x) ̸= y, fGT ,n(x) = y} be the set of
samples that f gets incorrect and fGT ,n gets correct, and let D−

T (GT ) = {(x, y) ∈ DT : f(x) ̸=
y, fGT ,n(x) ̸= y} be the set of samples that both f and fGT ,n get incorrect. We now define the
template alignment statistic.

Definition 1. Let S+
T (GT ) = {sGT

(x, y) ∀(x, y) ∈ D+
T (GT )} and S−

T (GT ) =

{sGT
(x, y) ∀(x, y) ∈ D−

T (GT )} be the alignment scores over D+
T (GT ) and D−

T (GT ), respec-
tively. Define F+

T,GT
: [0, 1] → [0, 1] as the empirical CDF over S+

T (GT ) and similarly define F−
T,GT

.

8
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Then, the template alignment statistic for task T , template GT is

A(T,GT ) = sup
s∈[0,1]

|F+
T,GT

(s)− F−
T,GT

(s)|. (2)

Note that A(T,GT ) is the total variation distance between the empirical distributions of the template
alignment scores for D+

T (GT ) and D−
T (GT ), as well as the Kolmogorov-Smirnov test statistic for the

two-sample hypothesis test on whether the scores for these two subsets of DT come from the same
distribution. This statistic is thus bounded between 0 and 1. A large value for this statistic suggests
that there is significant difference between improved and non-improved samples in terms of how they
adhere to template rules.

Template GT / Task T TEMPLATE-MISTRAL A(T,GT )
PIQA / COMMONSENSE-SELECT (0.867, 7.1× 10−46)
DBLP-ACM / MATCHING (1.0, 0.0025) )
TYDIQA / DOCUMENT-QA (0.615, 0.013)

Table 3: Template alignment statistics. Template alignment statistics for COOKBOOK-tuned models. Values
are the (template alignment statistic, p-value). COOKBOOK-tuned models have learned the rule captured by the
synthetic.

Results. We compute the template alignment statistic for the MISTRAL-7B-template models on
the tasks — TYDIQA, PIQA and DBLP-ACM— using the DOCUMENT-QA, COMMONSENSE-SELECT
and MATCHING templates respectively. Note that for PIQA, we use sentence-bert embeddings to
compute embedding distance between the words in the answer choices and the words in the goal. We
find that the alignment statistics (Table 3) are statistically significant (< 0.05), demonstrating that
rules taught by the templates are in-fact being applied to the downstream NL tasks.

5.2 BREAKING DOWN RANDOM TOKENS AND RULES

When do random tokens work? The phenomenon that training a model on random tokens improves
NL may appear surprising. To better understand it, we hypothesize that this phenomenon only occurs
when the model already has a sufficient understanding of NL. To evaluate this, we use PYTHIA-1B
checkpoints (log scale from 0 to 144000) as the base models and compare these to models trained
from each checkpoint on template-generated data. We do this procedure on PIQA, ITUNES-AMAZON,
SQUAD, and WINOGRANDE, finding that there exists a point in model training at which COOKBOOK
starts to help performance significantly, before which it has little effect (see Figure 4 in Appendix E).
This suggests that the generalization from random tokens to NL is a model-dependent phenomenon.

Do skills taught over random tokens result in less overfitting? We compare the overfitting of
skills taught over random tokens versus skills taught over NL tokens. We do so by evaluating the
performance of a MATCHING COOKBOOK-tuned model across three tasks and the performance
of a model trained on the NL matching task itself (NL-tuned) (see Table 10). We observe that
COOKBOOK-tuning actually improves base model performance across tasks beyond matching (up to
5 points), whereas NL-tuning worsens base performance (by up to 7 points) for all tasks outside of
matching. This suggests that skills taught in the random token space lead to less overfitting.

Do we need data generating functions: Are random tokens all we need? We empirically inspect
the importance of the template rules vs. the task format (fmtT ) in improving downstream performance
by replacing our rule-based generated input and outputs in fmtT () with random tokens. Our results
show that finetuning on data without rules leads to worsened performance — an average performance
drop of 18.3 accuracy points (see Table 11 in Appendix E).

6 DISCUSSION

In this work, we tackle the challenge of data curation for improving generative abilities. Via
COOKBOOK, we show that it is possible to programmatically generate data that teaches task-specific
rules without raising any legal or privacy concerns. Moreover, we show how such programmatic data
can be combined to teach multiple skills at once. Finally, we propose a method for measuring whether
a model has indeed learned a task rule, and whether learning that rule improves downstream task
performance. In future work, we seek to understand how to automate the template creation process.
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A TEMPLATES

A.1 MATCHING

Data generating template:

def matching(noise: int):
import random

e1 = random.sample(token_ids, k=1)

# inputs: use e1 to get e2
e2 = e1.replace(k=1) if random.random() < 0.5 else e1.replace(k=noise
↪→ )

# outputs: use e1 and e2 to get output
answer = ’yes’ if len(set(e1) & set(e2)) > (1 - noise) * len(e1) else
↪→ ’no’
instruction = "Determine whether product A and product B are the same
↪→ .\n"

return f"""
{instruction}
Product A: {e1}
Product B: {e2}
Question: Are Product A and Product B the same?
Answer: {answer}"""

Sample data point:

Determine whether product A and product B are the same
Product A: occur Competing TObuiltembean Hollywood met
Product B: occur Competing TObuiltembean Hollywood met
Question: Are Product A and Product B the same?
Answer: yes

A.2 MULTI-CHOICE QA

Data generating template:

def multi_choice_qa (overlap_len: int):
question = random.sample(token_ids)

(c1, c2, c3, c4, c5) = random.sample(token_ids, k=5)

# inputs: use question to get correct choice c5
c5 = question.sample(k=overlap_len) + c5[:-overlap_len]

# outputs: use question, [c1, . . ., c5]) to get the answer
choices = [c1, c2, c3, c4, c5].shuffle()

ans_idx = argmax([question \cap choices[0],..., question \cap choices
↪→ [4]])

answer = choices[ans_idx]

instruction = "Answer the question.\n"
return f"""
{instruction}
Question: {question}
Choices:
- {choices[0]}
- {choices[1]}
- {choices[2]}
- {choices[3]}
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- {choices[4]}
Answer: {answer}"""

Sample data point:

Answer the question.
Why lake Shares wildly Gandhi rers ademic AES 1995 ports?
Choices:
- poke installment
- ORS> unmanned Slave ellar Mart English
- visions AES wildly lakeexper Gamer Gate ports ademicE
- Haibeh Dom
- aiming 462 adultery Greenberg collar
Answer: visions AES wildly lakeexper Gamer Gate ports ademicE

A.3 DOCUMENT QA

Data generating template:

def qa_template(min_slen: int, max_slen: int):
document = random.sample(token_ids) #input source

# inputs: use document to get question
span_length = random.choice(min_slen, max_slen)
question = document.get_span(k=span_length) # get indexes

# outputs: use document and question to get the answer
answer = document[loc(document.intersect(question)) - 3 : loc(document.

↪→ intersect(question)) + 3]

instruction = "Use the document to answer the question.\n"

return f"""{instruction}
Document: {document}

Question: {question}
Answer: {answer}""

Sample data point:

Use the document to answer the following question.
Document: Destiny Ricardo Bundle swarm trips spilling crews
trips Python disliked absorption phon Fallen Mour Wales
parameter

Question: swarm trips spilling
Answer: estiny Ricardo Bundle swarm trips spilling crews trips
Python

A.4 ENTITY DISAMBIGUATION

Data generating template:

def entity_disambiguation(e_span_len: int):
sentence_1, sentence_2 = random.sample(token_ids)

# inputs: use sentence_1 to set sentence_2, e1 and e2
s1, s2 = sentence_1.get_span(k=e_span_len)
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e1, e2 = s1[0], s2[0]

if random.rand() < 0.5
sentence_2 +=[’<blank>’] + s1[1:])

else:
sentence_2 +=[’<blank>’] + s2[1:])

# outputs: use (question, sentence_1, sentence_2) to get the answer
support = sentence_2.split(’<blank>’)[-1]
span_loc = loc(sentence_1.intersect(support) - 1]
answer = sentence_1[span_loc - 1]

instruction = "Select the choice which best completes the <BLANK>.\n"
return f"""{instruction}
{sentence_1}.{sentence_2}
Choices:
- {e1}
- {e2}
Answer: {answer}"""

Sample data point:

Select the phrase which best fills in the <BLANK>.
Sentence: ranc Islands solid illustrates horsepower furry Pay
early Santiago *)scan output. ographies deals privatization
<BLANK> Santiago *)scan output.
Choices:
- Islands
- early
Answer: early

A.5 COMMONSENSE SELECTION

Data generating template:
def commonsense_qa(overlap_len: int):

question = random.sample(token_ids)
c1 = random.sample(token_ids)

c2 = random.sample(token_ids)

# inputs: use question to set c1 and c2
c1 = c1 + question.sample(k=overlap_len)
c2 = c2 + random.sample(token_ids, k=overlap_len)
choices = [c1, c2].shuffle()

# outputs: use (question, [c1, . . ., c5]) to get the answer
ans_idx = argmax([len(question.intersect(choices[0])), len(question.

↪→ intersect(choices[1]]))
answer = choices[ans_idx]

instruction = "Answer the question.\n"
return f"""
{instruction}
Question: {question}
Choices:
- {choices[0]}
- {choices[1]}
Answer: {answer}"""

Sample datapoint:
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Select the choice which best completes the sentence.
midst Gloss Quant Nest engaging Soul Customer
Choices:
- Zack extraordinarily willingly Gene Quant engaging rest
- Zack extraordinarily willingly Gene With No DXwaters shone
Answer: Zack extraordinarily willingly Gene Quant engaging rest

A.6 TOKEN RETRIEVAL

Data generating template:

def token_retrieval(overlap_len: int):
docs = []
for i in range(10):

docs.append(random.sample(token_id)

# inputs: use docs to set question
idx = random.randint(0,10) # randomly sample an index from 0...9
doc_with_answer = docs[idx]
question = doc_with_answer.sample(overlap_len)

#outputs: use (question, docs) to get the answer
answer_idx = argmax[question.intersect(docs[0]),...,question.intersect(

↪→ docs[9])
answer = docs[answer_idx]

instruction = "Use the documents to answer the question.\n"
return f"""
{instruction}
{docs[0]}
{docs[1]}
...
{docs[9]}
Question: {question}
Answer: {answer}"""

Sample datapoint:

Use the documents to answer the question.
Document 0: Def culture Luc writers takingo adjustment
Document 1: saturally bites song house speak
Document 2: BEATE level arbitrator Layer eminent substant
Document 3: spend conesz identification unincorporateddemand
Document 4: incident existent Back Fellow Turk peacea Father
Document 5: citations Cove solel Nick cards removing comprise
Document 6: quilt sun instructed facil enacted council confess
Document 7: cs probably 59 specify Page harris famine pumps
Document 8: equal Originally quick Adjust hearted OCK beat
Document 9: Base Sept 168 ’</resh593Mr tang moss mash pain

Question: 593Mr tang moss mash pain Dir
Answer: Base Sept 168 ’</resh593Mr tang moss mash pain

A.7 POEM SCHEME

Data generating template:

def rhyme_scheme(rhyme_dict: dict):
# inputs
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topic = random.sample(token_ids, k=1)
rhyme_scheme_A, rhyme_scheme_B = rhyme_dict.sample(k=2)

# inputs: use (topic, rhyme_scheme_A, rhyme_scheme_B) to get lines
lines = []
for idx in range(5):

r_word = rhyme_scheme_A.sample() if idx % 2 == 0 else rhyme_scheme_B.
↪→ sample()

line = random.sample(token_ids)
line = line.insert(topic) + r_word

lines.append(line)

instruction = "Write a five line poem with an ABABA rhyme scheme about"

return f"""
{instruction} {topic}
{lines[0]}
{lines[1]}
...
{lines[4]}""

Sample datapoint:

Write a five line poem with a ABABA rhyme structure about abi
abi abilities Ches 76 Purabul befriend
abi agre Chung Rapt unfit hate redditt
item Struabi pre transcend
Pedro Rescueabi 1080 vines296speed ledet
continents anticip EMP texts sigabi trend

B COMPLETE RELATED WORKS

There is a large body of work which studies instruction-tuning dataset creation, programmatic data
generation, and improving LLM generative capabilities. Here we review some of them which relate
most closely with our work.

Instruction Tuning Instruction tuning datasets seek to improve the ability of LLM’s to follow
instructions (i.e., “Generate a summary of the following news article”). These datasets consist of
input and output pairs, where the input is composed of an instruction with some context and the
output is the “gold” generation. Early instruction tuning datasets utilized manual data curation to
construct these <instruction, input, output> triples for tasks such as summarization (Bai et al., 2022).
In an effort to scale the instruction tuning dataset curation process, new datasets emerged which
prepend natural language instructions to standard NLP tasks such as classification (Mishra et al.,
2022; Longpre et al., 2023; Wang et al., 2022b; Chung et al., 2022) where the input/output pairs
previously exists. More recently, instruction tuning datasets have emerged which use existing LLMs
(e.g., GPT-4 Achiam et al. (2023)) to generate the data (Lian et al., 2023a; Taori et al., 2023; Luo
et al., 2023; Li et al., 2023; Daniele & Suphavadeeprasit, 2023). In this approach, instructions are
fed to the LLM (i.e., “Generate a list of 5 animals”) and the model generates an output. While
this approach sidesteps manual data curation efforts, it suffer from privacy and terms of service
violations. COOKBOOK sidesteps these challenges by circumventing the need for both manual or
model generated data.

Programmatic data generation: Programmatic data generation has been primarily studied for
the automated labeling of datasets (Ratner et al., 2020; 2016; Hearst, 1992). These works provide
programmatic labels for classification tasks given an unlabeled dataset containing inputs only. There-
fore, they are challenging to extend to our setting, which requires us to construct entire samples for
generative tasks—both programmatic inputs and outputs, which are often open-ended generations
(e.g. DOCUMENT-QA).
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Synthetics for Training Prior work has shown the value of synthetic, token level tasks such as set
operations as an alternate to natural language data for LLM pretraining Wu et al. (2022). Similarly,
other work has demonstrated the efficacy of data with latent structure (i.e., music) in the pretraining
phrase Papadimitriou & Jurafsky (2020) as well as for task such as summarizatons (Krishna et al.,
2021). Additionally, synthetic data has be shown to improve classification abilities (Bhatia et al.,
2023). These works are similar to COOKBOOK in that they utilize non-language based inputs to
improve LLM performance, but unlike COOKBOOK, they focus on the pretraining stage.

Synthetics for LLM Understanding Recent works have explore the use of synthetic tasks for
understanding the underlying mechanisms of LLMs (Bricken et al., 2023; Nanda et al., 2022;
Ravfogel et al., 2019) as well as for understanding and improving architectures (Fu et al., 2022;
Arora et al., 2023; Gu & Dao, 2023; Poli et al., 2023). Unlike these prior works which seek to use
non-language based tasks to understand LLMs, we use such data to improve LLM capabilities.

C ADDITIONAL DETAILS ON COMBINING TEMPLATES

First, we describe the full algorithm for combining data from templates, with or without labeled
evaluation data. Then, we demonstrate that the linear assumption empirically holds. Finally, we
provide a proof of Proposition 1.

C.1 TEMPLATE COMBINING ALGORITHM

Algorithm 1 presents our approach for how to compute template data proportions. It computes
p̂ according to Proposition 1; namely, l COOKBOOK-tuned models—one per template GTi—are
trained, and then evaluated on all m downstream tasks. Then, the average accuracy across tasks for
each COOKBOOK-tuned model is computed, and a softmax (with temperature 1/η depending on the
entropy regularization in (1)) is performed over these average accuracies to get p̂.

When evaluating each COOKBOOK-tuned model, computing accuracy on each downstream task is
straightforward if ground-truth outputs are available for the task. However, if they are unavailable
but the outputs are discrete (e.g., answer choices in PIQA or “yes” or “no” in ITUNES-AMAZON),
we can use techniques from weak supervision to estimate accuracies (line 6 of Algorithm 1). Weak
supervision involves producing programmatically labeled data by modeling several weaker “voters”
using a latent variable probabilistic graphical model over their votes. In particular, weak supervision
algorithms fit the latent variable model using predictions from the voters, estimating the voter
accuracies. Then, they aggregate the votes based on the estimated accuracies to get a programmatic
label. We utilize a popular weak supervision algorithm from Ratner et al. (2019) to get an estimated
accuracy for each COOKBOOK-tuned model in Algorithm 2. In particular, we compute a votes dataset
Dλ ∈ Ym×l by using each COOKBOOK-tuned model to produce predictions on the downstream
dataset. This votes dataset is passed in as input to Algorithm 1 of Ratner et al. (2019). This algorithm
uses a conditional independence assumption, which implies a particular sparsity pattern in the inverse
covariance matrix of Dλ, to create a system of equations that is solved with SGD to yield estimated
accuracies.

C.2 ASSESSING THE LINEARITY ASSUMPTION EMPIRICALLY

To see if the linearity assumption applies on real data, we consider two templates GT = {GT1
, GT2

},
and compare the performance of individual COOKBOOK-tuned models, fGT1

,n and fGT2
,n, versus

a model fine-tuned on a uniform mixture over the two templates, fGT ,n[1/2,1/2], which we call the
mixture model. We re-use the setting described in Section 4.1 (4 templates, 8 tasks from GPT4ALL,
fine-tuning the MISTRAL-7B model). We measure two quantities, described below.

• Interpolation property: first, we examine how often the mixed model’s accuracy interpo-
lates between the individual COOKBOOK-tuned model accuracies, acc(fGT ,n[1/2,1/2], T

eval
j ) ∈

[acc(fGT1
,n, T

eval
j ), acc(fGT2

,n, T
eval
j )] on all downstream tasks T eval

j ∈ T eval. We compute
how many pairs of GT1

, GT2
(out of 6 pairs over the 4 templates) for which this condition holds

per evaluation task. Our results are shown in Figure 3 (left), where we find that all downstream
tasks have at least half of the template pairs satisfying this interpolation property.
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Algorithm 1 Template Combination.

1: Input: l templates GT , base model f , m downstream task datasets Deval = Deval
1 , . . . ,Deval

m , n
number of training samples, η entropy parameter

2: Fine-tune f on n samples generated from GTi to get COOKBOOK-tuned model fGTi
,n for all

templates GTi ∈ GT .
3: if Deval has ground-truth outputs then
4: Evaluate each model fGTi

,n on Deval to get Âij = acc(fGTi
,n, T

eval
j ) for all j ∈ [m], i ∈ [l].

5: else
6: Set Âij = ESTIMATEACCS(fGT1

,n, . . . , fGTl
,n,Deval

j ), a weak supervision-based method
for estimating accuracy without ground-truth outputs, for all j ∈ [m], i ∈ [l].

7: end if
8: Compute σi = exp( 1

mη

∑m
j=1 Âij) for all i ∈ [l].

9: Calculate sampling proportion vector p̂, where p̂i =
σi∑l

k=1 σk
for all i ∈ [l].

10: return p̂. f is then fine-tuned on n samples from templates fGT
with proportion p̂.

Algorithm 2 ESTIMATEACCS.

1: Input: l COOKBOOK-tuned models (“voters”) λi := fGTi
,n : X → Y for i ∈ [l], dataset without

ground-truth outputs, D = {xj}nj=1.
2: Get predictions {λ1(x

j), . . . λl(x
j)} across COOKBOOK-tuned models for each xj ∈ D, i ∈ [l],

forming votes dataset Dλ ∈ Yn×l.
3: Estimate accuracy âi ≈ Pr(λi(x) = y) for all i ∈ [l] by using Algorithm 1 from Ratner et al.

(2019) on noisy votes Dλ.
4: return {â1, . . . , âl}.

• Mixture model deviation: second, we measure the absolute difference between the mixture
model’s accuracy on a task and the average of the individual COOKBOOK-tuned models’ accura-
cies on the task, |acc(fGT ,n[1/2,1/2], T

eval
j )− avg(acc(fGT1

,n, T
eval
j ), acc(fGT2

,n, T
eval
j ))|. We

call this the mixture model deviation, and measure this across template pairs and downstream tasks
in Figure 3 (right). We find that most values of this deviation are between 0 and 1, meaning that
the mixture model’s accuracy is less than 1 accuracy point away from the average of individual
accuracies.

Based on these results, we do see that there exist some template pairs for which training a model
on them results in significantly different performance. This suggests that modeling higher-order
interactions among data samples from different templates could help us improve our estimate of p⋆,
although doing so may result in an optimization problem that lacks a simple closed-form solution.

C.3 PROOF OF PROPOSITION 1

We restate Proposition 1 here for completeness.
Proposition 1. Define A ∈ Rl×m where Aij = acc(fGTi

,n, T
eval
j ). Let σi = exp( 1

mη

∑m
j=1 Aij)

for all i ∈ [l]. Then, the p⋆ that maximizes (1) is p⋆i = σi∑l
k=1 σk

for all i ∈ [l].

Proof. Recall that the objective we aim to maximize is the expression

1

m

m∑
j=1

l∑
i=1

piAijacc(fGTi
,n, T

eval
j ) + ηH(p). (3)

where Aij = acc(fGTi
,n, T

eval
j ) and p ∈ △l, e.g.

∑l
i=1 pi = 1. The Lagrangian function is thus

L(p, λ) = 1

m

m∑
j=1

l∑
i=1

piAij + ηH(p) + λ
(
1−

l∑
i=1

pi

)
(4)
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Figure 3: Evaluating if the linearity assumption for data proportions holds empirically. Left: we measure the
interpolation property, how often the mixture model has an accuracy in between the individual COOKBOOK-tuned
models’ accuracies. Right: we measure the mixture model deviation, the absolute difference between the mixture
model’s accuracy and the average of the individual COOKBOOK-tuned models’ accuracies. Measurements are
made across 6 pairs of templates (over the 4 templates used in Section 4.1), 8 GPT4ALL evaluation tasks, and
the MISTRAL-7B base model.

Taking the partial derivative of the Lagrangian with respect to pi for some i ∈ [l] and setting equal to
0, we get

∂L(p, λ)
∂pi

=
1

m

m∑
j=1

Aij + η(− log pi − 1)− λ = 0 (5)

Rearranging, we get

log pi =
1

mη

m∑
j=1

Aij −
λ

η
− 1 (6)

⇒pi = exp

(
1

mη

m∑
j=1

Aij −
λ

η
− 1

)
(7)

We now plug this expression for pi into the equation
∑l

i=1 pi = 1:

l∑
i=1

exp

(
1

mη

m∑
j=1

Aij −
λ

η
− 1

)
= 1 (8)

⇒ exp
(λ
η

)
=

l∑
i=1

exp

(
1

mη

m∑
j=1

Aij − 1

)
(9)

(10)

Finally, substituting exp(λ/η) in the expression for pi gives us

pi =
exp

(
1

mη

∑m
j=1 Aij − 1

)
∑l

i=1 exp
(

1
mη

∑m
j=1 Aij − 1

) =
exp

(
1

mη

∑m
j=1 Aij

)
∑l

i=1 exp
(

1
mη

∑m
j=1 Aij

) . (11)
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Model arc_c arc_e boolq hellaswag lambada openbookqa piqa winogrande average
LLAMA-2-7B 46.25 ± 1.46 74.58 ± 0.89 77.74 ± 0.73 75.99 ± 0.43 73.92 ± 0.61 44.20 ± 2.22 79.11 ± 0.95 69.14 ± 1.30 67.61
LLAMA-2-7B-chat 44.20 ± 1.45 69.74 ± 0.94 79.76 ± 0.70 75.50 ± 0.43 71.08 ± 0.63 43.80 ± 2.22 77.20 ± 0.98 66.46 ± 1.33 65.97
LLAMA-2-7B-NH 49.74 ± 1.46 76.09 ± 0.88 80.00 ± 0.70 77.72 ± 0.42 72.99 ± 0.62 46.40 ± 2.23 79.76 ± 0.94 70.01 ± 1.29 69.09
MISTRAL-7B 54.10 ± 1.46 79.50 ± 0.83 83.49 ± 0.65 81.12 ± 0.39 75.59 ± 0.60 44.40 ± 2.22 82.05 ± 0.90 73.88 ± 1.23 71.76
MISTRAL-7B-cap 54.01 ± 1.46 78.54 ± 0.84 82.57 ± 0.66 78.74 ± 0.41 72.46 ± 0.62 44.80 ± 2.23 79.60 ± 0.94 71.03 ± 1.27 70.22
MISTRAL-7B-orca 56.14 ± 1.45 79.59 ± 0.83 86.57 ± 0.60 81.73 ± 0.39 72.37 ± 0.62 45.60 ± 2.23 83.03 ± 0.88 73.24 ± 1.24 72.28
MISTRAL-7B-OH 59.98 ± 1.43 81.65 ± 0.79 86.73 ± 0.59 81.77 ± 0.39 73.90 ± 0.61 44.20 ± 2.22 82.70 ± 0.88 73.56 ± 1.24 73.06
CB-LLAMA 48.04 ± 1.46 76.77 ± 0.87 79.20 ± 0.71 76.04 ± 0.43 77.10 ± 0.59 43.40 ± 2.22 78.56 ± 0.96 69.30 ± 1.30 68.55
CB-MISTRAL-UNI 58.70 ± 1.44 82.66 ± 0.78 79.97 ± 0.70 81.09 ± 0.39 78.46 ± 0.57 43.60 ± 2.22 81.77 ± 0.90 75.06 ± 1.22 72.66
CB-MISTRAL +WSL 57.85 ± 1.44 82.37 ± 0.78 86.39 ± 0.60 81.36 ± 0.39 77.94 ± 0.58 44.60 ± 2.23 82.32 ± 0.89 74.19 ± 1.23 73.38
CB-MISTRAL +WS 57.76 ± 1.44 83.21 ± 0.77 85.23 ± 0.62 80.99 ± 0.39 78.23 ± 0.57 44.00 ± 2.22 82.32 ± 0.89 74.27 ± 1.23 73.25

Table 4: Model performance on the GPT4ALL benchmark. “CB*” denotes our COOKBOOK tuned models
where “wsl” is aggregation with labels, “ws” is aggregation w/o labels and “uni” is a uniform mixture, “NH”
denotes NousHermes Dataset, “cap” is the Nous-Capybara mdoels, “OH” is Open-Hermes, and “orca” is
OpenOrca. Averaged across tasks, CB-MISTRAL +WS is the best performing model.

D EXPERIMENTAL EVALUATIONS: ADDITIONAL DETAILS

D.1 FULL GPT4ALL EVALUATIONS W/STANDARD DEVIATIONS

D.2 POEM-TEMP-MISTRAL SAMPLES

Topic: flower
A flower’s petals, so delicate and fair
Its scent is sweet, a perfume so divine
Its beauty’s rare, a sight to behold anywhere
Its petals fall, a sign of the decline.

Topic: bird
A bird that soars above the clouds so high
Its wings are strong, its flight is free
It’s not afraid to try
And soars above the sea

Topic: deer
A deer, a female deer, a lovely doe
Its antlers are a symbol of its pride
Amidst the trees, it knows just where to go
To find the food that’s on the other side.

Topic: galaxy
A galaxy of stars, so far away
Their light, a beacon, in the night
A cosmic dance, a celestial display
A wondrous sight, a sight so bright.

D.3 HYPERPARAMETER TUNING DETAILS

For our single-task fine-tuning baseline, we run a hyper-parameter search sweeping across learning
rate (considering a range [5e − 06, 8e − 06, 5e − 05, 8e − 05]), batch size ([32, 64]) and training
epochs ([3, 4, 5, 10]).
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D.4 GPT4ALL BENCHMARK

GPT4ALL (NomicAI) is a standard evaluation benchmark which covers 7 tasks: ARC-Easy (Clark
et al., 2018), ARC-Challenge (Clark et al., 2018), PIQA (Bisk et al., 2020), Winogrande (ai2, 2019),
BoolQ (Clark et al., 2019), Lambada OpenAI (Radford et al., 2019), OpenBookQA (Mihaylov et al.,
2018) and HellaSwag (Zellers et al., 2019).

D.5 DATASET STATISTICS

We report dataset statistics for the 7 datasets considered in the single-task evaluations. We use the
“winogrande-xl” variant of the WINOGRANDE task and an evaluate on v1.1 version of the MS_MARCO
dataset. Dataset statistics are listed below in Table 5.

Dataset Train Validation Test
PIQA 16.1K 1.84K 3.08K
SQUAD 87.6K 10.6K None
TYDIQA 151K 18.7K None
MS_MARCO 82.3K 10K 9.65K
WINOGRANDE 40.4K 1.27K 1.77K
BEER 80 91 91
ITUNES-AMAZON 156 109 109

Table 5: Summary of dataset sizes for different tasks.

D.6 SINGLE-TASK FINE-TUNING: TEMPLATE TO TASK MAPPING

Below, we map the COOKBOOK templates used to fine-tune models for the corresponding NL task.

Dataset Template
PIQA COMMONSENSE-SELECT
SQUAD DOCUMENT-QA
TYDIQA COMMONSENSE-SELECT
MS_MARCO TOKEN-RETRIEVAL
WINOGRANDE ENTITY-DISAMBIGUATION
BEER MATCHING
ITUNES-AMAZON MATCHING

Table 6: Task to template mapping.

D.7 EVALUATION DETAILS

For all single-task evaluations found in Table 2 and Table 8, we evaluate on 1K examples from the
tests sets, with the exception of PIQA, SQUAD and TYDIQA where we sample from the validations
sets because they either don’t have test sets (SQUAD, TYDIQA) or the test sets are unlabeled (PIQA).
We run our evaluations across three different test sets, generated using three separate random seeds.

D.8 TEMPLATE COMBINATION EVALUATION DETAILS

Table 7 provides additional experimental results around our approach for combining data from
templates. For COOKBOOK-tuned models that use multiple templates, our main method (COOKBOOK
plus data proportions obtained using WS on data without ground-truth outputs) is referred to as
CB-WS, (previously COOKBOOK-MIST in Table 1). Furthermore, COOKBOOK-WSL shows the
results when we use the ground-truth outputs in our evaluation datasets; while this method has
slightly higher average accuracy, CB-WS is able to come close despite not having any output
information. COOKBOOK-UNI shows the results on a uniform mixture of template-generated data,
which performs worse than both previous methods. Table 7 also contains results of the individual
models that are COOKBOOK-tuned on MATCHING, ENTITY-DISAMBIGUATION, MULTI-CHOICE-QA,
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Model arc_c arc_e boolq hellaswag lambada openbookqa piqa winogrande average
CB-MATCH 57.40 ± 2.21 82.60 ± 1.70 65.20 ± 2.13 72.00 ± 2.00 75.20 ± 1.93 43.80 ± 2.22 81.80 ± 1.73 74.60 ± 1.95 69.08
CB-ED 54.00 ± 2.23 79.60 ± 1.80 81.60 ± 1.73 71.20 ± 2.03 79.60 ± 1.80 44.60 ± 2.23 82.40 ± 1.70 73.20 ± 1.98 70.78
CB-MCQA 55.40 ± 2.22 80.20 ± 1.78 83.60 ± 1.66 71.80 ± 2.01 81.00 ± 1.76 44.40 ± 2.22 83.00 ± 1.68 74.60 ± 1.95 71.38
CB-SELECT 55.60 ± 2.22 79.40 ± 1.81 82.60 ± 1.70 72.00 ± 2.00 80.60 ± 1.77 43.60 ± 2.22 82.60 ± 1.70 74.80 ± 1.94 71.40
CB-UNI 58.70 ± 1.44 82.66 ± 0.78 79.97 ± 0.70 81.09 ± 0.39 78.46 ± 0.57 43.60 ± 2.22 81.77 ± 0.90 75.06 ± 1.22 72.66
CB-WSL 57.85 ± 1.44 82.37 ± 0.78 86.39 ± 0.60 81.36 ± 0.39 77.94 ± 0.58 44.60 ± 2.23 82.32 ± 0.89 74.19 ± 1.23 73.38
CB-WS 57.76 ± 1.44 83.21 ± 0.77 85.23 ± 0.62 80.99 ± 0.39 78.23 ± 0.57 44.00 ± 2.22 82.32 ± 0.89 74.27 ± 1.23 73.25

Table 7: WS performance analysis “CB*” denotes our COOKBOOK tuned models on MISTRAL-7B, where
-WSL combines templates using downstream datasets with ground-truth outputs, -WS combines templates without
ground-truth outputs and -UNI is the uniform mixture. MATCH, ED, MCQA, and SELECT are abbreviations for
MATCHING, ENTITY-DISAMBIGUATION, MULTI-CHOICE-QA, COMMONSENSE-SELECT individual COOK-
BOOK-tuned models.

and COMMONSENSE-SELECT; we find that these models’ performance is worse than the models that
use data from multiple templates.

For the template combination approach that does not use ground-truth outputs, we use the MeTaL
algorithm from Ratner et al. (2019) on each downstream task over 5 random seeds, learning rate
1e− 4, and number of iterations equal to 5000 (except for BOOLQ, PIQA, and WINOGRANDE, which
use 2000).

D.9 SINGLE-TASK FINE-TUNING: ADDITIONAL RESULTS

Single-task finetuning results for the GPT-NEO-1.3B model can be found in Table 8.

Dataset NEO-BASE NEO-FEW NEO-FT COOKBOOK-NEO
TYDIQA 21.8 ± 0.49 14.0 ± 2.4 46.7 ± 2.08 41.9 ± 0.40

SQUAD 14.5 ± 0.78 50.4 ± 5.2 74.7 ± 0.65 60.5 ± 0.68

PIQA 0.0 ± 0.0 48.5 ± 0.5 52.5 ± 0.64 52.7 ± 0.43
MS_MARCO 12.6 ± 1.08 17.7 ± 1.0 24.5 ± 0.98 18.6 ± 0.16

WINOGRANDE 3.9 ± 0.25 64.6 ± 32.4 58.3 ± 1.30 54.3 ± 0.87

BEER 26.7 ± 0.0 26.7 ± 0.0 36.3 ± 0.0 66.6 ± 0.0
ITUNES-AMAZON 39.7 ± 0.0 39.7 ± 0.0 63.1 ± 0.0 69.6 ± 0.0

Table 8: Performance comparison of GPT-NEO-1.3B. Accuracy is reported for all tasks with the exception of
BEER and ITUNES-AMAZON for which F1-score is reported.

E ANALYSIS: ADDITIONAL EXPERIMENTS

Below, we outline additional experiments conducted to better understand the role of random tokens
and rules in COOKBOOK.

E.1 DO SKILLS LEARNED ON RANDOM TOKEN DISTRIBUTIONS TRANSFER TO NATURAL
LANGUAGE?

We evaluate transfer ability of rules learned over random tokens, by evaluating the performance
of template-tuned MISTRAL-7B models, on template generated data over natural language data
samples. Concretely, rather than constructing the inputs as random sequence of tokens and outputs as
a function of the inputs, the main component we keep from the template is the input-output rule. In
doing so, we isolate the random token to NL transfer aspect and eliminate additional noise in our
results caused by imperfect rules to true task reasoning transfer. Our findings show that the rules
learned over the random token distributions do in-fact transfer (see Table 9), improving over base
performance by up to 29.8 points.
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MISTRAL-BASE COOKBOOK-MISTRAL
NL-TEMPLATE-PIQA 0.044 0.326
NL-TEMPLATE-IA 0.666 0.964
NL-TEMPLATE-TYDIQA 0.016 0.076

Table 9: Random token template to NL-based template data transfer. Evaluation of random-token-based
COOKBOOK-tuned model on natural-language-based template data. Skills learned over random tokens transfer
to NL setting.

E.1.1 WHEN DO RANDOM TOKENS WORK?

Figure 4 shows the effects of pre-training duration on the efficacy of COOKBOOK. Our results
indicate that models that have a better understanding of NL (models that are trained longer) have
more performance gains from COOKBOOK.
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Figure 4: Effects of pretraining on random token to NL generalization. Performance gains from COOKBOOK
increase with longer pretraining durations, indicating that maturity of NL understanding is correlated with
random to NL generalization.

E.1.2 DO SKILLS TAUGHT OVER RANDOM TOKENS RESULT IN LESS OVERFITTING?

Table 10 compares the degree of overfitting experienced a model finetuned on a natural language task
itself, and a model finetuned on a COOKBOOK template. Our results indicate that skills taught via the
template do not hurt base performance on other tasks, but the skill taught by NL-tuning do.

MISTRAL-BASE COOKBOOK-MISTRAL NL-MISTRAL
PIQA 0.443 0.460 0.412
ITUNES-AMAZON 0.696 0.823 0.875
TYDIQA 0.150 0.200 0.077

Table 10: Skill overwriting. Comparison of COOKBOOK and NL-tuned models across tasks. Skill taught by
template MATCHING, which corresponds to ITUNES-AMAZON, doesn’t hurt base performance on other tasks,
but the skill taught by NL-tuning does.

E.1.3 DO WE NEED DATA GENERATING FUNCTIONS: ARE RANDOM TOKENS ALL WE NEED?

Table 11 shows the results of finetuning on a data generated from tempplates with a format but no
rule.

MISTRAL-BASE COOKBOOK-NORULE-MISTRAL
PIQA 0.464 0.442
ITUNES-AMAZON 0.697 0.195
TYDIQA 0.178 0.151

Table 11: Templates w/o rule. Evaluation of MISTRAL-7B tuned on data generated from templates with a fmtT
but no rule.
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