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Abstract

Discrete prompt search (DPS) aims to automat-
ically find high-performing prompts that yield
top accuracy in interactions with a pretrained
language model. In the context of few-shot
learning, evaluations of candidate prompts can
only be done via a limited number of labelled
examples. The search is often formulated as an
optimization problem where prediction accu-
racy, F1 score, or cross-entropy loss is used as
the objective function. While resulting prompts
achieve top performance, they are mostly un-
readable and uninterpretable, i.e., unlike natural
languages. In this paper, we formulate DPS as a
true multi-objective optimization (MOO) prob-
lem considering simultaneously both prompt
performance and readability as separate objec-
tives. We show that there exist certain degrees
of conflict between the objectives, making the
search for human-readable and highly-accurate
prompts a challenging problem. We then pro-
pose the Multi-objective Evolutionary Algo-
rithm for Predictive Probability guided Prompt-
ing (MoEAP3) to address the problem. Our
MOoEAP3 returns not a single final prompt as
in conventional methods but a whole front of
multiple candidate prompts, each representing
an efficient trade-off between the objectives.
Decision makers can straightforwardly investi-
gate this front and intuitively select the prompt
that yields the desired trade-off. Experimental
results exhibit the superiority of MoEAP3 over
state-of-the-art baselines.

1 Introduction

Pretrained language models (PLMs) can be fine-
tuned with sufficiently-large training datasets to
properly address many downstream tasks in natu-
ral language processing (Liu et al., 2019; Radford
et al.; Raffel et al., 2020). In the scenarios of few-
shot or zero-shot data, PLMs also yield competi-
tive results via prompt-based learning (Gao et al.,
2021), prompt tuning (Lester et al., 2021) and in-
context learning (Brown et al., 2020). When the

gradients of PLMs are accessible, prompts can be
efficiently optimized with gradient descent algo-
rithms because much fewer parameters need to be
tuned in prompt tuning compared to conventional
PLM fine-tuning (Li and Liang, 2021; Lester et al.,
2021; Liu et al., 2023).

In practice, parameters and gradients of PLMs
are not always available for prompting tuning
via first-order gradient-based methods, e.g., GPT-
3 (Brown et al., 2020) can only be accessed via
OpenAl API at the current time. Some alternatives
using evolutionary algorithms (EAs) are proposed
for prompt tuning when PLM gradients are not
available, e.g., black-box tuning (BBT) (Sun et al.,
2022) employs the covariance matrix adaptation
evolution strategy (CMA-ES) (Hansen et al., 2003)
to optimize continuous prompts that can be ap-
pended to input texts for querying a PLM. However,
such soft-prompt tuning approaches still require
that the output of the PLM’s embedding layer is
accessible. In the true black-box scenario, discrete
prompt search (DPS) is the feasible approach.

DPS methods can be divided into two groups:
(1) editing-based (Zhang et al., 2023; Xu et al.,
2022; Prasad et al., 2023): the search algorithm
replaces, adds, or deletes some words of the man-
ual prompts or instructions to boost their perfor-
mance in a specific task. However, these methods
require human effort to design a priori proper ini-
tial prompts (Wang et al., 2022b; Mishra et al.,
2022), making their applications to specific tasks
in low-resource languages difficult. (2) sampling-
based (Deng et al., 2022; Zhou et al., 2023; Zhao
et al., 2023; Shi et al., 2023; Diao et al., 2023):
the search algorithm iteratively samples prompt
tokens based on the vocabulary of the PLM, evalu-
ates candidate prompts with few-shot data of a spe-
cific task, and then adapt these prompts with newly
sampled tokens. Sampling-based DPS methods re-
quire much less human effort in initialization. Ge-
netic Algorithm for Predictive Probability guided



Prompting (GAP3) (Zhao et al., 2023) is an exem-
plary sampling-based method, where the optimized
prompts yield competitive results with full-model
fine-tuning in certain tasks. Despite their effective-
ness, these searched prompts are often unintelli-
gible, incoherent, and mostly gibberish in terms
of natural languages. Such a phenomenon is due
to their high degree of freedom during the search
process and the fact that prompt performance is the
sole optimization objective.

In this paper, we re-formulate DPS as a bi-
objective problem where both prompt performance
and human-readability are equally handled as sepa-
rate optimization objectives. We replace the single-
objective genetic algorithm (GA) in GAP3 with
a widely-used multi-objective evolutionary algo-
rithm (MOEA), namely non-dominated sorting ge-
netic algorithm II (NSGA-II) (Deb et al., 2002).
Following GAP3, we name our method, Multi-
objective Evolutionary Algorithm for Predictive
Probability guided Prompting (MoEAP3). Employ-
ing MoEAP3 for solving the multi-objective DPS
problems exhibits interesting findings as follows:

» There might exist certain trade-offs between
prompt performance and intelligibility such
that searching for highly-accurate and read-
able prompts is non-trivial, at least regarding
current prompt representations. This conflict-
ing nature of DPS requires the two objectives
are kept separately because aggregating them
with improper weights would result in poor
generalization performance.

* Solving DPS as a multi-objective optimization
problems returns a solution set of multiple
prompts, where each candidate corresponds
to a compromise between the objectives. Prac-
titioners can investigate the solution set and
simply select the prompt exhibiting the desir-
able trade-off a posteriori instead of having
to determine some fixed weights a priori.

 There are prompts in the returned solution set
of MoEAP3 that locate in interesting positions
so-called “knee” solutions, which should be
considered by the decision makers.

2 Related works

2.1 Readability of optimized prompts

The perplexity (Meister and Cotterell, 2021) is
one popular metric for evaluating language mod-
els. The larger the perplexity value of a text, the

less likely it can be observed given the probability
distribution for perplexity computation. Therefore,
the perplexity of a prompt can be estimated via a
casual language model, e.g., GPT2 (Radford et al.).
However, the perplexity metric exhibits certain dis-
advantages in scoring prompt readability for EA-
based search methods: (1) because perplexity is
sensitive to prompt lengths (Wang et al., 2022a), it
may be inaccurate for prompt evaluations at early
generations when candidate prompts have very few
tokens (empty strings in the first generation); (2)
because prompts containing repeated phrases have
low perplexity (Wang et al., 2022a), trivial prompts
may survive through many generations. In this pa-
per, we consider an alternative to the perplexity in
evaluating prompt readability, i.e., the Fluency met-
ric (Krishna et al., 2020), which can be defined as
the predictive probability of a classifier trained on
a linguistic acceptance dataset. We here fine-tune
the classifier DeBERTa-V3 (He et al., 2022) on the
CoLA dataset (Warstadt et al., 2019) containing
sentences labelled with “grammatical” or “ungram-
matical” from linguistic literature. For efficient
inference, we apply load_in_4bits quantization
(Dettmers et al., 2022) to evaluate Fluency.

2.2 Multi-objective optimization (MOO)

MOQO is an optimization methodology in which
multiple objectives (or criteria) are taken into ac-
count. MOO has been utilized in many NLP re-
search works, e.g., addressing multiple tasks in
text classification (Chai et al., 2023), optimizing
recall and precision in unknown intent detection
(Prem et al., 2021), or optimizing coherence, ac-
curacy, and regularization for word sense disam-
biguation and entity linking (Weissenborn et al.,
2015), etc. For the discrete prompt search task,
aiming to find human-readable prompts, FLUENT-
PROMPT (Shi et al., 2023) optimizes two objectives
task labelling loss and prompt fluency loss by con-
sidering their weighted sum as a single optimiza-
tion objective. The problem formulation FLUENT-
PROMPT can both be addressed with conventional
single-objective optimization algorithms.

In this paper, we focus on the cases of true multi-
objective formulations, where all the involving ob-
jectives are kept separately and are optimized si-
multaneously in an equal manner. If these objec-
tives are competing with each other, there exists no
feasible solutions that ideally optimize all objec-
tives at the same time. Instead, true MOO aims to



find the Pareto set of multiple candidate solutions,
which can all be considered optimal in the sense
that each of them represents an optimal trade-off
regarding the objectives. The weighted-sum ap-
proach as in (Shi et al., 2023) can also be used,
but the optimization must be run multiple times
with different weight settings because each set of
weights only yields a single trade-off solution. Due
to the evolution mechanism for a population of
multiple individuals, multi-objective evolutionary
algorithms (MOEAS) are intrinsically well-suited
to approximate such a Pareto solution set in a sin-
gle optimization run. We here employ the widely-
used MOEA Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) (Deb et al., 2002) to construct
our MoEAP3 approach for discrete prompt search
as solving an MOO problem.

3 Background: GA for Predictive
Probability guided Prompting (GAP3)

Notation: Let (z,y) € D denote a sample (input,
label) in a dataset D. A prompt P is merged with
a sample (x,y) following the prompt template 7
(see Table 4 in Appendix) to make the final input
T (xz,y). We use a specific prompt template for
each task. For example, the template [P1] [X]
[P2] [Y] for SST-2 means that the input sentence
x is placed between two prompts [P1] and [P2],
and the label y is put at the end..

Population: GAP3 (Zhao et al., 2023) main-
tains a population P consists of N individuals
P ={71,Z,...,In}, where each individual Z;
contains a prompt [P1] or a pair of prompts [P1]
and [P2]. The prompts in all individuals are initial-
ized as empty strings.

Fitness score: The objective function value is
often used to score the fitness of individuals in
the evolving population. Even though we aim to
find top-performing prompts, accuracy or F1 score
should not be (solely) employed as the fitness func-
tion because there exist many prompts having the
same values for these metrics, making it difficult
to select truly better candidates in the evolution
process. BBT (Sun et al., 2022) thus employs cross
entropy or hinge loss as the minimization function
instead of the negative accuracy. GAP3 (Zhao et al.,
2023) uses accuracy or F1 score as the main fitness
function to be optimized with a genetic algorithm,
and for tie breaking in selections, a secondary fit-
ness score is computed as follows:

1
F(T) = D] Z by.9P(,y),
(z,y)eD
Play) = — LW =ylT@y™) (1)
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y' ey

where P(-|-) denotes the conditional probability
given by the language model, ) is the set of task
labels, and 4, 4 is the Kronecker delta function for
true label y and predicted label ¢ so that only cor-
rectly predicted examples are taken into account.
In our multi-objective formulation, we do not di-
rectly optimize for accuracy nor F1 score, but we
use the above re-normalized predictive probability
distribution in Equation 1 as one objective function
(the other is the Fluency metric). We also use the
two following variation operators of GAP3 (Zhao
et al., 2023) to generate new candidate prompts.
Crossover: Crossover is performed over random
pairs of individuals to create offspring (i.e., new
individuals). During crossover, each [P;] of the
two individuals are swapped with probability p..
Mutation: Each individual can also be mutated
with probability p,, to create a new candidate.
GAP3 (Zhao et al., 2023) implements two types of
mutation: insert and replace. The insert mutation
adds a <mask> token into a random position in a
prompt. The replace mutation changes a random
existing token into a <mask> token. This <mask>
token is then filled with a token sampled based on
the probability distribution of the PLM. Let t"* be a
masked token in a prompt, V is a vocabulary of the
PLM, t™ is determined by the following equation:

t" = argmax »  log P(y™ = y| T/ (z,y™))
()

where y"" is the label y masked, and 7,7, is prompt
template whose <mask> token is replaced with
token ¢ at the 7 index in mutation.

4 Proposed approach

4.1 Multi-objective formulation

In this paper, we formulate discrete prompt search
as a bi-objective optimization problem:

T" « argmax f(T) = (f1(Z), f2(Z)), ()
T e

where 7 denote a candidate prompt in a prompt
search space (2, the first objective f1(7) = F(T)



is the fitness score in Equation 1, the second objec-
tive fo(7) is a readability measure. We adapt the
Fluency metric in (Krishna et al., 2020) to score the
readability of candidate prompts (see Section 2.1).
A candidate prompt 7, Pareto dominates an-
other prompt 7, (denoted as Z, = Zp) if T, is
not worse than 7, in both objectives and 7, is
strictly better than 7, in at least one objective, i.e.,
(Vi S {172} : fi(Ia> > fz(Ib>) N (Hi S {172} :
fi(Za) > fi(Zp)). If objectives fi and f> conflict
with each other, there exists no utopian solution
7T that maximizes both objective simultaneously.
Instead, the optimum of this bi-objective problem
is the Pareto set Pg of prompts that are not domi-
nated by any other prompts in the search space:

Ps={T,| 3T, €Q:T, - T,} 4

The objective value vectors of these Pareto-
optimal prompts in Pg yield the so-called Pareto
front Pr in the bi-objective space:

Pr ={f(T;) = (f1(Zs), f2(Z;)) | Z; € Ps} (5)

It is costly and unnecessary to obtain the en-
tire Pg. Instead, it suffices to achieve an approxi-
mation set A of non-dominated prompts forming
a corresponding approximation front f(.A) that
well approximates the Pareto front Pr.

4.2 Multi-objective evolutionary optimization

MoEAP3 utilizes NSGA-II (Deb et al., 2002) as
the search method to obtain a good approximation
set A of discrete prompts. The implementation
of MoEAP3 is illustrated in Figure 1. Similar to
GAP3, MoEAP3 evolves a population P of N can-
didate prompts (following a certain template for
each task) in a generational manner. The popula-
tion can be initialized with empty prompts, where
tokens can be filled in via the mutation operator.
In each generation, candidate prompts are eval-
uated for their objective values (i.e., fitness score
f1 and fluency score f3). A binary tournament
selection procedure is carried out to select better
prompts into a selection set S: each time, two
prompts are randomly sampled from the P, and
the better one is selected into S. Selected prompts
are then used as parent individuals to create off-
spring individuals O (i.e., new candidate prompts)
via crossover and mutation. P and O are merged
into a selection pool P U O, from which a so-called
non-dominated sorting procedure takes place to

partition both old and new individuals into non-
domination ranks. Rank 1 (F'1) contains prompts
that are not dominated by any other prompts in
P U O. Prompts in rank i (F'i), where ¢ > 1, are
also non-dominated if prompts from lower ranks
are disregarded (see Figure 4). Afterward, NV candi-
dates with the lowest ranks from PUQ are selected
to be the new population in the next generation.
During any selection, a prompt in rank % is con-
sidered better than a prompt in rank j if 7 < j.
When candidates from the same ranks need to com-
pete with each other, the crowding distance metric,
that measures the distance between a candidate and
its two nearest neighbors in the objective space, is
used to favor prompts that lie far away from the oth-
ers. The algorithm terminates when certain criteria
are met (e.g., the computing budget is over or the
maximum number of generations is reached). The
set of non-dominated prompts in the final popula-
tion are considered the approximation set returned
by MoEAP3.

S Experiments

5.1 Datasets

We conduct experiments on both single-sentence
and sentence-pair classification tasks, covering (1)
Sentiment analysis: SST-2 (Socher et al., 2013),
MR (Pang and Lee, 2005); (2) Topic classifica-
tion: AG’s News (Zhang et al., 2015); (3) Natual
language inference: SNLI (Bowman et al., 2015),
RTE (Wang et al., 2019); (4) Paraphrase: MRPC.
(Dolan and Brockett, 2005). Dataset statistics and
label words are listed in Table 4 in Appendix.

5.2 Baselines

We experiment with several existing black-box
methods for prompt search as follows. (1) Manual
prompt: human-designed prompts to formulate
classification problems into fill-in-the-blank prob-
lems as in (Sun et al., 2022). (2) Instruction: hand-
crafted task description prompts for generalizing
PLMs to a variety of unseen tasks (Wang et al.,
2022b). (3) BBT uses an EA namely CMA-ES
to optimize soft prompts for a frozen PLM (Sun
et al., 2022). (4) In context learning (ICL) uses
many samples concatenated for model input. ICL
achieves remarkable performance in many tasks
(Brown et al., 2020). (5) BDPL employs a policy
gradient algorithm for gradient estimation to up-
date the categorical distribution that is used to sam-
ple prompt tokens (Diao et al., 2023). (6) ClaPS
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Figure 1: Illustration of of MoEAP3 for discrete prompt search.

clusters and prunes the search space (i.e., vocab-
ulary), and then efficiently finds proper prompts
via an EA (Zhou et al., 2023). (7) GAP3: our
main EA-based baseline in this work. (8) GAP3-2:
we experiment with a GAP3 variant that optimizes
the sum of the fitness score and the fluency score.
GAP3-2 is thus similar to the weighted sum ap-
proach of FLUENTPROMPT (Shi et al., 2023), but
we here weight both kinds of scores equally. Other
details of these baselines are in Appendix A.

5.3 Implementation details

Settings: We use roberta-1large (Liu et al., 2019)
and flan-t5-base (Chung et al., 2022) as the
PLMs. We use GAP3 source code and the NSGA-
II implementation of pymoo (Blank and Deb, 2020)
to create MOoEAP3. We set population size N = 64,
and the number of generations M = 50, crossover
and mutation probabilities p. = 0.5 and p,, =
0.75, respectively. We use k-shot with k& = 16 for
all experiments, meaning that the training set con-
tains k random samples for each label. The test
sets for AG’s news, MRPC, MR, and SNLI, are the
original test datasets; we use the original develop-
ment datasets for testing in the cases of SST-2 and
RTE. All experiments are conducted on two Tesla
T4 GPUs of Kaggle with three different random
seeds following the practice in (Sun et al., 2022;
Zhao et al., 2023; Diao et al., 2023). The number
of samples in training and development sets are
equal, following the true few-shot learning method-
ology as in (Perez et al., 2021). An ablation study
regarding backbone PLLMs and the k-shot value is

provided in Appendix B.

5.4 Few-shot learning results

With the PLM roberta-large, Table 1 shows
that MOEAP3 demonstrates superior performance
across six datasets except for MRPC. MoEAP3 out-
performs GAP3 by approximately 1.11%, 0.53%,
1.31%, 1.20%, and 0.24% on SST-2, AG’s News,
MR, SNLI, and RTE, respectively. However, the
F1 score of MOEAP3 is lower than both GAP3 and
GAP3-2 in on MRPC. While manual and instruc-
tion prompts have mediocre performance for other
datasets, they yield the best results for MRPC.

With the PLM flan-t5-base, Table 2 shows
that instruction prompts and BBT are competi-
tive baselines for black-box prompt tuning. Be-
cause Flan-T5 models are fine-tuned by multi-
task instruction datasets, instruction prompts tend
to achieve high performance in MR and MRPC
tasks. MoEAP3 still outperforms all baselines on
SST-2, AG’s News, and SNLI without using any
manual initialization nor human-designed instruc-
tions. On average, MoOEAP3 performs better with
flant-t5-base than with roberta-large. This
demonstrates the effectiveness of MoEAP3 with
instruction-tuning models.

6 Pareto front analyses

6.1 Prompt readability analysis

Table 3 lists some example prompts with high flu-
ency scores obtained by MoEAP3 on SST-2 and
SNLI datasets. For SST-2, the word “Really” oc-
curs in many prompts, showing that the generated



Methods SST-2 AG’s News MR SNLI RTE MRPC Average
(Acc) (Acc) (Acc) (Acc) (Acc) (FD)

Manual 79.70 76.96 72.51 31.09 51.62 78.73 65.10
Instruction 76.95 56.61 75.80 37.43 53.79 80.24 63.47
ICL 84.771.48 57.353.51 80.491.92 47.881.60 57.282.73 46.193.74 62.33
BBT 88.000.98 82.840.80 85.741.18 40.233.35 49.124.10 64.0010.79 68.32
BDPL 86.681.97 70.261 .38 82.803.05 31.820.61 53.291.74 54.679.20 63.25
ClaPS-Ge 83.871,14 84.160,80 82.850,68 41.232,19 51.343,10 55.487,43 66.49
ClaPS-P 85.002.76 83.571.26 84.751.14 40.571.42 49.532.67 50.865.04 65.71
ClaPS-Gr 88.30 79.45 82.83 41.90 49.46 63.30 67.54
GAP3-2 85.613.36 71.653.87 82.654.46 40.371.35 52.633.00 72.103.00 67.50
GAP3 89.301.32 83.821.17 86.930.36 49.881.38 58.602.22 69.803.96 73.06
MOEAP3 90-410.86 84.351.27 88.241,34 51.081_61 58.843.44 68.174_91 73.52

Table 1: Experimental results with roberta-large as the backbone PLM. We report the mean and standard
deviation of each method over three random seeds. The best results are highlighted in bold for each task.

Methods SST-2 AG’s News MR SNLI RTE MRPC Average
(Acc) (Acc) (Acc) (Acc) (Acc) (F1)

Manual 83.03 64.86 78.52 56.99 64.98 41.64 65.00
Instruction 90.25 62.11 87.71 63.03 75.45 82.35 76.82
BBT 89.070.43 81.771.47 84.99¢.97 74.382.74 71.360.91 71.993.70 78.93
ClaPS-Ge 87.04023 75.951,26 86.080,46 64.772.36 81.111,10 64.193,74 76.53
ClaPS-P 87.845. 48 76.561 .57 83.962.07 67.074.12 79.181.90 64.733.40 76.56
ClaPS-Gr 90.37 77.18 82.83 63.47 79.42 64.93 76.37
GAP3-2 82.765.70 70.8610.25 | 81.682.00 63.586.04 63.546.57 68.013.41 71.72
GAP3 85.93110 84.361.05 82.373.11 69.931.76 63.541408 70.5810,79 76.12
MoEAP3 | 91.55¢0.59 | 84.760.90 | 84.991.65 | 74.621.71 74.121 37 75.304.34 80.89

Table 2: Experimental results with flant-t5-base as the backbone PLM. We report the mean and standard
deviation of each method over three random seeds. The best results are highlighted in bold for each task.

tokens are affected by the downstream task (e.g.,
SST-2), the label words (e.g., “good” and “bad”
for SST-2), and the pretraining data of PLMs (e.g.,
RoBERTa). For example, if we let roberta-large
fill the mask token in the input “Really <mask>",
the mask token is then filled with the token “good”.
Some tokens exhibit a relationship with the down-
stream tasks, e.g., “reviewers”, “Yep”, and “impres-
sions” are relevant words to the domain of movie
review. However, for SNLI, the generated prompts
seem to be less natural than those for SST-2 while
still yielding high fluency scores. While the cur-
rent Fluency metric can measure comprehensibility
to certain extents, further research should be con-
ducted to develop better readability models.

6.2 Prompt performance versus readability

Figure 2 exhibits the relationship among the per-
formance of prompts, their lengths and readability.
In general, shorter prompts tend to have higher flu-
ency scores, and vice-versa. On the other hand,
long prompts tend to be more consistent in yield-
ing high performance. Finding long, readable, and
highly-accurate prompts are challenging since there
seem to exist certain degrees of trade-off among
these objectives. Aiming to optimizing solely one

Prompt Fluency Acc
643 reviewers [X] Really [Y] 95.17 80.00
Yep [X] Really [Y] 95.07 78.21
NB [X] This smells unbeliev- 95.15 86.35
ably [Y]

Reviewer impressions [X] Re- 94.08 84.44
ally [Y]

Prompt Fluency Acc
Yep [X1] [Y] Chrys [X2] 93.50 41.17
Alright [X1] [Y] Hmm [X2] 95.71 38.07
Okay [X1][Y] !!!! Success [X2] 92.84 45.67
Ibid [X1] [Y] Hmm [X2] 95.90 33.86

Table 3: Example resulting prompts with Fluency scores
higher than 90.00 on SST-2 dataset (top) and SNLI (bot-
tom). [X1], [X2], and [X] denote the input sentences,
and [Y] denotes the corresponding label.

objective likely compromises the other one. Aggre-
gating all objectives together into an optimization
function as in FLUENTPROMPT (Shi et al., 2023)
results in a single trade-off solution for each set of
weights. However, there exist no intuitive methods
to properly determine weight values that yield the
desirable trade-offs. By addressing discrete prompt
search as a true MOO problem via approximating
the Pareto front, our MoEAP3 is able to obtain a
whole approximation set of diverse prompts with
the same costs of one GAP3 run.
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Figure 2: The relationship among the resulting prompts’ performance, their lengths and readability in six datasets.
Darker-colored dots are prompts with higher fluency scores. We plot the resulting prompts in the final populations

of 10 independent MoEAP3 runs.

Figure 3 shows the merged approximation fronts
formed by the final populations of 10 runs of
MoEAPs and GAP3 (all dominated prompts are
omitted). Solely optimizing for performance, re-
sulting prompts of GAP3 score highly in terms of
accuracy but poorly in terms of readability. Es-
pecially in MR and MRPC tasks, the resulting
prompts of MoEAP3 entirely dominate those of
GAP3. While GAP3 and other (single-objective)
baseline search methods return a single resulting
prompt each time, MOEAP3 returns an approxima-
tion set containing multiple diverse prompts from
which users can choose their desired trade-off.

6.3 MoEAP3 and GAP3 prompt comparisons

We compare some exemplary prompts obtained
by MoEAP3 and GAP3 with top performance on
test datasets (i.e., accuracy or F1 score) of single-
sentence and sentence-pair tasks in Figures 6 and
7, respectively. We also use bloom-580m (Work-
shop et al., 2022) to compute the perplexity (Log-
PPL) (Meister and Cotterell, 2021). Bloom is a
multilingual model that can tokenize non-Latin
words (e.g., Korean, Japanese, Chinese) and is
thus suitable for perplexity computation. Over-
all, top-performing prompts found by GAP3 is
longer than those of MoEAP3. For example, in
RTE, the prompt [ Yeah €€’ , "ILY Rather!!’]
of MoEAP3 achieves an F1 score of 62.85 while
the prompts with similar scores found by GAP3

are much longer, more complex, and less readable.
The prompts of MOEAP3 contain much fewer to-
kens, which would incur less operation costs when
using these prompts for querying language models.
During the single-objective optimization process
of GAP3, because performance is the sole fitness
function, truncation selection would bias the search
toward high-performing prompts, which typically
contain many tokens and have low fluency scores.
Short prompts are thus unlikely to survive for many
generations due to the selection pressure. The true
multi-objective optimization process of MoEAP3,
on the other hand, retains these short prompts in its
evolving population despite their low performance
due to their high fluency scores. Population diver-
sity is thus maintained, thereby fostering both kinds
of prompts with high performance or high fluency.
Short prompts that survive the Pareto dominance-
based selection have better chances to improve their
performance via crossover and mutation operators
in subsequent generations.

6.4 Choosing prompts at knee positions

The return of an MoEAP3 run is an approximation
set of many candidate prompts, from which deci-
sion makers need to select one (or several) final
prompt(s) to query the language model. Extreme
prompts are typically not favorable choices because
one objective is severely compromised to optimize
the other. Prompts with the highest fluency often
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Figure 3: Non-dominated approximation fronts formed by prompts in final populations evaluated on test datasets.
Red diamonds denote utopia solutions and cyan squares denote knee prompts. We perform 10 independent runs

with different random seeds for each task.

score poorly in terms of accuracy of F1. Prompts
with the highest performance scores are often unin-
telligible, and these prompts can be easily obtained
with single-objective methods like GAP3 (Zhao
et al., 2023).

If there are no particular biases/weights toward
certain objectives, knee solutions could be promis-
ing choices (Branke et al., 2004). In the DPS con-
text, knee solutions are the prompts where a small
improvement in readability leads to a large deteri-
oration in performance, or vice versa. Therefore,
they are critical solutions that should be considered
by decision makers. Figure 4 shows an example
of extreme and knee solutions. In order to iden-
tify these knees on a bi-objective approximation
front, for each non-dominated solution, we com-
pute the angle between the current solution and its
two nearest neighbors in the same non-domination
rank. If the angle is larger than 210 degree, the
prompt is considered a knee solution. We identify
knee prompts on the approximation fronts returned
by MoEAP3 on six datasets in Figure 3. They
represent critical trade-offs between prompt perfor-
mance and readability.

[. Extreme individual

O Kbnee individual

)

Utopian

Fluency

t F3 F2

Accuracy or F1 score

Figure 4: Example of individuals partitioned into non-
domination ranks in multi-objective optimization

7 Conclusion

In this paper, we demonstrate that discrete prompt
search (DPS) should be formulated as a multi-
objective optimization problem to take into account
both prompt performance and human-readability.
We then propose MoEAP3, which is a gradient-free
evolutionary method that can efficiently address
the multi-objective DPS in the context of few-shot
learning. MoEAP3, while handling both objectives
simultaneously, does not suffer from performance
drop and even achieves superior results compared
to many state-of-the-art baselines. Moreover, the
investigation of solution sets of trade-off prompts
returned by MoEAP3 is more insightful and intu-
itive for decision makers.

Limitations

The fluency metric, which is computed based on a
classifier fine-tuned on the CoL A dataset, exhibits
certain limitations in evaluating the linguistic ac-
ceptability of generated prompts. Besides, other
readability metrics relevant to text fluency, e.g.,
repeated phase score, are not considered in this
paper. Furthermore, it is challenging to extend
MOoEAP3 to the cases of more than three objectives
because Pareto dominance-based selection would
become ineffective as the number of objectives
increases. There are indicator-based and reference-
based MOEAs which are more suitable to extend
MOoEAP3 to many-objective scenarios.

Ethics Statement

In this paper, the authors introduce MoEAP3 that
samples language models to generate prompts. Dur-
ing mutation, new tokens in the language model
vocabulary are inserted into prompts, which may
contain offensive, slang, or hate words.
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A Baseline Implementation Details

We describe the implementation of our baselines:

Manual prompt: We collect handcrafted
prompts and their label words from (Sun et al.,
2022) as the first baseline.

Instruction: task descriptions manually de-
signed to instruct the language model. We use
instructions and their label words from (Mishra
et al., 2022; Wang et al., 2022b). The specific in-
structions are shown in Table 6.

In-context learning (ICL): we sample k ran-
dom samples per class in the training dataset, and
then concatenate them as the model input. We im-
plement ICL following (Gao et al., 2021)

BBT: We re-produce (Sun et al., 2022), we set
50 prompt tokens, the intrinsic dimension is 500,
and the population size is 20. The number of API
calls is 8,000 to optimize the cross entropy loss
function. The templates and label words for BBT
are from (Sun et al., 2022).

(BDPL: We use AdamW (Loshchilov and Hut-
ter, 2019) to optimize discrete prompt within 30
epochs, the learning rate is 20~ (for SST-2, AG’s
News, MR, SNLI) and 10~ (for RTE, MRPC),
the prompt length is 50. For SST-2, MRPC, SNLI,
and RTE, we apply the templates and label words
from (Diao et al., 2023); we use templates and label
words of (Sun et al., 2022) for AG’s News and MR.

ClaPS: we run ClaPS including 2 phases: search
space pruning and training phase (Zhou et al.,
2023). In the search space pruning phase, we use
the embedding layer of roberta-large and en-
coder embedding layer of flan-t5-base to extract
the embeddings of PLM vocabulary. Then we ap-
ply K-Means++ (Arthur and Vassilvitskii, 2007) to
collect 2,000 centroids with the closest word in the
embedding space. In the training phase, we imple-
ment different optimization algorithms of ClaPS:
genetics (ClaPS-GE), particle swarm optimization
(ClaPS-P), and greedy search (ClaPS-Gr). We opti-
mize a population of 128 individuals with prompt
length is 5 within 30 epochs, we select 64 individu-
als for mutation and crossover at each epoch.

GAP3: We run GAP3 following (Zhao et al.,
2023), the crossover and mutation probability are
0.5 and 0.7 respectively. The population has 64
individuals and the number of generations is 50.

B Ablation study

In this ablation study, we carry out experiments
on SST-2 and MRPC datasets. We perform inde-
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pendent runs with different random seeds for each
setting.
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Figure 5: Ablation study on backbone models and k-
shot on MOoEAP3. We plot mean and standard deviation
of the results over three random seeds.

B.1 Different backbone models

We conduct experiments with different backbone
transformer models: RoOBERTa (an encoder model),
GPT-2 (a decoder model), and TS5 (an encoder-
decoder model). Figure 5 show that GPT-2 has
a higher variance over three random seeds com-
pared to RoOBERTa and T5. All models yield the
highest performance at the largest 128-shot data.
T5 exhibits the lowest variance, demonstrating its
potential to be a well-suited few-shot learner.

B.2 k-shot

We increase k = {16, 32, 64, 128} to show the ef-
fect of different k settings to the performance of
MoEAP3. Figure 5 shows that, overall, the per-
formance of models is consistent with the size of
training datasets. The performance of models with
the largest training data outperforms smaller train-
ing data settings. In the small 16-shot data, GPT-2
model has the highest variance on SST-2, and the
variance decreases over larger training data set-
tings.



Task # Label Training Testing Template Label words
size size
SST-2 2 32 0.8K [P1] [X] [P2] [Y] good, bad
MR 2 32 1.07K  [P1][X] [P2] [Y] good, bad
AG’s News 4 64 7.6K [X] [P1] [Y] world, sports
business, technology
MRPC 2 32 1.7K [P1] [X1][Y][P2] [X2] No, Yes
RTE 2 32 0.3K [P1][X1][Y][P2][X2] No, Yes
SNLI 3 48 9.8K [P1][X1][Y][P2][X2] No, Yes, Maybe

Table 4: The dataset statistic, template, verbalizer. # Label denotes the number of labels. P1 and P2 are initialized

as empty string, MOEAP3 optimize these prompts to maximize two objective functions in section 4.

Methods Discrete prompt | Human-free | Readability | Population- | Multi-objective
prompt based
Manual Prompt X X X
Instructions X X X
ICL X X X

BBT (v2) X X X X

RLPrompt X X

TEMPERA X X X

GPS X
ClaPS X X
GAP3 X X
Ours
Table 5: The comparison of our proposed with previous methods.

Task Prompt

SST-2 In this task, you are given sentences from movie reviews. The task is to classify a
sentence as "great" if the sentiment of the sentence is positive or as "terrible" if the
sentiment of the sentence is negative.

AG’s News | In this task, you are given a news article. Your task is to classify the article to one out
of the four topics "World", "Sports", "Business", "Tech" if the article"s main topic is
relevant to the world, sports, business, and technology, correspondingly. If you are not
sure about the topic, choose the closest option.

MR In this task, you are given sentences from movie reviews. The task is to classify a
sentence as "great" if the sentiment of the sentence is positive or as "terrible" if the
sentiment of the sentence is negative.

SNLI In this task, you’re given a pair of sentences, sentence 1 and sentence 2. Your job is to
choose whether the two sentences clearly agree (entailment)/disagree (contradiction)
with each other, or if this cannot be determined (neutral). Your answer must be in
’Yes’, ’No’, and "Maybe’ respectively.

MRPC You are given two sentences (Sentencel and Sentence2). Answer "Yes" if these
sentences are a paraphrase of one another, otherwise answer "No".

RTE In this task, you’re given two sentences. Indicate if the first sentence clearly entails
the second sentence (i.e., one can conclude the 2nd sentence by reading the 1st one).
Indicate your answer with *Yes’ if the first sentence entails the second sentence,
otherwise answer with "Maybe’.

Table 6: The Instructions for our experiments with both roberta-1large and flan-t5-base.
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Method | Log- | Fluency | Perf Prompt
PPL

SST-2

GAP3 | 894 | 127 |91.28 | @7 JL ¥ ¥ Hawkins I Ble 7 Authors
@Y YPaghhhhosen — 2 > v Xen — 2 [X]| techno =
Contin dag dag characterization hereis Just unequivocally
extremely [Y]

9.38 12.10 | 91.17 | @€ 7 )L irements 3 Ble 77 Authors € €aghhhhosen —
2% Xen — 7 @[X] guc @YY YContin dag kid char-
acterization herefs Just unequivocally extremely [Y]

9.45 4.59 90.00 | uponrailuouslyofferray player purchaser Blu Modray flat
disc 7 |X] :#tten veryodi VERY [Y]

MoEAP3 | 7.35 | 21.05 | 91.28 | wbrama [X] XX REALLY really [Y]

7.28 | 89.45 | 91.06 | our rating [X] ¥ X Really REALLY [Y]

7.55 85.12 | 91.97 | My honest IGN rating Wonderful [X] Really re-
ally REALLY [Y]

MR

GAP3 9.17 9.43 87.42 | mediocre performer 3¢ medi NUMiscocrelde mediocreper-
formance detailsivenessAMIWinner [X] Movie €unflVery
denomination deterioration performer Very very [Y]

10.02 | 28.75 | 87.24 | hidGGGG hig hig E  highbGGGGGGGG Pro-
fessional SHOWunky degradingEEEEPM X]
............................... <unk> feelsplain plain fundament ord
downright REALLYreally [Y]

10.14 | 16.81 | 88.18 | Post worst94 catastrophicorge wil rac Seasarc @D
@criticised @george displENTjohnjonghelcot Quotees-
sionsRichailing ***[X] feels reallyreally,reallyreallyreally [Y]

MoEAP3 | 7.56 | 91.69 | 87.43 | @Tinder [X] XX Really ridiculously [Y]
6.50 | 93.40 | 88.09 | ¥ K Broken glass [X] X X Totally [Y]
7.42 48.99 | 88.37 | Rating nuns €[X] Veryveryvery veryvery very [Y]

AG’s News

GAP3 | 1082 | 250 |83.98 | [X] <unk> NZ tricks<unk><unk> digest @noon Gold-
manlVE Tele 470avers PatriotsialsollarSIMNiamus reliant
McF Ratt 4€gallelsen commentary insight contempo-
raryclassified [Y]

8.59 8.02 83.78 | [X] €Cameraipe Changing times impacting Throw evolvin-
gomed Contin tipping Challenges unequ footsteps Chal-
lenges facing mat Related EHEEE Related allchukfreedom

[Y]
11.80 6.48 84.49 | [X] Colts attributablearedevilJeff’) Den Continue F
guilcon<unk>VERTISEMENT———— Modernst

Changing day news unregulated concerning [Y]

MoEAP3 | 9.41 3.31 | 84.24 | [X] ERY € CAP €COL MUSTOUS READ MORE How
insane politics() poisons [Y]
8.42 1.67 83.88 | [X] Dragonbound today €¥€€: hot topics in [Y]

9.79 5.70 83.61 | [X] €Understanding dirty creep hitherto unseenlocking
conflicts VS mainstream [Y]

Figure 6: Example prompts with top performance on test datasets of single-sentence classification tasks.
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Method | Log- | Fluency | Perf Prompt
PPL

SNLI

GAP3 9.30 23.32 | 48.55 | Therefore IPA  Prim  Pole@pbackstory  Consider
@olarUltimate Possible PesCase C:" assailant Hath
[XT] [Y] coveverrerieieiiiieien Why,oulder [X2]

9.37 1.25 52.05 | Therefore IPAwhose Primistically Pole Something Neck
Consider 4€olarUltimate Possible Worst external ToE-
VAOnlyomsday Hugenario assailant Hath [X1] [Y] !l Alt
Why,oulder [X2]

9.41 1.45 56.04 | Meaning censorasar €pzanne Borg€@pGiovanniMathline
Dum€plin</s>OL Ont Eliot Quote IPA quotation quota-
tion Locke," Nep [X1] [Y] ! [X2]

MoEAP3 | 9.73 94.63 | 43.34 | Yeah [X1] [Y] Immediately [X2]
7.46 84.15 | 47.40 | Yep........ Valid Answer [X1] [Y] ! Definitely [X2]
8.41 52.74 | 55.07 | Yep )| [X1] [Y] ! Hur [X2]

RTE
GAP3 | 10.70 | 24.54 | 58.12 | Yeah 1850 elltta  Restorationericaina  [X1]  [Y]
TETT. e tem
Q... positively SER 374 €@OCIIN! dred ty!!NIN

11.17 | 16.39 | 61.02 | hensurities Clar  billionaire  representedARY  Edi-
tororterudge Morning ounce |) PublisherLotPresYork
[X1] [Y] mm denial FN0000000000000000!!M!  Ther
indeed (),[X2]

12.02 | 13.92 | 57.04 | Resp Answers Candidate e (>oyd Rebirth

quentlyises arg & oss Rather!!!! [X2]

MoEAP3 | 7.83 37.66 | 58.84 | YepYep [X1] [Y] ises!!!! ow [X2]
895 | 50.71 | 62.85 | Yeah @4p|X1] [Y] ILY Rather!! [X2]
7.83 62.07 | 57.40 | York Yep Yep LR [X1] [Y] Hmm [X2]

MRPC

GAP3 | 10.20 | 13.18 | 72.27 | Yah NeOTHER Cum//////////////// quem mills Fa-

Fr Allow Forum Policyaciesction Adsusted|X2]

9.84 8.27 76.62 | Yeprals Choose colour disclaimverning048 questionsacket
selectedicle Yep.) x19 [X1] [Y] Pastates Wrticket @ dirhhh
@ Occasionally pa Eh Unsure Err Err [X2]

10.90 24.84 79.21 | @verified Kinnikuman restgeon Macep .
letalheaders € €@ [X1] [Y]x18nette
................................................................ Spring

................................ OWx18 ()M  Indeed Mace -f
[X2]

MoEAP3 | 841 | 9528 | 75.86 | Say Leilan x18 [X1] [Y]x18 Nayx18 [X2]

9.14 83.23 | 79.96 | Peslizu [X1] [Y]izu Hmm [X2]

9.77 9.53 | 76.90 | Alberto deducted +—FS))) 148avourl74 Tav [X1] [Y]!) ;)
@ Correct opin Toll Firstly [X2]

Figure 7: Example prompts with top performance on test datasets of sentence-pair classification tasks.
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