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Abstract

Discrete prompt search (DPS) aims to automat-001
ically find high-performing prompts that yield002
top accuracy in interactions with a pretrained003
language model. In the context of few-shot004
learning, evaluations of candidate prompts can005
only be done via a limited number of labelled006
examples. The search is often formulated as an007
optimization problem where prediction accu-008
racy, F1 score, or cross-entropy loss is used as009
the objective function. While resulting prompts010
achieve top performance, they are mostly un-011
readable and uninterpretable, i.e., unlike natural012
languages. In this paper, we formulate DPS as a013
true multi-objective optimization (MOO) prob-014
lem considering simultaneously both prompt015
performance and readability as separate objec-016
tives. We show that there exist certain degrees017
of conflict between the objectives, making the018
search for human-readable and highly-accurate019
prompts a challenging problem. We then pro-020
pose the Multi-objective Evolutionary Algo-021
rithm for Predictive Probability guided Prompt-022
ing (MoEAP3) to address the problem. Our023
MoEAP3 returns not a single final prompt as024
in conventional methods but a whole front of025
multiple candidate prompts, each representing026
an efficient trade-off between the objectives.027
Decision makers can straightforwardly investi-028
gate this front and intuitively select the prompt029
that yields the desired trade-off. Experimental030
results exhibit the superiority of MoEAP3 over031
state-of-the-art baselines.032

1 Introduction033

Pretrained language models (PLMs) can be fine-034

tuned with sufficiently-large training datasets to035

properly address many downstream tasks in natu-036

ral language processing (Liu et al., 2019; Radford037

et al.; Raffel et al., 2020). In the scenarios of few-038

shot or zero-shot data, PLMs also yield competi-039

tive results via prompt-based learning (Gao et al.,040

2021), prompt tuning (Lester et al., 2021) and in-041

context learning (Brown et al., 2020). When the042

gradients of PLMs are accessible, prompts can be 043

efficiently optimized with gradient descent algo- 044

rithms because much fewer parameters need to be 045

tuned in prompt tuning compared to conventional 046

PLM fine-tuning (Li and Liang, 2021; Lester et al., 047

2021; Liu et al., 2023). 048

In practice, parameters and gradients of PLMs 049

are not always available for prompting tuning 050

via first-order gradient-based methods, e.g., GPT- 051

3 (Brown et al., 2020) can only be accessed via 052

OpenAI API at the current time. Some alternatives 053

using evolutionary algorithms (EAs) are proposed 054

for prompt tuning when PLM gradients are not 055

available, e.g., black-box tuning (BBT) (Sun et al., 056

2022) employs the covariance matrix adaptation 057

evolution strategy (CMA-ES) (Hansen et al., 2003) 058

to optimize continuous prompts that can be ap- 059

pended to input texts for querying a PLM. However, 060

such soft-prompt tuning approaches still require 061

that the output of the PLM’s embedding layer is 062

accessible. In the true black-box scenario, discrete 063

prompt search (DPS) is the feasible approach. 064

DPS methods can be divided into two groups: 065

(1) editing-based (Zhang et al., 2023; Xu et al., 066

2022; Prasad et al., 2023): the search algorithm 067

replaces, adds, or deletes some words of the man- 068

ual prompts or instructions to boost their perfor- 069

mance in a specific task. However, these methods 070

require human effort to design a priori proper ini- 071

tial prompts (Wang et al., 2022b; Mishra et al., 072

2022), making their applications to specific tasks 073

in low-resource languages difficult. (2) sampling- 074

based (Deng et al., 2022; Zhou et al., 2023; Zhao 075

et al., 2023; Shi et al., 2023; Diao et al., 2023): 076

the search algorithm iteratively samples prompt 077

tokens based on the vocabulary of the PLM, evalu- 078

ates candidate prompts with few-shot data of a spe- 079

cific task, and then adapt these prompts with newly 080

sampled tokens. Sampling-based DPS methods re- 081

quire much less human effort in initialization. Ge- 082

netic Algorithm for Predictive Probability guided 083
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Prompting (GAP3) (Zhao et al., 2023) is an exem-084

plary sampling-based method, where the optimized085

prompts yield competitive results with full-model086

fine-tuning in certain tasks. Despite their effective-087

ness, these searched prompts are often unintelli-088

gible, incoherent, and mostly gibberish in terms089

of natural languages. Such a phenomenon is due090

to their high degree of freedom during the search091

process and the fact that prompt performance is the092

sole optimization objective.093

In this paper, we re-formulate DPS as a bi-094

objective problem where both prompt performance095

and human-readability are equally handled as sepa-096

rate optimization objectives. We replace the single-097

objective genetic algorithm (GA) in GAP3 with098

a widely-used multi-objective evolutionary algo-099

rithm (MOEA), namely non-dominated sorting ge-100

netic algorithm II (NSGA-II) (Deb et al., 2002).101

Following GAP3, we name our method, Multi-102

objective Evolutionary Algorithm for Predictive103

Probability guided Prompting (MoEAP3). Employ-104

ing MoEAP3 for solving the multi-objective DPS105

problems exhibits interesting findings as follows:106

• There might exist certain trade-offs between107

prompt performance and intelligibility such108

that searching for highly-accurate and read-109

able prompts is non-trivial, at least regarding110

current prompt representations. This conflict-111

ing nature of DPS requires the two objectives112

are kept separately because aggregating them113

with improper weights would result in poor114

generalization performance.115

• Solving DPS as a multi-objective optimization116

problems returns a solution set of multiple117

prompts, where each candidate corresponds118

to a compromise between the objectives. Prac-119

titioners can investigate the solution set and120

simply select the prompt exhibiting the desir-121

able trade-off a posteriori instead of having122

to determine some fixed weights a priori.123

• There are prompts in the returned solution set124

of MoEAP3 that locate in interesting positions125

so-called “knee” solutions, which should be126

considered by the decision makers.127

2 Related works128

2.1 Readability of optimized prompts129

The perplexity (Meister and Cotterell, 2021) is130

one popular metric for evaluating language mod-131

els. The larger the perplexity value of a text, the132

less likely it can be observed given the probability 133

distribution for perplexity computation. Therefore, 134

the perplexity of a prompt can be estimated via a 135

casual language model, e.g., GPT2 (Radford et al.). 136

However, the perplexity metric exhibits certain dis- 137

advantages in scoring prompt readability for EA- 138

based search methods: (1) because perplexity is 139

sensitive to prompt lengths (Wang et al., 2022a), it 140

may be inaccurate for prompt evaluations at early 141

generations when candidate prompts have very few 142

tokens (empty strings in the first generation); (2) 143

because prompts containing repeated phrases have 144

low perplexity (Wang et al., 2022a), trivial prompts 145

may survive through many generations. In this pa- 146

per, we consider an alternative to the perplexity in 147

evaluating prompt readability, i.e., the Fluency met- 148

ric (Krishna et al., 2020), which can be defined as 149

the predictive probability of a classifier trained on 150

a linguistic acceptance dataset. We here fine-tune 151

the classifier DeBERTa-V3 (He et al., 2022) on the 152

CoLA dataset (Warstadt et al., 2019) containing 153

sentences labelled with “grammatical” or “ungram- 154

matical” from linguistic literature. For efficient 155

inference, we apply load_in_4bits quantization 156

(Dettmers et al., 2022) to evaluate Fluency. 157

2.2 Multi-objective optimization (MOO) 158

MOO is an optimization methodology in which 159

multiple objectives (or criteria) are taken into ac- 160

count. MOO has been utilized in many NLP re- 161

search works, e.g., addressing multiple tasks in 162

text classification (Chai et al., 2023), optimizing 163

recall and precision in unknown intent detection 164

(Prem et al., 2021), or optimizing coherence, ac- 165

curacy, and regularization for word sense disam- 166

biguation and entity linking (Weissenborn et al., 167

2015), etc. For the discrete prompt search task, 168

aiming to find human-readable prompts, FLUENT- 169

PROMPT (Shi et al., 2023) optimizes two objectives 170

task labelling loss and prompt fluency loss by con- 171

sidering their weighted sum as a single optimiza- 172

tion objective. The problem formulation FLUENT- 173

PROMPT can both be addressed with conventional 174

single-objective optimization algorithms. 175

In this paper, we focus on the cases of true multi- 176

objective formulations, where all the involving ob- 177

jectives are kept separately and are optimized si- 178

multaneously in an equal manner. If these objec- 179

tives are competing with each other, there exists no 180

feasible solutions that ideally optimize all objec- 181

tives at the same time. Instead, true MOO aims to 182
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find the Pareto set of multiple candidate solutions,183

which can all be considered optimal in the sense184

that each of them represents an optimal trade-off185

regarding the objectives. The weighted-sum ap-186

proach as in (Shi et al., 2023) can also be used,187

but the optimization must be run multiple times188

with different weight settings because each set of189

weights only yields a single trade-off solution. Due190

to the evolution mechanism for a population of191

multiple individuals, multi-objective evolutionary192

algorithms (MOEAs) are intrinsically well-suited193

to approximate such a Pareto solution set in a sin-194

gle optimization run. We here employ the widely-195

used MOEA Non-dominated Sorting Genetic Al-196

gorithm (NSGA-II) (Deb et al., 2002) to construct197

our MoEAP3 approach for discrete prompt search198

as solving an MOO problem.199

3 Background: GA for Predictive200

Probability guided Prompting (GAP3)201

Notation: Let (x, y) ∈ D denote a sample (input,202

label) in a dataset D. A prompt P is merged with203

a sample (x, y) following the prompt template T204

(see Table 4 in Appendix) to make the final input205

T (x, y). We use a specific prompt template for206

each task. For example, the template [P1] [X]207

[P2] [Y] for SST-2 means that the input sentence208

x is placed between two prompts [P1] and [P2],209

and the label y is put at the end..210

Population: GAP3 (Zhao et al., 2023) main-211

tains a population P consists of N individuals212

P = {I1, I2, . . . , IN}, where each individual Ii213

contains a prompt [P1] or a pair of prompts [P1]214

and [P2]. The prompts in all individuals are initial-215

ized as empty strings.216

Fitness score: The objective function value is217

often used to score the fitness of individuals in218

the evolving population. Even though we aim to219

find top-performing prompts, accuracy or F1 score220

should not be (solely) employed as the fitness func-221

tion because there exist many prompts having the222

same values for these metrics, making it difficult223

to select truly better candidates in the evolution224

process. BBT (Sun et al., 2022) thus employs cross225

entropy or hinge loss as the minimization function226

instead of the negative accuracy. GAP3 (Zhao et al.,227

2023) uses accuracy or F1 score as the main fitness228

function to be optimized with a genetic algorithm,229

and for tie breaking in selections, a secondary fit-230

ness score is computed as follows:231

F (T ) = 1

|D|
∑

(x,y)∈D

δy,ŷP (x, y),

P (x, y) =
P (ym = y|T (x, ym))∑

y′∈Y P (ym = y′|T (x, ym))
,

ŷ = argmax
y′∈Y

P (ym = y′|T (x, ym)),

(1) 232

where P (·|·) denotes the conditional probability 233

given by the language model, Y is the set of task 234

labels, and δy,ŷ is the Kronecker delta function for 235

true label y and predicted label ŷ so that only cor- 236

rectly predicted examples are taken into account. 237

In our multi-objective formulation, we do not di- 238

rectly optimize for accuracy nor F1 score, but we 239

use the above re-normalized predictive probability 240

distribution in Equation 1 as one objective function 241

(the other is the Fluency metric). We also use the 242

two following variation operators of GAP3 (Zhao 243

et al., 2023) to generate new candidate prompts. 244

Crossover: Crossover is performed over random 245

pairs of individuals to create offspring (i.e., new 246

individuals). During crossover, each [Pi] of the 247

two individuals are swapped with probability ρc. 248

Mutation: Each individual can also be mutated 249

with probability ρm to create a new candidate. 250

GAP3 (Zhao et al., 2023) implements two types of 251

mutation: insert and replace. The insert mutation 252

adds a <mask> token into a random position in a 253

prompt. The replace mutation changes a random 254

existing token into a <mask> token. This <mask> 255

token is then filled with a token sampled based on 256

the probability distribution of the PLM. Let tm be a 257

masked token in a prompt, V is a vocabulary of the 258

PLM, tm is determined by the following equation: 259

tm = argmax
t∈V

∑
x,y∈D

logP (ym = y|T m
i←t(x, y

m))

(2) 260

where ym is the label y masked, and T m
i←t is prompt 261

template whose <mask> token is replaced with 262

token t at the i index in mutation. 263

4 Proposed approach 264

4.1 Multi-objective formulation 265

In this paper, we formulate discrete prompt search 266

as a bi-objective optimization problem: 267

T ∗ ← argmax
T ∈ Ω

f(T ) = (f1(I), f2(I)), (3) 268

where T denote a candidate prompt in a prompt 269

search space Ω, the first objective f1(T ) = F (T ) 270
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is the fitness score in Equation 1, the second objec-271

tive f2(T ) is a readability measure. We adapt the272

Fluency metric in (Krishna et al., 2020) to score the273

readability of candidate prompts (see Section 2.1).274

A candidate prompt Ta Pareto dominates an-275

other prompt Tb (denoted as Ia ≻ Ib) if Ta is276

not worse than Tb in both objectives and Ta is277

strictly better than Ta in at least one objective, i.e.,278

(∀i ∈ {1, 2} : fi(Ia) ≥ fi(Ib)) ∧ (∃i ∈ {1, 2} :279

fi(Ia) > fi(Ib)). If objectives f1 and f2 conflict280

with each other, there exists no utopian solution281

T ∗ that maximizes both objective simultaneously.282

Instead, the optimum of this bi-objective problem283

is the Pareto set PS of prompts that are not domi-284

nated by any other prompts in the search space:285

PS = {Ia | ¬∃ Ib ∈ Ω : Ib ≻ Ia} (4)286

The objective value vectors of these Pareto-287

optimal prompts in PS yield the so-called Pareto288

front PF in the bi-objective space:289

PF = {f(Ii) = (f1(Ii), f2(Ii)) | Ii ∈ PS} (5)290

It is costly and unnecessary to obtain the en-291

tire PS . Instead, it suffices to achieve an approxi-292

mation set A of non-dominated prompts forming293

a corresponding approximation front f(A) that294

well approximates the Pareto front PF .295

4.2 Multi-objective evolutionary optimization296

MoEAP3 utilizes NSGA-II (Deb et al., 2002) as297

the search method to obtain a good approximation298

set A of discrete prompts. The implementation299

of MoEAP3 is illustrated in Figure 1. Similar to300

GAP3, MoEAP3 evolves a population P of N can-301

didate prompts (following a certain template for302

each task) in a generational manner. The popula-303

tion can be initialized with empty prompts, where304

tokens can be filled in via the mutation operator.305

In each generation, candidate prompts are eval-306

uated for their objective values (i.e., fitness score307

f1 and fluency score f2). A binary tournament308

selection procedure is carried out to select better309

prompts into a selection set S: each time, two310

prompts are randomly sampled from the P , and311

the better one is selected into S . Selected prompts312

are then used as parent individuals to create off-313

spring individuals O (i.e., new candidate prompts)314

via crossover and mutation. P and O are merged315

into a selection pool P ∪O, from which a so-called316

non-dominated sorting procedure takes place to317

partition both old and new individuals into non- 318

domination ranks. Rank 1 (F1) contains prompts 319

that are not dominated by any other prompts in 320

P ∪ O. Prompts in rank i (Fi), where i > 1, are 321

also non-dominated if prompts from lower ranks 322

are disregarded (see Figure 4). Afterward, N candi- 323

dates with the lowest ranks from P∪O are selected 324

to be the new population in the next generation. 325

During any selection, a prompt in rank i is con- 326

sidered better than a prompt in rank j if i < j. 327

When candidates from the same ranks need to com- 328

pete with each other, the crowding distance metric, 329

that measures the distance between a candidate and 330

its two nearest neighbors in the objective space, is 331

used to favor prompts that lie far away from the oth- 332

ers. The algorithm terminates when certain criteria 333

are met (e.g., the computing budget is over or the 334

maximum number of generations is reached). The 335

set of non-dominated prompts in the final popula- 336

tion are considered the approximation set returned 337

by MoEAP3. 338

5 Experiments 339

5.1 Datasets 340

We conduct experiments on both single-sentence 341

and sentence-pair classification tasks, covering (1) 342

Sentiment analysis: SST-2 (Socher et al., 2013), 343

MR (Pang and Lee, 2005); (2) Topic classifica- 344

tion: AG’s News (Zhang et al., 2015); (3) Natual 345

language inference: SNLI (Bowman et al., 2015), 346

RTE (Wang et al., 2019); (4) Paraphrase: MRPC. 347

(Dolan and Brockett, 2005). Dataset statistics and 348

label words are listed in Table 4 in Appendix. 349

5.2 Baselines 350

We experiment with several existing black-box 351

methods for prompt search as follows. (1) Manual 352

prompt: human-designed prompts to formulate 353

classification problems into fill-in-the-blank prob- 354

lems as in (Sun et al., 2022). (2) Instruction: hand- 355

crafted task description prompts for generalizing 356

PLMs to a variety of unseen tasks (Wang et al., 357

2022b). (3) BBT uses an EA namely CMA-ES 358

to optimize soft prompts for a frozen PLM (Sun 359

et al., 2022). (4) In context learning (ICL) uses 360

many samples concatenated for model input. ICL 361

achieves remarkable performance in many tasks 362

(Brown et al., 2020). (5) BDPL employs a policy 363

gradient algorithm for gradient estimation to up- 364

date the categorical distribution that is used to sam- 365

ple prompt tokens (Diao et al., 2023). (6) ClaPS 366
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Figure 1: Illustration of of MoEAP3 for discrete prompt search.

clusters and prunes the search space (i.e., vocab-367

ulary), and then efficiently finds proper prompts368

via an EA (Zhou et al., 2023). (7) GAP3: our369

main EA-based baseline in this work. (8) GAP3-2:370

we experiment with a GAP3 variant that optimizes371

the sum of the fitness score and the fluency score.372

GAP3-2 is thus similar to the weighted sum ap-373

proach of FLUENTPROMPT (Shi et al., 2023), but374

we here weight both kinds of scores equally. Other375

details of these baselines are in Appendix A.376

5.3 Implementation details377

Settings: We use roberta-large (Liu et al., 2019)378

and flan-t5-base (Chung et al., 2022) as the379

PLMs. We use GAP3 source code and the NSGA-380

II implementation of pymoo (Blank and Deb, 2020)381

to create MoEAP3. We set population size N = 64,382

and the number of generations M = 50, crossover383

and mutation probabilities ρc = 0.5 and ρm =384

0.75, respectively. We use k-shot with k = 16 for385

all experiments, meaning that the training set con-386

tains k random samples for each label. The test387

sets for AG’s news, MRPC, MR, and SNLI, are the388

original test datasets; we use the original develop-389

ment datasets for testing in the cases of SST-2 and390

RTE. All experiments are conducted on two Tesla391

T4 GPUs of Kaggle with three different random392

seeds following the practice in (Sun et al., 2022;393

Zhao et al., 2023; Diao et al., 2023). The number394

of samples in training and development sets are395

equal, following the true few-shot learning method-396

ology as in (Perez et al., 2021). An ablation study397

regarding backbone PLMs and the k-shot value is398

provided in Appendix B. 399

5.4 Few-shot learning results 400

With the PLM roberta-large, Table 1 shows 401

that MoEAP3 demonstrates superior performance 402

across six datasets except for MRPC. MoEAP3 out- 403

performs GAP3 by approximately 1.11%, 0.53%, 404

1.31%, 1.20%, and 0.24% on SST-2, AG’s News, 405

MR, SNLI, and RTE, respectively. However, the 406

F1 score of MoEAP3 is lower than both GAP3 and 407

GAP3-2 in on MRPC. While manual and instruc- 408

tion prompts have mediocre performance for other 409

datasets, they yield the best results for MRPC. 410

With the PLM flan-t5-base, Table 2 shows 411

that instruction prompts and BBT are competi- 412

tive baselines for black-box prompt tuning. Be- 413

cause Flan-T5 models are fine-tuned by multi- 414

task instruction datasets, instruction prompts tend 415

to achieve high performance in MR and MRPC 416

tasks. MoEAP3 still outperforms all baselines on 417

SST-2, AG’s News, and SNLI without using any 418

manual initialization nor human-designed instruc- 419

tions. On average, MoEAP3 performs better with 420

flant-t5-base than with roberta-large. This 421

demonstrates the effectiveness of MoEAP3 with 422

instruction-tuning models. 423

6 Pareto front analyses 424

6.1 Prompt readability analysis 425

Table 3 lists some example prompts with high flu- 426

ency scores obtained by MoEAP3 on SST-2 and 427

SNLI datasets. For SST-2, the word “Really” oc- 428

curs in many prompts, showing that the generated 429
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Methods SST-2 AG’s News MR SNLI RTE MRPC Average
(Acc) (Acc) (Acc) (Acc) (Acc) (F1)

Manual 79.70 76.96 72.51 31.09 51.62 78.73 65.10
Instruction 76.95 56.61 75.80 37.43 53.79 80.24 63.47

ICL 84.771.48 57.353.51 80.491.92 47.881.60 57.282.73 46.193.74 62.33
BBT 88.000.98 82.840.80 85.741.18 40.233.85 49.124.10 64.0010.79 68.32

BDPL 86.681.97 70.261.38 82.803.05 31.820.61 53.291.74 54.679.20 63.25
ClaPS-Ge 83.871.14 84.160.80 82.850.68 41.232.19 51.343.10 55.487.43 66.49
ClaPS-P 85.002.76 83.571.26 84.751.14 40.571.42 49.532.67 50.868.04 65.71
ClaPS-Gr 88.30 79.45 82.83 41.90 49.46 63.30 67.54
GAP3-2 85.613.36 71.653.87 82.654.46 40.371.35 52.633.00 72.103.00 67.50
GAP3 89.301.32 83.821.17 86.930.36 49.881.38 58.602.22 69.803.96 73.06

MoEAP3 90.410.86 84.351.27 88.241.34 51.081.61 58.843.44 68.174.91 73.52

Table 1: Experimental results with roberta-large as the backbone PLM. We report the mean and standard
deviation of each method over three random seeds. The best results are highlighted in bold for each task.

Methods SST-2 AG’s News MR SNLI RTE MRPC Average
(Acc) (Acc) (Acc) (Acc) (Acc) (F1)

Manual 83.03 64.86 78.52 56.99 64.98 41.64 65.00
Instruction 90.25 62.11 87.71 63.03 75.45 82.35 76.82

BBT 89.070.43 81.771.47 84.990.97 74.382.74 71.360.91 71.993.70 78.93
ClaPS-Ge 87.040.23 75.951.26 86.080.46 64.772.36 81.111.10 64.193.74 76.53
ClaPS-P 87.842.48 76.561.57 83.962.07 67.074.12 79.181.99 64.733.40 76.56
ClaPS-Gr 90.37 77.18 82.83 63.47 79.42 64.93 76.37
GAP3-2 82.765.70 70.8610.25 81.682.00 63.586.04 63.546.57 68.013.41 71.72
GAP3 85.937.10 84.361.05 82.373.11 69.931.76 63.541.08 70.5810.79 76.12

MoEAP3 91.550.59 84.760.90 84.991.65 74.621.71 74.121.37 75.304.34 80.89

Table 2: Experimental results with flant-t5-base as the backbone PLM. We report the mean and standard
deviation of each method over three random seeds. The best results are highlighted in bold for each task.

tokens are affected by the downstream task (e.g.,430

SST-2), the label words (e.g., “good” and “bad”431

for SST-2), and the pretraining data of PLMs (e.g.,432

RoBERTa). For example, if we let roberta-large433

fill the mask token in the input “Really <mask>”,434

the mask token is then filled with the token “good”.435

Some tokens exhibit a relationship with the down-436

stream tasks, e.g., “reviewers”, “Yep”, and “impres-437

sions” are relevant words to the domain of movie438

review. However, for SNLI, the generated prompts439

seem to be less natural than those for SST-2 while440

still yielding high fluency scores. While the cur-441

rent Fluency metric can measure comprehensibility442

to certain extents, further research should be con-443

ducted to develop better readability models.444

6.2 Prompt performance versus readability445

Figure 2 exhibits the relationship among the per-446

formance of prompts, their lengths and readability.447

In general, shorter prompts tend to have higher flu-448

ency scores, and vice-versa. On the other hand,449

long prompts tend to be more consistent in yield-450

ing high performance. Finding long, readable, and451

highly-accurate prompts are challenging since there452

seem to exist certain degrees of trade-off among453

these objectives. Aiming to optimizing solely one454

Prompt Fluency Acc
643 reviewers [X] Really [Y] 95.17 80.00
Yep [X] Really [Y] 95.07 78.21
NB [X] This smells unbeliev-
ably [Y]

95.15 86.35

Reviewer impressions [X] Re-
ally [Y]

94.08 84.44

Prompt Fluency Acc
Yep [X1] [Y] Chrys [X2] 93.50 41.17
Alright [X1] [Y] Hmm [X2] 95.71 38.07
Okay [X1] [Y] !!!! Success [X2] 92.84 45.67
Ibid [X1] [Y] Hmm [X2] 95.90 33.86

Table 3: Example resulting prompts with Fluency scores
higher than 90.00 on SST-2 dataset (top) and SNLI (bot-
tom). [X1], [X2], and [X] denote the input sentences,
and [Y] denotes the corresponding label.

objective likely compromises the other one. Aggre- 455

gating all objectives together into an optimization 456

function as in FLUENTPROMPT (Shi et al., 2023) 457

results in a single trade-off solution for each set of 458

weights. However, there exist no intuitive methods 459

to properly determine weight values that yield the 460

desirable trade-offs. By addressing discrete prompt 461

search as a true MOO problem via approximating 462

the Pareto front, our MoEAP3 is able to obtain a 463

whole approximation set of diverse prompts with 464

the same costs of one GAP3 run. 465
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Figure 2: The relationship among the resulting prompts’ performance, their lengths and readability in six datasets.
Darker-colored dots are prompts with higher fluency scores. We plot the resulting prompts in the final populations
of 10 independent MoEAP3 runs.

Figure 3 shows the merged approximation fronts466

formed by the final populations of 10 runs of467

MoEAPs and GAP3 (all dominated prompts are468

omitted). Solely optimizing for performance, re-469

sulting prompts of GAP3 score highly in terms of470

accuracy but poorly in terms of readability. Es-471

pecially in MR and MRPC tasks, the resulting472

prompts of MoEAP3 entirely dominate those of473

GAP3. While GAP3 and other (single-objective)474

baseline search methods return a single resulting475

prompt each time, MoEAP3 returns an approxima-476

tion set containing multiple diverse prompts from477

which users can choose their desired trade-off.478

6.3 MoEAP3 and GAP3 prompt comparisons479

We compare some exemplary prompts obtained480

by MoEAP3 and GAP3 with top performance on481

test datasets (i.e., accuracy or F1 score) of single-482

sentence and sentence-pair tasks in Figures 6 and483

7, respectively. We also use bloom-580m (Work-484

shop et al., 2022) to compute the perplexity (Log-485

PPL) (Meister and Cotterell, 2021). Bloom is a486

multilingual model that can tokenize non-Latin487

words (e.g., Korean, Japanese, Chinese) and is488

thus suitable for perplexity computation. Over-489

all, top-performing prompts found by GAP3 is490

longer than those of MoEAP3. For example, in491

RTE, the prompt [’Yeah ? ? ’ , ’ILY Rather!!’]492

of MoEAP3 achieves an F1 score of 62.85 while493

the prompts with similar scores found by GAP3494

are much longer, more complex, and less readable. 495

The prompts of MoEAP3 contain much fewer to- 496

kens, which would incur less operation costs when 497

using these prompts for querying language models. 498

During the single-objective optimization process 499

of GAP3, because performance is the sole fitness 500

function, truncation selection would bias the search 501

toward high-performing prompts, which typically 502

contain many tokens and have low fluency scores. 503

Short prompts are thus unlikely to survive for many 504

generations due to the selection pressure. The true 505

multi-objective optimization process of MoEAP3, 506

on the other hand, retains these short prompts in its 507

evolving population despite their low performance 508

due to their high fluency scores. Population diver- 509

sity is thus maintained, thereby fostering both kinds 510

of prompts with high performance or high fluency. 511

Short prompts that survive the Pareto dominance- 512

based selection have better chances to improve their 513

performance via crossover and mutation operators 514

in subsequent generations. 515

6.4 Choosing prompts at knee positions 516

The return of an MoEAP3 run is an approximation 517

set of many candidate prompts, from which deci- 518

sion makers need to select one (or several) final 519

prompt(s) to query the language model. Extreme 520

prompts are typically not favorable choices because 521

one objective is severely compromised to optimize 522

the other. Prompts with the highest fluency often 523
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Figure 3: Non-dominated approximation fronts formed by prompts in final populations evaluated on test datasets.
Red diamonds denote utopia solutions and cyan squares denote knee prompts. We perform 10 independent runs
with different random seeds for each task.

score poorly in terms of accuracy of F1. Prompts524

with the highest performance scores are often unin-525

telligible, and these prompts can be easily obtained526

with single-objective methods like GAP3 (Zhao527

et al., 2023).528

If there are no particular biases/weights toward529

certain objectives, knee solutions could be promis-530

ing choices (Branke et al., 2004). In the DPS con-531

text, knee solutions are the prompts where a small532

improvement in readability leads to a large deteri-533

oration in performance, or vice versa. Therefore,534

they are critical solutions that should be considered535

by decision makers. Figure 4 shows an example536

of extreme and knee solutions. In order to iden-537

tify these knees on a bi-objective approximation538

front, for each non-dominated solution, we com-539

pute the angle between the current solution and its540

two nearest neighbors in the same non-domination541

rank. If the angle is larger than 210 degree, the542

prompt is considered a knee solution. We identify543

knee prompts on the approximation fronts returned544

by MoEAP3 on six datasets in Figure 3. They545

represent critical trade-offs between prompt perfor-546

mance and readability.547

F
lu

en
cy

Accuracy or F1 score

Extreme individual

Knee individual

F3 F2
F1

Utopian

Figure 4: Example of individuals partitioned into non-
domination ranks in multi-objective optimization

7 Conclusion 548

In this paper, we demonstrate that discrete prompt 549

search (DPS) should be formulated as a multi- 550

objective optimization problem to take into account 551

both prompt performance and human-readability. 552

We then propose MoEAP3, which is a gradient-free 553

evolutionary method that can efficiently address 554

the multi-objective DPS in the context of few-shot 555

learning. MoEAP3, while handling both objectives 556

simultaneously, does not suffer from performance 557

drop and even achieves superior results compared 558

to many state-of-the-art baselines. Moreover, the 559

investigation of solution sets of trade-off prompts 560

returned by MoEAP3 is more insightful and intu- 561

itive for decision makers. 562

Limitations 563

The fluency metric, which is computed based on a 564

classifier fine-tuned on the CoLA dataset, exhibits 565

certain limitations in evaluating the linguistic ac- 566

ceptability of generated prompts. Besides, other 567

readability metrics relevant to text fluency, e.g., 568

repeated phase score, are not considered in this 569

paper. Furthermore, it is challenging to extend 570

MoEAP3 to the cases of more than three objectives 571

because Pareto dominance-based selection would 572

become ineffective as the number of objectives 573

increases. There are indicator-based and reference- 574

based MOEAs which are more suitable to extend 575

MoEAP3 to many-objective scenarios. 576

Ethics Statement 577

In this paper, the authors introduce MoEAP3 that 578

samples language models to generate prompts. Dur- 579

ing mutation, new tokens in the language model 580

vocabulary are inserted into prompts, which may 581

contain offensive, slang, or hate words. 582
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A Baseline Implementation Details849

We describe the implementation of our baselines:850

Manual prompt: We collect handcrafted851

prompts and their label words from (Sun et al.,852

2022) as the first baseline.853

Instruction: task descriptions manually de-854

signed to instruct the language model. We use855

instructions and their label words from (Mishra856

et al., 2022; Wang et al., 2022b). The specific in-857

structions are shown in Table 6.858

In-context learning (ICL): we sample k ran-859

dom samples per class in the training dataset, and860

then concatenate them as the model input. We im-861

plement ICL following (Gao et al., 2021)862

BBT: We re-produce (Sun et al., 2022), we set863

50 prompt tokens, the intrinsic dimension is 500,864

and the population size is 20. The number of API865

calls is 8,000 to optimize the cross entropy loss866

function. The templates and label words for BBT867

are from (Sun et al., 2022).868

(BDPL: We use AdamW (Loshchilov and Hut-869

ter, 2019) to optimize discrete prompt within 30870

epochs, the learning rate is 20−4 (for SST-2, AG’s871

News, MR, SNLI) and 10−4 (for RTE, MRPC),872

the prompt length is 50. For SST-2, MRPC, SNLI,873

and RTE, we apply the templates and label words874

from (Diao et al., 2023); we use templates and label875

words of (Sun et al., 2022) for AG’s News and MR.876

ClaPS: we run ClaPS including 2 phases: search877

space pruning and training phase (Zhou et al.,878

2023). In the search space pruning phase, we use879

the embedding layer of roberta-large and en-880

coder embedding layer of flan-t5-base to extract881

the embeddings of PLM vocabulary. Then we ap-882

ply K-Means++ (Arthur and Vassilvitskii, 2007) to883

collect 2,000 centroids with the closest word in the884

embedding space. In the training phase, we imple-885

ment different optimization algorithms of ClaPS:886

genetics (ClaPS-GE), particle swarm optimization887

(ClaPS-P), and greedy search (ClaPS-Gr). We opti-888

mize a population of 128 individuals with prompt889

length is 5 within 30 epochs, we select 64 individu-890

als for mutation and crossover at each epoch.891

GAP3: We run GAP3 following (Zhao et al.,892

2023), the crossover and mutation probability are893

0.5 and 0.7 respectively. The population has 64894

individuals and the number of generations is 50.895

B Ablation study896

In this ablation study, we carry out experiments897

on SST-2 and MRPC datasets. We perform inde-898

pendent runs with different random seeds for each 899

setting.
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Figure 5: Ablation study on backbone models and k-
shot on MoEAP3. We plot mean and standard deviation
of the results over three random seeds.

900

B.1 Different backbone models 901

We conduct experiments with different backbone 902

transformer models: RoBERTa (an encoder model), 903

GPT-2 (a decoder model), and T5 (an encoder- 904

decoder model). Figure 5 show that GPT-2 has 905

a higher variance over three random seeds com- 906

pared to RoBERTa and T5. All models yield the 907

highest performance at the largest 128-shot data. 908

T5 exhibits the lowest variance, demonstrating its 909

potential to be a well-suited few-shot learner. 910

B.2 k-shot 911

We increase k = {16, 32, 64, 128} to show the ef- 912

fect of different k settings to the performance of 913

MoEAP3. Figure 5 shows that, overall, the per- 914

formance of models is consistent with the size of 915

training datasets. The performance of models with 916

the largest training data outperforms smaller train- 917

ing data settings. In the small 16-shot data, GPT-2 918

model has the highest variance on SST-2, and the 919

variance decreases over larger training data set- 920

tings. 921
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Task # Label Training Testing Template Label words
size size

SST-2 2 32 0.8K [P1] [X] [P2] [Y] good, bad
MR 2 32 1.07K [P1] [X] [P2] [Y] good, bad
AG’s News 4 64 7.6K [X] [P1] [Y] world, sports

business, technology
MRPC 2 32 1.7K [P1] [X1] [Y] [P2] [X2] No, Yes
RTE 2 32 0.3K [P1] [X1] [Y] [P2] [X2] No, Yes
SNLI 3 48 9.8K [P1] [X1] [Y] [P2] [X2] No, Yes, Maybe

Table 4: The dataset statistic, template, verbalizer. # Label denotes the number of labels. P1 and P2 are initialized
as empty string, MoEAP3 optimize these prompts to maximize two objective functions in section 4.

Methods Discrete prompt Human-free Readability Population- Multi-objective
prompt based

Manual Prompt ✓ ✗ ✓ ✗ ✗

Instructions ✓ ✗ ✓ ✗ ✗

ICL ✓ ✗ ✓ ✗ ✗

BBT (v2) ✗ ✗ ✗ ✓ ✗

RLPrompt ✓ ✓ ✓ ✗ ✗

TEMPERA ✓ ✗ ✓ ✗ ✗

GPS ✓ ✗ ✓ ✓ ✓

ClaPS ✓ ✗ ✓ ✓ ✗

GAP3 ✓ ✓ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓

Table 5: The comparison of our proposed with previous methods.

Task Prompt
SST-2 In this task, you are given sentences from movie reviews. The task is to classify a

sentence as "great" if the sentiment of the sentence is positive or as "terrible" if the
sentiment of the sentence is negative.

AG’s News In this task, you are given a news article. Your task is to classify the article to one out
of the four topics "World", "Sports", "Business", "Tech" if the article"s main topic is
relevant to the world, sports, business, and technology, correspondingly. If you are not
sure about the topic, choose the closest option.

MR In this task, you are given sentences from movie reviews. The task is to classify a
sentence as "great" if the sentiment of the sentence is positive or as "terrible" if the
sentiment of the sentence is negative.

SNLI In this task, you’re given a pair of sentences, sentence 1 and sentence 2. Your job is to
choose whether the two sentences clearly agree (entailment)/disagree (contradiction)
with each other, or if this cannot be determined (neutral). Your answer must be in
’Yes’, ’No’, and ’Maybe’ respectively.

MRPC You are given two sentences (Sentence1 and Sentence2). Answer "Yes" if these
sentences are a paraphrase of one another, otherwise answer "No".

RTE In this task, you’re given two sentences. Indicate if the first sentence clearly entails
the second sentence (i.e., one can conclude the 2nd sentence by reading the 1st one).
Indicate your answer with ’Yes’ if the first sentence entails the second sentence,
otherwise answer with ’Maybe’.

Table 6: The Instructions for our experiments with both roberta-large and flan-t5-base.
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Method Log- Fluency Perf Prompt
PPL

SST-2
GAP3 8.94 12.7 91.28 ? ? ア ル シ ャ Hawkins ゴ Ble 方 Authors

? ? aghhhhosen ークシャ Xen ーク   [X] techno ﾻ
Contin dag dag characterization hereís Just unequivocally
extremely [Y]

9.38 12.10 91.17 ? ? アル irements ゴ Ble 方 Authors ? ? aghhhhosen ー
クシャ Xen ーク ? [X] gue ? ? ? ? Contin dag kid char-
acterization hereís Just unequivocally extremely [Y]

9.45 4.59 90.00 uponrailuouslyofferray player purchaser Blu Modray flat
disc ク [X] :#tten veryodi VERY [Y]

MoEAP3 7.35 21.05 91.28 wbrama [X] 88REALLY really [Y]
7.28 89.45 91.06 our rating [X] 88Really REALLY [Y]
7.55 85.12 91.97 My honest IGN rating Wonderful [X] ————– Really re-

ally REALLY [Y]
MR

GAP3 9.17 9.43 87.42 mediocre performer 光 medi NUMiscocreIde mediocreper-
formance detailsivenessAMIWinner [X] Movie ? unflVery
denomination deterioration performer Very very [Y]

10.02 28.75 87.24 hidGGGG hig hig ビ higbbGGGGGGGG Pro-
fessional SHOWunky degradingEEEEPM [X]
................................<unk> feelsplain plain fundament ord
downright REALLYreally [Y]

10.14 16.81 88.18 Post worst94 catastrophicorge wil rac Seasarc の
? criticised ? george displENTjohnjonghelcot Quotees-

sionsRichailing ⋯[X] feels reallyreally,reallyreallyreally [Y]
MoEAP3 7.56 91.69 87.43 ? Tinder [X] 88Really ridiculously [Y]

6.50 93.40 88.09 88Broken glass [X] 88Totally [Y]
7.42 48.99 88.37 Rating nuns ? [X] Veryveryvery veryvery very [Y]

AG’s News
GAP3 10.82 2.50 83.98 [X] <unk> NZ tricks<unk><unk> digest ? noon Gold-

manIVE Tele 470avers PatriotsialsollarSIMNiamus reliant
McF Ratt ? gallelsen commentary insight contempo-
raryclassified [Y]

8.59 8.02 83.78 [X] ? Cameraipe Changing times impacting Throw evolvin-
gomed Contin tipping Challenges unequ footsteps Chal-
lenges facing mat Related 裏覚醒 Related allchukfreedom
[Y]

11.80 6.48 84.49 [X] Colts attributablearedevilJeff’) Den Continue ド
guiIcon<unk>VERTISEMENT————- Modernst
Changing day news unregulated concerning [Y]

MoEAP3 9.41 3.31 84.24 [X] ERY ? CAP ? COL MUSTOUS READ MORE How
insane politics() poisons [Y]

8.42 1.67 83.88 [X] Dragonbound today ? ? ? : hot topics in [Y]
9.79 5.70 83.61 [X] ? Understanding dirty creep hitherto unseenlocking

conflicts VS mainstream [Y]

Table 2: Prompts whose have top accuracy on test dataset of single sentence classification. The prompts
are picked randomly.

2

Figure 6: Example prompts with top performance on test datasets of single-sentence classification tasks.
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Method Log- Fluency Perf Prompt
PPL

SNLI
GAP3 9.30 23.32 48.55 Therefore IPA Prim Pole ? backstory Consider

? olarUltimate Possible PesCase C:" assailant Hath
[X1] [Y] ................................ Why,oulder [X2]

9.37 1.25 52.05 Therefore IPAwhose Primistically Pole Something Neck
Consider ? olarUltimate Possible Worst externalToE-
VAOnlyomsday Hugenario assailant Hath [X1] [Y] !!!! Alt
Why,oulder [X2]

9.41 1.45 56.04 Meaning censorasar ? zanne Borg ? GiovanniMathline
Dum ? lin</s>OL Ont Eliot Quote IPA quotation quota-
tion Locke," Nep [X1] [Y] !!!! [X2]

MoEAP3 9.73 94.63 43.34 Yeah [X1] [Y] Immediately [X2]
7.46 84.15 47.40 Yep........ Valid Answer [X1] [Y] !!!! Definitely [X2]
8.41 52.74 55.07 Yep )] [X1] [Y] !!!! Hur [X2]

RTE
GAP3 10.70 24.54 58.12 Yeah 1850 elltta Restorationerieaina [X1] [Y]

ieri................................................................tem
? ............. positively SER 374 ? OC!!!!!!!! dred ty!!!!!!!!

[X2]
11.17 16.39 61.02 hensurities Clar billionaire representedARY Edi-

tororterudge Morning ounce ]) PublisherLotPresYork
[X1] [Y] !!!!!!!! denial FN0000000000000000!!!!!!!! Ther
indeed (),[X2]

12.02 13.92 57.04 Resp Answers ? Candidate e (>oyd Rebirth ________
neg Ku JudicialpaUFpaUFPU ? Vale [X1] [Y] !!!!!!!! conse-
quentlyises arg き oss Rather!!!! [X2]

MoEAP3 7.83 37.66 58.84 YepYep [X1] [Y] ises!!!! ow [X2]
8.95 50.71 62.85 Yeah ? ? [X1] [Y] ILY Rather!! [X2]
7.83 62.07 57.40 York Yep Yep LR [X1] [Y] Hmm [X2]

MRPC
GAP3 10.20 13.18 72.27 Yah NeOTHER Cum//////////////// quem mills Fa-

vor!!!!! [X1] [Y] Ne-|!!! disputesooting Allow petitionsrals
Fr Allow Forum Policyaciesction Adsusted[X2]

9.84 8.27 76.62 Yeprals Choose colour disclaimverning048 questionsacket
selectedicle Yep.) x19 [X1] [Y] Pastates Wrticket ? dirhhh
? Occasionally pa Eh Unsure Err Err [X2]

10.90 24.84 79.21 ? verified Kinnikuman restgeon Mace ? ・ ・
letalheaders ? ? [X1] [Y]x18nette
................................................................ Spring
................................ OWx18 ())!!! Indeed Mace イ
[X2]

MoEAP3 8.41 95.28 75.86 Say Leilan x18 [X1] [Y]x18 Nayx18 [X2]
9.14 83.23 79.96 Peslizu [X1] [Y]izu Hmm [X2]
9.77 9.53 76.90 Alberto deducted +—FS ))) 148avour174 Tav [X1] [Y] !) ;)

? Correct opin Toll Firstly [X2]

Table 3: Prompts whose have top accuracy (f1-score) on test dataset of sentence pair classification. The
prompts are picked randomly.

3

Figure 7: Example prompts with top performance on test datasets of sentence-pair classification tasks.
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