
Causal Discovery Inspired Unsupervised Domain Adaptation for
Emotion-Cause Pair Extraction

Anonymous ACL submission

Abstract
This paper tackles the task of emotion-cause001
pair extraction in the unsupervised domain002
adaptation setting. The problem is challeng-003
ing as the distributions of the events causing004
emotions in target domains are dramatically005
different than those in source domains, despite006
the distributions of emotional expressions be-007
tween domains are overlapped. Inspired by008
causal discovery, we propose a novel deep009
latent model in the variational autoencoder010
(VAE) framework, which not only captures the011
underlying latent structures of data but also012
utilizes the easily transferable knowledge of013
emotions as the bridge to link the distributions014
of events in different domains. To facilitate015
knowledge transfer across domains, we also016
propose a novel variational posterior regular-017
ization technique to disentangle the latent rep-018
resentations of emotions from those of events019
in order to mitigate the damage caused by the020
spurious correlations related to the events in021
source domains. Through extensive experi-022
ments, we demonstrate that our model outper-023
forms the strongest baseline by approximately024
11.05% on a Chinese benchmark and 2.45%025
on a English benchmark in terms of weighted-026
average F1 score. The source code will be027
publicly available upon acceptance.028

1 Introduction029

Emotion-cause pair extraction (ECPE) aims to ex-030

tract emotions and the events causing such emo-031

tions mentioned in a document (Xia and Ding,032

2019). The task has potential applications in a033

number of areas, such as affective computing,034

market analysis, and intelligent agents for cus-035

tomer support. However, there are only a small036

number of labeled training corpora available in a037

handful of domains. As shown in Fig. 1, in order038

to deploy ECPE models to target domains, where039

there are only unlabeled data, we focus on the un-040

supervised domain adaptation (UDA) for ECPE,041

coined UDA-ECPE, which is not explored before.042

Figure 1: An illustrative example of the UDA-ECPE
task. Orange and green highlights respectively denote
emotion and cause clauses.

Multi-class or multi-label classification domi- 043

nates in conventional UDA tasks. UDA-ECPE is 044

more challenging because the events causing the 045

same emotion are barely the same across domains, 046

despite the knowledge of emotional expressions is 047

easier to transfer across domains using the UDA 048

methods (Zad et al., 2021). For example, the rea- 049

son for "I feel so happy today" can be "I have re- 050

ceived a grant from the government" in the society 051

domain and "I found that the stock I bought went 052

up" in the finance domain. There are usually no 053

explicit keywords such as "because" showing their 054

causal relations. However, current UDA methods 055

assume that there are small discrepancies between 056

source and target distributions (Zhao et al., 2019; 057

Kumar et al., 2020). We show in Sec. 4.2 that 058

the state-of-the-art (SOTA) UDA methods indeed 059

have limited capabilities to improve the perfor- 060

mance of the SOTA ECPE models. 061

It is a common practice to project texts into la- 062

tent representations for improving language un- 063
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derstanding (Wang et al., 2019). Existing tech-064

niques disentangle different types of latent rep-065

resentations by applying regularization terms to066

enforce independence between the corresponding067

random variables (Cheng et al., 2020). However,068

the independence assumption contradicts the fact069

that emotions and the events causing them are stat-070

ically dependent.071

To tackle the above challenges, we take the072

transferable knowledge of emotional expressions073

as the bridge between a source domain and a tar-074

get domain. In a single domain, we identify causal075

relations between emotions and domain-specific076

events, which can be viewed as a causal discov-077

ery problem between the corresponding random078

variables. In the VAE framework (Kingma and079

Welling, 2013), we propose a novel model, coined080

CAREL-VAE, to map inputs texts into latent emo-081

tion representations and latent event representa-082

tions and detect their causal relations. Herein, we083

propose a novel variational posterior regularizer084

to disentangle those representations by maximiz-085

ing the divergences between the posteriors without086

assuming independence. In a target domain, we087

improve the self-training algorithm (Chen et al.,088

2011) for discovering domain-specific causal re-089

lations, referred to as CD-SELFTRAIN. Instead090

of incrementally updating a training set, we im-091

prove the original algorithm by producing a new092

pseudo-labeled training set in each epoch. As a093

result, our method outperforms the SOTA ECPE094

models trained with the SOTA UDA methods by a095

wide margin.096

To sum up, our contributions are the following:097

• We propose a novel causal discovery inspired098

UDA method, coined CD-SELFTRAIN, and099

a new model, coined CAREL-VAE, for the100

ECPE task in the unexplored UDA setting.101

• We propose a novel disentanglement regular-102

ization term on variational Posteriors so that103

it does not enforce independence between104

emotions and the events causing them.105

• Our approach achieves superior performance106

in terms of weighted-average F1 over the107

strongest baseline by approximately 11.05%108

on a Chinese benchmark and 2.45% on a109

English benchmark. Even if that baseline110

is trained with the SOTA UDA method, our111

method still achieves the best.112

2 Challenges in UDA-ECPE 113

The task ECPE is concerned with recognizing 114

causal relations between the events causing emo- 115

tions and the corresponding emotional expressions 116

mentioned in a document. All prior studies on the 117

ECPE task employ a (deep) learning-based clas- 118

sifier to detect mentions of causal relations based 119

on an input text. They often choose an input text 120

that mentions an event and an emotional expres- 121

sion. Then those classifiers determine whether the 122

event causes the emotional expression by investi- 123

gating if i) the event and the emotional expression 124

are correlated and ii) there is a linguistic pattern 125

indicating their relation is causal, e.g. using a key 126

phrase “leads to”. 127

Formally, given an input text x, we extract an 128

event embedding zc and an emotion embedding 129

ze, which are the values sampled from the cor- 130

responding latent random variable vectors Zc and 131

Ze. In a source domain, a model learns a distri- 132

bution
∑

Zc,Ze p(Y |Zc,Ze,x)p(Zc,Ze|x), where 133

Y denotes a binary random variable indicating 134

if there is a causal relation between Zc and Ze. 135

The key challenge is that both p(Y |Zc,Ze,x) and 136

p(Zc,Ze|x) are significantly different in target do- 137

mains. Although prior studies show that p(Ze|x) 138

can be easily transferred from source domains to 139

target domains (Wang et al., 2022), the correla- 140

tions between Zc and Ze are almost not trans- 141

ferable, because p(Zc) are dramatically different 142

between domains. Therefore, when adapting a 143

model trained in a source domain to a target do- 144

main, the model needs to forget the correlations 145

between emotions and events from the source do- 146

main, followed by learning new correlations in the 147

target domain. 148

To provide an intuitive understanding of the 149

above mentioned challenges in the UDA set- 150

ting, we visualize the clause embeddings, namely 151

p(Zc), for ground-truth emotion and emotion 152

causes respectively on CH-ECPE and EN- 153

ECPE, and compare them with the sentence em- 154

beddings for a widely used domain adaptation cor- 155

pus Amazon Reviews (Blitzer et al., 2007) using 156

t-SNE. As the original CH-ECPE are not parti- 157

tioned based on domains, we manually assign each 158

data point in the corpus with the corresponding do- 159

main label. Further details are provided in Sec. 160

4.1. 161

As shown in Figure 5, the data points of Chi- 162

nese emotion clauses from various CH-ECPE’s 163
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domains are strongly overlapped, the domain di-164

vergences are far smaller than those of the embed-165

dings of the emotion causes. It is thus challenging166

for existing UDA methods, which work only in the167

cases that the distribution shift from a source do-168

main to a target domain is small, as illustrated in169

Fig.2a (Zhao et al., 2019; Kumar et al., 2020). In170

addition, we employ two different datasets as dif-171

ferent domains for English. For English corpora172

similar tendency can be found in A.1.173

3 Methodology174

The UDA-ECPE task is concerned with identify-175

ing causal relations between mentions of events176

and emotional expressions in target domains,177

which do not have labeled data. In the source do-178

main, there is a set of labeled documents Ds =179

{(Xs
1,Rs

1), (X
s
2,Rs

2), ..., (X
s
n,Rs

n)}. Each doc-180

ument Xs
k consists of a sequence of clauses181

(x1,x2, ...,xd) and is annotated with a set of la-182

beled emotion-cause pairs Rs
k = {(yrij , yci , yej )}i,j ,183

where yrij is a binary label indicating if xi is an184

event mention causing an emotion expressed in185

xj , yci denotes whether xi is an event or not, and186

yej ∈ Ye denotes the category of the emotion. In187

this work, we consider the widely used six ba-188

sic emotion categories: happiness, sadness, fear,189

disgust, anger, and surprise. Then the task is to190

identify a set of such causal relations and emo-191

tion categories Rt
k = {(yrij , yej )}i,j from each un-192

labeled document k in target domains. In con-193

trast, the prior studies (Xia and Ding, 2019) as-194

sume the training and test distributions are identi-195

cal and emotional expressions are not categorized.196

Hence, our setting is more difficult and practical197

by considering emotion categories and distribution198

discrepancies between domains.199

CAREL-VAE Overview. Denoted by Ze and200
Zc the latent random variable vectors for emo-201
tion and event respectively, we adopt the202
VAE framework to learn the latent distribution203
p(yrij , y

e, yc,Xij ,Z
e,Zc) for a pair of clauses204

Xij = (xi,xj), which is factorized into205

task-specific︷ ︸︸ ︷
p(yr

ij |Ze,Zc)p(ye|Ze)p(yc|Zc)

standard VAE︷ ︸︸ ︷
p(Xij |Ze,Zc)p(Ze)p(Zc)206

In addition to the standard components of207

VAE, such as the decoder p(Xij |Ze,Zc), we in-208

clude task-specific predictors: an emotion classi-209

fier p(ye|Ze), an emotion-cause relation classifier210

p(yrij |Ze,Zc), and an event predictor p(yc|Zc).211

To approximate the true distribution, we212
consider a factorized variational distribution213

q(Ze,Zc|Xij) = q(Ze|Xij)q(Z
c|Xij), which 214

correspond to an emotion encoder and an event 215
encoder respectively. Then the variational lower 216
bound (ELBO) takes the following form: 217

Eq(Ze,Zc|Xij) log
[
p(Xij |Ze,Zc)p(yr

ij |Ze,Zc)

p(ye|Ze)p(yc|Zc)
]
− DKL(q(Z

e|Xij∥p(Ze))

− DKL(q(Z
c|Xij∥p(Zc))

218

Disentanglement. In target domains, it is not 219

desirable that the latent representation of an emo- 220

tion is mixed with event information, which makes 221

transfer of the knowledge about emotions across 222

domains difficult, because events in target do- 223

mains are not directly related to those in source 224

domains. Therefore, we need to disentangle la- 225

tent emotion representations from latent event rep- 226

resentations for improving compositional general- 227

ization (Russin et al., 2019) without making the 228

independence assumption. 229

In light of the above analysis, we propose a 230

variational posterior regularization technique. The 231

key idea is to regularize the model in the way 232

that the dense regions of q(Ze|Xij) associate with 233

only emotions, while those of q(Zc|Xij) asso- 234

ciate with only events. The classifiers for p(ye|Ze) 235

and p(yc|Zc) are in general smooth such that they 236

consistently predict only one label in a dense re- 237

gion. If there is little overlap between the dense 238

regions of q(Ze|Xij) and those of q(Zc|Xij), a 239

dense region from either distribution is expected 240

to associated with either an emotion category or 241

a type of events estimated by one of the classi- 242

fiers, under the maximum likelihood principle. In 243

another word, we only need to add a regularizer 244

to minimize the overlap between q(Ze|Xij) and 245

q(Zc|Xij) such that their divergence is high. 246

In theory, the corresponding divergence mea- 247

sures Dk(q(Z
e|Xij)∥q(Zc|Xij)) should not as- 248

sume absolute continuity (Royden and Fitzpatrick, 249

1988), which requires that q(Ze
i |Xij) > 0 for 250

every q(Zc
i |Xij) > 0, vice versa. In reality, 251

a random variable Ze
i may have high probabil- 252

ity in the region where a Zc
j has zero probabil- 253

ity. To tackle this, we choose Bhattacharyya dis- 254

tance (Bhattacharyya, 1946) and maximum mean 255

discrepancy (MMD) (Gretton et al., 2012) respec- 256

tively as a regularizer. Each of them has its own 257

strength. More details are covered in Sec. 3.2. 258

3.1 Model Details 259

CAREL-VAE Model. As illustrated in Fig. 3, 260

our model is composed of an inference module, a 261

text generator, task-specific predictors and priors. 262
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(a) Amazon sentiment reviews (b) Chinese emotion clauses (c) Chinese emotion cause clauses

Figure 2: The t-SNE visualizations of the sentence embeddings from Amazon Reviews multi-domain sentiment
corpus, the clause embeddings from the Chinese UDA-ECPE corpora for English UDA-ECPE corpora please refer
to A.1

Figure 3: The architecture of our model CAREL-VAE.

Inference Module. The inference module con-263

sists of a pre-trained BERT (Devlin et al., 2018)264

encoder, an emotion encoder and an event pre-265

dictor. Given a pair of clauses (xi,xj), we con-266

struct inputs following the common practice that267

inserts an [SEP ] token between the two clauses268

and prepends the sequence with a [CLS] token.269

We take the hidden representation h of [CLS] as270

the output of the BERT encoder.271

To distinguish the representation of the event272

and emotion variables, we employ two adapters273

to produce different embedding respectively. We274

initialize two vectors ae and ac for emotion and275

event respectively, and treat them as the queries276

while view h as key and value. We therefore277

synthesize the new emotion and event representa-278

tions he and hc by computing the sparsemax at-279

tention while using ae and ac as queries respec-280

tively (Martins and Astudillo, 2016).281

The variational distribution q(Ze,Zc|Xij) are282

realized as simple factorized Gaussians, which283

correpond to an emotion encoder q(Ze|he) and284

an event predictor q(Zc|hc) on top of the hid-285

den representations he and hc respectively. Each286

encoder is implemented as a multilayer percep-287

trons (MLPs) after applying the reparameteriza-288

tion trick. 289

µe, logσe = MLP(he;θe)

µc, logσc = MLP(hc;θc)

ze = µe + σe ⊙ ϵ, ϵ ∼ N (0, I)

zc = µc + σc ⊙ ϵ, ϵ ∼ N (0, I)

(1) 290

where θe and θc are the parameters of the emo- 291

tion and event encoders respectively, µe, σe and 292

µc, σc denote the means and standard deviations 293

of the corresponding Gaussian distributions, ϵ de- 294

notes independent Gaussian noises, ze and zc de- 295

note the respective values of Ze and Zc. 296

Text Generator. For p(Xij |Ze,Zc), we consid- 297

ers a lightweight solution that only reconstructs 298

a bag-of-words (BoW) representation from latent 299

representations, which is significantly faster than 300

a conventional sequence decoder. 301

p(xBoW|ze, zc) = σ(W dec[ze, zc] + bdec) (2) 302

where θdec = [W dec; bdec] denotes the parameters 303

of the decoder, σ(·) is the sigmoid function, and 304

xBoW is the BoW representation of Xij . 305

Priors. For both p(Ze) and p(Zc), we follow the 306

common practice to use N (0, I) as their priors. 307

Task-Specific Predictors. For each predictor, we 308

apply a linear layer to its inputs, followed by a 309

softmax layer if it is a multi-class classification 310
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problem, otherwise a sigmoid layer for a binary311

classification problem.312

Emotion Extraction Model. We can apply any313

emotion extraction model to obtain clauses con-314

taining emotional expressions. In this work, we315

extend the emotion classification model in (Xia316

and Ding, 2019) by replacing its encoder with317

BERT encoder and its binary classification layer318

with a softmax layer.319

3.2 Model Training320

3.2.1 Source Domain Training321

CAREL-VAE Model. Given a set of docu-322

ments, each of which is annotated with a set Rs
k =323

{(yrij , yci , yej )}i,j for positive examples, we obtain324

negative examples of relations by randomly sam-325

pling clause pairs that are not part of Rs
k. In par-326

ticular, for each emotion clause in Rs, we pair it327

with a randomly picked non-cause clause in the328

document, resulting in the same number of nega-329

tive samples. The training loss L = LELBO + λΩ,330

including the loss LELBO derived from the ELBO331

and the variational posterior regularizer Ω adjusted332

by the hyperparameter λ.333

Similar to prior works, the loss LELBO includes334

the cross-entropy losses from the text decoder and335

the task-specific predictors, as well as two regular-336

ization terms from the two KL divergences, each337

of which takes the form of ∥z∥2 − logσ.338

To motivate the regularizer Ω, we start339

with Bhattacharyya distance, which mea-340

sures the angle between two probabil-341

ity vectors (
√

pa(z0), ...,
√
pa(zn)) and342

(
√

pb(z0), ...,
√

pb(zn)) over n data points.343

Unlike KL divergence, Bhattacharyya distance344

yields a positive value regardless the probability345

at a data point is zero or not, if the distance is346

not zero. For Gaussians, which are the cases for347

the variational posteriors, it has a closed form348

solution:349

Dbh =
1

8
(µe − µc)TΣ−1(µe − µc) +

1

2
ln

( detΣ∏
σe

∏
σc

)
(3)350

where Σ = (σe+σc)2

2 I and the determinant351

detΣ =
∏

((σe)2+(σc)2)
2 . The left term is es-352

sentially an unnormalized multivariate Gaussian.353

The corresponding regularizer Ωb = −Dbh, which354

maximizes this distance, would drive the two355

Gaussians far away from each other.356

The above regularizer only maximizes the dis-357

tance between two types of latent representations358

from the same clause pair. Intuitively, it would be 359

useful to also push ze
i of an instance i away from 360

the zc
j of the other instances. For efficiency, we 361

only apply such regularizations between instances 362

in a batch, which ends up a regularizer Ωbb that 363

maximizes Bhattacharyya distance between any 364

pair of (ze
i , z

c
j) in a batch. 365

Following the same idea, we also exploit max- 366

imum mean discrepancy (MMD) (Gretton et al., 367

2012), which is a kernel-based divergence mea- 368

sure not requiring absolute continuity, for maxi- 369

mizing divergences across instances batchwise. 370

ΩMMD = −∥ϕ(ze)− ϕ(zc)∥2H,
ze ∼ Ze, zc ∼ Zc (4) 371

where ϕ is a mapping function that projects both 372

ze and zc into a reproducing kernel Hilbert space 373

denoted by H. In this work, we mainly adopt this 374

regularizer in experiments due to its superior per- 375

formance over the other two. 376

Emotion Extraction Model. Provided a set of 377

clauses annotated with emotion categories or 378

None, we train the emotion extraction model as 379

a seven-way classification problem, following the 380

maximum likelihood principle. 381

3.2.2 Adaptation to Target Domains 382

We transfer first the emotion extraction model to a 383

target domain, followed by our model. The emo- 384

tion extraction model is fine tuned by the self- 385

training algorithm (Chen et al., 2011) on an unla- 386

beled corpus in a target domain. The parameters of 387

our model are fine tuned by using our method CD- 388

SELFTRAIN on the same corpora. Given an un- 389

labeled corpus, both self-training algorithms start 390

with applying the model to predict the most likely 391

labels for each input text. The predictions are used 392

to construct a training set to fine tune the model 393

with the same loss L as the source domain train- 394

ing in one epoch. Then the algorithms construct 395

a new training set or update the training set with 396

new examples by using the current model and re- 397

peats the process till the convergence criteria are 398

met. Our algorithm CD-SELFTRAIN differs from 399

the current one in terms of the way to construct 400

training datasets. 401

Relation Prediction. Given a set of documents 402

Du in a target domain, each of which contains at 403

least one clause annotated with emotion pseudo- 404

labels, we pair each emotion clause with the re- 405

maining clauses to create clause pairs for relation 406
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identification. When constructing a training set407

with pseudo-labels in each iteration, we select a408

pair with the highest probability in a document as a409

positive sample and randomly choose a clause pair410

from the remaining as a negative sample. Deep411

models with a high width tend to memorize train-412

ing examples to reduce training errors (van den413

Burg and Williams, 2021), which could hurt the414

model performance by not improving its general-415

ization capability. Thus, we construct a training416

set from scratch each time instead of updating the417

training set from the previous iteration. The train-418

ing procedure terminates when a maximal number419

of iterations is reached.420

Emotion Extraction. For emotion extraction,421

we apply the self-training algorithm (Chen et al.,422

2011) to train the model in a target domain. It423

starts with an empty training set Dt and a set of un-424

labeled documents Du. In each iteration, if a doc-425

ument in Du contains at least one pseudo-labeled426

emotion clauses with their confidences above a427

pre-defined threshold, we add it to the training set428

Dt for the next iteration. In each of such docu-429

ments, we keep only the pseudo-labeled emotion430

clause with the highest probability, the remaining431

clauses are considered as non-emotion ones.432

4 Experiments433

4.1 Experimental Setup434

Datasets. Since there is no corpus for ECPE in435

the UDA setting, we divide CH-ECPE into mul-436

tiple domains. Given the fact that the documents437

in CH-ECPE are Chinese news articles sampled438

from the THUCNews dataset (Li and Sun, 2007),439

we employ the topic classifier THUCTC (Sun440

et al., 2016) trained on the THUCNews dataset441

to categorize CH-ECPE into 14 subsets based442

on topics and choose the largest five as the fi-443

nal domains (e.g. home, society and finance,444

etc.). To further improve the purity of classi-445

fication, based on THUCTC’s classification re-446

sults, we conduct manual inspection and label-447

ing to complete the domain classification of CH-448

ECPE. Also, in the English language setting, we449

view EN-ECPE and Recognizing Emotion Cause450

in CONversations (RECCON) (Poria et al., 2021)451

– an English dataset specifically designed for iden-452

tifying the causes of emotions within conversa-453

tions, as the two source-target domains. Table 4454

summarizes the statistics of each corpus and can455

be found in A.2.456

Metrics. For each target domain in each corpus, 457

we evaluate models for emotion extraction and re- 458

lation identification respectively in terms of preci- 459

sion, recall and F1-score. A prediction is correct 460

if there is a correct causal relation and the emotion 461

category is correct. 462

Baselines. To make a fair comparison, we adapt 463

the three existing ECPE models RankCP, UTOS, 464

UECA-Prompt (all employ BERT as the backbone 465

model) for emotion extraction (EE) and ECPE. In 466

addition, since the universal prompt-based method 467

for ECA tasks (UECA-Prompt) (Zheng et al., 468

2022) is designed to solve the different Emo- 469

tion cause analysis (ECA) tasks in an unified 470

framework, we thus only integrate three UDA ap- 471

proaches on the two ECPE models (RankCP (Wei 472

et al., 2020) and UTOS (Cheng et al., 2021)) in the 473

ECPE task to further demonstrate the effectiveness 474

of our model. The introduction of baseline method 475

and implementation detail please refer to A.2. 476

4.2 Results and Analysis 477

Overall Comparisons. Table 1 and Table 2 re- 478

port the results of our models and the baselines on 479

the ECPE task, as well as the EE subtask. To dis- 480

pel the doubt that our model outperforms the base- 481

lines only because they are developed in the su- 482

pervised setting, we apply the SOTA UDA meth- 483

ods Ada-TS (Zhang et al., 2021), DANN (Ganin 484

et al., 2016) and MEDM (Wu et al., 2021) to the 485

two baselines RankCP and UTOS on the UDA- 486

ECPE task. MEDM is a minimal-entropy UDA 487

approach that introduces diversity maximization 488

to regulate entropy minimization for seeking a 489

close-to-ideal domain adaptation. Ada-TSA is a 490

recently proposed adapter-based UDA approach 491

in which the newly-added adapters can capture 492

transferable features between source and target do- 493

mains by using the domain-fusion scheme. DANN 494

is a widely adopted adversarial-based UDA ap- 495

proach that learns domain invariant representa- 496

tions through a domain discriminator. It can be 497

found that after applying the UDA framework, 498

RankCP and UTOS significantly improved their 499

performance and became comparable with the 500

SOTA prompt-based model UECA-Prompt. 501

However, though we employ UDA (for RankCP 502

and UTOS) while leverage the powerful ability of 503

the Large Language Model (LLM) (for UECA- 504

Prompt) to enhance the baseline models, the base- 505

line models still perform worse than our proposed 506

model. On CH-ECPE, our model outperforms 507
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Model
Society → Home Society → Finance Society → Education Society → Entertainment Weighted Average

EE (%) ECPE (%) EE (%) ECPE (%) EE (%) ECPE (%) EE (%) ECPE (%) EE (%) ECPE (%)
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 F1 F1

(a) S: Society
RankCP 21.90 25.22 23.44 13.14 14.54 13.80 18.04 21.00 19.41 8.56 9.86 9.17 26.13 31.90 28.73 18.59 22.29 20.27 26.87 32.73 29.51 13.43 16.36 14.75 23.49 13.65

RankCP+Ada-TSA 18.55 21.16 19.77 12.30 13.48 12.86 15.86 17.44 16.61 7.12 7.75 7.42 20.62 24.54 22.41 11.86 13.86 12.78 23.44 27.27 25.21 6.25 7.27 6.72 19.65 11.41
RankCP+DANN 91.51 98.15 94.72 51.69 93.85 66.67 85.06 93.24 88.96 40.38 75.35 52.58 82.87 92.02 87.21 43.01 74.10 54.42 77.78 89.09 83.05 30.48 58.18 40.00 92.03 60.93
RankCP+MEDM 20.17 23.12 21.55 12.77 14.07 13.39 20.43 23.84 22.00 9.76 11.27 10.46 24.14 30.06 26.78 13.30 16.27 14.63 14.52 16.36 15.38 6.45 7.27 6.84 22.04 12.63

UTOS 91.51 47.72 62.73 70.99 35.58 47.40 93.33 49.82 64.97 71.33 37.68 49.31 92.21 43.56 59.17 67.09 31.93 43.27 71.43 27.27 39.47 47.62 18.18 26.32 61.77 46.39
UTOS+Ada-TSA 18.55 21.16 19.77 12.30 13.48 12.86 15.86 17.44 16.61 7.12 7.75 7.42 20.62 24.54 22.41 11.86 13.86 12.78 23.44 27.27 25.21 6.25 7.27 6.72 19.65 11.41

UTOS+DANN 84.96 61.13 71.10 56.41 40.07 46.86 89.55 64.06 74.69 57.84 41.55 48.36 86.92 57.06 68.89 62.28 42.77 50.71 80.65 45.45 58.14 48.39 27.27 34.88 71.04 47.16
UTOS+MEDM 52.80 55.60 54.16 14.63 33.32 20.31 15.31 89.68 26.15 0.64 13.03 1.21 53.00 62.50 46.01 24.23 28.31 26.11 57.50 41.82 48.42 12.64 20.00 15.49 46.82 16.70
UECA-Prompt 75.59 74.66 75.12 50.92 61.43 55.69 71.01 69.75 70.38 51.13 62.63 56.30 75.84 82.82 79.17 48.84 62.87 54.97 73.58 70.91 72.22 45.21 60.00 51.56 74.48 55.55

Ours 81.77 76.14 78.85 58.59 71.98 64.60 86.42 81.49 83.88 75.96 82.01 78.87 83.85 82.82 83.33 74.30 79.64 76.88 86.00 78.18 81.90 84.62 80.00 82.24 80.63 71.35
(b) S: Home Home → Society Home → Finance Home → Education Home → Entertainment

RankCP 83.88 91.82 87.67 44.33 75.42 55.84 86.56 93.95 90.10 43.41 75.35 55.08 83.33 92.02 87.46 44.48 77.71 56.58 84.48 89.09 86.73 36.78 58.18 45.07 81.85 51.31
RankCP+Ada-TSA 16.38 19.37 17.75 8.25 9.51 8.84 20.42 24.20 22.15 8.11 9.51 8.75 18.82 21.47 20.06 10.75 12.05 11.36 22.06 27.27 24.39 5.88 7.27 6.50 18.01 8.40

RankCP+DANN 29.29 37.45 32.87 26.79 33.43 29.74 25.00 29.54 27.08 14.76 17.25 15.91 31.34 41.72 35.79 17.51 22.89 19.84 27.27 32.73 29.75 13.64 16.36 14.88 29.49 22.73
RankCP+MEDM 15.43 17.36 16.34 6.89 7.55 7.20 7.61 7.47 7.54 2.17 2.11 2.14 22.04 25.15 23.50 8.60 9.64 9.09 23.81 27.27 25.42 6.35 7.27 6.78 14.55 5.81

UTOS 88.56 51.08 64.79 70.69 40.08 51.16 90.00 57.65 70.28 62.30 40.14 48.82 92.13 50.31 65.08 70.79 37.95 49.41 78.26 32.73 46.15 52.17 21.82 30.77 60.57 45.89
UTOS+Ada-TSA 16.38 19.37 17.75 8.25 9.51 8.84 20.42 24.20 22.15 8.11 9.51 8.75 18.82 21.47 20.06 10.75 12.05 11.36 22.06 27.27 24.39 5.88 7.27 6.50 18.01 8.40

UTOS+DANN 87.98 62.98 73.41 63.04 44.62 52.25 89.36 59.79 71.64 63.16 42.25 50.63 85.32 57.06 68.38 60.91 40.36 48.55 78.12 45.45 57.47 37.50 21.82 27.59 66.45 46.63
UTOS+MEDM 33.96 65.28 44.67 5.52 37.20 9.61 13.85 92.88 24.11 0.61 14.44 1.16 39.21 54.60 45.64 6.45 30.12 10.63 46.67 50.91 48.70 9.3 21.82 13.04 37.31 7.37
UECA-Prompt 76.52 85.08 80.57 66.33 63.11 64.68 78.04 82.21 80.07 61.96 59.17 60.53 75.14 81.60 78.24 66.27 65.87 66.07 75.93 74.55 75.23 58.18 58.18 58.18 69.10 59.04

Ours 86.07 79.77 82.80 68.78 75.07 71.79 81.79 84.70 83.22 76.03 83.39 79.54 80.72 82.21 81.46 84.71 79.64 82.10 84.31 78.18 81.13 83.33 81.82 82.57 76.72 70.09

Table 1: Experimental results of our models and baselines utilizing precision (P), recall (R), and F1 score (F1) as
metrics on the UDA-ECPE task. Emotion Extraction is denoted by EE. S refers to source domain.

Model
EN-ECPE → RECCON RECCON → EN-ECPE Weighted Average

EE F1 (%) ECPE F1 (%) EE F1 (%) ECPE F1 (%) EE F1 (%) ECPE F1 (%)
RankCP 39.86 23.28 52.96 28.26 47.87 26.32

RankCP+Ada-TSA 22.67 12.13 19.73 11.79 20.87 11.92
RankCP+DANN 26.40 14.87 32.17 17.87 29.93 16.7
RankCP+MEDM 21.79 4.69 30.15 8.65 26.90 7.11

UTOS 33.96 27.83 24.13 18.48 27.95 22.12
UTOS+Ada-TSA 23.73 11.21 19.13 11.73 20.92 11.53

UTOS+DANN 15.29 3.36 13.91 3.71 14.44 3.57
UTOS+MEDM 30.11 1.55 18.09 3.75 22.76 2.89
UECA-Prompt 0.63 15.76 1.63 18.48 1.24 17.42

Ours 29.57 28.94 21.58 28.66 24.69 28.77

Table 2: Experimental results of our models and the
baseline models on EN-ECPE and RECCON.

the RankCP+DANN by 10.42% when treating so-508

ciety as the source domain, and UECA-Prompt509

by 11.05% with home as the source domain in510

terms of weighted average F1. On EN-ECPE,511

our model is better than the supervised learning512

model RankCP by 2.45%. Also, we can observe513

that our models get the best ECPE results in almost514

all of the domains except the Society → Home515

setting, indicating the generalization ability of the516

proposed approach. It is worth mentioning that517

our model performs the best even it does not al-518

ways achieve the best performance on the EE sub-519

task. Note that there is a significant performance520

gap between the Chinese and English benchmarks.521

The cause of this gap mainly due to the distri-522

bution bias problem where the five domains used523

for testing in the Chinese benchmark are extracted524

from the same corpus, i.e., CH-ECPE, however525

the two domains under the English setting derive526

from the two different datasets RECCON and EN-527

ECPE. Therefore, compared with the Chinese do-528

mains, the two English domains share less knowl-529

edge between each other, making the model hard530

to transfer from one domain to another. Overall,531

the results demonstrate the strengths of our model532

in terms of identifying new causal relations be-533

tween events and emotions in new domains.534

Model
Society → Entertainment Society → Home Society → Education Society → Finance

ECPE (%) ECPE (%) ECPE (%) ECPE (%)
P R F1 P R F1 P R F1 P R F1

Original 84.62 80.00 82.24 58.59 71.98 64.60 74.30 79.64 76.88 75.96 82.01 78.87
w/o MMD 69.63 74.02 71.76 49.77 48.70 49.23 65.54 69.78 67.60 68.65 58.63 63.30
w/o HSIC 59.87 73.23 65.88 40.51 51.76 45.66 61.73 73.38 67.05 64.23 61.57 62.88

w/o VI 63.51 74.02 68.36 45.97 52.52 49.09 60.24 71.94 65.57 69.12 60.59 64.61
w/o Ωb 61.66 61.42 61.54 39.50 55.57 46.58 62.91 76.26 68.94 60.31 67.45 63.71
w/o Ωbb 76.52 79.53 77.99 54.80 52.52 53.64 66.55 71.49 68.95 83.10 69.41 75.71

w/o ΩMMD 78.12 78.74 78.43 64.30 57.86 60.95 69.14 80.58 74.42 86.39 68.43 76.49
w/o Adapter 86.67 75.00 80.44 59.05 71.16 64.54 75.88 74.44 75.15 75.74 79.93 77.78

w/o Self-training 45.24 34.55 39.18 18.63 66.00 29.06 25.62 61.68 36.20 27.19 51.56 35.60
with Gold Emotions 89.83 96.36 92.98 78.32 89.80 83.67 90.48 91.02 90.75 74.16 91.35 81.86

Table 3: Experimental results of our models with dif-
ferent settings for the ECPE task on CH-ECPE.

Ablation Study. To analyze the influence that 535

different module might exert on the proposed ap- 536

proach, we conduct the ablation study. The second 537

row (named ‘Original’) in Table 3 refers to the re- 538

sult that our model could get when it is equipped 539

with all the techniques presented in this work. 540

To study the effect of the regularizer Ω (see 541

Sec. 3.2.2) for disentangled representation learn- 542

ing, we remove the ΩMMD during model training, 543

as well as compare it with the other types of reg- 544

ularizers, including two independence measures 545

Hilbert–Schmidt independence criterion (Gretton 546

et al., 2005, (HSIC) and Variation of Informa- 547

tion (Cheng et al., 2020, (VI). From Table 3 we 548

can see that there is at least a 2.38% drop in 549

terms of F1 on CH-ECPE when the regularizer 550

ΩMMD is removed. Adding HSIC does more 551

harm than gain, and VI brings almost no bene- 552

fits to the model. It is also not useful to only 553

apply the regularizer Ωb, which maximizes Bhat- 554

tacharyya distance between the variational pos- 555

teriors q(Ze|Xij) and q(Zc|Xuv) from the same 556

clause pair. However, the regularizer works when 557

we maximize Bhattacharyya distance between two 558

variational posteriors from all possible instance 559

pairs in a batch. Similarly, the MMD-based reg- 560

ularizer ΩMMD works also because it maximizes 561
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the MMD distance across instances.562

Also, we remove Emotion and Event adapters563

and use the unified pair representation as the input564

for both the emotion and event encoders. By doing565

this we lost performance for all domains, as the566

Table 3 shows. It is proved that using the different567

vectors to represent the emotion / event variables568

is a better solution. In addition, we also conduct569

experiments on investigating the efficacy of self-570

training and regularizer, detailed in A.3.571

Figure 4: Experimental results of CAREL-VAE w/o
MMD and CAREL-VAE for normal and self-chain
cases. The normal case refers to an emotion-cause pair
composed of two different clauses, while for the self-
chain case a pair are mentioned in the same clause.

5 Related Work572

Emotion-Cause Pair Extraction. ECPE is a573

new task that aims to extract all potential emotions574

and corresponding causes in a unannotated docu-575

ment. The pioneer (Xia and Ding, 2019) proposes576

a two-step approach that first extracts emotion and577

cause clauses separately. Wei et al. (2020) pro-578

pose a joint neural approach that applies graph at-579

tention to model the interrelations between clauses580

and rank ECPE. Zheng et al. (2022) first introduce581

prompt learning method into the ECPE task by de-582

composing the ECPE task into multiple sub-tasks583

and design prompts for each the sub-task.584

Our model is different from existing works in585

two main aspects. Firstly, we tackle ECPE in the586

UDA setting, which is more difficult and practical587

as it allows distribution discrepancies between dif-588

ferent domains. Secondly, we solve UDA-ECPE589

from a causal perspective and design a causal dis-590

entanglement mechanism to approximate emotion 591

and cause random variables, enabling causal dis- 592

covery to identify causal relations between them 593

and consequently retrieve positive pairs. 594

Unsupervised Domain Adaptation. Domain 595

adaptation addresses domain shift, allowing a pre- 596

trained model to generalize from a source to a tar- 597

get domain. It falls into two types: supervised and 598

unsupervised(examples of both types can be found 599

in A.4). 600

Our work focuses on unsupervised domain 601

adaptation (UDA), specifically extracting cross- 602

domain emotion-cause pairs from labeled source 603

domains to unlabeled target domains. Unlike 604

prior studies (Miller, 2019; Du et al., 2020; Zou 605

et al., 2021; Karouzos et al., 2021; Zhang et al., 606

2021) on binary sentiment classification, we tackle 607

non-binary variables (emotion and cause) that are 608

causally linked. This is the first known attempt to 609

discover causal relations in UDA. 610

Disentangled Representation Learning. The 611

aim of disentangled representation learning (DRL) 612

is to learn factorized representations that reveal the 613

semantically meaningful factors hidden in the ob- 614

served data (Bengio et al., 2013; Higgins et al., 615

2018). Mainstream DRL approaches in NLP (John 616

et al., 2019; Cheng et al., 2020; Vishnubhotla 617

et al., 2021) learn such representations by adopting 618

variational autoencoders (Kingma and Welling, 619

2013, VAE), which achieve disentanglement via 620

the Kullback-Leibler (Kullback and Leibler, 1951, 621

KL) divergence minimization between the poste- 622

rior of the latent factors and a standard multivari- 623

ate normal prior. 624

6 Conclusion 625

We propose a novel causal discovery inspired VAE 626

model and a customized self-training algorithm 627

for the UDA-ECPE task. Herein, we propose to 628

disentangle the latent representations of emotions 629

from those of events by a novel variational pos- 630

terior regularization technique that does not en- 631

force independence between the corresponding la- 632

tent random variables. This work also sheds the 633

light on the connections between the task of causal 634

relation identification in the NLP community and 635

the causal discovery theory, paves the way for 636

theoretically grounded approaches to comprehen- 637

sively analyzing causal structures in texts. 638
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Limitations639

A potential limitation of this work is that, due to640

resource and time constraints, we only used the641

ECPE classification model based on Bert, which642

matches our model’s architecture, as the baseline643

model. We did not compare it with the latest large644

language models (LLMs). Recent studies indicate645

that LLMs are not particularly effective at solv-646

ing causal discovery tasks. Therefore, in the fu-647

ture, we plan to include the following LLM-based648

baseline models: zero-shot learning-based LLM649

(encapsulating the ECPE task in a task instruction650

prompt to obtain answers from the LLM), few-651

shot learning-based LLM (selecting a few ECPE652

examples as in-context learning demonstrations),653

and SFT-based LLM (fine-tuning the LLM using654

the ECPE dataset as task instruction). In future655

work, we will compare the method proposed in656

this paper with LLM-based methods to empiri-657

cally explore whether LLM models can be effec-658

tively applied to causal discovery tasks.659
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A Appendix848

A.1 Visualization of sentence embeddings for849

English UDA-ECPE corpora850

As shown in Fig.5a and Fig.5b, regardless if851

a clause mentions an emotion or an emotion852

cause, there is a very clear boundary between853

the two domains. Their domain differences are854

largely caused by the differences between the two855

datasets.856

A.2 Baseline Model and Implementation857

Detail858

Language Domain #Docs

Chinese

Home 746
Society 659
Finance 263

Education 153
Entertainment 52

English EN-ECPE 1226
RECCON 780

Table 4: The statistics of the UDA-ECPE corpora.

RankCP performs the emotion-cause pair ex-859

traction using the graph attention network, which860

models the inter-clause information and extracts861

the valid emotion-cause pairs from a ranking per-862

spective.863

UTOS adopts the unified sequence labeling ap-864

proach to extract emotion-cause pairs in a way that865

the position of emotion and cause clauses as well866

as how they pair can be predicted via one pass of867

sequence labeling.868

UECA-Prompt designs sub-propmts for the869

emotion extraction, cause extraction, and emotion-870

cause pair extraction sub-tasks, then synthesize the871

sub-prompts to solve the ECA task.872

We adopt BERTZH
1 and BERTEN

2 as the873

clause pair encoders for Chinese and English, re-874

spectively. The hidden size of bidirectional LSTM875

in emotion extraction model is set to 100. The out-876

putted dimensions of emotion classifier and event877

predictor in CAREL-VAE are set to 24. The con-878

fidence threshold for the self-training of emotion879

extraction model is set to 0.7. The number of iter-880

ations for the self-training of event-emotion rela-881

tion model is set to 50.882

We train the emotion extraction model and the883

CAREL-VAE by using Adam optimizer, where884

1https://huggingface.co/hfl/
chinese-roberta-wwm-ext

2https://huggingface.co/roberta-base

the learning rates and the mini-batch sizes are 2e-5 885

and 4 and 1e-5 and 64, respectively. As for regu- 886

larization, we apply dropout to both of them with 887

the dropout rate 0.5. 888

A.3 Ablation Study in Self Training 889

We train the model using the source domain’s 890

ground-truth labels, and then directly apply this 891

supervised-learning model to the target domain 892

without any self-training. In the ‘w/o Self- 893

training’ row of the Table 3, we can see the model 894

experiences a major performance drop, indicating 895

the usefulness of the self-training. 896

Furthermore, it is also interesting to explore 897

the extent to which the predicted emotion labels, 898

aka EE’s results, will influence the downstream 899

ECPE’s performance. We therefore utilize the 900

ground-truth emotion labels instead of the ones 901

that are predicted by the emotion extraction model 902

as the input of the ECPE task. In the last row of 903

the Table 3, the minimum improvement observed 904

is 2.99% in terms of F1 among all domains, show- 905

ing that the quality of the emotion prediction does 906

have a certain impact on the ECPE task. However, 907

our model can still achieve the best results even we 908

only use an emotion extraction model with a mod- 909

erate performance to predict the emotions, whose 910

task is not the focus of this work. 911

Regularizer. To further understand how ΩMMD 912

contributes to the UDA-ECPE task, we examine 913

the performance of our original model and its vari- 914

ant for two different types of emotion-cause pairs 915

including normal and self-chain, the results are 916

shown in Figure 4. Observe that the performance 917

improvement is mainly attributed to the significant 918

increment of precision in self-chain cases. This 919

suggests that disentangled representation learn- 920

ing helps approximate emotion and cause ran- 921

dom variables from emotion-cause pairs, and ul- 922

timately aids in the causal discovery process. 923

Improved Self-training. For CD-SELFTRAIN, 924

we examine the usefulness of always constructing 925

a new training set in each iteration during self- 926

training. As a comparison, we only update the 927

training set from the previous iteration by adding 928

new documents. In this way, negative examples in 929

the training set remain the same once their docu- 930

ments are added to the training set. Fig. 6 reports 931

the proportion of changed positive examples and 932

the proportion of changed examples in each itera- 933

tion, as well as changes of precision/recall/F1 over 934
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(a) English emotion cause clauses (b) English emotion clauses

Figure 5: The t-SNE visualizations of the clause embeddings from the English UDA-ECPE corpora

Figure 6: Experimental results of our variant mod-
els that fixes negative samples during the self-training
(denoted as "CAREL-VAE w/ FN") and our original
model CAREL-VAE.

time. We can see that changing negative examples935

in each iteration indeed prevents the model from936

memorizing the training examples so that it im-937

proves the generalization capability of our model.938

A.4 Additional Content for related work939

Depending on the situation of target domain data,940

Domain adaptation can be categorized into two941

broad classes: supervised domain adaptation and942

unsupervised domain adaptation. The former can943

achieve promising results given the small amount944

of target domain labeled data (Daumé III, 2007;945

Plank, 2011). Conversely, the unsupervised do-946

main adaptation (UDA) does not require any data947

in the target domain to be labeled and thus is more948

attractive and challenging (Glorot et al., 2011;949

Ramponi and Plank, 2020). Our work falls under950

the UDA research area. Specifically, cross-domain 951

emotion-cause pair extraction from one source do- 952

main with labels to various unlabeled target do- 953

mains. Unlike most previous works (Miller, 2019; 954

Du et al., 2020; Zou et al., 2021; Karouzos et al., 955

2021; Zhang et al., 2021) on cross-domain sen- 956

timent classification that solely work with a bi- 957

nary categorical variable (i.e., positive or nega- 958

tive sentiment), we simultaneously focus on two 959

non-binary ones (i.e., emotion and cause) that are 960

causally dependent. To the best of our knowledge, 961

this is the first attempt at discovering causal rela- 962

tions in the context of UDA. 963
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