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Abstract

This paper tackles the task of emotion-cause
pair extraction in the unsupervised domain
adaptation setting. The problem is challeng-
ing as the distributions of the events causing
emotions in target domains are dramatically
different than those in source domains, despite
the distributions of emotional expressions be-
tween domains are overlapped. Inspired by
causal discovery, we propose a novel deep
latent model in the variational autoencoder
(VAE) framework, which not only captures the
underlying latent structures of data but also
utilizes the easily transferable knowledge of
emotions as the bridge to link the distributions
of events in different domains. To facilitate
knowledge transfer across domains, we also
propose a novel variational posterior regular-
ization technique to disentangle the latent rep-
resentations of emotions from those of events
in order to mitigate the damage caused by the
spurious correlations related to the events in
source domains. Through extensive experi-
ments, we demonstrate that our model outper-
forms the strongest baseline by approximately
11.05% on a Chinese benchmark and 2.45%
on a English benchmark in terms of weighted-
average F1 score. The source code will be
publicly available upon acceptance.

1 Introduction

Emotion-cause pair extraction (ECPE) aims to ex-
tract emotions and the events causing such emo-
tions mentioned in a document (Xia and Ding,
2019). The task has potential applications in a
number of areas, such as affective computing,
market analysis, and intelligent agents for cus-
tomer support. However, there are only a small
number of labeled training corpora available in a
handful of domains. As shown in Fig. 1, in order
to deploy ECPE models to target domains, where
there are only unlabeled data, we focus on the un-
supervised domain adaptation (UDA) for ECPE,
coined UDA-ECPE, which is not explored before.

(A labeled document from a source domain Society: jl
Icl: Today morning, |
c2: I come to Jinx's office and tell him:
[c3: "I have received a grant from the government,ﬁ |
|c4: I feel so happy today! € |
tS: Jinx stands up from his seat and gives me a high five. N
_______ —————— =
UDA-ECPE
_______ N
(An unlabeled document from a target domain Finance:!

cl: Every week when I work overtime, |
|c2: I ofen play with stocks. |
¢3: This Friday night, |
c4: I open the stock software and check it as usual, |

|

|c5: I found that the stock I bought went up.— — — A

¢6: Laughter burst out of my mouth. | I')

|C7: I immediately post a tweet: .

(B: Lieelsohappy todayl€ — — — — — — 2 _ |

Figure 1: An illustrative example of the UDA-ECPE
task. Orange and green highlights respectively denote
emotion and cause clauses.

Multi-class or multi-label classification domi-
nates in conventional UDA tasks. UDA-ECPE is
more challenging because the events causing the
same emotion are barely the same across domains,
despite the knowledge of emotional expressions is
easier to transfer across domains using the UDA
methods (Zad et al., 2021). For example, the rea-
son for "I feel so happy today" can be "I have re-
ceived a grant from the government" in the society
domain and "I found that the stock I bought went
up" in the finance domain. There are usually no
explicit keywords such as "because" showing their
causal relations. However, current UDA methods
assume that there are small discrepancies between
source and target distributions (Zhao et al., 2019;
Kumar et al., 2020). We show in Sec. 4.2 that
the state-of-the-art (SOTA) UDA methods indeed
have limited capabilities to improve the perfor-
mance of the SOTA ECPE models.

It is a common practice to project texts into la-
tent representations for improving language un-



derstanding (Wang et al., 2019). Existing tech-
niques disentangle different types of latent rep-
resentations by applying regularization terms to
enforce independence between the corresponding
random variables (Cheng et al., 2020). However,
the independence assumption contradicts the fact
that emotions and the events causing them are stat-
ically dependent.

To tackle the above challenges, we take the
transferable knowledge of emotional expressions
as the bridge between a source domain and a tar-
get domain. In a single domain, we identify causal
relations between emotions and domain-specific
events, which can be viewed as a causal discov-
ery problem between the corresponding random
variables. In the VAE framework (Kingma and
Welling, 2013), we propose a novel model, coined
CAREL-VAE, to map inputs texts into latent emo-
tion representations and latent event representa-
tions and detect their causal relations. Herein, we
propose a novel variational posterior regularizer
to disentangle those representations by maximiz-
ing the divergences between the posteriors without
assuming independence. In a target domain, we
improve the self-training algorithm (Chen et al.,
2011) for discovering domain-specific causal re-
lations, referred to as CD-SELFTRAIN. Instead
of incrementally updating a training set, we im-
prove the original algorithm by producing a new
pseudo-labeled training set in each epoch. As a
result, our method outperforms the SOTA ECPE
models trained with the SOTA UDA methods by a
wide margin.

To sum up, our contributions are the following:

* We propose a novel causal discovery inspired
UDA method, coined CD-SELFTRAIN, and
a new model, coined CAREL-VAE, for the
ECPE task in the unexplored UDA setting.

* We propose a novel disentanglement regular-
ization term on variational Posteriors so that
it does not enforce independence between
emotions and the events causing them.

* Our approach achieves superior performance
in terms of weighted-average F1 over the
strongest baseline by approximately 11.05%
on a Chinese benchmark and 2.45% on a
English benchmark. Even if that baseline
is trained with the SOTA UDA method, our
method still achieves the best.

2 Challenges in UDA-ECPE

The task ECPE is concerned with recognizing
causal relations between the events causing emo-
tions and the corresponding emotional expressions
mentioned in a document. All prior studies on the
ECPE task employ a (deep) learning-based clas-
sifier to detect mentions of causal relations based
on an input text. They often choose an input text
that mentions an event and an emotional expres-
sion. Then those classifiers determine whether the
event causes the emotional expression by investi-
gating if i) the event and the emotional expression
are correlated and ii) there is a linguistic pattern
indicating their relation is causal, e.g. using a key
phrase “leads to”.

Formally, given an input text , we extract an
event embedding z¢ and an emotion embedding
z¢, which are the values sampled from the cor-
responding latent random variable vectors Z¢ and
Z¢. In a source domain, a model learns a distri-
bution ) 5. 7. p(Y'|Z, Z¢, x)p(Z°, Z°|x), where
Y denotes a binary random variable indicating
if there is a causal relation between Z° and Z°.
The key challenge is that both p(Y'|Z¢, Z¢, ) and
p(Z€, Z¢|x) are significantly different in target do-
mains. Although prior studies show that p(Z¢|x)
can be easily transferred from source domains to
target domains (Wang et al., 2022), the correla-
tions between Z¢ and Z° are almost not trans-
ferable, because p(Z€) are dramatically different
between domains. Therefore, when adapting a
model trained in a source domain to a target do-
main, the model needs to forget the correlations
between emotions and events from the source do-
main, followed by learning new correlations in the
target domain.

To provide an intuitive understanding of the
above mentioned challenges in the UDA set-
ting, we visualize the clause embeddings, namely
p(Z°), for ground-truth emotion and emotion
causes respectively on CH-ECPE and EN-
ECPE, and compare them with the sentence em-
beddings for a widely used domain adaptation cor-
pus Amazon Reviews (Blitzer et al., 2007) using
t-SNE. As the original CH-ECPE are not parti-
tioned based on domains, we manually assign each
data point in the corpus with the corresponding do-
main label. Further details are provided in Sec.
4.1.

As shown in Figure 5, the data points of Chi-
nese emotion clauses from various CH-ECPE’s



domains are strongly overlapped, the domain di-
vergences are far smaller than those of the embed-
dings of the emotion causes. It is thus challenging
for existing UDA methods, which work only in the
cases that the distribution shift from a source do-
main to a target domain is small, as illustrated in
Fig.2a (Zhao et al., 2019; Kumar et al., 2020). In
addition, we employ two different datasets as dif-
ferent domains for English. For English corpora
similar tendency can be found in A.1.

3 Methodology

The UDA-ECPE task is concerned with identify-
ing causal relations between mentions of events
and emotional expressions in target domains,
which do not have labeled data. In the source do-
main, there is a set of labeled documents D° =
{(X3,RY), (X5,R5), ..., (X5, Ry)}. Each doc-
ument X7 consists of a sequence of clauses
(x1,x2,...,x4) and is annotated with a set of la-
beled emotion-cause pairs R = {(yfj, ys, y]e)}z >
where y;; is a binary label indicating if @; is an
event mention causing an emotion expressed in
xj, y; denotes whether x; is an event or not, and
y; € Y° denotes the category of the emotion. In
this work, we consider the widely used six ba-
sic emotion categories: happiness, sadness, fear,
disgust, anger, and surprise. Then the task is to
identify a set of such causal relations and emo-
tion categories R, = {(vi}, y5)}i,; from each un-
labeled document k in target domains. In con-
trast, the prior studies (Xia and Ding, 2019) as-
sume the training and test distributions are identi-
cal and emotional expressions are not categorized.
Hence, our setting is more difficult and practical
by considering emotion categories and distribution
discrepancies between domains.

CAREL-VAE Overview. Denoted by Z° and
Z° the latent random variable vectors for emo-
tion and event respectively, we adopt the

VAE framework to learn the latent distribution
p(y{j,ye,yc,Xij,Ze,ZC) for a pair of clauses

Xi;j = (x;, ), which is factorized into
standard VAE

Pyi; |2, Z°)p(y" | Z°)p(y°|Z°) p(Xi5| 2%, Z°)p(Z°)p(Z°)

task-specific

In addition to the standard components of
VAE, such as the decoder p(X;;|Z¢, Z¢), we in-
clude task-specific predictors: an emotion classi-
fier p(y©|Z¢), an emotion-cause relation classifier
p(yi;1Z¢, Z¢), and an event predictor p(y°|Z).

To approximate the true distribution, we
consider a factorized variational distribution

G(Z°,2°Xy) = q(Z°Xi)q(Z7X,), which
correspond to an emotion encoder and an event
encoder respectively. Then the variational lower
bound (ELBO) takes the following form:

Ey(ze ze|x,;) log [p(Xij |Z°, Z°)p(yi; | Z°, Z°)

p(y°1Z°)p(y°|Z%)] — Diw(q(Z°|X3;(|p(Z%))

— Dicr.(q(Z°[ X5 [p(Z%))
Disentanglement. In target domains, it is not
desirable that the latent representation of an emo-
tion is mixed with event information, which makes
transfer of the knowledge about emotions across
domains difficult, because events in target do-
mains are not directly related to those in source
domains. Therefore, we need to disentangle la-
tent emotion representations from latent event rep-
resentations for improving compositional general-
ization (Russin et al., 2019) without making the
independence assumption.

In light of the above analysis, we propose a
variational posterior regularization technique. The
key idea is to regularize the model in the way
that the dense regions of ¢(Z°|X;;) associate with
only emotions, while those of ¢(Z¢X;;) asso-
ciate with only events. The classifiers for p(y°|Z¢)
and p(y°|Z°) are in general smooth such that they
consistently predict only one label in a dense re-
gion. If there is little overlap between the dense
regions of ¢(Z¢|X;;) and those of ¢(Z¢|X;;), a
dense region from either distribution is expected
to associated with either an emotion category or
a type of events estimated by one of the classi-
fiers, under the maximum likelihood principle. In
another word, we only need to add a regularizer
to minimize the overlap between ¢(Z°¢|X;;) and
q(Z¢|X;;) such that their divergence is high.

In theory, the corresponding divergence mea-
sures Dy (q(Z°X;5)]|q(Z¢|X;5)) should not as-
sume absolute continuity (Royden and Fitzpatrick,
1988), which requires that ¢(Z{|X;;) > 0 for
every q(Z{|X;;) > 0, vice versa. In reality,
a random variable Z{ may have high probabil-
ity in the region where a Z7 has zero probabil-
ity. To tackle this, we choose Bhattacharyya dis-
tance (Bhattacharyya, 1946) and maximum mean
discrepancy (MMD) (Gretton et al., 2012) respec-
tively as a regularizer. Each of them has its own
strength. More details are covered in Sec. 3.2.

3.1 Model Details

CAREL-VAE Model. As illustrated in Fig. 3,
our model is composed of an inference module, a
text generator, task-specific predictors and priors.



(a) Amazon sentiment reviews

(b) Chinese emotion clauses

(c) Chinese emotion cause clauses

Figure 2: The t-SNE visualizations of the sentence embeddings from Amazon Reviews multi-domain sentiment
corpus, the clause embeddings from the Chinese UDA-ECPE corpora for English UDA-ECPE corpora please refer

to A.1
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Figure 3: The architecture of our model CAREL-VAE.

Inference Module. The inference module con-
sists of a pre-trained BERT (Devlin et al., 2018)
encoder, an emotion encoder and an event pre-
dictor. Given a pair of clauses (x;,x;), we con-
struct inputs following the common practice that
inserts an [SEP] token between the two clauses
and prepends the sequence with a [C'LS] token.
We take the hidden representation h of [C'LS] as
the output of the BERT encoder.

To distinguish the representation of the event
and emotion variables, we employ two adapters
to produce different embedding respectively. We
initialize two vectors a. and a. for emotion and
event respectively, and treat them as the queries
while view h as key and value. We therefore
synthesize the new emotion and event representa-
tions h, and h. by computing the sparsemax at-
tention while using a. and a. as queries respec-
tively (Martins and Astudillo, 2016).

The variational distribution ¢(Z¢, Z¢|X;;) are
realized as simple factorized Gaussians, which
correpond to an emotion encoder ¢(Z¢|h.) and
an event predictor q(Z°lh.) on top of the hid-
den representations h. and h. respectively. Each
encoder is implemented as a multilayer percep-
trons (MLPs) after applying the reparameteriza-

tion trick.

ul,logo® = MLP(hg; 6.)
uflogo® = MLP(h,;0,)
2 =p‘+0o°0ee~N(0I)
2 =p‘+o°0e€e~N(0,I)

ey

where 6. and 6, are the parameters of the emo-
tion and event encoders respectively, pu¢, ¢ and
p¢, o€ denote the means and standard deviations
of the corresponding Gaussian distributions, € de-
notes independent Gaussian noises, z° and z¢ de-
note the respective values of Z¢ and Z°.

Text Generator. For p(X;;|Z¢,Z¢), we consid-
ers a lightweight solution that only reconstructs
a bag-of-words (BoW) representation from latent
representations, which is significantly faster than
a conventional sequence decoder.

p(wBOW‘ze?zC) — O'(Wdec[ze, zc] + bdeC) (2)

where Ggec = [W; b%°] denotes the parameters
of the decoder, o(-) is the sigmoid function, and
2BV is the BoW representation of Xj-

Priors. For both p(Z€) and p(Z°), we follow the
common practice to use N (0, I) as their priors.

Task-Specific Predictors. For each predictor, we
apply a linear layer to its inputs, followed by a
softmax layer if it is a multi-class classification



problem, otherwise a sigmoid layer for a binary
classification problem.

Emotion Extraction Model. We can apply any
emotion extraction model to obtain clauses con-
taining emotional expressions. In this work, we
extend the emotion classification model in (Xia
and Ding, 2019) by replacing its encoder with
BERT encoder and its binary classification layer
with a softmax layer.

3.2 Model Training

3.2.1 Source Domain Training

CAREL-VAE Model. Given a set of docu-
ments, each of which is annotated with a set R; =
{(yzrjﬂ Yis Z/]e)}z] for positive examples, we obtain
negative examples of relations by randomly sam-
pling clause pairs that are not part of R. In par-
ticular, for each emotion clause in R°, we pair it
with a randomly picked non-cause clause in the
document, resulting in the same number of nega-
tive samples. The training loss £ = LEMBO + \Q,
including the loss £E-BO derived from the ELBO
and the variational posterior regularizer €2 adjusted
by the hyperparameter \.

Similar to prior works, the loss LFFBO includes
the cross-entropy losses from the text decoder and
the task-specific predictors, as well as two regular-
ization terms from the two KL divergences, each
of which takes the form of ||z||?> — log o

To motivate the regularizer (), we start
with Bhattacharyya distance, which mea-
sures the angle between two probabil-
ity  vectors  (v/pa(20), -, \/Da(2n)) and
(v/Pb(20)s -, \/Pb(2n)) oOver m data points.
Unlike KL divergence, Bhattacharyya distance

yields a positive value regardless the probability
at a data point is zero or not, if the distance is
not zero. For Gaussians, which are the cases for
the variational posteriors, it has a closed form
solution:

Dy, = %('ue _ MC)TZ—I(ue _ 'uc) + %ln (%) (3)

e c\2
where & = (42971 and the determinant

det = w The left term is es-

sentially an unnormalized multivariate Gaussian.
The corresponding regularizer Q2° = —Dy,,, which
maximizes this distance, would drive the two
Gaussians far away from each other.

The above regularizer only maximizes the dis-
tance between two types of latent representations

from the same clause pair. Intuitively, it would be
useful to also push z{ of an instance ¢ away from
the z7 of the other instances. For efficiency, we
only apply such regularizations between instances
in a batch, which ends up a regularizer Q" that
maximizes Bhattacharyya distance between any
pair of (27, %) in a batch.

Following the same idea, we also exploit max-
imum mean discrepancy (MMD) (Gretton et al.,
2012), which is a kernel-based divergence mea-
sure not requiring absolute continuity, for maxi-
mizing divergences across instances batchwise.

OMMP = —[|o(2°) — 6(2°) |13,
26~ 7%, 2 ~ZE

“

where ¢ is a mapping function that projects both
z¢ and z° into a reproducing kernel Hilbert space
denoted by . In this work, we mainly adopt this
regularizer in experiments due to its superior per-
formance over the other two.

Emotion Extraction Model. Provided a set of
clauses annotated with emotion categories or
None, we train the emotion extraction model as
a seven-way classification problem, following the
maximum likelihood principle.

3.2.2 Adaptation to Target Domains

We transfer first the emotion extraction model to a
target domain, followed by our model. The emo-
tion extraction model is fine tuned by the self-
training algorithm (Chen et al., 2011) on an unla-
beled corpus in a target domain. The parameters of
our model are fine tuned by using our method CD-
SELFTRAIN on the same corpora. Given an un-
labeled corpus, both self-training algorithms start
with applying the model to predict the most likely
labels for each input text. The predictions are used
to construct a training set to fine tune the model
with the same loss £ as the source domain train-
ing in one epoch. Then the algorithms construct
a new training set or update the training set with
new examples by using the current model and re-
peats the process till the convergence criteria are
met. Our algorithm CD-SELFTRAIN differs from
the current one in terms of the way to construct
training datasets.

Relation Prediction. Given a set of documents
D, in a target domain, each of which contains at
least one clause annotated with emotion pseudo-
labels, we pair each emotion clause with the re-
maining clauses to create clause pairs for relation



identification. When constructing a training set
with pseudo-labels in each iteration, we select a
pair with the highest probability in a document as a
positive sample and randomly choose a clause pair
from the remaining as a negative sample. Deep
models with a high width tend to memorize train-
ing examples to reduce training errors (van den
Burg and Williams, 2021), which could hurt the
model performance by not improving its general-
ization capability. Thus, we construct a training
set from scratch each time instead of updating the
training set from the previous iteration. The train-
ing procedure terminates when a maximal number
of iterations is reached.

Emotion Extraction. For emotion extraction,
we apply the self-training algorithm (Chen et al.,
2011) to train the model in a target domain. It
starts with an empty training set D, and a set of un-
labeled documents D,,. In each iteration, if a doc-
ument in D,, contains at least one pseudo-labeled
emotion clauses with their confidences above a
pre-defined threshold, we add it to the training set
D, for the next iteration. In each of such docu-
ments, we keep only the pseudo-labeled emotion
clause with the highest probability, the remaining
clauses are considered as non-emotion ones.

4 Experiments

4.1 Experimental Setup

Datasets. Since there is no corpus for ECPE in
the UDA setting, we divide CH-ECPE into mul-
tiple domains. Given the fact that the documents
in CH-ECPE are Chinese news articles sampled
from the THUCNews dataset (Li and Sun, 2007),
we employ the topic classifier THUCTC (Sun
et al., 2016) trained on the THUCNews dataset
to categorize CH-ECPE into 14 subsets based
on topics and choose the largest five as the fi-
nal domains (e.g. home, society and finance,
etc.). To further improve the purity of classi-
fication, based on THUCTC’s classification re-
sults, we conduct manual inspection and label-
ing to complete the domain classification of CH-
ECPE. Also, in the English language setting, we
view EN-ECPE and Recognizing Emotion Cause
in CONversations (RECCON) (Poria et al., 2021)
—an English dataset specifically designed for iden-
tifying the causes of emotions within conversa-
tions, as the two source-target domains. Table 4
summarizes the statistics of each corpus and can
be found in A.2.

Metrics. For each target domain in each corpus,
we evaluate models for emotion extraction and re-
lation identification respectively in terms of preci-
sion, recall and Fl-score. A prediction is correct
if there is a correct causal relation and the emotion
category is correct.

Baselines. To make a fair comparison, we adapt
the three existing ECPE models RankCP, UTOS,
UECA-Prompt (all employ BERT as the backbone
model) for emotion extraction (EE) and ECPE. In
addition, since the universal prompt-based method
for ECA tasks (UECA-Prompt) (Zheng et al.,
2022) is designed to solve the different Emo-
tion cause analysis (ECA) tasks in an unified
framework, we thus only integrate three UDA ap-
proaches on the two ECPE models (RankCP (Wei
etal., 2020) and UTOS (Cheng et al., 2021)) in the
ECPE task to further demonstrate the effectiveness
of our model. The introduction of baseline method
and implementation detail please refer to A.2.

4.2 Results and Analysis

Overall Comparisons. Table 1 and Table 2 re-
port the results of our models and the baselines on
the ECPE task, as well as the EE subtask. To dis-
pel the doubt that our model outperforms the base-
lines only because they are developed in the su-
pervised setting, we apply the SOTA UDA meth-
ods Ada-TS (Zhang et al., 2021), DANN (Ganin
et al., 2016) and MEDM (Wu et al., 2021) to the
two baselines RankCP and UTOS on the UDA-
ECPE task. MEDM is a minimal-entropy UDA
approach that introduces diversity maximization
to regulate entropy minimization for seeking a
close-to-ideal domain adaptation. Ada-TSA is a
recently proposed adapter-based UDA approach
in which the newly-added adapters can capture
transferable features between source and target do-
mains by using the domain-fusion scheme. DANN
is a widely adopted adversarial-based UDA ap-
proach that learns domain invariant representa-
tions through a domain discriminator. It can be
found that after applying the UDA framework,
RankCP and UTOS significantly improved their
performance and became comparable with the
SOTA prompt-based model UECA-Prompt.
However, though we employ UDA (for RankCP
and UTOS) while leverage the powerful ability of
the Large Language Model (LLM) (for UECA-
Prompt) to enhance the baseline models, the base-
line models still perform worse than our proposed
model. On CH-ECPE, our model outperforms



Society — Home Society — Finance Society — Education Society — Entertainment Weighted Average
Model EE (%) ECPE (%) EE (%) ECPE (%) EE (%) ECPE (%) EE (%) ECPE (%) EE (%) ECPE (%)
P R F1 P R F1| P R F1 P R F1| P R F1 P R F1| P R F1 P R F1 F1 F1
(a) S: Society
RankCP 21.90 25.22 23.44 13.14 14.54 13.80(18.04 21.00 19.41 8.56 9.86 9.17 |26.13 31.90 28.73 18.59 22.29 20.27|26.87 32.73 29.51 13.43 16.36 14.75| 23.49 13.65
RankCP+Ada-TSA | 18.55 21.16 19.77 12.30 13.48 12.86|15.86 17.44 16.61 7.12 7.75 7.42 |20.62 24.54 22.41 11.86 13.86 12.78|23.44 27.27 2521 625 7.27 6.72 | 19.65 11.41
RankCP+DANN |91.51 98.15 94.72 51.69 93.85 66.67 |85.06 93.24 88.96 40.38 75.35 52.58|82.87 92.02 87.21 43.01 74.10 54.42|77.78 89.09 83.05 30.48 58.18 40.00| 92.03  60.93
RankCP+MEDM |20.17 23.12 21.55 12.77 14.07 13.39|20.43 23.84 22.00 9.76 11.27 10.46|24.14 30.06 26.78 13.30 16.27 14.63|14.52 16.36 1538 6.45 7.27 6.84 | 22.04 12.63
UTOS 91.51 47.72 62.73 70.99 35.58 47.40(93.33 49.82 64.97 71.33 37.68 49.31|92.21 43.56 59.17 67.09 31.93 43.27|71.43 27.27 39.47 47.62 18.18 26.32| 61.77  46.39
UTOS+Ada-TSA |18.55 21.16 19.77 12.30 13.48 12.86|15.86 17.44 16.61 7.12 7.75 7.42 |20.62 24.54 22.41 11.86 13.86 12.78|23.44 27.27 2521 625 7.27 6.72 | 19.65 11.41
UTOS+DANN  |84.96 61.13 71.10 56.41 40.07 46.86|89.55 64.06 74.69 57.84 41.55 48.36|86.92 57.06 68.89 62.28 42.77 50.71|80.65 45.45 58.14 48.39 27.27 34.88| 71.04 47.16
UTOS+MEDM  |52.80 55.60 54.16 14.63 33.32 20.31|15.31 89.68 26.15 0.64 13.03 1.21 {53.00 62.50 46.01 24.23 28.31 26.11|57.50 41.82 48.42 12.64 20.00 15.49| 46.82 16.70
UECA-Prompt  |75.59 74.66 75.12 50.92 61.43 55.69|71.01 69.75 70.38 51.13 62.63 56.30|75.84 82.82 79.17 48.84 62.87 54.97|73.58 70.91 72.22 45.21 60.00 51.56| 74.48 55.55
Ours 81.77 76.14 78.85 58.59 71.98 64.60|86.42 81.49 83.88 75.96 82.01 78.8783.85 82.82 83.33 74.30 79.64 76.88|86.00 78.18 81.90 84.62 80.00 82.24| 80.63  71.35
(b) S: Home Home — Society Home — Finance Home — Education Home — Entertai
RankCP 83.88 91.82 87.67 44.33 75.42 55.84|86.56 93.95 90.10 43.41 75.35 55.08|83.33 92.02 87.46 44.48 77.71 56.58|84.48 89.09 86.73 36.78 58.18 45.07| 81.85  51.31
RankCP+Ada-TSA|16.38 19.37 17.75 825 9.51 8.8420.42 2420 22.15 8.11 9.51 8.75 |18.82 21.47 20.06 10.75 12.05 11.36|22.06 27.27 24.39 5.88 7.27 6.50 | 18.01 8.40
RankCP+DANN |29.29 37.45 32.87 26.79 33.43 29.74|25.00 29.54 27.08 14.76 17.25 15.91|31.34 41.72 35.79 17.51 22.89 19.84|27.27 32.73 29.75 13.64 16.36 14.88| 29.49  22.73
RankCP+MEDM |15.43 17.36 1634 6.89 7.55 7.20|7.61 7.47 7.54 217 211 2.14|22.04 25.15 23.50 8.60 9.64 9.09 |23.81 27.27 2542 635 727 6.78 | 14.55 5.81
UTOS 88.56 51.08 64.79 70.69 40.08 51.16|90.00 57.65 70.28 62.30 40.14 48.82(92.13 50.31 65.08 70.79 37.95 49.41|78.26 32.73 46.15 52.17 21.82 30.77| 60.57  45.89
UTOS+Ada-TSA |16.38 19.37 17.75 8.25 9.51 8.84 |20.42 2420 22.15 8.11 9.51 8.75 |18.82 21.47 20.06 10.75 12.05 11.36|22.06 27.27 2439 5.88 7.27 6.50 | 18.01 8.40
UTOS+DANN | 87.98 62.98 73.41 63.04 44.62 52.25/89.36 59.79 71.64 63.16 42.25 50.63|85.32 57.06 68.38 60.91 40.36 48.55|78.12 45.45 57.47 37.50 21.82 27.59| 66.45  46.63
UTOS+MEDM |33.96 65.28 44.67 5.52 37.20 9.61 |13.85 92.88 24.11 0.61 14.44 1.16 [39.21 54.60 45.64 6.45 30.12 10.63|46.67 50.91 48.70 9.3 21.82 13.04| 37.31 7.37
UECA-Prompt |76.52 85.08 80.57 66.33 63.11 64.68|78.04 82.21 80.07 61.96 59.17 60.53|75.14 81.60 78.24 66.27 65.87 66.07|75.93 74.55 75.23 58.18 58.18 58.18| 69.10  59.04
Ours 86.07 79.77 82.80 68.78 75.07 71.79|81.79 84.70 83.22 76.03 83.39 79.54|80.72 82.21 81.46 84.71 79.64 82.10|84.31 78.18 81.13 83.33 81.82 82.57| 76.72  70.09

Table 1: Experimental results of our models and baselines utilizing precision (P), recall (R), and F1 score (F1) as
metrics on the UDA-ECPE task. Emotion Extraction is denoted by EE. S refers to source domain.

EN-ECPE — RECCON | RECCON — EN-ECPE Weighted Average

Model EE F1 (%) ECPE F1(%) | EE F1(%) ECPE F1 (%) | EE F1(%) ECPE F1 (%)
RankCP 39.86 238 52.96 2826 787 2632
RankCP+Ada-TSA | 22.67 12.13 19.73 11.79 20.87 11.92
RankCP+DANN 26.40 14.87 3217 17.87 29.93 16.7
RankCP+MEDM |  21.79 4.69 30.15 8.65 26.90 7.11
UTOS 33.96 27.83 24.13 18.48 27.95 22.12
UTOS+Ada-TSA | 2373 11.21 19.13 1173 2092 11.53
UTOS+DANN 15.29 3.36 13.91 371 14.44 357
UTOS+MEDM 30.11 155 18.09 375 2276 2.89
UECA-Prompt 0.63 15.76 1.63 18.48 1.24 17.42
Ours 29.57 28.94 21.58 28.66 24.69 28.77

Table 2: Experimental results of our models and the
baseline models on EN-ECPE and RECCON.

the RankCP+DANN by 10.42% when treating so-
ciety as the source domain, and UECA-Prompt
by 11.05% with home as the source domain in
terms of weighted average F1. On EN-ECPE,
our model is better than the supervised learning
model RankCP by 2.45%. Also, we can observe
that our models get the best ECPE results in almost
all of the domains except the Society — Home
setting, indicating the generalization ability of the
proposed approach. It is worth mentioning that
our model performs the best even it does not al-
ways achieve the best performance on the EE sub-
task. Note that there is a significant performance
gap between the Chinese and English benchmarks.
The cause of this gap mainly due to the distri-
bution bias problem where the five domains used
for testing in the Chinese benchmark are extracted
from the same corpus, i.e., CH-ECPE, however
the two domains under the English setting derive
from the two different datasets RECCON and EN-
ECPE. Therefore, compared with the Chinese do-
mains, the two English domains share less knowl-
edge between each other, making the model hard
to transfer from one domain to another. Overall,
the results demonstrate the strengths of our model
in terms of identifying new causal relations be-
tween events and emotions in new domains.

Sociely — Entertainment | Sociely — Home | Sociely — Education | Society — Finance
Model ECPE (%) ECPE (%) ECPE (%) ECPE (%)

P R Fl R_FI| P R _FlL| P R Fl

Original 84.62 80.00 8224 | 5839 71.98 64.60| 74.30 79.64 76.88 | 75.96 82.01 7887

Wio MMD 6963 7402 71.76 4977 48.70 49.23 | 65.54 69.78 67.60 | 68.65 5863 63.30

wlo HSIC 59.87 7323 6588 |40.51 5176 45.66 6173 7338 67.05 [64.23 61.57 62.88

wlo VI 63.51 74.02 6836 [4597 5252 49.09 [60.24 7194 6557 [69.12 60.59 64.61

wlo Q' 6166 6142 6154 [39.50 5557 46.58 |6291 7626 68.94 |60.31 67.45 63.71

wlo Q" 76.52 79.53 7799 |54.80 5252 53.64 | 66.55 7149 68.95|83.10 69.41 75.71

wio QUMD 7812 78.74 7843 | 64.30 57.86 60.95|69.14 80.58 74.42 |86.39 68.43 76.49

Wio Adapter | 86.67 7500 8044 | 59.05 71.16 64.54 | 75.88 74.44 75.15 |75.74 7993 T1.78

wlo Self-training | 45.24 3455 39.18 | 18.63 66.00 29.06 | 25.62 61.68 36.20 | 27.19 51.56 35.60

with Gold Emotions | 89.83_096.36___92.08 | 78.32_89.80_83.67 | 90.48 01.02_90.75 | 74.16_91.35_B81.86

Table 3: Experimental results of our models with dif-
ferent settings for the ECPE task on CH-ECPE.

Ablation Study. To analyze the influence that
different module might exert on the proposed ap-
proach, we conduct the ablation study. The second
row (named ‘Original’) in Table 3 refers to the re-
sult that our model could get when it is equipped
with all the techniques presented in this work.

To study the effect of the regularizer {2 (see
Sec. 3.2.2) for disentangled representation learn-
ing, we remove the QMMP during model training,
as well as compare it with the other types of reg-
ularizers, including two independence measures
Hilbert—Schmidt independence criterion (Gretton
et al., 2005, (HSIC) and Variation of Informa-
tion (Cheng et al., 2020, (VI). From Table 3 we
can see that there is at least a 2.38% drop in
terms of F1 on CH-ECPE when the regularizer
OMMD i5 removed. Adding HSIC does more
harm than gain, and VI brings almost no bene-
fits to the model. It is also not useful to only
apply the regularizer °, which maximizes Bhat-
tacharyya distance between the variational pos-
teriors ¢(Z¢|X;;) and ¢(Z¢|X,,) from the same
clause pair. However, the regularizer works when
we maximize Bhattacharyya distance between two
variational posteriors from all possible instance
pairs in a batch. Similarly, the MMD-based reg-
ularizer OMMD works also because it maximizes



the MMD distance across instances.

Also, we remove Emotion and Event adapters
and use the unified pair representation as the input
for both the emotion and event encoders. By doing
this we lost performance for all domains, as the
Table 3 shows. It is proved that using the different
vectors to represent the emotion / event variables
is a better solution. In addition, we also conduct
experiments on investigating the efficacy of self-
training and regularizer, detailed in A.3.

Society -> Entertainment

Society -> Home

Society -> Education

Society -> Finance
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Figure 4: Experimental results of CAREL-VAE w/o
MMD and CAREL-VAE for normal and self-chain
cases. The normal case refers to an emotion-cause pair
composed of two different clauses, while for the self-
chain case a pair are mentioned in the same clause.

5 Related Work

Emotion-Cause Pair Extraction. ECPE is a
new task that aims to extract all potential emotions
and corresponding causes in a unannotated docu-
ment. The pioneer (Xia and Ding, 2019) proposes
a two-step approach that first extracts emotion and
cause clauses separately. Wei et al. (2020) pro-
pose a joint neural approach that applies graph at-
tention to model the interrelations between clauses
and rank ECPE. Zheng et al. (2022) first introduce
prompt learning method into the ECPE task by de-
composing the ECPE task into multiple sub-tasks
and design prompts for each the sub-task.

Our model is different from existing works in
two main aspects. Firstly, we tackle ECPE in the
UDA setting, which is more difficult and practical
as it allows distribution discrepancies between dif-
ferent domains. Secondly, we solve UDA-ECPE
from a causal perspective and design a causal dis-

entanglement mechanism to approximate emotion
and cause random variables, enabling causal dis-
covery to identify causal relations between them
and consequently retrieve positive pairs.

Unsupervised Domain Adaptation. Domain
adaptation addresses domain shift, allowing a pre-
trained model to generalize from a source to a tar-
get domain. It falls into two types: supervised and
unsupervised(examples of both types can be found
in A.4).

Our work focuses on unsupervised domain
adaptation (UDA), specifically extracting cross-
domain emotion-cause pairs from labeled source
domains to unlabeled target domains. Unlike
prior studies (Miller, 2019; Du et al., 2020; Zou
et al., 2021; Karouzos et al., 2021; Zhang et al.,
2021) on binary sentiment classification, we tackle
non-binary variables (emotion and cause) that are
causally linked. This is the first known attempt to
discover causal relations in UDA.

Disentangled Representation Learning. The
aim of disentangled representation learning (DRL)
is to learn factorized representations that reveal the
semantically meaningful factors hidden in the ob-
served data (Bengio et al., 2013; Higgins et al.,
2018). Mainstream DRL approaches in NLP (John
et al., 2019; Cheng et al., 2020; Vishnubhotla
etal., 2021) learn such representations by adopting
variational autoencoders (Kingma and Welling,
2013, VAE), which achieve disentanglement via
the Kullback-Leibler (Kullback and Leibler, 1951,
KL) divergence minimization between the poste-
rior of the latent factors and a standard multivari-
ate normal prior.

6 Conclusion

We propose a novel causal discovery inspired VAE
model and a customized self-training algorithm
for the UDA-ECPE task. Herein, we propose to
disentangle the latent representations of emotions
from those of events by a novel variational pos-
terior regularization technique that does not en-
force independence between the corresponding la-
tent random variables. This work also sheds the
light on the connections between the task of causal
relation identification in the NLP community and
the causal discovery theory, paves the way for
theoretically grounded approaches to comprehen-
sively analyzing causal structures in texts.



Limitations

A potential limitation of this work is that, due to
resource and time constraints, we only used the
ECPE classification model based on Bert, which
matches our model’s architecture, as the baseline
model. We did not compare it with the latest large
language models (LLMs). Recent studies indicate
that LLMs are not particularly effective at solv-
ing causal discovery tasks. Therefore, in the fu-
ture, we plan to include the following LLM-based
baseline models: zero-shot learning-based LLM
(encapsulating the ECPE task in a task instruction
prompt to obtain answers from the LLM), few-
shot learning-based LLM (selecting a few ECPE
examples as in-context learning demonstrations),
and SFT-based LLM (fine-tuning the LLM using
the ECPE dataset as task instruction). In future
work, we will compare the method proposed in
this paper with LLM-based methods to empiri-
cally explore whether LLM models can be effec-
tively applied to causal discovery tasks.
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A Appendix

A.1 Visualization of sentence embeddings for
English UDA-ECPE corpora

As shown in Fig.5a and Fig.5b, regardless if
a clause mentions an emotion or an emotion
cause, there is a very clear boundary between
the two domains. Their domain differences are
largely caused by the differences between the two
datasets.

A.2 Baseline Model and Implementation

Detail
Language Domain #Docs

Home 746

Society 659

Chinese Finance 263
Education 153

Entertainment 52
English EN-ECPE 1226
RECCON 780

Table 4: The statistics of the UDA-ECPE corpora.

RankCP performs the emotion-cause pair ex-
traction using the graph attention network, which
models the inter-clause information and extracts
the valid emotion-cause pairs from a ranking per-
spective.

UTOS adopts the unified sequence labeling ap-
proach to extract emotion-cause pairs in a way that
the position of emotion and cause clauses as well
as how they pair can be predicted via one pass of
sequence labeling.

UECA-Prompt designs sub-propmts for the
emotion extraction, cause extraction, and emotion-
cause pair extraction sub-tasks, then synthesize the
sub-prompts to solve the ECA task.

We adopt BERTzy! and BERTgpy? as the
clause pair encoders for Chinese and English, re-
spectively. The hidden size of bidirectional LSTM
in emotion extraction model is set to 100. The out-
putted dimensions of emotion classifier and event
predictor in CAREL-VAE are set to 24. The con-
fidence threshold for the self-training of emotion
extraction model is set to 0.7. The number of iter-
ations for the self-training of event-emotion rela-
tion model is set to 50.

We train the emotion extraction model and the
CAREL-VAE by using Adam optimizer, where

"https://huggingface.co/hfl/
chinese-roberta-wwm-ext
https://huggingface.co/roberta-base
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the learning rates and the mini-batch sizes are 2e-5
and 4 and le-5 and 64, respectively. As for regu-
larization, we apply dropout to both of them with
the dropout rate 0.5.

A.3 Ablation Study in Self Training

We train the model using the source domain’s
ground-truth labels, and then directly apply this
supervised-learning model to the target domain
without any self-training. In the ‘w/o Self-
training’ row of the Table 3, we can see the model
experiences a major performance drop, indicating
the usefulness of the self-training.

Furthermore, it is also interesting to explore
the extent to which the predicted emotion labels,
aka EE’s results, will influence the downstream
ECPE’s performance. We therefore utilize the
ground-truth emotion labels instead of the ones
that are predicted by the emotion extraction model
as the input of the ECPE task. In the last row of
the Table 3, the minimum improvement observed
15 2.99% in terms of F1 among all domains, show-
ing that the quality of the emotion prediction does
have a certain impact on the ECPE task. However,
our model can still achieve the best results even we
only use an emotion extraction model with a mod-
erate performance to predict the emotions, whose
task is not the focus of this work.

Regularizer. To further understand how QMMPD

contributes to the UDA-ECPE task, we examine
the performance of our original model and its vari-
ant for two different types of emotion-cause pairs
including normal and self-chain, the results are
shown in Figure 4. Observe that the performance
improvement is mainly attributed to the significant
increment of precision in self-chain cases. This
suggests that disentangled representation learn-
ing helps approximate emotion and cause ran-
dom variables from emotion-cause pairs, and ul-
timately aids in the causal discovery process.

Improved Self-training. For CD-SELFTRAIN,
we examine the usefulness of always constructing
a new training set in each iteration during self-
training. As a comparison, we only update the
training set from the previous iteration by adding
new documents. In this way, negative examples in
the training set remain the same once their docu-
ments are added to the training set. Fig. 6 reports
the proportion of changed positive examples and
the proportion of changed examples in each itera-
tion, as well as changes of precision/recall/F1 over


https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/hfl/chinese-roberta-wwm-ext
https://huggingface.co/roberta-base
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(b) English emotion clauses

Figure 5: The t-SNE visualizations of the clause embeddings from the English UDA-ECPE corpora
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Figure 6: Experimental results of our variant mod-
els that fixes negative samples during the self-training
(denoted as "CAREL-VAE w/ FN") and our original
model CAREL-VAE.

time. We can see that changing negative examples
in each iteration indeed prevents the model from
memorizing the training examples so that it im-
proves the generalization capability of our model.

A.4 Additional Content for related work

Depending on the situation of target domain data,
Domain adaptation can be categorized into two
broad classes: supervised domain adaptation and
unsupervised domain adaptation. The former can
achieve promising results given the small amount
of target domain labeled data (Daumé III, 2007;
Plank, 2011). Conversely, the unsupervised do-
main adaptation (UDA) does not require any data
in the target domain to be labeled and thus is more
attractive and challenging (Glorot et al., 2011;
Ramponi and Plank, 2020). Our work falls under
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the UDA research area. Specifically, cross-domain
emotion-cause pair extraction from one source do-
main with labels to various unlabeled target do-
mains. Unlike most previous works (Miller, 2019;
Du et al., 2020; Zou et al., 2021; Karouzos et al.,
2021; Zhang et al., 2021) on cross-domain sen-
timent classification that solely work with a bi-
nary categorical variable (i.e., positive or nega-
tive sentiment), we simultaneously focus on two
non-binary ones (i.e., emotion and cause) that are
causally dependent. To the best of our knowledge,
this is the first attempt at discovering causal rela-
tions in the context of UDA.
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