
1 General response
Thank you to all of the reviewers for your efforts in reviewing our paper. We
have responded individually to each of your reviews, and we summarize the
changes to our paper here. Changes to the submission are shown in red text,
for ease of understanding the modifications.

1. We have fixed a typo in the definition of (L0, L1)-smoothness (pointed
out by reviewer sfBG). Our definition of (L0, L1)-smoothness now matches that
of (Zhang et al, 2020a)](https://arxiv.org/abs/2010.02519), which is standard
in the literature.

2. In response to a comment by reviewer sfBG, we have added an additional
result in Appendix E which removes the condition on γ in Theorem 1 for the
setting of deterministic gradients, while recovering the same lower bound as in
Theorem 1. Please see Appendix E for a complete description of this new result.

2 sfBG
Thank you for your helpful comments on our paper. We have responded to your
individual points below.

W1: Relaxed smoothness definition Your concern actually comes from
a typo: all of our proofs use the same definition of (L0, L1)-smoothness as
previous work. We have updated the paper to fix this typo by including the
condition ‖x−y‖ ≤ 1/L1. Since this was a major concern for you, we hope that
you will reconsider your score.

W2: Condition for γ Thank you for pointing this out. There are two
points we would like to make about this. First, we investigated whether the
condition can be removed from Theorem 1, and we succeeded in removing
the condition for the deterministic setting while preserving the lower bound
of Ω(∆2L2

1ε
−2). This additional result is included in Appendix E of our revised

submission; please see Appendix E for a complete discussion of this new result.
Removing this condition for the stochastic setting remains open. This leads us
to our second point: for the stochastic setting, we cover the practical regime
where γ is chosen as a small constant (in Pytorch, the default value of the stabi-
lization constant is 10−8). We agree that requiring γ ≤ Õ(∆L1) is a theoretical
limitation, but we believe that our results still capture the behavior of these
algorithms with practical choices of hyperparameters.

W3: Original AdaGrad As you mentioned, we did discuss this point in
our limitations section. Although the lower bound for the original AdaGrad
can likely be improved, we believe that our results for the decorrelated variants
are an important first step towards understanding the original algorithm. This
perspective was also taken by (Li and Orabona, 2019)1.

W4: Affine Noise The reason that we focus on affine noise for Single-Step
Adaptive SGD is that under the bounded noise assumption, there are single-step

1https://arxiv.org/abs/1805.08114
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adaptive algorithms that are known to achieve the optimal rate. The prime ex-
ample is gradient clipping, which was shown to achieve O(∆L0σ

2ε−4) by (Zhang
et al, 2020a)2, and this matches the lower bound for SGD (with any adaptive
learning rate) from (Drori and Shamir, 2020)3. Note that this lower bound uses
a hard instance that is smooth (and therefore relaxed smooth) and with almost
surely bounded noise. Therefore the analysis of Single-Step Adaptive SGD for
the bounded noise case is already tight, and relaxed smoothness does not add
any difficulty compared to smoothness. Because of this, we consider the affine
noise assumption for Single-Step Adaptive SGD.

3 Smgh
Thank you for your review and comments. Below we have responded to your
questions and concerns.

W: Affine noise You mentioned that we only consider the affine noise set-
ting for adaptive SGD. We want to clarify that adaptive SGD in the bounded
setting is already known to achieve the optimal rate O(∆L0σ

2ε−4) (Zhang et al,
2020a)4, so the setting of bounded noise is already resolved. This is our motiva-
tion for studying affine noise, which is a slightly harder setting for optimization.

T2: Comparison with (Wang et al, 2023) You said that ”Table 1
provides the result of AdaGrad-Norm under affine noise, which is not equivalent
to Equation 5.” We should clarify that Equation 5 states the upper bound of
(Wang et al, 2023)5 in the case of bounded noise, which is a special case of their
affine variance result stated in Table 1. We consider this special case in Equation
5 in order to compare against our lower bounds, which consider bounded noise.

Q1: Relaxed smoothness definition Our definition of relaxed smooth-
ness is a slightly weaker version which does not require the function to be twice-
differentiable, and this version was shown to imply the original version (Zhang
et al, 2020a)6. Also, since all of our hard instances are twice differentiable, our
results still apply for the original version of relaxed smoothness. Please let us
know if we have answered your question.

Q2: Parameter dependence explanation Thank you for the suggestion.
L1 appears in our lower bounds because AdaGrad-type algorithms cannot oper-
ate in two stages, unlike gradient clipping. For example, Decorrelated AdaGrad-
Norm must set η ≤ 1/L1 to avoid divergence on some exponential functions,
and this choice of η will affect every single update, even when the algorithm
has nearly converged. On the contrary, gradient clipping can avoid divergence
with a proper choice of the clipping threshold, and the learning rate can be
chosen independently of L1, so that when the algorithm is close to converging,
the update size is unaffected by L1. AdaGrad lacks this ability to branch into

2https://arxiv.org/abs/2010.02519
3https://arxiv.org/abs/1910.01845
4https://arxiv.org/abs/2010.02519
5https://arxiv.org/abs/2305.18471
6https://arxiv.org/abs/2010.02519
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two options depending on the gradient norm, and this causes the additional
dependence on L1.

Q3: Incorrect description of Theorem 4 You are correct, it should say
that the term with quadratic ∆, L1 goes to 0 instead. We have updated the
paper to fix this.

Q4: Reference to (Li et al, 2023) We have referenced (Li et al, 2023)7

in our related works, and we have added a comment to distinguish this work on
Adam from other works on AdaGrad-Norm. Note that this work also exhibits
a higher order polynomial dependence on L1.

4 BkD6
Thank you for your positive review and comments. Below we have answered
your question.

W1: Novelty of decorrelated results As you pointed out, we discussed
this point in our limitations section. However, we believe that proving these
lower bounds for the decorrelated algorithms still requires significant technical
novelties. Our Lemmas 1 and 3 contain constructions of novel hard instances for
these algorithms (Lemma 3 applies to both decorrelated and original AdaGrad).

Q1: Gradient noise assumptions Assumption 2 states many variations
on the stochastic gradient noise assumption, and the main one considered in
our paper is almost surely bounded noise. This assumption is common in the
literature on relaxed smoothness (Zhang et al, 2020b)8, (Zhang et al, 2020a)9,
(Crawshaw et al, 2022)10. Our last theorem also considers the assumption of
affine noise, which has also been used for both smooth and relaxed smooth
optimization (Bottou et al, 2016)11, (Faw et al, 2023)12, (Attia and Koren,
2023)13.

5 Bg2B
Thank you for the positive review and helpful comments. We have responded
to your questions and concerns below.

W1: High dimensional objectives You are correct that the hard in-
stances in our lower bounds are high-dimensional, i.e. d ≥ T . However, this is a
common situation for lower bounds of first-order algorithms, such as (Arjevani
et al, 2023)14 and many classical lower bounds from (Nesterov, 2013)15. To the

7https://arxiv.org/abs/2304.13972
8https://arxiv.org/abs/1905.11881
9https://arxiv.org/abs/2010.02519

10https://arxiv.org/abs/2208.11195
11https://arxiv.org/abs/1606.04838
12https://arxiv.org/abs/2302.06570
13https://arxiv.org/abs/2302.08783
14https://arxiv.org/abs/1912.02365
15https://link.springer.com/book/10.1007/978-3-319-91578-4
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best of our knowledge, there are no lower bounds using fixed dimension which
can match the same bounds as these high-dimensional results.

W2: Generalizing for Adam It is possible that our results could general-
ize to Adam-type algorithms, but there are some technical difficulties. In short,
some parts of our analysis can be used to analyze Adam, though it will require
further work to establish a complete analysis of Adam.

To extend Theorems 2/3 for Decorrelated/Original Adam, we need to estab-
lish analogous results to Lemmas 3 and 4. Interestingly, the hard instance from
Lemma 3 can be reused for Adam, and we can show that Adam will diverge
on the hard instance when η ≥ γ/(L1σ) log(1 + L1ε/L0) (decorrelated Adam)
or η ≥ 1/L1 log(1 + L1ε/L0) (original Adam). This result is enabled by the
fact that the trajectory of Adam is nearly identical to that of AdaGrad for our
specific hard instance, which follows from an important property of our con-
struction: each coordinate of the input has zero stochastic gradient for every
timestep except for one. Therefore, most of the gradient history is zero, so the
moving averages in the numerator and denominator of Adam’s will behave very
similarly to AdaGrad’s update.

However, Lemma 4 is not as easy to extend. Since Adam has a moving
average in the denominator instead of a sum (as in AdaGrad), it’s behavior on
the hard instance of Lemma 4 will differ significantly from AdaGrad: the same
hard instance does not yield the same complexity. So extending the analysis to
Adam would require a new hard instance to replace the one in our Lemma 4.

Overall, it seems promising to reuse both the overall proof structure and
Lemma 3 to analyze Adam, but finishing the proof will require a new construc-
tion to fill the hole left by Lemma 4. We leave this question to future work.

W3: Explanation of Theorem 4 constants Thank you for the feedback,
and you are correct that the length put some limits on the amount of exposition
that we can put in the main body. These constants are error terms arising
from the probability of divergence of the biased random walk from Section C.2,
and their order depends on σ2. To provide a sense for these constants without
specifying all technical details, we describe their order for different regimes of
σ2 and δ on page 9.

Q1: Difficulties of unified analysis This is a good observation. There
are many technical details that create difficulty in simultaneously analyzing
AdaGrad-Norm (shared learning rate) and AdaGrad (coordinate-wise learning
rate), so let us touch on one. The source of the difficulty is that with coordinate-
wise learning rates, each coordinate is affected only by the history of gradients
for that particular coordinate, but not for other coordinates.

In Lemma 3, the coordinates of the objective correspond to time steps in the
trajectory, and each coordinate sees a nonzero gradient for exactly one timestep.
With coordinate-wise learning rates, each coordinate is unaffected by previous
history, so Decorrelated AdaGrad and AdaGrad can be analyzed together. Back
to the original question, Decorrelated AdaGrad-Norm uses a shared learning rate
for each coordinate, so we cannot separate the behavior of each coordinate into
separate timesteps, and the history becomes an important factor in the analysis.
This is one reason why the objective from Lemma 1 is so different from that of
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Lemma 3, and it is not clear whether all three of these algorithms could have a
unified analysis.

Q2: γ requirement of Theorem 3 In the case that γ > σ, our current
constructions cannot “force divergence” of AdaGrad in the case that η ≥ 1/L1,
which is a key component of our analysis. The reason is that our construction
relies on noise in the stochastic gradient to force the algorithm along a trajectory
where ‖∇F (xt)‖ never decreases. If γ > σ, then the noise in the stochastic
gradient is dominated by the γ in the adaptive learning rate denominator, and
the step size is too small to follow this trajectory. This is not to say that the
choice γ > σ is impossible to handle, but doing so will likely require some new
construction.

Also, with AdaGrad there is no fear of the algorithm ”exploding”, since even
when γ = 0 the denominator of the adaptive learning rate is always larger than
the magnitude of the stochastic gradient. This means that the update size of
AdaGrad is bounded by η, no matter the choice of γ.

Lastly, can you elaborate what you meant by ”The ’better noise-dependency’
argument of AdaGrad over DAG is also true only when γ ≤ σ”? We believe
that this better noise-dependence of AdaGrad over DAG still holds when γ > σ,
since the update size of AdaGrad is bounded by η, but the update size of DAG
can grow with σ.

Q3: High probability analysis Theorem 4 uses a high-probability anal-
ysis because it relies on the probability of divergence of a biased random walk
(as opposed to the expectation of a random walk variable after a given time).
You are correct that the structure of the arguments of Theorems 1-3 is similar
in spirit to that of Theorem 4, but these two settings use very different technical
tools, and this leads to the two different types of guarantees.

Q4: Affine noise in Theorem 4 Actually, the complexity of Single-Step
Adaptive SGD is already completely characterized by existing work, since the
upper bound of gradient clipping (Zhang et al, 2020a)16 matches the lower
bound of adaptive SGD (Drori and Shamir, 2020)17, so that the best complex-
ity of Single-Step Adaptive SGD is O(∆L0σ

2ε−4), which recovers the optimal
rate from the smooth setting. Note that the lower bound of (Drori and Shamir,
2020)18 was introduced for the smooth setting, so their hard instance is conse-
quently relaxed smooth. It also has almost surely bounded gradient noise. Since
the complexity in this setting is already completely characterized, we focus on
the slightly harder setting of affine noise.

Q5: Comparison with (Gorbunov et al, 2023) Can you please provide
the specific reference of (Gorbunov et al, 2023)? We are not sure to which paper
you refer.

16https://arxiv.org/abs/2010.02519
17https://arxiv.org/abs/1910.01845
18https://arxiv.org/abs/1910.01845

5



6 AVzC
Thank you for the positive review. Please let us know if you think of any
questions we can answer.
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