
Published in Transactions on Machine Learning Research (11/2022)

GhostSR: Learning Ghost Features for Efficient Image
Super-Resolution

Ying Nie ying.nie@huawei.com
Huawei Noah’s Ark Lab

Kai Han kai.han@huawei.com
Huawei Noah’s Ark Lab

Zhenhua Liu liu.zhenhua@huawei.com
Huawei Noah’s Ark Lab

Chuanjian Liu liuchuanjian@huawei.com
Huawei Noah’s Ark Lab

Yunhe Wang yunhe.wang@huawei.com
Huawei Noah’s Ark Lab

Reviewed on OpenReview: https: // openreview. net/ forum? id= tbd9f3HwPy

Abstract

Modern single image super-resolution (SISR) systems based on convolutional neural net-
works (CNNs) have achieved impressive performance but require huge computational costs.
The problem on feature redundancy has been well studied in visual recognition task, but
rarely discussed in SISR. Based on the observation that many features in SISR models are
also similar to each other, we propose to use shift operation for generating the redundant fea-
tures (i.e. ghost features). Compared with depth-wise convolution which is time-consuming
on GPU-like devices, shift operation can bring a real inference acceleration for CNNs on
common hardware. We analyze the benefits of shift operation in SISR and make the shift
orientation learnable based on the Gumbel-Softmax trick. Besides, a clustering procedure
is explored based on pre-trained models to identify the intrinsic filters for generating corre-
sponding intrinsic features. The ghost features will be generated by moving these intrinsic
features along a certain orientation. Finally, the complete output features are constructed
by concatenating the intrinsic and ghost features together. Extensive experiments on several
benchmark models and datasets demonstrate that both the non-compact and lightweight
SISR CNN models embedded with the proposed method can achieve a comparable perfor-
mance to the baseline models with a large reduction of parameters, FLOPs and GPU infer-
ence latency. For example, we reduce the parameters by 46%, FLOPs by 46% and GPU infer-
ence latency by 42% of×2 EDSR model with almost lossless performance. Code will be avail-
able at https://gitee.com/mindspore/models/tree/master/research/cv/GhostSR.

1 Introduction

Single image super-resolution (SISR) is a classical low-level computer vision task, which aims at recovering
a high-resolution (HR) image from its corresponding low-resolution (LR) image. Since multiple HR images
could be down-sampled to the same LR image, SISR is an ill-posed reverse problem. Recently, deep con-
volutional neural network (CNN) based methods have made significant improvement on SISR task through
carefully designed network architectures. The pioneer work SRCNN (Dong et al., 2014) which contains only
three convolutional layers outperforms the previous non-deep learning methods by a large margin. Subse-
quently, the capacity of CNNs is further excavated with deeper and more complex architectures (Kim et al.,

1

https://openreview.net/forum?id=tbd9f3HwPy
https://gitee.com/mindspore/models/tree/master/research/cv/GhostSR

Published in Transactions on Machine Learning Research (11/2022)

Input
Output

intrinsic

ghost

Identity

Shift

Layer1 Layer2 Layer3

…

Clustering

Up Left Shift

Intrinsic Filters
…0.0 -

0.4 -

0.8 -

-0.4 -

-0.8 -

Figure 1: Visualization of features generated by different layers in VDSR (Kim et al., 2016a), which obviously
has many similar features (Left). The heatmaps of features’ cosine similarity also indicate the phenomenon of
redundancy. The redundant features (i.e. ghost features) can be generated by cheap operation such as shift
based on intrinsic features. The intrinsic features are generated by intrinsic filters, which are selected via
clustering pre-trained model (Right). The red dots and green rectangles in clustering represent the cluster
centers and the selected intrinsic filters, respectively. Shifting to the upper left is taken as an example to
visualize the shift operation.

2016a; Lim et al., 2017; Zhang et al., 2018b;c), which significantly improve the performance. However, these
networks usually involve a large number of parameters and floating-point operations (FLOPs), limiting its
deployment on portable devices like mobile phones and embedded devices.

Many works have been proposed on model compression for visual classification task, including lightweight
architecture design (Howard et al., 2017; Zhang et al., 2018a; Ma et al., 2019; Han et al., 2020), pruning (Han
et al., 2016; Li et al., 2017), and quantization (Zhou et al., 2016; Nie et al.; Li et al., 2021), etc. Wherein,
GhostNet (Han et al., 2020) makes a deep analysis of feature redundancy in the neural network on classifica-
tion task, and then proposes to generate the redundant features (i.e. ghost features) with cheap operations
based on the intrinsic features. In practice, the intrinsic features are generated by the regular convolution
operation (i.e. expensive operation), and then the depth-wise convolution operation (i.e. cheap operation)
is employed on the intrinsic features for generating the ghost features. Finally, the complete output features
are constructed by concatenating the intrinsic and ghost features together. GhostNet achieves competitive
accuracy on the ImageNet dataset with fewer parameters and FLOPs. However, there are two major draw-
backs in GhostNet that prevent its successful application to other vision tasks, especially the SISR task.
Firstly, the so-called cheap operation is not cheap at all for the commonly used GPU-like devices. That is,
depth-wise convolution can not bring practical speedup on GPUs due to its low arithmetic intensity (ratio
of FLOPs to memory accesses) (Wu et al., 2018; Zhang et al., 2018a). In addition, GhostNet simply divides
the output channel evenly into two parts: one part for generating intrinsic features and the other part for
generating ghost features, which does not take into account the prior knowledge in the pre-trained model.

Compared with visual classification networks, the SISR networks tend to involve more number of FLOPs.
For example, ResNet-50 He et al. (2016) and EDSR Lim et al. (2017) are typical networks in classification
task and super-resolution task, respectively. Correspondingly, the FLOPs required for processing a single
3 × 224 × 224 image using ResNet-50 and ×2 EDSR are 4.1G and 2270.9G, respectively. Therefore, the
compression and acceleration of SISR networks is more urgent and practical. To date, many impressive
works have been proposed for compressing and accelerating the SISR networks (Ahn et al., 2018; Song et al.,
2020; Hui et al., 2018; Zhao et al., 2020; Zhang et al., 2021b;a; Li et al., 2022). However, the basic operations
in these works are still conventional convolution operation, which do not consider the redundancy in features
and the practical speed in common hardware. Since most of the existing SISR models need to preserve the
overall texture and color information of the input images, there are inevitably many similar features in each
layer as observed in the left of Figure 1. In addition, considering that the size of images displayed on modern
intelligent terminals are mostly in high-resolution format (2K-4K), the efficiency of SISR models should be
maintained on the common platforms with large computing power (e.g. , GPUs and NPUs).

2

Published in Transactions on Machine Learning Research (11/2022)

Considering that the phenomenon of feature redundancy also exists in the SISR models, in this paper,
we introduce a GhostSR method to generate the redundant features with a real cheap operation, i.e. shift
operation (Wu et al., 2018; Jeon & Kim, 2018; Chen et al., 2019). Compared with the depth-wise convolution
in GhostNet (Han et al., 2020), shift operation can bring practical speedup in common hardware with
negligible FLOPs and parameters. Specifically, the shift operation moves the intrinsic features along a
specific orientation for generating the ghost features. We conclude two benefits of the shift operation for
the SISR task, including the ability to enhance high frequency information and the ability to enlarge the
receptive field of filters. In addition, the Gumbel-Softmax trick (Jang et al., 2016) is exploited so that each
layer in the neural network can adaptively learns its own optimal moving orientation of the intrinsic features
for generating the ghost features. The complete output features are then constructed by concatenating the
intrinsic and ghost features together. With the efficient CUDA implementation of shift operation, GhostSR
brings a practical acceleration on GPUs during inference. Last but not least, the prior knowledge in the
pre-trained model is taken into account in distinguishing which part is intrinsic features and which part is
ghost features. Specifically, the intrinsic filters are identified via clustering the weights of a pre-trained model
based on output channel, and the features generated by the intrinsic filters are taken as intrinsic features.
The other part is taken as the ghost features. The extensive experiments conducted on several benchmarks
demonstrate the effectiveness of the proposed method.

2 Related Works

2.1 Model Compression

In order to compress deep CNNs, a series of methods have been proposed which include lightweight architec-
ture design (Howard et al., 2017; Zhang et al., 2018a; Ma et al., 2019; Han et al., 2020), network pruning (Han
et al., 2016; Li et al., 2017; Ding et al., 2019), knowledge distillation (Hinton et al., 2015; Romero et al., 2015)
and low-bit quantization (Courbariaux et al., 2015; Zhou et al., 2016; Nie et al.; Li et al., 2021), etc. Han et
al. (Han et al., 2016) remove the connections whose weights are lower than a certain threshold in network.
Ding et al. (Ding et al., 2019) propose a centripetal SGD optimization method for network slimming.
Hinton et al. (Hinton et al., 2015) introduce the knowledge distillation scheme to improve the performance
of student model by inheriting the knowledge from a teacher model. Courbariaux et al. (Courbariaux et al.,
2015) quantize the weights and activations into 1-bit value to maximize the compression and acceleration
of the network. In addition, lightweight network architecture design has demonstrated its advantages in
constructing efficient neural network architectures. MobileNets (Howard et al., 2017; Sandler et al., 2018)
are a series of lightweight networks based on bottleneck structure. Liu et al. (Liu et al., 2022) propose to
enlarge the capacity of CNN models by fine-grained FLOPs allocation for the width, depth and resolution
on the stage level. Wu et al. (Wu et al., 2018) first propose the shift operation which moves the input
features horizontally or vertically, then Jeon et al. (Jeon & Kim, 2018) and chen et al. (Chen et al., 2019)
further make the shift operation learnable in visual classification task. ShiftAddNet You et al. (2020) and
ShiftAddNAS You et al. (2022) leverage the bit-wise shift for building energy-efficient networks. Recently,
Han et al. (Han et al., 2020) analyze the redundancy in features and introduce a novel GhostNet module
for building efficient models. In practice, GhostNet generates part of features with depth-wise convolution,
achieving satisfactory performance in high-level tasks with fewer parameters and FLOPs. However, due to
the fragmented memory footprints raised by depth-wise convolution, GhostNet can not bring a practical
acceleration on common GPU-like devices.

2.2 Efficient Image Super-Resolution

Numerous milestone works based on convolutional neural network have been proposed on image super-
resolution task (Dong et al., 2014; Kim et al., 2016a; Tai et al., 2017b; Lim et al., 2017; Zhang et al., 2018c;b).
However, these works are difficult to deploy on resource-limited devices due to their heavy computation cost
and memory footprint. To this end, model compression on super-resolution task is attracting widespread
attention. FSRCNN (Dong et al., 2016) first accelerate the SISR network by a compact hourglass-shape
architecture. DRCN (Kim et al., 2016b)and DRRN (Tai et al., 2017a) adopt recursive layers to build deep
network with fewer parameters. CARN (Ahn et al., 2018) reduce the computation overhead by combining the

3

Published in Transactions on Machine Learning Research (11/2022)

efficient residual block with group convolution. IMDN (Hui et al., 2019) construct the cascaded information
multi-distillation block for efficient feature extraction. LatticeNet (Luo et al., 2020) utilize series connection
of lattice blocks and the backward feature fusion for building a lightweight SISR model. SMSR (Wang et al.,
2021) develop a sparse mask network to learn sparse masks for pruning redundant computation. Attention
mechanism is also introduced to find the most informative region to reconstruct high-resolution image with
better quality (Zhao et al., 2020; Muqeet et al., 2020; Zhang et al., 2018b; Magid et al., 2021; Niu et al.,
2020). To improve the performance of lightweight networks, distillation has been excavated to transfer
the knowledge from experienced teacher networks to student networks (Hui et al., 2018; Gao et al., 2018;
Lee et al., 2020b). Neural architecture search (NAS) is also employed to exploit the efficient architecture
for image super-resolution task (Song et al., 2020; Guo et al., 2020; Lee et al., 2020a; Zhan et al., 2021).
Recently, based on the motivation that different image regions have different restoration difficulties and can
be processed by networks with different capacities, ClassSR (Kong et al., 2021) and FAD (Xie et al., 2021)
propose dynamic super-resolution networks. However, the dynamic SISR networks equipped with multiple
processing branches usually contain several times the number of parameters of the original network, which
limits its deployment on portable devices.

3 Approach

In this section, we describe the details of the proposed GhostSR method for efficient image super-resolution.

3.1 Shift for Generating Ghost Features

The CNN-based super-resolution models consist of massive convolution computations. For a vanilla convo-
lutional layer, producing the output features Y ∈ Rco×h×w requires hwcocis2 FLOPs where co, h, w, ci, s×s
are the number of output channels, the height of output, the width of output, the number of input channels
and the kernel size. The computational cost of convolution consumes much energy and inference time. On
the other hand, we observe that some features in SISR network is similar to another ones, that is, these
features can be viewed as redundant versions of the other intrinsic features, as shown in the left of Figure 1.
We term these redundant features as ghost features. In fact, ghost features can provide a wealth of texture
and high-frequency information, which cannot be directly removed (Han et al., 2020; Yuan et al., 2020).
Instead of discarding, we propose to utilize a more efficient operator, i.e. , shift operation, to generate them.

Assuming that the ratio of ghost features is λ where 0 ≤ λ < 1, then the number of intrinsic and ghost
features is (1− λ)co and λco, respectively. The intrinsic features I ∈ R(1−λ)co×h×w are generated by regular
convolution, and the ghost features G ∈ Rλco×h×w are generated by shift operation based on I since shift is
cheap yet has many advantages on super-resolution task, which will be discussed in detail later. Formally,
the vertical and horizontal offsets to be shifted are io and jo, where −d ≤ io ≤ d, −d ≤ jo ≤ d, and d is the
maximum offset, then the element in position (y, x) of R can be obtained as:

Gy,x,c1 =
d∑

i=−d

d∑
j=−d

Iy+i,x+j,c2Wi,j , (1)

where W ∈ {0, 1}(2d+1)×(2d+1) is a one-hot matrix denoting the offset values, and c1 and c2 are the channel
index of ghost features and the corresponding index of intrinsic features, respectively. All the elements in
W are 0 except that the value in the offset position is 1:

Wi,j =
{

1, if i = io and j = jo,

0, otherwise.
(2)

Finally, we concatenate the intrinsic and ghost features together as the complete output: O = [I,G]. Com-
pared to original convolution layer, our method cuts the FLOPs directly by a ratio of λ since shift operation
is FLOPs-free. More importantly, with the efficient CUDA implementation of shift operation, we can bring
a practical inference acceleration on GPU-like devices.

4

Published in Transactions on Machine Learning Research (11/2022)

-

Input: FI Right shift one pixel: FI’

F44

F04F01

F22F21

F31

F41

F02 F03

F12 F13F11 F14

F23 F24

F32 F33 F34

F42 F43F44

F04F00

F40

F10

F20

F30

F01

F22F21

F31

F41

F02 F03

F12 F13F11 F14

F23 F24

F32 F33 F34

F42 F43 F44

F04F00

F40

F10

F20

F30

F01

F22F21

F31

F41

F02 F03

F12 F13F11 F14

F23 F24

F32 F33 F34

F42 F43

(a) Enhance high frequency information (b) Enlarge the receptive field of filters

FI - FI’

Figure 2: Benefits of shifting the features for SISR task.

3.1.1 Benefits of Shift for Super-resolution.

Super-resolution aims at recovering a high-resolution image from its corresponding low-resolution image.
The enhanced high frequency information such as texture could be helpful for improving the quality of
recovered high-resolution image (Zhang et al., 2018b; Zhou et al., 2018). Given a input feature map FI , we
shift FI one pixel to the right across all channels, and pad the vacant position with zeros to get the shifted
feature maps FI′ . The texture information can be enhanced by FI − FI′ , as shown in the left of Figure 2.
In convolution neural network, the vanilla features and the shifted features are concatenated together to be
processed by next layer’s convolution operation. The convolution operation can be seen as a more complex
operation involving subtraction, which can enhance the high frequency information to some extent.

In addition, the combination of two spatially dislocated feature maps can enlarge the receptive field of CNNs,
which is critical for super-resolution task (Wang et al., 2019; He et al., 2019b). In other words, the shift
operation of feature maps provides a spatial information communication of convolution filters. For instance,
as demonstrated in the right of Figure 2, when shift a feature map one pixel to the left, the receptive field of
the same location on the next layer’s feature map shift one pixel to the left correspondingly. The convolution
operation performed on the combination of dislocation feature maps results in a wider receptive field.

Last but not least, as opposed to the low arithmetic intensity (ratio of FLOPs to memory accesses) of depth-
wise convolution, shift operation is more efficient in terms of practical speed, which will be compared in
detail in the experiments section.

3.2 Make the Shift Learnable

During the training process, the shift operation in Eq. 1 can be implemented by a special case of depth-wise
convolution where only one weight is 1 and the others are 0. Figure 3 gives an example to illustrate how
the shift operation works. In order to flexibly adjust the offset of intrinsic features during training, the
offset weight W need to be learnable. However, the one-hot values in W make it difficult to optimize the
weights. Therefore, the Gumbel-Softmax trick (Jang et al., 2016) is adopted for addressing this issue. The
Gumbel-Softmax trick feed-forwards the one-hot signal and back-propagates the soft signal, which solves the
non-derivableness of sampling from categorical distribution.

We create a proxy soft weight W ′ ∈ R(2d+1)×(2d+1) for representing the inherent values of one-hot W . A
noise N ∈ R(2d+1)×(2d+1) is randomly sampled from the Gumbel distribution:

Ni,j = − log(− log(Ui,j)), (3)

5

Published in Transactions on Machine Learning Research (11/2022)

F11F10

F20

F01 F02F00

F12

F21 F22

00

0

1 00

0

0 0

F01F00

F10

F02

F11 F12

Input Weight Output

F22F21

:pad 0

 :depth-wise convolution

00

0

0 00

0

0 1

F11 F12

Figure 3: An example of the shift operation during training, which is implemented by a special case of
depth-wise convolution where only one weight is 1 and the others are 0.

where Ui,j ∼ U(0, 1) is sampled from uniform distribution. The one-hot weight W is relaxed as

S(W ′i,j) = e(W ′
i,j+Ni,j)/τ∑d

i=−d
∑d
j=−d e

(W ′
i,j

+Ni,j)/τ , (4)

where τ is the temperature to control the sharpness of the softmax function, and the function approximates
the discrete categorical sampling. Then, we can obtain the values of offset indices as

io, jo = arg max
i,j

S(W ′). (5)

During feed-forward process, the values of W can be computed as Eq. 2. As for the back-propagation
process, a straight-through estimator is utilized, that is, the derivative ∂W

∂W ′ is approximated calculated using
the derivative of Eq. 4:

∂W

∂W ′
= ∂S(W ′)

∂W ′
. (6)

Then, the trainable shift weightW and other trainable parameters can be trained end-to-end. After training,
we pick the position of the maximum value as the shift offset position and construct the inference graph of
GhostSR networks.

3.3 Intrinsic Features in Pre-trained Model

In the proposed method, we first generate (1−λ)co features as intrinsic features, then use the shift operation
to generate the other features as ghost features based on the intrinsic features, and finally concatenate the
intrinsic and ghost features together as the complete output features. If we train a GhostSR model from
scratch, the indices c1 and c2 in Eq. 1 are set simply by order. If a pre-trained vanilla SR model is provided,
we can utilize the relation of intrinsic and ghost features for better performance. Since the goal of this work
is to reduce the inference latency, parameters and FLOPs of SISR models, and some other works such as
pruning or quantization (Li et al., 2021; Han et al., 2016) also require pre-trained models, pre-training here
is reasonable.

Given a pre-trained SR model, we aim to replace part of the convolution operations with shift operations
for generating ghost features. However, for the output features of a certain layer in network, it is not clear
which part is intrinsic and which part is ghost. We address this problem by clustering the filters in pre-
trained models, and the features generated by the filter which is nearest to the cluster centroid are taken as
intrinsic features. Specifically, the weights of all convolution filters are firstly vectorized from [co, ci, s, s] to
[co, ci× s× s] and obtain weight vectors {f1, f2, · · · , fco

}. Then the weight vectors are divided into (1−λ)co

6

Published in Transactions on Machine Learning Research (11/2022)

clusters G = {G1, G2, ..., G(1−λ)co
}. Any pair of points in one cluster should be as close to each other as

possible:

min
G

(1−λ)co∑
k=1

∑
i∈Gk

||fi − µk||22, (7)

where µk is the mean of points in cluster Gk. We use clustering method k-means for clustering filters with
the objective function in Eq. 7. For the clusters which contain only one filter, we take this filter as intrinsic
filter. For the clusters which contain multiple filters, the centroid may not really exist in the original weight
kernels, so we select the filter which is nearest to the centroid as intrinsic filter, and the features generated
by the intrinsic filters are taken as intrinsic features. The index of intrinsic filters can be formulated as

Ik =

i ∈ Gk, if |Gk| = 1,
arg min
i∈Gk

||fi − µk||22, otherwise. (8)

The set of intrinsic indices is I = {I1, I2, · · · , I(1−λ)co
} whose corresponding filters are preserved as convolution

operations, and the other filters are replaced by the proposed shift operations.

After finding the intrinsic filters in each layers of the pre-trained model, we assign the corresponding weight
in pre-trained model to the intrinsic filters. Thus, we can maximally utilize the information in pre-trained
model to identify intrinsic features and inherit pre-trained filters for better performance.

4 Experiments

In this section, we conduct extensive experiments on non-compact and lightweight networks. The detailed
quantitative and qualitative evaluations are provided to verify the effectiveness of the proposed method.

4.1 Experimental Settings

4.1.1 Datasets and Metrics.

To evaluate the performance of the method, following the setting of (Lim et al., 2017; Zhang et al., 2018c;
Ahn et al., 2018), we use 800 images from DIV2K (Timofte et al., 2017) dataset to train our models. In order
to compare with other state-of-the-art methods, we report our result on four standard benchmark datasets:
Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010), B100 (Martin et al., 2001) and Urban100 (Huang
et al., 2015). The LR images are generated by bicubic down-sampling and the SR results are evaluated by
PSNR and SSIM (Wang et al., 2004) on Y channel of YCbCr space.

4.1.2 Training Details.

We use four famous SISR models as our baselines: EDSR (Lim et al., 2017), RDN (Zhang et al., 2018c),
CARN (Ahn et al., 2018) and IMDN (Hui et al., 2019). These models have various numbers of parameters
ranging from 0.69M to 43.71M (million). To maintain the performance of the models embedded in the
proposed method, we do not replace the regular convolution in the first and the last layers in these net-
works (Courbariaux et al., 2015; Zhou et al., 2016), and the point-wise convolution is also kept unchanged if
encountered in the middle layers. The detailed architectures are summarized in the Appendix. In addition,
unless otherwise specified, the ratio λ of ghost features is set to 0.5, the temperature τ in Eq. 4 is set to 1,
and the maximum offset d in Eq. 1 is set to 1.

During training, we crop 16 images with 48×48 patch size from the LR images on every card for training.
The input examples are augmented by random horizontal flipping and 90◦ rotating. In addition, all the
images are pre-processed by subtracting the mean RGB value of the DIV2K dataset. To optimize the model,
we use ADAM optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.999, and ε = 10−8. We train EDSR
and RDN for 300 epochs by single-scale training scheme, and train CARN and IMDN for 1200 epochs by
multi-scale and single-scale training scheme respectively. The initial learning rate is set to 1e-4 for all models
and reduced by cosine learning rate decay (Zhao et al., 2020; Kong et al., 2021).

7

Published in Transactions on Machine Learning Research (11/2022)

Table 1: Quantitative results of baseline convolutional networks and their Ghost versions for scaling factor
×2, ×3 and ×4. We assume the HR image size to be 720p (1280×720) to calculate the FLOPs.

Scale Model Type Params FLOPs Set5 Set14 B100 Urban100
(M) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

EDSR Raw 40.73 9389 38.22/0.9612 33.86/0.9201 32.34/0.9018 32.92/0.9356
Ghost 21.85 5038 ↓0.01/↓0.0000 ↑0.07/↑0.0003 ↓0.00/↓0.0000 ↓0.04/↓0.0004

RDN Raw 19.27 4442 38.25/0.9614 33.97/0.9205 32.34/0.9017 32.90/0.9355
Ghost 9.83 2265 ↓0.06/↓0.0002 ↓0.01/↑0.0005 ↓0.00/↓0.0000 ↓0.10/↓0.0009

CARN Raw 1.59 223 37.88/0.9601 33.54/0.9173 32.14/0.8990 31.96/0.9267
Ghost 1.19 130 ↓0.00/↓0.0000 ↓0.00/↑0.0002 ↓0.03/↓0.0003 ↓0.09/↓0.0009

IMDN Raw 0.69 160 37.91/0.9595 33.59/0.9170 32.15/0.8988 32.14/0.9275
Ghost 0.40 91 ↓0.05/↓0.0002 ↓0.18/↓0.0008 ↓0.05/↓0.0006 ↓0.23/↓0.0021

×3

EDSR Raw 43.68 4471 34.67/0.9293 30.56/0.8466 29.26/0.8094 28.78/0.8649
Ghost 24.80 2541 ↓0.03/↓0.0004 ↓0.06/↓0.0007 ↓0.03/↓0.0005 ↓0.09/↓0.0018

RDN Raw 19.37 1981 34.69/0.9296 30.54/0.8467 29.26/0.8093 28.79/0.8654
Ghost 9.92 1016 ↓0.09/↓0.0009 ↓0.04/↓0.0004 ↓0.04/↓0.0008 ↓0.15/↓0.0030

CARN Raw 1.59 119 34.35/0.9266 30.32/0.8415 29.08/0.8043 28.05/0.8499
Ghost 1.19 77 ↓0.08/↓0.0004 ↓0.02/↓0.0005 ↓0.01/↓0.0004 ↓0.08/↓0.0019

IMDN Raw 0.70 72 34.32/0.9260 30.31/0.8410 29.07/0.8037 28.15/0.8511
Ghost 0.41 41 ↓0.14/↓0.0012 ↓0.13/↓0.0024 ↓0.07/↓0.0013 ↓0.22/↓0.0044

×4

EDSR Raw 43.09 2896 32.46/0.8984 28.81/0.7874 27.73/0.7416 26.60/0.8019
Ghost 24.21 1808 ↓0.04/↓0.0005 ↓0.05/↓0.0010 ↓0.06/↓0.0011 ↓0.12/↓0.0027

RDN Raw 19.42 1146 32.49/0.8987 28.83/0.7875 27.72/0.7416 26.59/0.8023
Ghost 9.97 602 ↓0.10/↓0.0011 ↓0.10/↓0.0024 ↓0.05/↓0.0020 ↓0.21/↓0.0063

CARN Raw 1.59 91 32.16/0.8943 28.59/0.7810 27.58/0.7355 26.03/0.7830
Ghost 1.19 68 ↓0.05/↓0.0007 ↓0.02/↓0.0008 ↓0.02/↓0.0007 ↓0.05/↓0.0020

IMDN Raw 0.72 41 32.19 / 0.8938 28.57/0.7805 27.54/0.7344 26.03/0.7831
Ghost 0.42 24 ↓0.13/↓0.0019 ↓0.08/↓0.0021 ↓0.06/↓0.0017 ↓0.14/↓0.0044

Table 2: Average inference latency (ms) for Urban100 dataset with ×2 scale on a single V100 GPU platform.
Model EDSR(Original / GhostSR) RDN(Original / GhostSR)
Latency 720.20 / 420.71 450.73 / 304.75
Model CARN(Original / GhostSR) IMDN(Original / GhostSR)
Latency 49.52 / 37.26 35.05 / 25.64

4.2 Comparison with Baselines

4.2.1 Quantitative Evaluation.

In Table 1, we report the quantitative results of the baseline convolutional networks and the proposed
GhostSR versions for scaling factor ×2, ×3 and ×4. The results of raw type are obtained by our re-training,
which are close to the results in the original papers. The detailed results of our re-training and the results
in the original papers are reported in the Appendix. In addition, following the experimental settings in
IMDN (Hui et al., 2019), we report the practical average inference latency in Table 2. From the results in
Table 1 and Table 2, we can see that both the non-compact (EDSR and RDN) and lightweight (CARN and

8

Published in Transactions on Machine Learning Research (11/2022)

IMDN) SISR models embedded in the GhostSR module can achieve comparable performance to that of their
baselines with a large reduction of parameters, FLOPs and GPU inference latency. For instance, we reduce
the FLOPs of ×2 EDSR, ×2 RDN, ×2 CARN and ×2 IMDN by 46%, 49%, 42% and 43%, respectively, with
little performance loss. Similarly, for different networks, the number of parameters and inference latency are
also greatly reduced. We attribute it to the superiority of learnable shift and the clustering excavation of
prior information in pre-trained models. Urban100 dataset contains 100 images of urban scenes, which is
more challenging than other datasets. Therefore, a slightly higher loss of PSNR is acceptable here.

Set14 (×4):
baboon

HR EDSR RDN CARN IMDN
(PSNR, SSIM) (23.35, 0.5761) (23.37, 0.5766) (23.11, 0.5636) (23.09, 0.5630)

Bicubic EDSR_Ghost RDN_Ghost CARN_Ghost IMDN_Ghost
(22.44, 0.4528) (23.32, 0.5755) (23.35, 0.5764) (23.08, 0.5630) (23.05, 0.5622)

Urban100 (×4):
img_047

HR EDSR RDN CARN IMDN
(PSNR, SSIM) (22.38, 0.7800) (22.35, 0.7793) (21.67, 0.7042) (21.90, 0.7573)

Bicubic EDSR_Ghost RDN_Ghost CARN_Ghost IMDN_Ghost
(20.01, 0.6281) (22.27, 0.7789) (22.21, 0.7764) (21.64, 0.7035) (21.83, 0.7562)

Figure 4: Visual comparisons for ×4 images on Set14 and Urban100 datasets. For the shown examples, the
details and textures generated by shift operation are approximately the same as those by regular convolution.

4.2.2 Qualitative Evaluation.

The qualitative evaluations on various datasets are shown in Figure 4. We choose the most challenging
×4 task to reveal the difference of visual quality between the original network and the GhostSR versions.
From Figure 4, we can see that for both the non-compact and lightweight networks, the details and textures
generated by GhostSR are basically the same as those by original network.

4.3 Comparison with State-of-the-arts

We compare the proposed GhostSR models with the state-of-the-arts including manual-designed efficient
SISR methods (VDSR (Kim et al., 2016a), CARN (Ahn et al., 2018), CARN_M (Ahn et al., 2018),
PAN (Zhao et al., 2020), SelNet (Choi & Kim, 2017), OISR (He et al., 2019a), BTSRN (Fan et al., 2017),
LapSRN (Lai et al., 2017)) and NAS-based (neural architecture search) efficient SISR methods (ESRN (Song
et al., 2020), FALSR (Chu et al., 2019), MoreMNAS (Chu et al., 2020)). From the results in Figure 5, we can
see that the GhostSR models achieves a comparable PSNR with less FLOPs and inference latency. Since the
attention operation in PAN (Zhao et al., 2020) is very time-consuming, our GhostSR-IMDN and GhostSR-
CARN is faster. In addition, PAN achieves a higher PSNR with the use of additional Flickr2K (Lim et al.,
2017) training data, which is not used in our method.

9

Published in Transactions on Machine Learning Research (11/2022)

100 200 300 400
FLOPs (G)

37.5

37.6

37.7

37.8

37.9

38.0
P

S
N

R
 (

d
B

)

CARN_M

FALSR-C

IMDN

ESRN-F

CARN

OISR

MoreMNAS-A

BTSRN

LapSRN

25 30 40 45
Latency (ms)

37.5

37.6

37.7

37.8

37.9

38.0

P
S

N
R

 (
d
B

)

CARN_M

IMDN

CARN

LapSRN

35

VDSR

PAN

BTSRN

GhostSR

-IMDN

GhostSR

-CARN

-42%
-43%

GhostSR

-IMDN

-27%
-25%

GhostSR

-CARN1.5M1M0.5M

Params：

Figure 5: PSNR v.s. FLOPs and PSNR v.s. Latency. The PSNR is calculated on Set5 dataset with ×2
scale, and the FLOPs is calculated with a 640 × 360 image. The average inference latency is calculated on
a single V100 GPU using Urban100 dataset with ×2 scale.

Table 3: Comparison of different ×3 CARN network under similar FLOPs budget. The FLOPs is calculated
with a 426×240 image, and the average inference latency is calculated on a single V100 GPU using Urban100
dataset with ×3 scale. The best results are in bold.

Type Params FLOPs Latency Set5 Set14 B100 Urban100
(M) (G) (ms) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Original 1.59 119 32.09 34.35/0.9266 30.32/0.8415 29.08/0.8043 28.05/0.8499
Conv-0.80× 1.15 79 29.33 34.11/0.9242 30.13/0.8390 28.89/0.8022 27.77/0.8460

C-SGD 1.15 79 29.05 34.15/0.9248 30.16/0.8395 28.92/0.8026 27.84/0.8467
HRank 1.19 78 28.56 34.16/0.9251 30.14/0.8395 28.95/0.8028 27.86/0.8471
GhostSR 1.19 77 23.28 34.27/0.9262 30.30/0.8410 29.07/0.8039 27.97/0.8480

4.4 Comparison with Other Compression Methods

4.4.1 Comparison with Pruning Methods.

Pruning is a classical type of model compression methods which aims to cut out the unimportant channels.
Unlike image recognition that requires the high-level coarse feature, the detailed difference between feature
maps is important for super-resolution task. Our GhostSR does not remove any channel and re-generate the
ghost features by the learnable shift. Thus, we compare GhostSR with the representative network pruning
methods including C-SGD (Ding et al., 2019) and HRank (Lin et al., 2020). In table 3, we report the
quantitative results of different methods of reducing FLOPs for ×3 CARN network. Conv-0.80× means to
directly reduce the number of channels in each layer of the network to 0.80 times the original number. We
re-implement the C-SGD (Ding et al., 2019) and HRank (Lin et al., 2020) and apply them for the SISR task.
CARN itself is a lightweight network, and directly reducing the width of each layer of the network will bring
a greater performance drop. For instance, compared with the original CARN, the PSNR of Conv-0.80× is
reduced by 0.28dB for ×3 scale on Urban100 dataset. When the pruning methods (C-SGD and HRank) are
adopted, the PSNR/SSIM is improved significantly. However, there are still some gaps with the GhostSR
method. For example, GhostSR exceeds HRank by 0.11dB on Urban100 dataset with a faster inference
speed.

Figure 6 visualizes the ×3 images generated by different CARN. The visual quality of the images generated
by reducing the number of channels is obviously degraded, and the GhostSR maintains the visual quality of
images. We attribute it to the characteristics of shift operation, which can compensate for the performance

10

Published in Transactions on Machine Learning Research (11/2022)

degradation caused by the reduction in channels. For example, the left side of the enlarged area of img_008
generated by Conv-0.80× or C-SGD Ding et al. (2019) is blurred compared to that of GhostSR method.

Set14 (x3):

zebra
Urban100 (x3):

img_008

HR

C-SGD

CARN Conv-0.80x

Depthwise GhostSR

HR

C-SGD

CARN Conv-0.80x

Depthwise GhostSR

Figure 6: Visual comparisons of different model compression methods for ×3 CARN.

4.4.2 Comparison with Depthwise Convolution.

In addition, we also compare the results of replacing the shift operation in our method with the depth-wise
convolution, which is denoted by Depthwise in Table 4. The depth-wise convolution is utilized in GhostNet
to build efficient models in classification task. When the shift operation in GhostSR model is replaced with
depth-wise convolution, there is a slight performance boost due to the introduction of a few more FLOPs.
The visual quality between shift and depth-wise is similar in Figure 6. However, the average inference
latency of depth-wise operation is greatly increased since it is time-consuming on GPU-like devices due to
its fragmented memory footprints. In particular, the latency of Depthwise model is 31.56ms which is 8.28ms
more than GhostSR method.

Table 4: Comparison of shift and depth-wise operations on ×3 CARN network.

Method FLOPs Latency Set5 Set14 B100 Urban100
(G) (ms) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Original 119 32.09 34.35 / 0.9266 30.32 / 0.8415 29.08/0.8043 28.05/0.8499
Depthwise 80 31.56 34.27 / 0.9263 30.31 / 0.8410 29.09/0.8042 28.00/0.8485
GhostSR 77 23.28 34.27 / 0.9262 30.30 / 0.8410 29.07/0.8039 27.97/0.8480

4.5 Ablation Study

4.5.1 Analysis on the Sub-Modules in GhostSR.

We first conduct a series of comparison experiments to analyze the effects of sub-modules in GhostSR, and
the results are reported in Table 5. For the option that does not use the learnable shift scheme, we replace
the shift operation with a simple copy operation, that is, the ghost features are obtained directly by copying
the intrinsic features. For the option that does not use the clustered information in pre-trained models, we
train the models from scratch. When neither learnable shift scheme nor the clustering based on pre-trained
models is used, the PSNR of GhostSR drops by 0.24dB on Urban100 dataset. When only the clustering
based on pre-trained models or the learnable shift scheme is used, the PSNR drops by 0.13dB and 0.08dB
on Urban100 dataset, respectively.

Figure 7 visualizes the features generated at the same layer for three versions of CARN: copy operation,
learnable shift operation and regular convolution operation. The copy version and the learnable shift version
of CARN are both trained based on the pre-trained model using the aforementioned clustering procedure.
The features of img_001 and lenna are generated in the first and third residual-block of CARN, respectively.
From Figure 7, the learnable shift operation extracts textures similar to that of the regular convolution, and
more than the copy operation. For example, the edge and texture of features in lenna generated by shift are
clearer and richer than those by copy.

11

Published in Transactions on Machine Learning Research (11/2022)

Table 5: Analysis on the sub-modules in GhostSR for ×3 CARN network.
Architecture Set5 Set14 B100 Urban100

Learnable Shift
(Eq. 4, 5)

Clustering
(Eq. 7, 8)

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

× × 34.04/0.9241 30.06/0.8378 28.80/0.8012 27.73/0.8439
× X 34.17/0.9250 30.23/0.8399 28.96/0.8023 27.84/0.8463
X × 34.20/0.9253 30.21/0.8397 29.00/0.8031 27.89/0.8471
X X 34.27/0.9262 30.30/0.8410 29.07/0.8039 27.97/0.8480

Urban100:

img_001

Set14:

lenna Copy ConvShift

Figure 7: Visualization of features generated at the same layer by different CARN. The learnable shift
operation extracts more textures than copy.

4.5.2 Analysis on the Ratio of Ghost Features.

We also conduct the experiments to analyze the effect of different ratio λ of ghost features, and the results
are reported in Table 6. A higher λ means more ghost features are generated by the shift operation. Since
the number of features in each layer is fixed, the more ghost features are generated by shift operation, the
greater the reduction in parameters, FLOPs and latency, and the slight negative impact on PSNR/SSIM is
inevitable. Notably, when the ratio equals 0.25, we achieve a higher PSNR on all four datasets with fewer
parameters, FLOPs and latency.

Table 6: Analysis on the ratio of ghost features for ×3 CARN network.

λ
Params FLOPs Latency Set5 Set14 B100 Urban100
(M) (G) (ms) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

0.00 1.59 119 32.67 34.35/0.9266 30.32/0.8415 29.08/0.8043 28.05/0.8499
0.25 1.33 96 29.22 ↑0.04/↑0.0003 ↑0.05/↑0.0008 ↑0.01/↑0.0000 ↑0.04/↑0.0006
0.50 1.19 77 26.14 ↓0.08/↓0.0004 ↓0.02/↓0.0005 ↓0.01/↓0.0004 ↓0.08/↓0.0019
0.75 1.01 60 22.54 ↓0.15/↓0.0021 ↓0.08/↓0.0016 ↓0.10/↓0.0018 ↓0.23/↓0.0047

12

Published in Transactions on Machine Learning Research (11/2022)

5 Conclusion

This paper proposes a GhostSR method for efficient SISR models. We first study the feature redundancy
in convolutional layers and introduce a learnable shift operation to replace a part of conventional filters for
generating the ghost features in a cheap way. Then, we present a procedure of clustering pre-trained models
to select the intrinsic filters for generating intrinsic features. Thus, we can effectively learn and identify the
intrinsic and ghost features simultaneously. The final output features are constructed by concatenating the
intrinsic and ghost features together. We empirically analyze the benefits of shift operation on SISR task and
bring a practical inference acceleration on GPUs. Extensive experiments demonstrate that both the non-
compact and lightweight SISR models embedded in the GhostSR method can achieve comparable quantitative
result and qualitative quality to that of their baselines with a large a large reduction of parameters, FLOPs
and GPU inference latency.

6 Acknowledgement

We gratefully acknowledge the support of MindSpore (Huawei, 2020), CANN(Compute Architecture for
Neural Networks) and Ascend AI Processor used for this research.

References
Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-resolution with
cascading residual network. In ECCV, pp. 252–268, 2018.

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-complexity single-
image super-resolution based on nonnegative neighbor embedding. 2012.

Meng Chang, Qi Li, Huajun Feng, and Zhihai Xu. Spatial-adaptive network for single image denoising. In
European Conference on Computer Vision, pp. 171–187. Springer, 2020.

Weijie Chen, Di Xie, Yuan Zhang, and Shiliang Pu. All you need is a few shifts: Designing efficient
convolutional neural networks for image classification. In CVPR, pp. 7241–7250, 2019.

Jae-Seok Choi and Munchurl Kim. A deep convolutional neural network with selection units for super-
resolution. In CVPR workshops, pp. 154–160, 2017.

Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and Qingyuan Li. Fast, accurate and lightweight
super-resolution with neural architecture search. arXiv preprint arXiv:1901.07261, 2019.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Multi-objective reinforced evolution in mobile neural architecture
search. In ECCV, pp. 99–113. Springer, 2020.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural net-
works with binary weights during propagations. In NeurIPS, pp. 3123–3131, 2015.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very deep
convolutional networks with complicated structure. In CVPR, 2019.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for
image super-resolution. In ECCV. Springer, 2014.

Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional neural
network. In ECCV, pp. 391–407. Springer, 2016.

Yuchen Fan, Honghui Shi, Jiahui Yu, Ding Liu, Wei Han, Haichao Yu, Zhangyang Wang, Xinchao Wang, and
Thomas S Huang. Balanced two-stage residual networks for image super-resolution. In CVPR Workshops,
pp. 161–168, 2017.

13

Published in Transactions on Machine Learning Research (11/2022)

Qinquan Gao, Yan Zhao, Gen Li, and Tong Tong. Image super-resolution using knowledge distillation. In
ACCV, pp. 527–541. Springer, 2018.

Yong Guo, Yongsheng Luo, Zhenhao He, Jin Huang, and Jian Chen. Hierarchical neural architecture search
for single image super-resolution. arXiv preprint arXiv:2003.04619, 2020.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More features
from cheap operations. In CVPR, pp. 1580–1589, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In ICLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, pp. 770–778, 2016.

Xiangyu He, Zitao Mo, Peisong Wang, Yang Liu, Mingyuan Yang, and Jian Cheng. Ode-inspired network
design for single image super-resolution. In CVPR, pp. 1732–1741, 2019a.

Zewei He, Yanpeng Cao, Lei Du, Baobei Xu, Jiangxin Yang, Yanlong Cao, Siliang Tang, and Yueting
Zhuang. Mrfn: Multi-receptive-field network for fast and accurate single image super-resolution. IEEE
Transactions on Multimedia, 22(4):1042–1054, 2019b.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In CVPR, pp. 5197–5206, 2015.

Huawei. Mindspore. https://www.mindspore.cn/, 2020.

Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accurate single image super-resolution via information
distillation network. In CVPR, pp. 723–731, 2018.

Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang. Lightweight image super-resolution with informa-
tion multi-distillation network. In Proceedings of the 27th ACM International Conference on Multimedia,
pp. 2024–2032, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Yunho Jeon and Junmo Kim. Constructing fast network through deconstruction of convolution. In NeurIPS,
pp. 5951–5961, 2018.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep convo-
lutional networks. In CVPR, 2016a.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional network for image super-
resolution. In CVPR, pp. 1637–1645, 2016b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Xiangtao Kong, Hengyuan Zhao, Yu Qiao, and Chao Dong. Classsr: A general framework to accelerate super-
resolution networks by data characteristic. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12016–12025, 2021.

14

https://www.mindspore.cn/

Published in Transactions on Machine Learning Research (11/2022)

Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep laplacian pyramid networks
for fast and accurate super-resolution. In CVPR, pp. 624–632, 2017.

Royson Lee, Łukasz Dudziak, Mohamed Abdelfattah, Stylianos I Venieris, Hyeji Kim, Hongkai Wen, and
Nicholas D Lane. Journey towards tiny perceptual super-resolution. arXiv preprint arXiv:2007.04356,
2020a.

Wonkyung Lee, Junghyup Lee, Dohyung Kim, and Bumsub Ham. Learning with privileged information
for efficient image super-resolution. In European Conference on Computer Vision, pp. 465–482. Springer,
2020b.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. In ICLR, 2017.

Yawei Li, Kai Zhang, Radu Timofte, Luc Van Gool, Fangyuan Kong, Mingxi Li, Songwei Liu, Zongcai Du,
Ding Liu, Chenhui Zhou, et al. Ntire 2022 challenge on efficient super-resolution: Methods and results. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1062–1102,
2022.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Im-
age restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1833–1844, 2021.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual networks
for single image super-resolution. In CVPR workshops, 2017.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling Shao.
Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1529–1538, 2020.

Chuanjian Liu, Kai Han, An Xiao, Ying Nie, Wei Zhang, and Yunhe Wang. Network amplification with
efficient macs allocation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1933–1942, 2022.

Xiaotong Luo, Yuan Xie, Yulun Zhang, Yanyun Qu, Cuihua Li, and Yun Fu. Latticenet: Towards lightweight
image super-resolution with lattice block. In European Conference on Computer Vision, pp. 272–289.
Springer, 2020.

Yinglan Ma, Hongyu Xiong, Zhe Hu, and Lizhuang Ma. Efficient super resolution using binarized neural
network. In CVPR Workshops, 2019.

Salma Abdel Magid, Yulun Zhang, Donglai Wei, Won-Dong Jang, Zudi Lin, Yun Fu, and Hanspeter Pfister.
Dynamic high-pass filtering and multi-spectral attention for image super-resolution. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4288–4297, 2021.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring ecological statistics. In
ICCV, volume 2, pp. 416–423. IEEE, 2001.

Abdul Muqeet, Jiwon Hwang, Subin Yang, Jung Heum Kang, Yongwoo Kim, and Sung-Ho Bae. Ultra
lightweight image super-resolution with multi-attention layers. arXiv preprint arXiv:2008.12912, 2020.

Ying Nie, Kai Han, and Yunhe Wang. Multi-bit adaptive distillation for binary neural networks.

15

Published in Transactions on Machine Learning Research (11/2022)

Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun
Cao, and Haifeng Shen. Single image super-resolution via a holistic attention network. In European
conference on computer vision, pp. 191–207. Springer, 2020.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In CVPR, pp. 4510–4520, 2018.

Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu, and Yunhe Wang. Efficient residual dense block
search for image super-resolution. In AAAI, pp. 12007–12014, 2020.

Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via deep recursive residual network. In
CVPR, pp. 3147–3155, 2017a.

Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Memnet: A persistent memory network for image
restoration. In ICCV, pp. 4539–4547, 2017b.

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. Ntire 2017 challenge
on single image super-resolution: Methods and results. In CVPR workshops, pp. 114–125, 2017.

Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi Ying, Zaiping Lin, Wei An, and Yulan Guo. Explor-
ing sparsity in image super-resolution for efficient inference. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4917–4926, 2021.

Ruxin Wang, Mingming Gong, and Dacheng Tao. Receptive field size versus model depth for single image
super-resolution. IEEE Transactions on Image Processing, 29:1669–1682, 2019.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad, Joseph
Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to spatial convolutions. In
CVPR, pp. 9127–9135, 2018.

Wenbin Xie, Dehua Song, Chang Xu, Chunjing Xu, Hui Zhang, and Yunhe Wang. Learning frequency-aware
dynamic network for efficient super-resolution. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4308–4317, 2021.

Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang, and
Yingyan Lin. Shiftaddnet: A hardware-inspired deep network. Advances in Neural Information Processing
Systems, 33:2771–2783, 2020.

Haoran You, Baopu Li, Shi Huihong, Yonggan Fu, and Yingyan Lin. Shiftaddnas: Hardware-inspired search
for more accurate and efficient neural networks. In International Conference on Machine Learning, pp.
25566–25580. PMLR, 2022.

Pengcheng Yuan, Shufei Lin, Cheng Cui, Yuning Du, Ruoyu Guo, Dongliang He, Errui Ding, and Shumin
Han. Hs-resnet: Hierarchical-split block on convolutional neural network. arXiv preprint arXiv:2010.07621,
2020.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-representations. In
International conference on curves and surfaces, pp. 711–730. Springer, 2010.

Zheng Zhan, Yifan Gong, Pu Zhao, Geng Yuan, Wei Niu, Yushu Wu, Tianyun Zhang, Malith Jayaweera,
David Kaeli, Bin Ren, et al. Achieving on-mobile real-time super-resolution with neural architecture
and pruning search. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
4821–4831, 2021.

16

Published in Transactions on Machine Learning Research (11/2022)

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In CVPR, pp. 6848–6856, 2018a.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using
very deep residual channel attention networks. In ECCV, 2018b.

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for image
super-resolution. In CVPR, 2018c.

Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Aligned structured sparsity learning for efficient image
super-resolution. Advances in Neural Information Processing Systems, 34:2695–2706, 2021a.

Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Learning efficient image super-resolution networks via
structure-regularized pruning. In International Conference on Learning Representations, 2021b.

Hengyuan Zhao, Xiangtao Kong, Jingwen He, Yu Qiao, and Chao Dong. Efficient image super-resolution
using pixel attention. arXiv preprint arXiv:2010.01073, 2020.

Fuqiang Zhou, Xiaojie Li, and Zuoxin Li. High-frequency details enhancing densenet for super-resolution.
Neurocomputing, 290:34–42, 2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

17

Published in Transactions on Machine Learning Research (11/2022)

A Appendix

A.1 Detailed Network Architectures

As we mentioned in the main body, to improve the performance of the models equipped with GhostSR, we
do not replace the regular convolution in the first and the last layers in these networks, and the point-wise
convolution is also kept unchanged if encountered in the middle layers. We take the ×2 scale as an example
and the modified network architectures are summarized in Table 7, Table 8, Table 9 and Table 10. Where
(cin, cout, k, k) in layer_size represents the input channel, output channel and kernel size of the convolutional
layer are cin, cout and k × k, respectively. [c1_conv, c2_ghost] in type represents the output channel of
conventional convolution operation and ghost operation in GhostSR method are c1 and c2, respectively. Note
that when c2 is equal to 0, the convolutional layer only involves the conventional convolution operation.

Table 7: The detailed architecture of ×2 EDSR (Lim et al., 2017) equipped with GhostSR.
layer_name layer_size type

head (3, 256, 3, 3) [256_conv, 0_ghost]
[ResBlock] × 32 (256, 256, 3, 3) [128_conv, 128_ghost]
tail.upsampler (256, 1024, 3, 3) [1024_conv, 0_ghost]

tail.conv (256, 3, 3, 3) [3_conv, 0_ghost]

Table 8: The detailed architecture of ×2 RDN (Zhang et al., 2018c) equipped with GhostSR.
layer_name layer_size type
SFENet1 (3, 64, 3, 3) [64_conv, 0_ghost]
SFENet2 (64, 64, 3, 3) [32_conv, 32_ghost]

[ResDenseBlock] × 16 (64 × i, 64, 3, 3) [32_conv, 32_ghost]
i = [1, 2, ... , 8]

GFF.conv0 (1024, 64, 1, 1) [64_conv, 0_ghost]
GFF.conv1 (64, 64, 3, 3) [64_conv, 0_ghost]
UPNet.conv0 (64, 256, 3, 3) [256_conv, 0_ghost]
UPNet.conv1 (64, 3, 3, 3) [3_conv, 0_ghost]

Table 9: The detailed architecture of ×2 CARN (Ahn et al., 2018) equipped with GhostSR.
layer_name layer_size type
conv_in (3, 64, 3, 3) [64_conv, 0_ghost]
Block1 (64, 64, 3, 3) [32_conv, 32_ghost]
C1 (128, 64, 1, 1) [64_conv, 0_ghost]

Block2 (64, 64, 3, 3) [32_conv, 32_ghost]
C2 (192, 64, 1, 1) [64_conv, 0_ghost]

Block3 (64, 64, 3, 3) [32_conv, 32_ghost]
C3 (256, 64, 1, 1) [64_conv, 0_ghost]

upconv (64, 256, 3, 3) [256_conv, 0_ghost]
conv_out (64,3,3,3) [3_conv, 0_ghost]

18

Published in Transactions on Machine Learning Research (11/2022)

Table 10: The detailed architecture of ×2 IMDN (Hui et al., 2019) equipped with GhostSR.
layer_name layer_size type

conv1 (3, 64, 3, 3) [64_conv, 0_ghost]

[IMDModule] × 6

C1 (64, 64, 3, 3) [32_conv, 32_ghost]
C2 (48, 64, 3, 3) [32_conv, 32_ghost]
C3 (48, 64, 3, 3) [32_conv, 32_ghost]
C4 (48, 16, 3, 3) [8_conv, 8_ghost]
C5 (64, 64, 1, 1) [64_conv, 0_ghost]

C (384, 64, 1, 1) [64_conv, 0_ghost]
conv2 (64, 64, 3, 3) [64_conv, 0_ghost]

upsampler (64, 12, 3, 3) [12_conv, 0_ghost]

-0.75

-0.60

-0.45

-0.30

-0.15

Figure 8: Visualization of the normalized depthwise filters.

A.2 Detailed Results of the Baseline Convolutional Networks

For a fair comparison, we report the results of the baseline convolutional networks in Table 11, including the
results of our re-trained and the results in the original papers. The results of our re-trained are close to the
results in the original papers.

A.3 Generalibity on Other Low-Level Tasks

In general, the proposed method is also applicable to other non-SISR low-level tasks. We conduct experi-
ments on the SADNet (Chang et al., 2020) for the single image denoising task. Specifically, only the 3 × 3
conventional convolution filters are replaced with the Ghost version, and the convolution filters in the first
and last layers are also kept unchanged. The results on the synthetic color BSD68 dataset with σ = 30
gaussian noise are reported in Table 12. The FLOPs are computed based on 480× 320 color images. From
the results in Table 12, the Ghost version significantly reduces parameters and FLOPs of original SADNet
by 1.3M and 14.4G, respectively, while the PSNR is slightly reduced by 0.09 dB.

A.4 Visualization of Depthwise Filters

In Table 4, we compare the results of replacing the shift operation in the proposed GhostSR method with the
depthwise convolution. From Figure 1, the output features (O in short) are obtained by concating the intrinsic
features (I in short) and ghost features (G in short) together, that is, O = [I,G]. For the shift operation,
G = Shift(I), and for the depthwise convolution operation (DWConv in short), G = DWConv(I). To
compare the differences between shift and depthwise convolution, the learned depthwise convolution filters
in the first GhostSR layer are randomly selected for visualization. Specifically, for a filter W ∈ R3×3, every
element w of W is first normalized by |w|/max(|W |), and the normalized depthwise convolution filters are
visualized in Figure 8. From Figure 8, we can see that some filters (marked with green rectangle) are very

19

Published in Transactions on Machine Learning Research (11/2022)

Table 11: The detailed results of the baseline convolutional networks for scaling factor ×2, ×3 and ×4.

Scale Model Type Set5 Set14 B100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

EDSR Ours 38.22 / 0.9612 33.86 / 0.9201 32.34 / 0.9018 32.92 / 0.9356
Paper 38.11 / 0.9601 33.92 / 0.9195 32.32 / 0.9013 32.93 / 0.9351

RDN Ours 38.25 / 0.9614 33.97 / 0.9205 32.34 / 0.9017 32.90 / 0.9355
Paper 38.24 / 0.9614 34.01 / 0.9212 32.34 / 0.9017 32.89 / 0.9353

CARN Ours 37.88 / 0.9601 33.54 / 0.9173 32.14 / 0.8990 31.96 / 0.9267
Paper 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256

IMDN Ours 37.91 / 0.9595 33.59 / 0.9170 32.15 / 0.8988 32.14 / 0.9275
Paper 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283

×3

EDSR Ours 34.67 / 0.9293 30.56 / 0.8466 29.26 / 0.8094 28.78 / 0.8649
Paper 34.65 / 0.9282 30.52 / 0.8462 29.25 / 0.8093 28.80 / 0.8653

RDN Ours 34.69 / 0.9296 30.54 / 0.8467 29.26 / 0.8093 28.79 / 0.8654
Paper 34.71 / 0.9296 30.57 / 0.8468 29.26 / 0.8093 28.80 / 0.8653

CARN Ours 34.35 / 0.9266 30.32 / 0.8415 29.08 / 0.8043 28.05 / 0.8499
Paper 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493

IMDN Ours 34.32 / 0.9260 30.31 / 0.8410 29.07 / 0.8037 28.15 / 0.8511
Paper 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519

×4

EDSR Ours 32.46 / 0.8984 28.81 / 0.7874 27.73 / 0.7416 26.60 / 0.8019
Paper 32.46 / 0.8968 28.80 / 0.7876 27.71 / 0.7420 26.64 / 0.8033

RDN Ours 32.49 / 0.8987 28.83 / 0.7875 27.72 / 0.7416 26.59 / 0.8023
Paper 32.47 / 0.8990 28.81 / 0.7871 27.72 / 0.7419 26.61 / 0.8028

CARN Ours 32.16 / 0.8943 28.59 / 0.7810 27.58 / 0.7355 26.03 / 0.7830
Paper 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837

IMDN Ours 32.19 / 0.8938 28.57 / 0.7805 27.54 / 0.7344 26.03 / 0.7831
Paper 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838

Table 12: Comparison of the baseline SADNet (Chang et al., 2020) and the Ghost version.
Model Params (M) FLOPs (G) PSNR (dB)
Original 4.3 50.1 30.64
Ghost 3.0 35.7 30.55

similar to shift operation, that is, only one value of 3x3 is equal to 1, and the others are significantly low,
even close to 0.

A.5 Comparison with SwinIR

SwinIR Liang et al. (2021) is the representative work based on transformers, which achieves impressive results
on many low-level vision tasks. The detailed comparisons are reported in Table 13. The average inference
latency is calculated on Urban100 dataset with ×4 scale on a single V100 GPU platform. From Table 13,
compared with other models, SwinIR achieves the highest PSNRs on four datasets, however, SwinIR also
has the highest latency at an astounding 153.4ms. The ultra-high latency limits the deployment of SwinIR
in real-time inference scenarios. The PSNRs of the 4x wider Ghost_IMDN model are comparable to SwinIR,
however, the latency is only one-third of SwinIR.

20

Published in Transactions on Machine Learning Research (11/2022)

Table 13: Comparison with SwinIR Liang et al. (2021) with×4 scale.

Model Params FLOPs Latency Set5 Set14 B100 Urban100
(M) (G) (ms) PSNR PSNR PSNR PSNR

SwinIR 0.90 49.6 153.4 32.44 28.77 27.69 26.47
IMDN 0.72 40.9 8.6 32.19 28.57 27.54 26.03

Ghost_IMDN 0.42 23.9 6.9 32.06 28.49 27.48 25.89
Ghost_IMDN (x4) 6.47 370.5 50.12 32.40 28.71 27.61 26.38

A.6 More Visual Results

In Figure 9, more results are displayed to reveal the difference of visual quality between the original network
and the GhostSR versions. For both the non-compact and lightweight networks, the details and textures
generated by GhostSR are basically the same as those by original network.

21

Published in Transactions on Machine Learning Research (11/2022)

Set5: baby (×4)

HR EDSR RDN CARN IMDN

Bicubic EDSR_GhostSR RDN_GhostSR CARN_GhostSR IMDN_GhostSR

B100: 69015 (×4)

HR EDSR RDN CARN IMDN

Bicubic EDSR_GhostSR RDN_GhostSR CARN_GhostSR IMDN_GhostSR

Urban100: img_006 (×4)

HR EDSR RDN CARN IMDN

Bicubic EDSR_GhostSR RDN_GhostSR CARN_GhostSR IMDN_GhostSR

Urban100: img_081 (×4)

HR EDSR RDN CARN IMDN

Bicubic EDSR_GhostSR RDN_GhostSR CARN_GhostSR IMDN_GhostSR

Figure 9: Visual comparisons for ×4 images on various datasets. For the shown examples, the details
generated by ghost operation are approximately the same as those by conventional convolution.

22

	Introduction
	Related Works
	Model Compression
	Efficient Image Super-Resolution

	Approach
	Shift for Generating Ghost Features
	Benefits of Shift for Super-resolution.

	Make the Shift Learnable
	Intrinsic Features in Pre-trained Model

	Experiments
	Experimental Settings
	Datasets and Metrics.
	Training Details.

	Comparison with Baselines
	Quantitative Evaluation.
	Qualitative Evaluation.

	Comparison with State-of-the-arts
	Comparison with Other Compression Methods
	Comparison with Pruning Methods.
	Comparison with Depthwise Convolution.

	Ablation Study
	Analysis on the Sub-Modules in GhostSR.
	Analysis on the Ratio of Ghost Features.

	Conclusion
	Acknowledgement
	Appendix
	Detailed Network Architectures
	Detailed Results of the Baseline Convolutional Networks
	Generalibity on Other Low-Level Tasks
	Visualization of Depthwise Filters
	Comparison with SwinIR
	More Visual Results

