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Abstract

Segmentation is an essential tool for cell biologists and involves isolating cells or cellular
features from microscopy images. An automated segmentation pipeline with high pre-
cision and accuracy can significantly reduce manual labor and subjectivity. Frequently,
researchers would seek for a validated model available online and fine-tune it to meet their
segmentation requirements. However, the established fine-tuning approach may involve
online training or computationally intensive offline training. To address this, we propose
an offline training pipeline requiring only tens of samples that are morphologically distinct
from pre-training data. Specifically, we employed a patch-based attention U-Net trained
with a threshold-based custom loss function. Finally, we evaluated this workflow along
with two other state-of-the-art models, Stardist and Cellpose, on three different tasks. Our
method improves image segmentation performance by 32.60% and 35.62% over Stardist and
Cellpose, respectively, using the same amount of training samples. The code is available
on our GitHub page: https://github.com/NTUMMIO/PAULow.
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1. Introduction

Training a robust model for image segmentation can significantly shorten the time spent
on image analysis. However, deep learning models would require a substantial amount of
labeled data, often difficult and time-consuming to acquire (Román et al., 2023; Kemeter
et al., 2024); without sufficient training data, the model may suffer from overfitting (Li
et al., 2019; Ye et al., 2022). Recently, multiple deep learning-based cell microscopy image
segmentation models trained on large datasets, such as Cellpose and Stardist (Schmidt
et al., 2018; Stringer et al., 2020; Pachitariu and Stringer, 2022; Stringer and Pachitariu,
2025), are available online for cell biologists. Although these works allow users to fine-tune
the models to a specific dataset, current fine-tuning strategies were mostly applicable to
segmentation on whole cells with relatively round or regular morphology (Kleinberg et al.,
2022; Liu et al., 2024). Moreover, successful fine-tuning often depends on the sample size and
morphology of the target dataset (Tinn et al., 2021; Davila et al., 2024). To establish a low-
resource training strategy adaptive to morphological variability in regions of interest (ROI),
we design a unified training framework that integrates a patch-based cropping mechanism
for normalization of input dimensions and augment data diversity. The proposed framework
utilized an attention-based U-Net architecture and its generalizability and robustness was
evaluated through a 5-fold cross-validation scheme across datasets with diverse ROIs.
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Figure 1: The overview of the proposed train-
ing method. Training images and masks were
cropped to 128×128 to ensure consistent in-
put tensor sizes. WSConv (Weight Stan-
dard Convolution) enhances Conv (Standard
convolution) layers by normalizing weights
to improve training stability. Our de-
signed dynamic loss function enables the
model to distinguish background-dominant
and foreground-dominant patches.

2. Methodologies

2.1. Dataset Introduction and Preprocessing

In this study, we selected three datasets ranging from trivial to challenging, consisting
of fluorescently labeled cell nuclei (Task 1), phase-contrast images of cells (Task 2), and
fluorescently labeled actin filaments (Task 3), acquired on inverted Leica DMI3000B or
Nikon Ti2E systems, equipped with an sCMOs camera (Hamamatsu ORCA-Flash4.0 LT),
and a 20× objective (Wen et al., 2022). Ground truths are labelled by an experienced
cell biologist. Each dataset has a different mean signal-to-noise ratio (SNR) value and
image dimensions as presented in Table 1. Representative images from various ROIs are
illustrated in Figure 2, each showing a different region of interest. The original image and
mask were zero-padded such that their edges were multiples of 128 pixels and then cropped
into 128×128 patches.

Table 1: Dataset Overview

Task Mean SNR Value Image Dimensions Training Samples Test Samples

Task 1 28.9020 192× 436× 1 21 10

Task 2 10.4773 136× 558× 1 21 10

Task 3 2.8844 1024× 250× 1 10 4

Figure 2: Sample images and masks from each task, each showing a different region of interest.
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2.2. Network Design and Data-Efficient Training

Our network architecture is depicted in Figure 1. We adopted the Attention U-Net struc-
ture (Oktay et al., 2018), utilizing the gated attention mechanisms to focus on relevant re-
gions. To maximize the utility of the dataset, we propose to apply a patch-based approach
(Ullah et al., 2023) that enables precise pixel-wise segmentation and data augmentation.
A threshold-based dynamic loss function was employed to address foreground-background
imbalance in the cropped dataset (see below). In contrast, the benchmark models were
fine-tuned following the optimal settings recommended by their respective authors.

2.3. Dynamic Threshold-based Loss Function Selection

To address the foreground-background imbalance in the cropped dataset while retaining all
training patches, we proposed an adaptive, dynamic, threshold-based loss function strategy.
Predicted masks were categorized into three types: background patches, small ROI patches,
and large ROI patches. A patch was classified as a small ROI patch if the predicted
foreground area was less than 6.25% of the patch. The overall loss framework combined
three loss functions: Binary Cross-Entropy (BCE) loss, Tversky loss, and Focal Tversky
loss. Background patches used only BCE loss to encourage true negative predictions. Small
ROI patches were optimized using a combination of BCE and Tversky loss to penalize false
positives while reinforcing true negatives. In contrast, large ROI patches used a combination
of Tversky loss and Focal Tversky loss to intensify penalties on both false positives and false
negatives, promoting pixel-wise segmentation in the training patches.

Table 2: Model Segmentation Performance (Dice Score) Across Three Tasks

Model Task 1 Task 2 Task 3 Average Task Coverage Final Score

Stardist 0.8232 0.5904 0.5164 0.6433 1.0000 0.6433

Cellpose 0.9834 0.9036 N/A 0.9435 0.6667 0.6290

Proposed Method 0.9908 0.9327 0.6357 0.8531 1.0000 0.8531

3. Results and Conclusions

Segmentation performance was evaluated using the mean Dice score across three tasks,
excluding shape-incompatible cases, with scores weighted by task coverage for fairness. As
shown in Table 2, our method outperformed Cellpose and Stardist across all three tasks,
achieving a score of 0.8531(Stardist = 0.6433 and Cellpose = 0.6290) without the need
for large-scale pretraining. Using the same number of training samples, our patch-based
attention training network showed improvements in terms of final score by 32.60% and
35.62% compared to Stardist and Cellpose, respectively. Overall, our proposed method
achieved a higher final score which suggested its greater adaptability to diverse target
morphologies as compared to benchmark models. In conclusion, this study demonstrated
that the proposed patch-based attention mechanism can serve as a lightweight and adaptable
alternative among existing cell image segmentation models.
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