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Abstract

Dynamic link prediction (DLP) is a crucial task
in graph learning, aiming to predict future links
between nodes at subsequent time in dynamic
graphs. Recently, graph masked autoencoders
(GMAEs) have shown promising performance in
self-supervised learning. However, their applica-
tion to DLP is under-explored. Existing GMAEs
struggle to capture temporal dependencies, and
their random masking causes crucial information
loss for DLP. Moreover, most existing DLP meth-
ods rely on local information, ignoring global
information and failing to capture complex fea-
tures in real-world dynamic graphs. To address
these issues, we propose DyGMAE, a novel dy-
namic GMAE method specifically designed for
DLP. DyGMAE introduces a Multi-Scale Mask-
ing Strategy (MSMS), which generates multiple
graph views by masking parts of the edges and
tries to reconstruct them. Additionally, a multi-
scale masking representation alignment module
with a contrastive learning objective is employed
to align representations which are encoded by un-
masked edges across these views. Through this
design, different masked views can provide diverse
information to alleviate the drawbacks of random
masking, and contrastive learning can align dif-
ferent views to mitigate the problem of exploiting
local and global information simultaneously. Ex-
periments on benchmark datasets show DyGMAE
achieves superior performance in the DLP task.

1 INTRODUCTION

Dynamic graphs [Gravina and Bacciu, 2024] exhibit a re-
markable capacity to model real-world interaction changes.

*Corresponding author: hechaobo@foxmail.com

This distinct feature enables their extensive application in di-
verse dynamic systems, such as social networks [Min et al.,
2021, Cheng et al., 2025], disease transmission networks
[Zhu et al., 2022], and transportation systems [Yu et al.,
2020]. In dynamic graph learning, dynamic link prediction
(DLP) is one fundamental task, which aims to forecast the
appearance or disappearance of links over time [Qin and
Yeung, 2023, Firouzkouhi et al., 2024], and can be regarded
as a temporal extension of static link prediction [He et al.,
2023]. DLP plays a crucial role in diverse applications in-
cluding traffic forecasting [Li et al., 2023a] and disease
control [Wang et al., 2022]. Given the complexity of dy-
namic graphs, which involves intricate structural patterns
and temporal dependencies, finding effective methods for
DLP remains a significant challenge.

During the pursuit of addressing this challenge, self-
supervised learning (SSL) has emerged as a promising
approach due to its ability to leverage large amounts of
unlabeled data [Gao et al., 2023, Zhang et al., 2023]. In par-
ticular, graph masked autoencoders (GMAEs) [Hou et al.,
2022, Liu et al., 2024a,b], a generative SSL framework,
have recently excelled in graph-related tasks. However, their
potential in DLP has not been fully explored. Specifically,
GMAE extends the masked autoencoder, an SSL frame-
work in computer vision [He et al., 2022] and natural lan-
guage processing [Devlin, 2018] without labeled data, to
graphs. Compared with other SSL frameworks, GMAEs
have achieved success in the static graph link prediction
task by masking and reconstructing edges [Li et al., 2023b],
which has been found to remarkably boost the prediction
accuracy. Based on the above considerations, we reasonably
speculate that GMAE might be adaptable to dynamic graphs
to enhance the performance of DLP. However, despite their
success in static graphs, current GMAE methods face several
limitations when applied to dynamic graphs. First, simple
random masking easily causes critical information loss, re-
sulting in suboptimal link prediction performance. Second,
they struggle to model time-evolving structures vital for
DLP because they are designed for static graphs.
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In addition to the limitations of current GMAE in the dy-
namic graph scenario, existing DLP methods also suffer
from significant drawbacks. Specifically, as [Gao et al.,
2023] pointed out, most of these methods are unable to
capture the complex features in real-world dynamic graphs
comprehensively. They tend to focus only on local infor-
mation while overlooking global information. In fact, both
global and local information in dynamic graphs are crucial
for DLP. Local information offers node-specific short-term
dynamics, while global information reveals the overall struc-
tures and long-term dependencies of the graph. Together,
they enable a comprehensive understanding of the graph.
For instance, some methods, such as [Hajiramezanali et al.,
2019, Yang et al., 2022, 2021, Jiao et al., 2024], focus solely
on local structural information using graph neural networks
(GNNs), neglecting the broader context. These methods
often struggle to capture local and global patterns simultane-
ously, limiting their ability to represent the full complexity
of dynamic graphs. Although DGCN [Gao et al., 2023]
tries to capture global information by maximizing mutual
information between local and global representations, its
heavy reliance on local information for global representation
aggregation restricts its performance.

Intuitively, GMAE uses a masking strategy to generate dif-
ferent structural views and reconstruct the masked parts,
facilitating the exploration of diverse structures and evolv-
ing patterns. Considering GMAE’s limitations in DLP and
the problem of exploiting both local and global informa-
tion, we propose DyGMAE, a novel dynamic graph masked
autoencoder specifically designed for DLP. In DyGMAE,
we introduce a Multi-Scale Masking Strategy (MSMS) to
tackle both of the above problems. MSMS generates diverse
masked and unmasked views by applying different edge
masking techniques and edge masking ratios, and attempts
to reconstruct the masked edges from the unmasked portions.
Furthermore, in MSMS, we incorporate an alignment mod-
ule with a contrastive learning objective [He et al., 2025].
This module aims to integrate the information obtained from
different masking views, including both local and global
information, by aligning different views. By applying the
MSMS, DyGMAE can more effectively explore different
aspects of the structural patterns and temporal dependen-
cies in multi-reconstruction phases, significantly enhancing
its ability to capture comprehensive information and thus
improving DLP performance. Finally, the refined embed-
dings are processed by a gated recurrent unit (GRU) based
temporal modeling module, which captures temporal depen-
dencies in dynamic graphs, and are subsequently used for
DLP. As a result, DyGMAE effectively captures both the
structural evolution and temporal dependencies of dynamic
graphs, addressing key challenges in DLP. We summarize
our main contributions as follows:

• We propose DyGMAE, a novel dynamic graph masked
autoencoder tailored for DLP. It extends the GMAE

framework to effectively capture both structural pat-
terns and temporal dependencies in dynamic graphs.

• DyGMAE integrates a MSMS to mitigate the infor-
mation loss induced by random masking and address
the challenge of acquiring both local and global infor-
mation. To our knowledge, this is the first attempt to
combine GMAEs with contrastive learning for DLP.

• Our experimental results show that DyGMAE achieves
superior performance in the DLP task across sev-
eral real-world dynamic graph datasets, outperforming
state-of-the-art methods.

2 PRELIMINARIES

In this section, we first introduce notations and formulate
the problems, then illustrate the graph masked autoencoder
framework.

2.1 NOTATIONS AND PROBLEM FORMULATION

Without loss of generality, we model dynamic graphs
as consisting of a series of snapshots, denoted as G =
{G1, G2, . . . , GT }, where T represents the total number
of snapshots. Each snapshot Gt = (Vt, Et), for 1 ≤ t ≤ T ,
consists of a node set Vt and an edge set Et. The adjacency
matrix at time step t is denoted by At ∈ {0, 1}|Vt|×|Vt|.

DLP aims to forecast the future link states in a dynamic
graph by utilizing the historical snapshots A1,A2, . . . ,AT .
Its objective is to predict the link states in the next snapshot:
ÂT+1. Dynamic New Link Prediction (DNLP) is a special-
ized type of DLP task. It focuses on identifying the links
that exist in the current snapshot GT of dynamic graphs but
were absent in the previous snapshot GT−1. Compared with
DLP, DNLP is more challenging as it demands stronger
generalization capabilities to effectively tackle this task.

2.2 GRAPH MASKED AUTOENCODER

We take a static graph as an example to illustrate the GMAE
framework. It has three core components: a masking module
fM(·), an encoder fE(·), and a decoder fD(·). Given graph
G, the masking module creates a masked graph Gm and an
unmasked graph Gu by masking nodes, features, or edges.
The unmasked graph Gu goes through the encoder fE(·)
to generate latent representations Z containing the graph’s
key information. The decoder fD(·) then reconstructs an
approximation Ĝ of the original graph from Z.

3 METHODOLOGY

The overall framework of the proposed DyGMAE is shown
in Figure 1, detailed as follows: (A) Overall architecture of
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Figure 1: The overall architecture of DyGMAE.

DyGMAE: Dynamic graph snapshots {G1, G2, . . . , GT }
are processed by MSMS to generate multiple unmasked
views. Aggregated representations from these views are
fed into the GRU for temporal modeling, yielding final
node representations ZT for DLP. (B) Multi-Scale Masking
Strategy (MSMS): This module generates unmasked Gu

t

graphs through the application of diverse masking strategies
to each snapshot, which are passed through an encoder and
projector for node representations. The contrastive loss LC

t

aligns representations of different unmasked views, while
edge and adjacency reconstruction losses LE

t and LA
t refine

embeddings. Graph representations are used for Multi-Scale
Masking Representation Fusion (MSMRF) across views,
then sent to the GRU for further temporal modeling. In the
subsequent sections, we explain each DyGMAE module in
detail, emphasizing how the GMAE framework adapts to
dynamic graphs and how MSMS boosts DLP performance.

3.1 EDGE MASKING STRATEGY

Many related GMAE methods [Hou et al., 2022] mask node
features and attempt to reconstruct them. However, our task
is DLP, and thus we need to bridge the gap between feature
reconstruction and link prediction. To this end, we employ
two edge-masking strategies as part of our MSMS: random
edge masking and path-wise random masking.

Random Edge Masking. Random edge masking is per-

formed by randomly masking a subset of edges in the graph.
The edges to be masked, denoted as Em, are sampled using
a Bernoulli distribution as follows:

Em ∼ Bernoulli(p), (1)

Eu = E − Em, (2)

where p denotes the probability of masking an edge, and
Eu represents the set of remaining edges.

Path-Wise Random Masking. Following the inspiration
from [Li et al., 2023b], we adopt the path-wise random
masking strategy. Different from random edge masking, it
masks edges via random walks [Berahmand et al., 2022]
from root nodes. This disrupts local connections, forcing
path reconstruction to capture complex structural depen-
dencies and higher-order node relationships. Formally, the
masked edges are sampled as:

Em ∼ RandomWalk(R,nwalk, lwalk), (3)

where R is a set of randomly selected root nodes, nwalk
denotes the number of random walks per root node, and
lwalk is the length of each random walk.

For dynamic graphs, we define the unmasked snapshot
at time step t as Gu

t = (Vt, E
u
t ), with Eu

t ⊆ Et being
the remaining unmasked edges. The masked snapshot is
Gm

t = (Vt, E
m
t ), where Em

t = Et − Eu
t . This approach



adds stochasticity and compels the method to leverage the
partially unmasked graph Gu

t and historical information,
facilitating the capture of more crucial information.

3.2 MULTI-SCALE MASKING STRATEGY (MSMS)

Multi-Scale Masking. Facing the challenges in DLP with
GMAE, which involve the critical information loss induced
by random masking strategies and the limitations in acquir-
ing local and global information for complex data modeling,
we put forward the MSMS as a solution. MSMS generates
multiple masked and unmasked views for each snapshot
by applying different edge masking strategies and vary-
ing the masking probabilities p as we introduced in Sec-
tion 3.1. Specifically, given a dynamic graph snapshot Gt =
(Vt, Et), the multi-scale masking creates K unmasked ver-
sions of the snapshot through the set of masking strate-
gies {f1

M, f2
M, . . . , fK

M }, denoted as {Gu1
t , Gu2

t , . . . , GuK
t }.

Each unmasked view captures distinct structural perspec-
tives and different evolving dynamics. Edges are masked
according to predefined probabilities {p1, p2, . . . , pK}, with
each pi controlling the extent of masking in the correspond-
ing view. These different edge masking lead to various
characteristics of the unmasked views. For example, one
view may focus on a higher masking ratio to encourage
the method to infer global structures, while another view
may apply a lower masking ratio to preserve local and fine-
grained information.

By introducing multiple unmasked views, the multi-masking
strategy enriches the diversity of training data and allows
the method to extract richer structural patterns and temporal
dependencies from various unmasked views in the edge
reconstruction phase. This capability is crucial for DLP,
as it enables the model to capture both local and global
information in the graph over time, thereby improving its
ability to predict future links accurately.

Unmasked Graph Encoder. The dynamic graph snapshot is
processed through the multi-scale masking, which generates
multiple unmasked views of the graph. Then one such view,
Gu

t = (Vt, E
u
t ), is fed into the encoder to compute the latent

node representations. The encoder consists of a stack of L
GNN layers, which operate on the unmasked part of the
graph. The latent representation at the (l + 1)-th layer is
computed as:

Ht,l+1 = σ1

(
D̃

− 1
2

t Ãu
t D̃

− 1
2

t Ht,lWl

)
, (4)

where Ht,l+1 ∈ RN×dout represents the node embeddings
at layer l + 1 for the t-th snapshot. In this equation, N
denotes the number of nodes in the graph, and dout is the
dimensionality of the output embeddings. Ãu

t = Au
t +

I ∈ RN×N represents the unmasked adjacency matrix of
the t-th snapshot with self-loops added, where Au

t is the
adjacency matrix of the unmasked graph Gu

t , generated by

one of the multi-scale masking views. The diagonal degree
matrix corresponding to Ãu

t is denoted as D̃t ∈ RN×N .
Ht,l ∈ RN×din represents the input node embeddings at
layer l, where din is the dimensionality of the input features.
Finally, Wl ∈ Rdin×dout is the learnable weight matrix of
the l-th GNN layer, and σ1(·) is an activation function such
as ReLU.

Projector. To refine and enhance the latent representations
produced by the encoder for link prediction, we introduce a
multi-layer perceptron (MLP) as a projector following the
encoder. The transformation is defined as:

Ht = MLP(Ht,L), (5)

where Ht ∈ RN×dproj represents the refined node embed-
dings after projection, and Ht,L ∈ RN×dout denotes the
latent representations output from the last GNN layer of the
encoder. The MLP is used to project the embeddings into a
new space, where dproj is the dimensionality of the projected
embeddings.

Representation Refinement via Reconstruction. In or-
der to ensure that the representations generated by each
unmasked view contain more informative and critical struc-
tural features for reconstructing the masked edges and get
better DLP performance, we feed each representation into
the decoder to enhance its reconstruction ability and mit-
igate the issues of noise and redundancy. We employ two
types of loss functions to guide the training process. Next,
for simplicity, we will explain the loss functions using one
view as an example.

The first loss function, edge reconstruction loss LE
t , is de-

signed to leverage the unmasked edges to reconstruct the
masked edges, the loss function maximizes the probability
of the masked link nodes in the original graph while mini-
mizing the probability of unlinked nodes, thereby promoting
the reconstruction of the graph structure and enhancing the
method’s reconstruction ability. The loss is formulated using
a binary cross-entropy function, as follows:

L+
t =

1

|E+
t |

∑
(i,j)∈E+

t

log pf (ht,i,ht,j), (6)

L−
t =

1

|E−
t |

∑
(i′,j′)∈E−

t

log(1− pf (ht,i′ ,ht,j′)), (7)

LE
t = −

(
L+
t + L−

t

)
, (8)

where the set of positive edges E+
t corresponds to the edges

present in the masked graph at time t, while E−
t is the set

of negative edges, with the number of negative edges equal
to the number of positive edges. pf (ht,i,ht,j) computes
the probability that there is an edge between nodes i and
j, based on their embeddings ht,i and ht,j at time t. By
minimizing LE

t , the method learns to reconstruct the masked
edges, resulting in better DLP performance.



The second loss function, adjacency matrix reconstruction
loss LA

t , is designed to recover the original graph connec-
tions from the latent representations derived from the un-
masked parts of the graph. The reconstruction error for the
graph structure at time t is defined as:

LA
t = ∥At − Ãt,pre∥2F , (9)

where Ãt,pre represents the predicted adjacency matrix at
time t and is decoded by Ht through two MLP layers. And
At is the ground-truth adjacency matrix. Since the elements
of At are predominantly zeros due to the graph’s sparsity,
we adopt the following loss to improve the method’s recon-
struction ability [Richard et al., 2012]:

LA
t = ∥At+1 − Ãt+1∥2F + γ∥Ãt+1∥1 + δ∥Ãt+1∥∗, (10)

where the term ∥Ãt+1∥1 imposes sparsity on the predicted
matrix, while ∥Ãt+1∥∗ is the nuclear norm that encourages
a low-rank structure. The weights γ and δ control the impor-
tance of the sparsity and low-rank constraints, respectively.

By optimizing both loss functions, DyGMAE improves its
ability to reconstruct the masked edges and capture the all
nodes connectivity across several unmasked views. How-
ever, as different view representations are discrete in nature,
there exists a challenge in effectively integrating them.

Alignment Module With Contrastive Learning. After
obtaining representations from multiple unmasked graph
views, {H1

t ,H
2
t , . . . ,H

K
t }, we apply contrastive learning

to align these latent representations, preserving complex fea-
tures. This contrastive alignment enhances the consistency
of the learned features and boosts the integration of local
and global information across different views.

We adopt the following contrastive loss on two views to
enforce alignment between representations of the same node
across different unmasked views at time t:

LC
t = − 1

N

N∑
i=1

log
exp

(
sim(h1

i ,h
2
i )/τ

)∑N
j=1 exp

(
sim(h1

i ,h
2
j )/τ

) , (11)

where h1
i and h2

i stand for the latent representations corre-
sponding to the same node i within two separate unmasked
views, sim(·, ·) denotes a similarity function (e.g., cosine
similarity), and τ is a temperature parameter that controls
the sharpness of distribution.

Multi-Scale Masking Representation Fusion. Although
individual representations {H1

t ,H
2
t , . . . ,H

K
t } generated

from different unmasked views capture distinct structural
and evolving features, they fail to fully represent the com-
prehensive characteristics of the graph. To address this, we
introduce a Multi-Scale Masking Representation Fusion
(MSMRF) to aggregate the latent representations derived
from multiple unmasked views, combining information
across different perspectives. This fusion process enhances
the method’s ability to learn multi-level features, including

both global and fine-grained structural patterns and temporal
dependencies. The fused representation of the t-th snapshot
is computed as:

Ht = Aggregate(H1
t ,H

2
t , . . . ,H

K
t ), (12)

where Aggregate(·) denotes the aggregation function, which
can be implemented through a variety of approaches. These
include calculating the mean, performing summation, using
the max operation, and applying attention mechanisms.

3.3 TEMPORAL DEPENDENCY MODELING
WITH GRU

Capturing temporal dependencies is crucial for DLP, as the
relationships between nodes evolve over time. In dynamic
graphs, the probability of a node forming a link with an-
other node at the current snapshot depends not only on the
current graph structure but also on the temporal evolution
of node interactions, which is influenced by previous snap-
shots. To capture these evolving dependencies, we employ a
GRU [Cho et al., 2014], a model well-suited for sequential
data processing, enabling the effective capture of temporal
dependencies in the graph. Specifically, the current latent
representation Ht, generated by the encoder, and the final
representation Zt−1 from the previous time step are com-
bined as inputs to compute the final representation Zt at time
t. For the initial step (t = 0), Z0 is initialized randomly. The
GRU updates are defined as follows:

Qt = σ2(WqHt +UqZt−1), (13)
Rt = σ2(WrHt +UrZt−1), (14)

Ẑt = ϕ(WhHt +Uh(Rt ⊙ Zt−1)), (15)

Zt = (1−Qt)⊙ Zt−1 +Qt ⊙ Ẑt, (16)

where Qt and Rt denote the update gate and reset gate,
respectively, and Ẑt is the candidate state. Here, σ2(·) rep-
resents the sigmoid activation function, ϕ(·) denotes the hy-
perbolic tangent function (tanh), and ⊙ is the element-wise
product. The parameters Wq,Wr,Wh and Uq,Ur,Uh

are learnable weight matrices.

3.4 DECODER FOR DLP

After obtaining the representations Zt for each time step,
these representations are used to predict the existence of
edges in the dynamic graph at next time step t + 1 for
the DLP task. We utilize dot-product as the decoder. The
decoder operation is defined as follows:

Ât+1 = fDec(Zt), (17)

where Ât+1 is the predicted adjacency matrix for time step
t+ 1, and a higher value in Ât+1 indicates a higher proba-
bility of an edge between nodes.



3.5 FINAL OBJECTIVE

DyGMAE integrates three key components for its overall
objective: edge reconstruction loss, adjacency matrix recon-
struction loss and contrastive loss. The overall loss function
for a single snapshot t is defined as:

Lt = LE
t + LA

t + LC
t . (18)

Extending this to the entire dynamic graph, the total loss
is aggregated across all snapshots t ∈ {1, 2, . . . , T} and all
masked views k ∈ {1, 2, . . . ,K}, and is expressed as:

L =

T∑
t=1

(
K∑

k=1

(
LEk
t + LAk

t

)
+ λLC

t

)
, (19)

where LEk
t represents the edge reconstruction loss and LAk

t

is the adjacency matrix reconstruction loss at the k-th view
of snapshot t. The weighting coefficient λ controls the rela-
tive importance of the contrastive loss.

By integrating these components across every snapshot and
view, our method successfully captures the structural pat-
terns and temporal dependencies in both local and global
aspects. The full algorithm and complexity analysis of DyG-
MAE is presented in the Appendix A.

4 EXPERIMENTS

In this section, we conduct the experiments on five real-
world dynamic graph datasets to verify the effectiveness of
our proposed DyGMAE method.

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on five dynamic graph
datasets, including Enron [Benson et al., 2018], DBLP, Face-
book [Hajiramezanali et al., 2019], Email [Gao et al., 2023],
and AS733 [Yang et al., 2021]. Detailed information about
these datasets is provided in Appendix B.

Baselines. The baselines include static autoencoder meth-
ods such as GAE and VGAE [Kipf and Welling, 2016], as
well as dynamic autoencoder methods like DynAE, Dyn-
RNN, DynAERNN [Goyal et al., 2020], and VGRNN [Ha-
jiramezanali et al., 2019]. Additionally, we compare with
advanced methods like EvolveGCN [Pareja et al., 2020],
DGCN [Gao et al., 2023], DySAT [Sankar et al., 2020],
HTGN [Yang et al., 2021], and HGWaveNet [Bai et al.,
2023]. More details about baselines are provided in Ap-
pendix C.

Evaluation Tasks and Metrics. To evaluate the effective-
ness of our method, we conduct experiments on two link
prediction tasks: DLP and DNLP here. The evaluation mea-
sures the ability of the methods to distinguish true from

false edges by calculating Average Precision (AP) and Area
Under the Receiver Operating Characteristic Curve (AUC)
scores. In this setup, all known edges in the test snapshots
are treated as positive samples (true links), while an equal
number of non-existent edges are sampled as negative sam-
ples (false links).

4.2 IMPLEMENTATION DETAILS

We conduct all experiments following the same settings as
in [Hajiramezanali et al., 2019]. The training process uses
the snapshots from the training set, while the performance
of all methods is evaluated on the test snapshots for DLP
and DNLP. During training, train snapshots are masked,
while the test snapshots use the original unmasked graph
data. For a fair comparison, each experiment is run five
times with different random seeds to minimize the impact
of randomness, and the results are reported as averages with
standard deviations. The other implementation details can
be seen in Appendix D.

4.3 EXPERIMENTAL RESULTS

The results of DLP and DNLP are presented in Table 1 and
Table 2, respectively. For the test sets, both the average val-
ues and standard deviations are reported. Certain results are
based on findings from previously published papers. We
conduct experiments on multi-scale masking representation
fusion type analysis as well as multi-step dynamic link pre-
diction, which are presented in Appendix E and Appendix
F, respectively.

Dynamic Link Prediction. Results of DLP are shown in
Table 1. As we can see, DyGMAE consistently outperforms
state-of-the-art methods in DLP, achieving higher AUC and
AP scores across various real-world dynamic graph datasets.
Specifically, in Facebook dataset, DyGMAE gets 3.88%
and 4.41% improvement on AUC and AP compared with
the second-best method VGRNN. Although HTGN and
HTWaveNet achieve good performance in the hyperbolic
space, they can only capture the local information, which
limits their performance. Compared to DGCN, which can
capture global information, we achieve significant improve-
ments across all five datasets. The strong performance of
DyGMAE indicates its superiority in capturing both local
and global structural patterns and temporal dependencies.
Compared with other autoencoders, including the static au-
toencoders like GAE and VGAE, as well as the dynamic
autoencoders such as DynAE, DynRNN, DynAERNN, and
VGRNN, our approach yields remarkable improvements.
This outcome not only validates the feasibility of the GMAE
framework in DLP task but also confirms the rationality of
our initial inspiration.

Dynamic New Link Prediction. As shown in Table 2,
in the task of DNLP, which demands that all methods



Table 1: AUC and AP scores of DLP in real-world dynamic graphs. Best results are in bold, and the suboptimal results are
underlined.

Dataset Enron DBLP Facebook Email AS733
Metric AUC AP AUC AP AUC AP AUC AP AUC AP
GAE 92.55±0.76 93.64±0.51 84.71±0.73 87.78±0.42 89.47±0.65 88.93±0.80 81.34±0.18 89.37±0.12 93.81±1.12 93.56±1.04

VGAE 92.46±0.49 93.64±0.30 85.51±0.44 88.45±0.17 88.91±0.22 88.16±0.29 82.58±0.36 89.95±0.19 95.98±0.82 96.11±1.24
DynAE 74.22±0.74 76.00±0.77 63.14±1.30 64.02±1.08 56.06±0.29 56.04±0.37 83.04±1.55 83.61±1.37 75.57±1.38 74.31±1.22

DynRNN 86.41±1.36 85.61±1.46 75.70±1.09 78.95±1.55 73.18±0.60 75.88±0.42 86.80±1.62 86.13±1.35 87.43±1.02 88.98±0.86
DynAERNN 87.43±1.19 89.37±1.17 76.06±1.08 81.84±0.89 76.02±0.88 78.55±0.73 88.37±1.19 89.64±1.27 88.82±0.63 89.11±0.64

VGRNN 93.18±0.48 93.95±0.33 85.32±0.66 88.35±0.63 90.29±0.24 90.14±0.36 93.89±1.58 95.31±1.05 96.65±0.48 96.35±0.53
EvolveGCN 91.37±0.54 92.84±0.41 83.65±0.29 87.23±0.29 85.71±0.51 86.47±0.78 80.86±2.23 86.89±1.90 93.64±0.47 94.23±0.51

DGCN 83.36±0.62 80.31±0.83 75.06±1.14 73.56±1.08 71.77±1.15 71.92±2.21 93.77±0.69 92.47±0.76 92.55±0.38 92.04±0.29
DySAT 94.23±0.44 95.05±0.36 86.28±0.49 89.01±0.32 89.76±0.19 89.29±0.21 86.69±0.28 92.22±0.16 96.77±0.37 97.14±0.41
HTGN 95.25±0.17 95.63±0.28 89.35±0.34 91.86±0.28 87.26±0.56 87.49±0.29 94.86±0.27 95.84±0.45 98.96±0.05 98.75±0.06

HGWaveNet 95.36±0.23 94.85±0.36 89.88±0.17 92.58±0.25 88.72±0.33 87.55±0.52 92.66±0.37 93.96±0.31 99.12±0.06 99.15±0.11
DyGMAE 96.89±0.15 96.91±0.15 90.77±0.34 92.65±0.22 94.17±0.10 94.55±0.09 95.82±0.33 96.75±0.15 99.53±0.06 99.64±0.04

Table 2: AUC and AP scores of DNLP in real-world dynamic graphs. Best results are in bold, and the suboptimal results are
underlined.

Dataset Enron DBLP Facebook Email AS733
Metric AUC AP AUC AP AUC AP AUC AP AUC AP
GAE 87.57±1.07 87.99±0.86 78.11±1.26 82.15±0.97 88.55±0.53 87.58±0.77 75.73±0.32 85.68±0.26 88.74±1.72 89.16±1.25

VGAE 87.30±0.82 87.66±0.73 78.81±1.05 82.98±0.50 88.64±0.18 87.59±0.24 77.35±0.57 86.50±0.32 89.36±1.64 89.93±1.67
DynAE 66.10±0.71 66.50±1.12 58.14±1.16 58.82±1.06 54.62±0.22 54.62±0.22 80.54±1.41 79.86±1.25 69.46±1.62 69.83±1.64

DynRNN 83.20±1.01 80.96±1.37 71.71±0.73 75.34±0.67 73.32±0.60 75.52±0.50 81.13±1.17 81.41±1.49 76.87±1.52 78.35±0.26
DynAERNN 83.77±1.65 85.16±1.04 71.99±1.04 77.68±0.66 76.35±0.50 78.70±0.44 84.33±1.55 86.54±1.60 77.64±1.27 77.73±1.32

VGRNN 87.77±1.02 87.98±1.59 75.25±0.92 79.28±0.68 87.61±0.35 86.77±0.49 92.77±1.23 94.04±0.80 82.14±2.35 89.37±2.93
EvolveGCN 84.79±0.68 85.82±0.53 73.68±0.62 78.04±0.54 82.21±0.83 82.12±0.63 74.50±3.10 81.99±2.15 77.45±0.91 83.66±0.86

DGCN 81.25±1.68 77.92±1.12 74.15±1.55 75.31±1.41 72.36±0.68 70.30±1.23 90.33±0.84 90.23±0.71 88.71±1.07 88.48±0.92
DySAT 89.70±0.58 89.52±0.78 79.23±0.84 82.83±0.67 88.84±0.17 87.67±0.14 82.30±0.54 89.26±0.29 85.51±0.77 88.72±0.81
HTGN 91.61±0.49 90.78±0.77 82.84±0.75 84.84±0.89 83.22±0.58 82.61±0.88 92.89±0.42 94.02±0.49 96.62±0.26 95.69±0.24

HGWaveNet 92.57±0.25 91.85±0.32 83.22±0.23 85.84±0.32 85.83±0.59 83.79±0.75 90.67±0.32 92.57±0.28 96.85±0.19 95.77±0.22
DyGMAE 93.35±0.28 92.53±0.13 83.85±0.82 86.21±0.78 92.09±0.15 92.18±0.10 93.98±0.51 95.16±0.17 94.43±0.15 96.55±0.05

should have enhanced inductive capabilities and acquire
more global information, DyGMAE consistently outper-
forms other methods. Especially, on the Facebook dataset,
DyGMAE achieves a significant improvement of 3.25% in
AUC and 4.51% in AP compared to the second-best method
DySAT. This notable gap indicates that DyGMAE has a
stronger ability to capture the potential patterns and changes
in the social graph structure within this dataset. Moreover,
when looking at other datasets, DyGMAE also demonstrates
superior generalization. This outstanding performance is
attributed to the simultaneous capture of local and global in-
formation, which enhances the ability to model changes and
enables excellent generalization across diverse scenarios.

4.4 ABLATION STUDY

To better understand the contributions of different modules
to the performance improvements of DyGMAE, we conduct
an ablation study by removing key components. Specifi-
cally, we analyze two variants: w/o MSMS: This variant
removes the MSMS and replaces it with a single masking
strategy. w/o RA: In this variant, we eliminate the multi-
scale masking representation alignment module, leaving
only multi-scale masking without representation alignment
in MSMS. We conduct experiments on three datasets: Face-

book, Email, and AS733, with the results shown in Figure 2.
Overall, DyGMAE achieves the best performance when all
components are included, while removing either the MSMS
module or the contrastive alignment leads to significant
performance drops across all metrics.

Regarding the impact of removing MSMS, in Facebook,
removing MSMS results in a decrease of 0.48% in AUC,
1.41% in AP, 0.54% in New_AUC, and 1.52% in New_AP.
Specifically, for Email with long snapshots where DyGMAE
struggles to capture dynamic dependencies, MSMS helps al-
leviate this issue. However, removing MSMS leads to drops
of 4.18% in AUC, 3.25% in AP, 5.4% in New_AUC, and
4.23% in New_AP. In AS733 for DNLP, significant improve-
ment is due to MSMS, which brings increases of 3.38%
in AUC, 2.76% in AP, 9.91% in New_AUC, and 8.34% in
New_AP. Given the long datasets and test snapshots, MSMS
is key for capturing long-term dependencies and ensuring
good generalization. The ablation results further confirm the
validity of our motivation that GMAE benefits DLP and our
design related to MSMS.

Furthermore, removing the multi-scale masking representa-
tion alignment module (w/o RA) also degrades performance.
In the Facebook, Email, and AS733 datasets, the drops in
AUC are 0.07%, 2.30%, and 1.95% respectively; in AP,
0.31%, 1.81%, and 1.77%; in New_AUC, 0.16%, 2.50%,
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Figure 2: Ablation study results in Facebook, Email, and AS733 datasets. AUC and AP refer to DLP, while New_AUC and
New_AP correspond to DNLP.

0.001 0.005 0.01 0.05 0.1 0.5 190

92

94

96

Pe
rfo

rm
an

ce
 (%

)

AUC
AP
New AUC
New AP

(a) Facebook

0.001 0.01 0.05 0.1 0.5 180

84

88

92

96

100
Pe

rfo
rm

an
ce

 (%
)

AUC
AP
New AUC
New AP

(b) Email

0.01 0.05 0.1 0.5 180

84

88

92

96

100

Pe
rfo

rm
an

ce
 (%

)

AUC
AP
New AUC
New AP

(c) AS733

Figure 3: Parameter study results in Facebook, Email, and AS733 datasets. AUC and AP refer to DLP, while New_AUC and
New_AP correspond to DNLP.

and 1.16%; and in New_AP, 0.49%, 1.79%, and 2.32%. In-
terestingly, the performance of the w/o RA variant is better
than the w/o MSMS variant in all three datasets, but still
shows a clear gap when compared to the full DyGMAE. This
demonstrates the effectiveness of the representation align-
ment in extracting more meaningful and comprehensive
representations, especially in larger graph datasets where
it is more challenging to acquire local and global informa-
tion. Additionally, in all three datasets, DyGMAE exhibits
smaller variance compared to the other two variants, validat-
ing its robustness.

Overall, these findings underline the crucial role of both
multi-scale masking and contrastive learning in enhancing
the discriminative power and generalization ability of the
learned representations.

4.5 HYPER-PARAMETER SENSITIVITY
ANALYSIS

We perform parameter analysis experiments on multiple
datasets to examine the sensitivity of the hyperparameter
λ, which controls the contribution of the contrastive loss
objective for aligning the representations across different
masked views in MSMS. The results, shown in Figure 3,
indicate that the sensitivity of λ varies across different real-
world dynamic graph datasets for both DLP and DNLP
tasks.

When λ is too small, DyGMAE fails to align the representa-
tions effectively, causing the loss of complex features and
comprehensive representations, which results in a perfor-
mance decline in both tasks. As λ increases, the alignment
between representations becomes more pronounced, leading
to improved consistency in representations across different
views. However, when λ exceeds a certain threshold, the
method starts to over-align the representations, leading to
the loss of important details and consequently decreasing
performance. We observe that the best performance for both
tasks is achieved under different values of λ. Regarding
the changes in λ, there are different performance variation
curves. Performance degrades when λ is either too small or
too large, highlighting the sensitivity of the method to this
hyperparameter.

4.6 EFFECTIVENESS OF RECONSTRUCTION
OBJECTIVES

To evaluate the impact of the reconstruction-based training
objectives in DyGMAE, we perform ablation studies by
selectively removing the edge-level reconstruction loss (LE

t )
and the adjacency-level reconstruction loss (LA

t ). We assess
model performance on both standard and new link prediction
settings across three datasets: Enron, Facebook, and Email.

The results are summarized in the following: We observe
that removing either reconstruction objective leads to a con-



Table 3: Ablation results showing the contribution of reconstruction losses (LE
t and LA

t ) to link prediction performance.
“New AUC” and “New AP” denote metrics for new link prediction.

Dataset Setting AUC (%) AP (%) New AUC (%) New AP (%)

Enron
Full Model 96.89 ± 0.15 96.91 ± 0.15 93.35 ± 0.28 92.53 ± 0.13
w/o LE

t 96.20 ± 0.22 96.25 ± 0.13 92.49 ± 0.49 92.09 ± 0.35
w/o LA

t 94.47 ± 0.65 94.49 ± 0.46 89.40 ± 1.18 89.17 ± 1.04

Facebook
Full Model 94.17 ± 0.10 94.55 ± 0.09 92.09 ± 0.15 92.18 ± 0.10
w/o LE

t 93.57 ± 0.06 93.61 ± 0.11 91.48 ± 0.15 91.32 ± 0.14
w/o LA

t 89.55 ± 0.05 88.66 ± 0.05 86.95 ± 0.25 85.65 ± 0.27

Email
Full Model 95.82 ± 0.33 96.75 ± 0.15 93.98 ± 0.51 95.16 ± 0.17
w/o LE

t 94.82 ± 0.34 95.76 ± 0.15 92.78 ± 0.65 93.83 ± 0.26
w/o LA

t 90.32 ± 1.05 92.97 ± 0.80 86.11 ± 1.41 89.58 ± 1.28

sistent performance drop. Specifically: Removing the edge-
level loss (LE

t ) causes moderate degradation, indicating that
reconstructing individual edges is essential for capturing
fine-grained local patterns. Removing the adjacency-level
loss (LA

t ) leads to a more pronounced performance decline,
especially on New Link Prediction metrics. This suggests
adjacency-level modeling provides richer context and struc-
tural awareness, which is particularly important for discover-
ing new interactions. The performance gap is most evident
on the Facebook and Email datasets, where missing LA

t

leads to drops of up to 5%–7% AUC/AP in the new link pre-
diction task. These findings reinforce that both LE

t and LA
t

are crucial and complementary. Together with contrastive
alignment, they enable DyGMAE to effectively model both
local connectivity and global topology evolution, thereby
significantly enhancing its generalization in dynamic link
prediction.

5 CONCLUSION

In this study, we propose DyGMAE, a novel dynamic graph
masked autoencoder, specifically designed for dynamic link
prediction. DyGMAE extends the GMAE framework to dy-
namic graphs and fully leverages the advantages of GMAE
in link prediction. In DyGMAE, we propose a Multi-Scale
Masking Strategy to learn structural and dynamic features.
This strategy involves applying different masking strategies
to the graph and attempting to reconstruct it. Within MSMS,
a contrastive learning objective is incorporated to further
align representations across masked views and enable the
model to capture complex features. As a result, MSMS can
effectively mitigate the information loss caused by random
masking and capture the comprehensive representation of
local and global information in dynamic graphs. Extensive
experiments conducted on five real-world dynamic graph
datasets demonstrate the superior performance of DyGMAE
and validate the effectiveness of our proposed design. How-
ever, our method requires careful tuning of hyperparameters.

Our future work plans to focus on adapting DyGMAE for
other dynamic graph tasks and extending the GMAE frame-
work to continuous-time dynamic graphs.
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A ALGORITHM AND COMPLEXITY

In this section, we will present a detailed account of the algorithm underlying our proposed DyGMAE method and conduct
a comprehensive complexity analysis.

A.1 ALGORITHM

We summarize the details of our proposed method DyGMAE in the Algorithm 1. We input the dynamic graph snapshots G,
and the parameters. During the training of snapshots, for each individual snapshot, we generate K masks in MSMS. For
each masked view, the encoder generates representations. Subsequently, we calculate the edge reconstruction loss and the
adjacency matrix reconstruction loss using Equations 8 and 10 respectively. For each snapshot, we also need to compute the
contrastive loss according to Equation 11. Then, we aggregate the representations from all views and pass them through the
GRU. After that, we calculate the overall loss to update the parameters. Finally, we output the predicted adjacency matrix
for the next time step.

A.2 COMPLEXITY ANALYSIS

We conduct a time-complexity analysis of DyGMAE. First, generating masked views for each snapshot t and each masking
strategy K requires O(T ·K ·M), where T is the number of snapshots, K is the number of masking strategies, and M is
the number of edges. Next, computing the latent representations Hk

t using the encoder and projector involves a complexity
of O(T ·K · (L · (N +M) · d2 + N · d2)), where L is the number of GNN layers, N is the number of nodes, and d is
the feature dimension. The all reconstruction losses LEk

t and LAk
t are computed with a complexity of O(T ·K ·N · d).

For the contrastive loss LC
t , aligning multi-mask representations incurs a complexity of O(T ·K2 ·N · d). Aggregating

representations from all masked views to obtain Ht requires O(T ·K ·N ·d). Finally, updating temporal dependencies using
GRU has a complexity of O(T ·N · d2). Overall, the dominant factors in the time complexity are the number of snapshots
T , the graph size N and M , and the feature dimension d, leading to an approximate complexity of O(T · (N +M) · d2)
when K and L are small constants.

B DATASETS

We conduct experiments on five datasets, which vary in size and the length of their snapshots. Some datasets are large while
others are small, and some have long-term snapshots whereas others have short-term ones. Table 4 summarizes the key
statistics of the datasets used in our experiments, providing an overview of their size and structural properties. The notation
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Algorithm 1: Dynamic Graph Masked Autoencoder (DyGMAE)
Input: Dynamic graph snapshots G = {G1, G2, . . . , GT }; Number of masks K; Set of masking strategies

{f1
M, f2

M, . . . , fK
M }; Weight coefficients λ; Maximum iteration epoch_max

Output: Predicted adjacency matrix ÂT+1

1 while epoch ≤ epoch_max do
2 for each snapshot t ∈ {1, 2, . . . , T} do
3 for each view k ∈ {1, 2, . . . ,K} do
4 Generate unmasked view Guk

t using fk
M;

5 Compute latent representation Hk
t using the encoder and projector (Equations 4 and 5);

6 Compute reconstruction losses LEk
t and LAk

t (Equations 8 and 10);
7 end
8 Compute contrastive loss LC

t to align multi-scale masking representations (Equation 11);
9 Aggregate representations from all masked views to obtain Ht (Equation 12);

10 Update temporal dependencies using GRU to compute Zt (Equation 13);
11 end
12 Compute total loss L (Equation 19);
13 Update parameters using gradient descent;
14 end
15 return Predicted adjacency matrix ÂT+1;

Table 4: Statistics of datasets.

Datasets Enron DBLP Facebook Email AS733
#Nodes 184 315 663 2029 6,628
#Edges 115-266 165-308 844-1068 104-711 1734-12572
#Snapshots 11 10 9 29 30
Train : Test 8:3 7:3 6:3 26:3 20:10

"Train : Test" represents the number of time steps in the training snapshots and test snapshots, respectively. The datasets
include: Enron1, an email communication dataset where edges represent emails exchanged between employees; DBLP2,
an academic co-authorship network where nodes represent authors and edges represent collaborations; Facebook, a social
communication network; Email3, an email communication dataset. AS7334, a graph representing autonomous systems (AS)
of routers and their traffic exchanges via the Border Gateway Protocol;

C BASELINES

• GAE: GAE consists of an encoder and a decoder. The encoder learns to map the input graph data into a low-dimensional
latent space, while the decoder reconstructs the graph data from the latent vectors.

• VGAE [Kipf and Welling, 2016]: The VGAE combines the concepts of the VAE and the GCN, and it consists of an
encoder and a decoder. The encoder uses the GCN to map the node features of a graph to a latent space and outputs the
mean and variance of the latent variables to represent the distribution of the node features.

• DynAE [Goyal et al., 2020]: It is a dynamic autoencoder method extended from the static graph autoencoder. It
processes the adjacency matrix information of multiple time steps through fully connected layers. It is suitable for
capturing short-term dynamic patterns, but has limited ability to model long-term dependencies.

• DynRNN [Goyal et al., 2020]: It inputs the sequence of node adjacency vectors into the LSTM (Long Short-Term
Memory) units and learns the evolutionary patterns across time steps through the memory gating mechanism. The
LSTM also serves as the decoder.

1https://www.cs.cornell.edu/ arb/data/email-Enron/
2https://github.com/VGraphRNN/VGRNN
3http://networkrepository.com/dynamic.php
4https://snap.stanford.edu/data/as-733.html



• DynAERNN [Goyal et al., 2020]: DynAERNN uses a fully connected encoder to reduce the dimension of the adjacency
matrix into a low-dimensional representation. Then, it inputs the low-dimensional sequence into the LSTM for temporal
modeling. The decoder used is a fully connected layer.

• VGRNN [Hajiramezanali et al., 2019]: It is a novel hierarchical variational model for representation learning on
dynamic graphs. It extends the graph convolutional recurrent neural network (GCRN) to form a graph recurrent neural
network (GRNN), then enhances it by introducing high-level latent random variables to create the variational graph
recurrent neural network (VGRNN).

• EvolveGCN [Pareja et al., 2020]: EvolveGCN offers a solution for dynamic graphs by adapting GCN over time without
relying on node embeddings. It uses an RNN to dynamically update GCN parameters, with two architectures explored
for this process.

• DGCN [Gao et al., 2023]: DGCN is a GCN-based dynamic graph representation learning method. It maximizes the
mutual information between local node and global graph representations to capture snapshot-level global structure
and uses LSTM to update GCN weight parameters across time steps. A new Dice similarity is proposed to guide the
aggregation and better distinguish the importance of neighboring nodes.

• DySAT [Sankar et al., 2020]: It employs two self-attention mechanisms, the structural attention block and the temporal
attention block, to capture information from two dimensions: structural neighborhood and historical representations.

• HTGN [Yang et al., 2021]: HTGN migrates the space to the hyperbolic geometry space. It utilizes Hypergraph Neural
Network (HGNN) and Hypergraph Gated Recurrent Unit (HGRU) to obtain topological and dynamic information.
Moreover, it introduces the Hyperbolic Temporal Contextual Self-Attention (HTA) module to focus on historical states
and the Hyperbolic Temporal Consistency (HTC) module to ensure stability and generalization ability.

• HGWaveNet [Bai et al., 2023]: HGWaveNet uses hyperbolic diffusion graph convolution (HDGC) to aggregate
neighborhood information and hyperbolic dilated causal convolution (HDCC) to obtain historical state information.

D IMPLEMENTATION DETAILS

DyGMAE is implemented in Python 3.9, PyTorch 1.11 and executed on Intel Core i5-12490F CPUs and NVIDIA RTX
3070 GPUs. The detailed hyperparameters of our model for each dataset are presented in Table 5.

Table 5: Hyperparameters settings.

Hyperparameters Enron DBLP Facebook Email AS733
Learning Rate 1e-3 1e-3 1e-3 5e-3 1e-2
K 2 2 3 2 2
λ 0.05 0.5 0.01 0.01 0.05
Masking Strategies Path, Edge Edge, Edge Path, Path, Path Path, Edge Path, Edge
Masking Rate p 0.5, 0.7 0.1, 0.2 0.4, 0.6, 0.8 0.1, 0.3 0.6, 0.7
Encoder GCN GCN GCN GCN GCN
Encoder Layers L 2 2 2 2 2

E MULTI-SCALE MASKING REPRESENTATION FUSION TYPE ANALYSIS

In this study, we performed a comprehensive analysis of diverse fusion types within the Multi-Scale Masking Representation
Fusion (MSMRF) introduced in Section 3.2. To gauge the efficacy of MSMRF, we conducted experiments employing four
distinct fusion strategies: mean, sum, max, and an attention-based mechanism. The outcomes of the DLP and DNLP tasks
are respectively presented in Table 6 and Table 7.

The experimental results indicate that different datasets require different strategies to achieve optimal performance, and
there are significant differences in the performance of different strategies on various datasets. The max strategy demonstrates
good performance across multiple datasets and tasks. However, the performance of each strategy varies significantly among
different datasets. This suggests that in practical applications, we need to select appropriate fusion strategies according to
the characteristics of the datasets to improve the accuracy and reliability of predictions.



Table 6: AUC and AP scores of DLP for various fusion methods. Best results are in bold.

Dataset Enron Facebook Email
Metric AUC AP AUC AP AUC AP
Mean 96.55±0.23 96.70±0.16 94.25±0.09 94.39±0.11 95.79±0.36 96.70±0.17
Sum 96.14±0.16 96.44±0.06 94.17±0.10 94.55±0.09 95.82±0.33 96.75±0.15
Max 96.89±0.15 96.91±0.15 93.25±0.21 93.56±0.18 95.67±0.36 96.60±0.15

Attention 96.25±0.08 96.57±0.06 93.43±0.10 93.41±0.12 95.01±1.18 96.17±0.79

Table 7: AUC and AP scores of DNLP for various fusion methods. Best results are in bold.

Dataset Enron Facebook Email
Metric AUC AP AUC AP AUC AP
Mean 92.38±0.66 92.00±0.57 92.10±0.09 91.93±0.10 93.88±0.56 95.04±0.19
Sum 91.84±0.41 91.92±0.42 92.09±0.15 92.18±0.10 93.98±0.51 95.16±0.17
Max 93.35±0.28 92.53±0.13 90.81±0.23 90.84±0.13 93.67±0.52 94.86±0.17

Attention 91.70±0.32 91.63±0.38 91.01±0.16 90.65±0.13 92.72±1.68 94.26±1.16

F MULTI-STEP DYNAMIC LINK PREDICTION RESULTS

Multi-step dynamic link prediction aims to train a projection function f . Given a sequence of dynamic graph ad-
jacency matrices of length l, denoted as {A1,A2, · · · ,Al}, this function is trained for prediction. This function
maps the input snapshot sequence {A1,A2, · · · ,Al} to the future adjacency matrices Al+1,Al+2, · · · ,Al+k, i.e.,
Al+1,Al+2, · · · ,Al+k = f(A1,A2, · · · ,Al). It must be pointed out that the multi-step dynamic link prediction has
no access to the entire set of test snapshots. In contrast, the dynamic link prediction can see the snapshot at the previous time
step of the snapshot to be predicted, but the model parameters cannot be updated through training on the test set. Compared
with DLP, multi-step dynamic link prediction requires methods to be more effective in capturing the dynamic evolution
information of graph structures. We conducted multi-step dynamic link prediction and also multi-step dynamic new link
prediction experiments on three datasets and compared with several state-of-the-art methods. The experimental settings
were the same as those in the DLP experiments. The results are presented in Table 8 and Table 9 respectively. As can be
seen, our method achieves the best performance on these two tasks, demonstrating that DyGMAE can better capture the
dynamic dependencies.

Table 8: AUC and AP scores of multi-step dynamic link prediction in real-world dynamic graphs. Best results are in bold.

Dataset Enron Facebook Email
Metric AUC AP AUC AP AUC AP

VGRNN 91.91±0.32 92.15±0.58 89.32±0.51 89.59±0.49 92.14±0.85 92.73±1.32
HTGN 94.38±0.29 94.91±0.26 86.26±0.58 86.60±0.47 93.71±0.27 94.78±0.19

HGWaveNet 95.02±0.25 94.54±0.18 88.01±0.44 87.17±0.19 92.34±0.26 93.84±0.29
DyGMAE 95.97±0.12 96.20±0.13 93.49±0.09 94.32±0.17 95.30±0.21 96.37±0.11

Table 9: AUC and AP scores of multi-step dynamic new link prediction in real-world dynamic graphs. Best results are in
bold.

Dataset Enron Facebook Email
Metric AUC AP AUC AP AUC AP

VGRNN 86.78±0.40 86.81±0.49 86.70±0.43 86.21±0.38 90.75±0.23 91.14±0.34
HTGN 90.01±0.34 89.53±0.33 82.96±0.58 82.66±0.48 91.89±0.33 93.26±0.12

HGWaveNet 92.16±0.46 91.74±0.35 85.08±0.56 83.11±0.32 90.23±0.31 92.15±0.42
DyGMAE 92.34±0.24 92.15±0.32 91.60±0.13 92.09±0.11 93.50±0.33 94.88±0.13

G RELATED WORK

In this section, we systematically review the relevant works regarding DLP and provide a brief introduction to the graph
masked autoencoder.



G.1 DYNAMIC LINK PREDICTION

The field of DLP has seen significant progress and attention recently and many related methods have been proposed to
address this challenge. For example, EvolveGCN [Pareja et al., 2020] uses RNNs to update graph convolution network
(GCN) weight parameters dynamically at each time step, modeling temporal changes in graph sequences. Building on
this, ComGCN [Pham et al., 2021] captures both node-level and community-level structural and evolutionary dynamics to
improve the DLP performance. HTGN [Yang et al., 2021] and HGWaveNet [Bai et al., 2023] extend GCNs to hyperbolic
space, better capturing the structural and temporal dependencies. HTNE [Zuo et al., 2018] models the DLP task as the
neighborhood formation sequences with multivariate Hawkes process [Lima, 2023], and infers the current neighbor formation
events. TDGNN [Qu et al., 2020] devised a novel temporal aggregator to incorporate dynamic information into the message
propagation process of GNN, and developed an effective static GNN extension TDGNN for DLP. Following the idea of
TDGNN, GSNOP [Luo et al., 2023] integrates the neural ordinary differential equations, and it not only obtains better
DLP performance but also effectively alleviates the sparsity issue of dynamic graphs. SSL offers a powerful approach to
leverage the abundant unlabeled data available in dynamic graphs. Among SSL-based methods for dynamic graph learning,
contrastive approaches dominate. DDGCL [Tian et al., 2021] is the first self-supervised framework for dynamic graphs,
extending contrastive learning by contrasting temporal views of the same node identity. Similarly, DySubC [Chen et al.,
2023] uses temporal subgraph contrastive learning to capture both structural and dynamic features while maximizing
mutual information. Other SSL generative methods, such as VGRNN [Hajiramezanali et al., 2019], combine variational
autoencoders with RNNs to model time-evolving node representations, using probabilistic inference to capture temporal
dependencies and model uncertainty. And [Goyal et al., 2020] proposed three autoencoder methods to deal with DLP.

G.2 GRAPH MASKED AUTOENCODERS

Graph masked autoencoders have attracted significant attention in graph learning for their ability to leverage self-supervised
signals through masking and reconstruction, enabling models to learn meaningful representations without requiring labeled
data. GraphMAE [Hou et al., 2022], the first GMAE-based method, focuses on masking and reconstructing node features,
achieving notable performance improvements in node classification task. Building upon GraphMAE, to enhance the
robustness, GraphMAE2 [Hou et al., 2023] introduces the multi-view random re-mask decoding and latent representation
prediction strategies. MaskGAE [Li et al., 2023b] extends this by corrupting edges and paths, reconstructing edge and
degree information to capture structural features. StructMAE [Liu et al., 2024a] refines the masking strategy by introducing
a structure-guided approach, where nodes are scored based on structural significance and an easy-to-hard masking process
gradually enhances structural awareness. Additionally, AUG-MAE [Wang et al., 2024] introduces adversarial masking and
a uniformity regularizer to improve alignment and representation consistency. Other methods [Tian et al., 2023, Ye et al.,
2023, Liu et al., 2024b, Luo et al., 2024] integrate GMAE with contrastive learning, heterogeneous graphs, and sequential
recommendation tasks. However, these methods are designed for static graphs and cannot address both the structural patterns
and temporal dependencies of dynamic graphs.
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