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Abstract

Prompt tuning is a new, efficient NLP trans-001
fer learning paradigm that adds a task-specific002
prompt in each input instance during the model003
training stage. It freezes the pre-trained lan-004
guage model and only optimizes a few task-005
specific prompts. In this paper, we propose a006
conditional prompt generation method to gen-007
erate prompts for each input instance, referred008
to as the Instance-Dependent Prompt Genera-009
tion (IDPG). Unlike traditional prompt tuning010
methods that use a fixed prompt, IDPG intro-011
duces a lightweight and trainable component to012
generate prompts based on each input sentence.013
Extensive experiments on ten natural language014
understanding (NLU) tasks show that the pro-015
posed strategy consistently outperforms vari-016
ous prompt tuning baselines and is on par with017
other efficient transfer learning methods such018
as Compacter while tuning far fewer model pa-019
rameters.020

1 Introduction021

Recently, pre-training a transformer model on a022

large corpus with language modeling tasks and fine-023

tuning it on different downstream tasks has become024

the main transfer learning paradigm in natural lan-025

guage processing (Devlin et al., 2019). Notably,026

this paradigm requires updating and storing all the027

model parameters for every downstream task. As028

the model size proliferates (e.g., 330M parame-029

ters for BERT (Devlin et al., 2019) and 175B for030

GPT-3 (Brown et al., 2020)), it becomes compu-031

tationally expensive and challenging to fine-tune032

the entire pre-trained language model (LM). Thus,033

it is natural to ask the question of whether we can034

transfer the knowledge of a pre-trained LM into035

downstream tasks by tuning only a small portion036

of its parameters with most of them freezing.037

Studies have attempted to address this ques-038

tion from different perspectives. One line of039

research (Li and Liang, 2021) suggests to aug-040

ment the model with a few small trainable mod-041

ules and freeze the original transformer weight. 042

Take Adapter (Houlsby et al., 2019; Pfeiffer et al., 043

2020a,b) and Compacter (Mahabadi et al., 2021) 044

for example, both of them insert a small set of ad- 045

ditional modules between each transformer layer. 046

During fine-tuning, only these additional and task- 047

specific modules are trained, reducing the trainable 048

parameters to ∼ 1–3% of the original transformer 049

model per task. 050

Another line of works focus on prompting. 051

The GPT-3 models (Brown et al., 2020; Schick 052

and Schütze, 2020) find that with proper manual 053

prompts, a pre-trained LM can successfully match 054

the fine-tuning performance of BERT models. LM- 055

BFF (Gao et al., 2020), EFL (Wang et al., 2021), 056

and AutoPrompt (Shin et al., 2020) further this di- 057

rection by insert prompts in the input embedding 058

layer. However, these methods rely on grid-search 059

for a natural language-based prompt from a large 060

search space, resulting in difficulties to optimize. 061

To tackle this issue, prompt tuning (Lester et al., 062

2021), prefix tuning (Li and Liang, 2021), and P- 063

tuning (Liu et al., 2021a,b) are proposed to prepend 064

trainable prefix tokens to the input layer and train 065

these soft prompts only during the fine-tuning stage. 066

In doing so, the problem of searching discrete 067

prompts are converted into an continuous optimiza- 068

tion task, which can be solved by a variety of op- 069

timization techniques such as SGD and thus sig- 070

nificantly reduced the number of trainable parame- 071

ters to only a few thousand. However, all existing 072

prompt-tuning methods have thus far focused on 073

task-specific prompts, making them incompatible 074

with the traditional LM objective. For example, 075

it is unlikely to see many different sentences with 076

the same prefix in the pre-training corpus. Thus, 077

a unified prompt may disturb the prediction and 078

lead to a performance drop. In light of these limita- 079

tions, we instead ask the following question: Can 080

we generate input-dependent prompts to smooth 081

the domain difference? 082
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In this paper, we present the instance-dependent083

prompt generation (IDPG) strategy for efficiently084

tuning large-scale LMs. Different from the tradi-085

tional prompt-tuning methods that rely on a fixed086

prompt for each task, IDPG instead develops a087

conditional prompt generation model to generate088

prompts for each instance. Formally, the IDPG089

generator can be denoted as f (x;W), where x is090

the instance representation and W represents the091

trainable parameters. Note that by setting W to092

a zero matrix and only training the bias, IDPG093

would degenerate into the traditional prompt tun-094

ing process (Lester et al., 2021). To further reduce095

the number of parameters in the generator f (x;W),096

we propose to apply a lightweight bottleneck ar-097

chitecture (i.e., a two-layer perceptron) and then098

decompose it by a parameterized hypercomplex099

multiplication (PHM) layer (Zhang et al., 2021).100

To summarize, this works makes the following con-101

tributions:102

• We introduce an input-dependent prompt gen-103

eration method—IDPG—that only requires104

training 134K parameters per task, corre-105

sponding to ∼0.04% of a pre-trained LM such106

as RoBERTa-Large (Liu et al., 2019).107

• Extensive evaluations on ten natural language108

understanding (NLU) tasks show that IDPG109

consistently outperforms task-specific prompt110

tuning methods by 1.6–3.1 points (Cf. Ta-111

ble 1). Additionally, it also offers compara-112

ble performance to Adapter-based methods113

while using much fewer parameters (134K114

vs. 1.55M).115

• We conduct substantial intrinsic studies, re-116

vealing how and why each component of the117

proposed model and the generated prompts118

could help the downstream tasks.119

2 Preliminary120

2.1 Manual Prompt121

Manual prompt learning (Brown et al., 2020;122

Schick and Schütze, 2020) inserts a pre-defined123

label words in each input sentence. For example,124

it reformulates a sentence sentiment classification125

task with an input sentence S1 as126

xin = [CLS]P[SEP]S1[EOS],127

where P is the prompt such as “indicating the pos-128

itive user sentiment”. Using the pre-trained lan-129

guage model M, we can obtain the sentence repre- 130

sentation h[CLS]=M(xin), and train a task-specific 131

head softmax(Wh[CLS]) to maximize the log- 132

probability of the correct label. LM-BFF (Gao 133

et al., 2020) shows that adding a specifically de- 134

signed prompt during fine-tuning can benefit the 135

few-shot scenario. EFL (Wang et al., 2021) further 136

suggests that reformulating the task as entailment 137

can further improve the performance in both low- 138

resource and high-resource scenarios. 139

2.2 Prompt Tuning 140

Prompt tuning (Lester et al., 2021), prefix tun- 141

ing (Li and Liang, 2021), and P-tuning (Liu et al., 142

2021a,b) methods propose to insert a trainable pre- 143

fix in front of the input sequence. Specifically, they 144

reformulate the input for single sentence tasks as 145

xin = concat[Wp,E([SEP]S2[EOS])] 146

and for sentence pair tasks as 147

xin = concat[Wp,E([SEP]S2[SEP]S3[EOS])], 148

where Wp is the embedding table of the inserted 149

prompt, S2 and S3 are input sentences, and E de- 150

notes the operation of tokenization and extraction 151

of embeddings. Apart from LM-BFF and EFL, 152

there is no corresponding real text for the prompt 153

as Wp is a set of random-initialized tensors to rep- 154

resent the soft prompt. 155

3 Instance-Dependent Prompt 156

Generation (IDPG) 157

We now introduce our proposed method, IDPG, 158

along with various model optimizations. The main 159

procedure is illustrated in Figure 1. 160

3.1 Instance-Dependent Generation 161

Let us assume a task T with training data Dtrain = 162

{(xi,yi)}K
i=1. Following prompt tuning, we define 163

the input xi = E([SEP]S1[SEP]S2[EOS]) for 164

sentence-pair task or xi = E([SEP]S1[EOS]) for 165

single-sentence task, where E(·) is the token em- 166

bedding for input sentences. Different from all pre- 167

vious works that only define a task-specific prompt 168

Wp(T ) ∈ Rd×t , where t is the number of tokens 169

in prompt representation and d is the hidden di- 170

mension, we propose a instance-dependent prompt 171

generation method. Specifically, we suppose that 172

the generation of prompt should not only depend on 173

the task T , but also be affected by input sequence 174
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(b) Prompt Tuning
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(c) Instance-Dependent Prompt Generation

Figure 1: An illustration of (a) manual prompt; (b) prompt-tuning method; (c) our proposed method. The red block
refers to the trainable module, while the blue block refers to the frozen module.

xi. If M(xi) ∈Rd is a representation of the input se-175

quence xi from same pre-trained LM M, we design176

a lightweight model G to generate the prompt,177

Wp(T,xi) = G(M(xi),T ), xi ∈ Dtrain (1)178

Then, we insert a prompt Wp(T ) together with179

input sequence xi to infer yi during fine-tuning. In180

this way, we have a unified template181

softmax(Wh[CLS]) (2)182

183

h[CLS] = M(concat[xi,Wp(T,xi)]) (3)184

where W is the trainable LM classification head.185

To reduce the number of trainable parameters186

in G, we apply a lightweight bottleneck architec-187

ture (i.e., a two-layer perceptron) for generation.188

As illustrated in Figure 1 (c), the generator G first189

projects the original d-dimensional sentence rep-190

resentation hi into m dimensions. After passing191

through a nonlinear function, generator G projects192

the hidden representation back to a d dimensions 193

with t timestamps. The total number of parameters 194

for generator G is m(d +1)+ td(m+1) (bias term 195

included). This model can be regarded as the gen- 196

eral version of prompt tuning: the bias term t×d in 197

the second layer of G is a task-specific prompt, with 198

preceding parts generating an instance-dependent 199

prompt. The final prompt our method generated is 200

a combination of both. We can control the added 201

number of trainable parameters by setting m ≪ d, 202

but it is still expensive since hidden dimension d is 203

usually large (1024 in BERT/RoBERTa-Large). In 204

the sequel, we will introduce a parameter squeez- 205

ing method to further reduce trainable parameters 206

without sacrificing performance. 207

Note that our proposed method relies on the 208

input sentence representation M(xi) to generate 209

prompts. One caveat is that this method will have 210

two forward passes of the pre-trained LM during 211

inference time – first to generate M(xi) and then to 212

generate classification results. However, the sen- 213

3



tence representation M(xi) used in our method is214

task-agnostic. In practice, we can cache the pre-215

diction M(xi) and use it in various downstream216

tasks or rely on a lightweight sentence representa-217

tion such as GloVe (Pennington et al., 2014) (Cf.218

Section 4.5.1).219

3.2 Optimization220

We propose two optimization techniques to further221

improve our proposed method.222

3.2.1 Parameterized Hypercomplex223

Multiplication (PHM) Layers224

Inspired by the recent application of parameterized225

hypercomplex multiplication (PHM) layers (Zhang226

et al., 2021) in Compacter (Mahabadi et al., 2021),227

we leverage PHM layers to optimize our prompt228

generator, G. Generally, the PHM layer is a fully-229

connected layer with form y = Wx + b, where230

x ∈ Rd is the input feature, y ∈ Rm is the output231

feature, and W ∈ Rm×d and b ∈ Rm are the train-232

able parameters. When m and d are large, the cost233

of learning W becomes the main bottleneck. PHM234

replaces the matrix W by a sum of Kronecker prod-235

ucts of several small matrices. Given a user-defined236

hyperparameter n ∈ Z+ that divides m and d, W237

can be calculated as follows:238

W =
n

∑
i=1

Ai
⊗

Bi (4)239

where Ai ∈Rn×n, Bi ∈Rm
n ×

d
n , and

⊗
is Kronecker240

product. In this way, the number of trainable param-241

eters is reduced to n× (n×n+ m
n × d

n ) = n3 + m×d
n .242

As n is usually much smaller than m and d, PHM243

reduces the amount of parameters by a factor of n.244

Suppose that we have a two layer perceptron245

with down-sample projection W1 ∈ Rm×d and up-246

sample projection W2 ∈ Rt×d×m, where d is the247

input embedding dimension, m is the hidden layer248

dimension, and t is the number of tokens we gener-249

ate. For example, we use RoBERTa-Large with hid-250

den size d = 1024, generator hidden size m = 256,251

n = 16, prompt length t = 5. By substituting the252

W1 and W2 by two PHM layers and letting Ai253

shared by both layers, we can reduce the number254

of parameters from 1.5M to 105K.255

3.2.2 Multi-layer Prompt Tuning256

Prompt tuning (Lester et al., 2021) and P-257

tuning (Liu et al., 2021b) both insert continuous258

prompts into the first transformer layer (cf. Fig-259

ure 1(b)). While proven efficient in some specific260

settings, single layer prompt tuning has two main 261

limitations: (i) Capturing deep contextual informa- 262

tion: the impact of the first-layer prompts on final 263

prediction is low when transformer goes deeper. 264

(ii) Generalizing to long sequence tasks: it is un- 265

clear that prompt tuning can perform well in tasks 266

with long input when only a limited number of 267

parameters can be inserted in single layer. 268

Following Prefix tuning (Li and Liang, 2021) 269

and P-tuning v2 (Liu et al., 2021a), we prepend 270

our generated prompts at each transformer layer to 271

address the above issues. However, simply gener- 272

alizing our model (IDPG) to a multi-layer version 273

(M-IDPG), will significantly increase the number 274

of training parameters, since each layer requires an 275

independent generator G. Instead, we explore dif- 276

ferent architectures in Section 4.5.3 to balance the 277

number of tuned parameters against model perfor- 278

mance. In short, assuming each layer generator Gi 279

has form y = Wx+bi, we share the weight matrix 280

W across generators and set the bias term bi ∈ Rm 281

to be layer-specific, where i = 1, . . . ,N is the layer 282

index and N is the number of transformer layers. 283

4 Experiment Results 284

4.1 Experimental Setup 285

We evaluate on ten standard natural language un- 286

derstanding (NLU) datasets – MPQA (Wiebe et al., 287

2005), Subj (Pang and Lee, 2004), CR (Hu and 288

Liu, 2004), MR (Pang and Lee, 2005), and six 289

tasks from GLUE (Wang et al., 2018), viz. SST-2, 290

QNLI, RTE, MRPC, STS-B (Cer et al., 2017) and 291

QQP. We compare our proposed method with a 292

wide range of methods, as follows: 293

Transformer fine-tuning: We instantiated two 294

versions – a vanilla transformer fine-tuning (Liu 295

et al., 2019) and the entailment-based fine- 296

tuning (Wang et al., 2021). 297

Prompt tuning: We implemented two versions 298

– standard prompt tuning (Lester et al., 2021) and 299

multi-layer prompt tuning (Li and Liang, 2021; Liu 300

et al., 2021a). 301

Adapter-based fine-tuning: This efficient 302

transfer learning method inserts an adaptation 303

module inside each transformer layer includ- 304

ing Compactor (Mahabadi et al., 2021) and 305

Adapter (Houlsby et al., 2019). 306

We compare these against two versions of single- 307

layer instance-dependent generation methods: S- 308

IDPG-DNN and S-IDPG-PHM. The first version 309

is based on a 2-layer perceptron generator, which 310
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Table 1: Main results of different transfer learning method. Each methods are evaluated on full test sets (dev sets for
GLUE tasks). We report average results across 5 runs with different initialization. Bold marks the best result among
all competing methods. Underline marks the best result among all prompt tuning methods. We report the average of
accuracy and F1 for both MRPC and QQP, and average of Pearson and Spearman correlation coefficients for STS-B.
For all the other tasks, we report accuracy.

Method MPQA Subj CR MR SST-2 QNLI RTE MRPC STS-B QQP Avg

Transformer Fine-tuning

RoBERTa 90.4±0.2 97.1±0.1 90.7±0.7 91.7±0.2 96.4±0.2 94.7±0.1 85.7±0.2 91.8±0.4 92.2±0.2 91.0±0.1 92.2
EFL 90.3±0.2 97.2±0.1 93.0±0.7 91.7±0.2 96.5±0.1 94.4±0.1 85.6±2.4 91.2±0.4 92.5±0.1 91.0±0.2 92.3

Adapter

Compacter 91.1±0.2 97.5±0.1 92.7±0.4 92.6±0.2 96.0±0.2 94.3±0.2 87.1±1.4 91.6±0.6 91.6±0.1 87.1±0.2 92.2
Adapter 90.8±0.2 97.5±0.1 92.8±0.3 92.5±0.1 96.1±0.1 94.8±0.2 88.1±0.4 91.8±0.6 92.1±0.1 89.9±0.1 92.6

Prompting

Prompt-tuning 90.3±0.2 95.5±0.4 91.2±1.1 91.0±0.2 94.2±0.3 86.0±0.3 87.0±0.4 84.3±0.3 87.2±0.2 81.6±0.1 88.8
Prompt-tuning-134 65.7±19 95.6±0.2 86.7±3.6 89.7±0.5 92.0±0.5 83.0±1.1 87.4±0.5 84.1±0.5 87.6±0.5 82.4±0.3 85.4
Ptuningv2 90.4±0.3 96.5±0.3 92.7±0.3 91.6±0.1 94.4±0.2 92.9±0.1 78.4±4.3 91.4±0.4 89.9±0.2 84.4±0.4 90.3
S-IDPG-PHM 89.6±0.3 94.4±0.3 90.3±0.2 89.3±0.4 94.7±0.2 90.7±0.3 89.2±0.2 84.3±0.8 84.7±0.9 82.5±0.2 89.0
S-IDPG-DNN 89.5±0.7 94.9±0.4 89.9±1.5 90.2±0.6 95.1±0.2 90.5±0.5 89.4±0.4 83.0±0.5 85.3±0.7 82.7±0.3 89.1
M-IDPG-PHM-GloVe 90.9±0.2 97.4±0.1 93.3±0.1 92.6±0.3 95.4±0.2 94.4±0.2 82.1±0.6 92.1±0.4 91.0±0.4 86.3±0.2 91.6
M-IDPG-PHM 91.2±0.2 97.5±0.1 93.2±0.3 92.6±0.3 96.0±0.3 94.5±0.1 83.5±0.7 92.3±0.2 91.4±0.4 86.2±0.1 91.9
M-IDPG-DNN 91.2±0.3 97.6±0.2 93.5±0.3 92.6±0.1 95.9±0.1 94.5±0.2 85.5±0.6 91.8±0.3 91.5±0.2 86.9±0.3 92.1

contains 1.5M parameters. The second one uses311

the PHM layer and only contains 105K parameters.312

We also explore three versions of multi-313

layer instance-dependent generation methods:314

M-IDPG-DNN, M-IDPG-PHM, M-IDPG-PHM-315

GloVe. Again, the difference between the first two316

is in the prompt generator, while M-IDPG-PHM-317

GloVe uses GloVe to encode input sequences.318

For a fair comparison, all the pre-trained LMs319

are 24-layer 16-head RoBERTa-Large models (Liu320

et al., 2019). Additional training details can be321

found in Appendix A.1. Notably, Prompt-tuning-322

134 uses 134 prompt lengths in Table 1, and it is set323

so to match the training parameters of the proposed324

method, M-IDPG-PHM.325

4.2 Performance in high-resource scenario326

Table 1 shows the results of all the methods on full327

datasets across 10 NLU tasks. We observe that:328

(i) Our proposed method M-IDPG-PHM consis-329

tently outperforms the prompt tuning method and330

Ptuning v2 by average 3.1pt and 1.6pt, respectively331

(except on the RTE dataset). (ii) Compared with332

other efficient transfer learning methods, IDPG333

performs slightly worse than the Compacter (Ma-334

habadi et al., 2021) and Adapter (Houlsby et al.,335

2019), across the ten tasks. However, the gap336

is mostly from RTE and QQP. Note that IDPG337

uses 15K fewer parameters than the Compacter.338

M-IDPG-PHM is better than Compacter on four339

tasks and has the same performance on three tasks.340

(iii) The improvement of our method is more promi-341

nent in the single-sentence classification task. The342

four best results (MPQA, Subj, CR, MR) among all 343

competing methods in single-sentence classifica- 344

tion tasks are made by IDPG models. Specifically, 345

M-IDPG-PHM performs 0.84pt and 0.36pt better 346

than RoBERTa and EFL, respectively. (iv) PHM- 347

based generator performs on par with the DNN- 348

based generator while having a significantly lower 349

number of trainable parameters. (v) GloVe-based 350

sentence encoder also performs similar to LM- 351

based sentence encoder, indicating the advance- 352

ment of instance-dependent prompt generation 353

does not rely on a robust contextual sentence en- 354

coder. (vi) When we fix the training parameters 355

to be the same, the comparison between Prompt- 356

tuning-134 and M-IDPG-PHM illustrates that our 357

approach works better than prompt tuning not just 358

because of using more parameters. 359

4.3 Efficiency 360

Table 2 lists the number of trainable parameters for 361

different methods excluding the classification head. 362

The general goal for efficient transfer learning is to 363

train models with fewer parameters while achiev- 364

ing better performance. Traditional prompt-tuning 365

method only requires training a token embedding 366

table with a few thousand parameters. However, 367

its performance is worse than a lightweight adapter 368

model (e.g., Compacter with 149K parameters). 369

Our proposed method, especially the M-IDPG- 370

PHM, falls in the gap between prompt-tuning and 371

adapter model, since it only requires training 134K 372

parameters and performs on par with Compacter. 373
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Method Parameters

Transformer Fine-tune (Liu et al., 2019) 355M
Adapter (Houlsby et al., 2019) 1.55M
Compacter (Mahabadi et al., 2021) 149K
Prompt-tuning (Lester et al., 2021) 5K
Prompt-tuning-134 (Lester et al., 2021) 134K
P-Tuningv2 (Liu et al., 2021a) 120K
S-IDPG-PHM 105K
S-IDPG-DNN 1.5M
M-IDPG-PHM-GloVe 141K
M-IDPG-PHM 134K
M-IDPG-DNN 216K

Table 2: Number of trainable parameters of different
methods. Note that we did not include the parameters
from classification heads.

4.4 Performance in low-resource scenario374

We further evaluate our proposed method in the375

low-resource scenario. Following the existing eval-376

uation protocols in the few-shot setting (He et al.,377

2021), we sample a subset of the training data for378

each task with size K ∈ {100,500,1000} as our379

training data and another subset with size 1000380

as a development set. We compare our proposed381

methods with all prompt tuning methods, one fine-382

tuning model (EFL), and one adapter tuning model383

(Compacter).384

In the extreme low-resource case when K=100,385

M-IDPG-PHM performs 2.5pt better than the tra-386

ditional prompt tuning method and 0.5pt better387

than the multi-layer P-Tuning v2 method. This388

improvement illustrates that our method has bet-389

ter generalization in few-shot settings. When K390

becomes larger, IDPG-PHM still maintains good391

results with 1.9pt, 0.2pt (K=500) and 2.0pt, 0.2pt392

(K=1000) better accuracy than traditional prompt393

tuning, P-tuning v2, respectively. We also observe394

that when K is small, our method sometimes has a395

high variance (e.g., 4.6 on MPQA when K = 100).396

We suspect that this may be due to bad initialization397

that leads the model to non-optimal parameters.398

4.5 Intrinsic Study399

We conduct several ablation studies including ex-400

ploration of different generator architectures and401

impact of selecting different prompt positions.402

4.5.1 Sentence Encoder: GloVe or LMs?403

The proposed IDPG method relies on pre-trained404

LM to extract sentence representation, i.e., [CLS]405

token embedding. Obtaining contextualized trans-406

former sentence embedding is often expensive if407

it is not pre-computed. One open question is to408

explore reliability on lightweight sentence repre- 409

sentations such as GloVe embedding (Pennington 410

et al., 2014) or token embedding of pre-trained 411

language models. 412

To answer this question, we apply the pre-trained 413

GloVe word vectors1 to extract the sentence repre- 414

sentation. Specifically, we take the average of word 415

vectors as the sentence embeddings: 416

M(xi) =
1
k

k

∑
j=1

GloVe(t j), xi ∈ Dtrain (5) 417

where xi is the input sequence with k tokens 418

t1, . . . , tk. According to Table 1, using GloVe as 419

sentence encoder to generate prompts doesn’t sac- 420

rifice much performance over the ten tasks and 421

outperforms prompt tuning and P-tuning v2. It in- 422

dicates that our model does not benefit a lot from a 423

strong contextual pre-trained LM. Instead, a light 424

sentence encoder such as GloVe can also help the 425

tasks. Also, instance-dependent prompt tuning 426

shows promising improvement over non-instance- 427

dependent prompt tuning models. 428

4.5.2 Prompt Generator: PHM or DNN? 429

To reduce the tuning parameters, we substitute the 430

DNN layers with PHM layers. An open question 431

we seek to answer is what is the best generation 432

model for prompt regardless of training parameters. 433

Hence, we compare the PHM-based prompt gen- 434

erator with the DNN-based prompt generator, as 435

shown in Table 1. We observe that including DNN 436

as a generator doesn’t improve performance signif- 437

icantly, with +0.1pt gain on average, while adding 438

87K parameters (with hidden size m=16). On the 439

other hand, this ablation study further verifies PHM 440

layers’ efficiency in the generation model. 441

4.5.3 Multi-layer Architecture Exploration 442

When applying the instance-dependent generation 443

model G into a multi-layer case, the first challenge 444

we face is the considerable increase in training pa- 445

rameters. If each transformer layer requires an 446

independent generator Gi, the number of training 447

parameters increases N times, where N is the num- 448

ber of transformer layers (24 in RoBERTa-Large). 449

Assuming G has the form y = Wx+ b, there are 450

three alternatives: (i) Smallest version (S version): 451

sharing both W and b; (ii) Middle version (M ver- 452

sion): sharing W and making b layer-specific; and 453

1Obtained from https://nlp.stanford.edu/data/glove.6B.zip
version glove.6b.300d.txt
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Table 3: Low-resource results are evaluated on full test sets. We report average results across 5 runs with different
initialization. Bold marks the best result among all competing methods. Underline marks the best result among
all prompt tuning methods. We report the average of accuracy and F1 for both MRPC and QQP, and average of
Pearson and Spearman correlation coefficients for STS-B. For all other tasks, we report accuracy.

Method MPQA Subj CR MR SST-2 QNLI RTE MRPC STS-B QQP Avg

K = 100

Fine-tuning 86.2±0.4 88.4±0.8 83.7±2.4 81.4±1.0 86.2±1.3 77.7±1.5 84.2±1.2 72.6±3.7 84.1±1.6 78.1±0.4 82.2
Adapter-tuning 81.0±2.9 88.7±0.8 84.7±2.1 83.7±0.7 85.7±0.9 75.6±0.8 84.7±0.6 80.0±0.9 78.1±1.4 77.1±0.6 81.9
prompt tuning 75.9±1.6 86.8±0.8 72.9±1.4 74.1±1.4 82.9±2.0 82.7±0.2 86.5±0.6 80.0±1.3 70.2±3.1 76.5±0.4 78.9
P-Tuningv2 74.3±2.9 89.7±0.8 80.1±1.0 82.5±1.1 85.1±1.6 78.2±0.5 83.6±0.7 80.1±0.6 78.8±3.0 76.8±0.5 80.9
S-IDPG-PHM 79.0±3.7 87.6±1.1 75.0±1.6 76.2±1.3 87.6±1.3 80.4±1.2 86.3±0.5 79.3±0.4 70.9±2.5 76.1±0.6 79.8
S-IDPG-DNN 78.0±2.1 84.2±1.6 76.3±4.5 77.4±0.5 89.6±1.2 81.1±0.8 87.4±0.8 78.8±1.3 70.6±2.8 74.1±0.9 79.8
M-IDPG-PHM-GloVe 76.6±2.0 90.7±0.4 80.6±2.6 83.0±1.5 85.6±0.8 77.9±1.3 84.4±0.9 79.6±0.9 77.8±1.6 76.1±0.7 81.2
M-IDPG-PHM 75.5±4.6 90.5±0.6 80.2±1.5 82.5±1.1 85.9±1.2 78.8±1.6 84.0±0.4 79.9±0.8 79.3±0.4 77.1±0.2 81.4

K = 500

Fine-tuning 85.1±1.7 94.1±0.4 90.9±0.6 87.6±0.5 92.5±0.6 85.7±0.6 57.5±1.0 82.3±0.6 88.8±0.5 79.0±0.3 84.3
Adapter-tuning 86.0±0.8 94.9±0.2 89.5±1.0 88.5±0.2 91.9±0.9 82.2±0.6 83.9±0.8 82.7±0.5 86.6±0.5 78.9±0.3 86.5
prompt tuning 82.4±1.3 91.2±0.1 86.8±0.4 84.6±0.8 88.6±1.0 86.3±0.4 86.5±0.4 80.0±0.4 77.4±1.9 77.8±0.3 84.2
P-Tuningv2 84.0±1.3 94.6±0.3 89.0±1.8 88.1±0.5 91.3±0.7 84.6±0.8 84.2±1.5 83.2±0.7 83.8±0.5 78.6±0.3 86.1
S-IDPG-PHM 81.6±2.7 91.4±0.7 85.8±2.0 85.8±0.5 88.5±1.3 85.0±0.4 86.3±1.3 81.9±0.8 78.3±1.5 78.1±0.3 84.3
S-IDPG-DNN 84.8±0.7 90.8±0.6 89.7±1.0 86.1±2.8 90.4±1.6 84.8±0.3 87.7±0.7 82.0±1.4 79.1±2.3 77.1±0.4 85.3
M-IDPG-PHM-GloVe 84.0±1.7 95.0±0.2 89.0±1.1 88.1±0.5 90.4±1.3 85.1±0.1 84.0±1.0 82.3±0.5 84.1±0.8 78.2±0.8 86.0
M-IDPG-PHM 85.2±1.1 94.6±0.0 89.1±1.6 88.8±0.4 91.6±1.1 84.9±0.9 83.9±0.7 82.5±0.5 84.2±0.5 78.6±0.3 86.3

K = 1000

Fine-tuning 87.7±0.7 95.1±0.2 89.8±1.2 89.2±0.5 93.6±0.4 88.0±0.7 87.3±1.3 87.9±0.9 90.8±0.2 79.8±0.3 88.9
Adapter-tuning 88.2±0.6 95.6±0.3 89.9±1.4 90.0±0.3 92.9±0.2 85.2±0.7 86.8±0.7 86.1±0.6 89.6±0.5 79.9±0.3 88.4
prompt tuning 83.9±2.0 92.6±0.4 87.2±1.4 86.7±0.3 89.9±1.0 86.9±0.1 86.4±0.7 82.5±0.3 82.9±1.3 78.6±0.3 85.8
P-Tuningv2 87.0±0.9 95.9±0.4 88.3±1.5 89.5±0.3 93.2±0.5 87.4±0.4 85.1±1.1 82.6±1.1 87.8±0.3 79.3±0.4 87.6
S-IDPG-PHM 83.4±1.7 93.4±0.9 89.2±0.8 88.0±0.9 90.2±1.0 85.5±0.6 86.9±0.6 83.1±0.4 83.9±0.8 78.9±0.4 86.3
S-IDPG-DNN 85.9±0.8 93.3±1.2 89.9±0.8 89.6±1.1 92.2±0.8 85.2±1.3 87.7±0.8 82.5±0.9 84.7±0.9 78.0±0.8 86.9
M-IDPG-PHM-GloVe 86.5±0.7 95.5±0.3 87.7±1.3 89.3±0.4 93.4±0.3 87.5±0.3 84.9±0.9 82.7±0.7 87.6±0.3 79.1±0.7 87.4
M-IDPG-PHM 87.7±0.5 95.6±0.2 89.2±1.2 89.8±0.4 93.7±0.6 87.2±0.5 85.6±0.6 82.5±0.9 87.8±0.8 79.1±0.4 87.8
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Figure 2: Comparison between three different multi-
layer generator models (S, M, L versions), and compari-
son between taking layer 0’s output or previous layer’s
output as input.

(iii) Largest version (L version): making both W454

and b layer-specific.455

Another way to reduce the training parameters456

is by adjusting the hidden size m of the generator.457

We compare two models with m = 16 and m = 256.458

Surprisingly, we find that generator with a hidden459

size 16 is not far from the large model (92.0 vs.460

92.1, respectively, in M version). We hypothesize461

that the smaller hidden size of 16 is already enough462

to store useful instance information, and setting m463

too large may be less efficient. 464

Besides, in single-layer prompt generation 465

model, the input to G is M(xi) - the representation 466

of input sequence xi. In a multi-layer case, the in- 467

put to each layer generator has another option, i.e., 468

the previous layer’s output. However, as shown in 469

Figure 2, the experiment results suggest no signifi- 470

cant difference between the two input ways. As for 471

the generator selection, the three models perform 472

as expected (S version < M version < L version). In 473

Table 1, M-IDPG-PHM uses the previous layer’s 474

output as input, M version as the generator, and 16 475

as the generator hidden size. Detailed information 476

for all models’ performance on each task can be 477

found in Appendix A.3. 478

4.5.4 Prompt Insertion: Single-layer or 479

Multi-layer? 480

P-tuning v2 (Liu et al., 2021a) conducted sub- 481

stantial ablation studies on the influence of insert- 482

ing prompt into different transformer layers. To 483

boost single-layer IDPG performance, we add sup- 484

plementary training (cf. Appendix A.4) and con- 485

duct ablation studies in Appendix A.5. We come 486

to a similar conclusion that multi-layer instance- 487

dependent prompt tuning model (M-IDPG) is sig- 488
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Figure 3: The number of pairs of each group in Top-200
cosine similarity ranking. More results can be found in
Appendix A.6.

nificantly better than the single-layer method (S-489

IDPG) in both evaluation settings. An interesting490

finding is that the impact of supplementary training491

on S-IDPG is high while it is limited for M-IDPG.492

4.5.5 How Prompts Help?493

Given two sentences, we encode each of them by494

one of the comparison models and compute the495

cosine similarity. We sort all sentence pairs in496

STS-B dev set in descending order by the cosine497

similarity scores and get a distribution for number498

of pairs in each group that is included in Top-k499

ranking. We compare a vanilla model without any500

prompts with M-IDPG-PHM. Both models are fine-501

tuned on STS-B training set. As shown in Figure 3,502

prompts bring the similar sentences closer while503

pushing the dissimilar ones apart.504

4.5.6 IDPG Scalability505

We study our proposed model’s scalability in this506

section. In general, the performance of IDPG in507

downstream tasks improves gradually when using508

a larger prompt length (Cf. Appendix A.7).509

5 Related Work510

Supplementary Training: Existing works (Phang511

et al., 2018; Liu et al., 2019) have observed that512

starting from the fine-tuned MNLI model results in513

a better performance than directly from the vanilla514

pre-trained models for RTE, STS, and MRPC tasks.515

A series of work (SentenceBERT (Reimers and516

Gurevych, 2019), BERT-flow (Li et al., 2020), Sim-517

CSE (Gao et al., 2021)) explored intermediate train-518

ing to improve STS tasks. All of them applied519

pre-fine tuning on NLI datasets. More recently,520

EFL (Wang et al., 2021) proposed a task transfor-521

mation paradigm, improving single sentence tasks522

with less labels using rich sentence-pair datasets.523

Adapter Tuning: Adapter tuning has emerged 524

as a novel parameter-efficient transfer learning 525

paradigm (Houlsby et al., 2019; Pfeiffer et al., 526

2020b), in which adapter layers – small bottleneck 527

layers – are inserted and trained between frozen 528

pre-trained transformer layers. On the GLUE 529

benchmark, adapters attain within 0.4% of the 530

performance of full fine-tuning by only training 531

3.6% parameters per task. Compactor (Mahabadi 532

et al., 2021) substitutes the down-projector and up- 533

projector matrices by a sum of Kronecker products, 534

reducing the parameters by a large margin while 535

maintaining the overall performance. 536

Prompting: Hand-crafted prompts were shown to 537

be helpful to adapt generation in GPT-3 (Brown 538

et al., 2020). Existing works including LM- 539

BFF (Gao et al., 2020; Wang et al., 2021) explored 540

the prompt searching in a few-shot setting. 541

Recently, several researchers have proposed con- 542

tinuous prompts training to overcome the chal- 543

lenges in discrete prompt searching. Prefix tun- 544

ing (Li and Liang, 2021) and P-tuningv2 (Liu 545

et al., 2021a) prepend a sequence of trainable em- 546

beddings at each transformer layer and optimizes 547

them. Two contemporaneous works – prompt tun- 548

ing (Lester et al., 2021) and P-tuning (Liu et al., 549

2021b), interleave the training parameters in the 550

input embedding layer instead of each transformer 551

layer. All these methods focus on task-specific 552

prompt optimization. Our proposed method, IDPG, 553

is the first prompt generator that is not only task- 554

specific but also instance-specific. 555

6 Conclusion and Discussion 556

We have introduced IDPG, an instance-dependent 557

prompt generation model that generalizes better 558

than the existing prompt tuning methods. Our 559

method first factors in an instance-dependent 560

prompt, which is robust to data variance. Param- 561

eterized Hypercomplex Multiplication (PHM) is 562

applied to shrink the training parameters in our 563

prompt generator, which helps us build an extreme 564

lightweight generation model. Despite adding 565

fewer parameters than prompt tuning, IDPG shows 566

consistent improvement. It is also on par with the 567

lightweight adapter tuning methods such as Com- 568

pacter while using a similar amount of trainable 569

parameters. This work provided a new research 570

angle for prompt-tuning of a pre-trained language 571

model. 572

8



References573

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-574
ton. 2016. Layer normalization. arXiv preprint575
arXiv:1607.06450.576

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie577
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind578
Neelakantan, Pranav Shyam, Girish Sastry, Amanda579
Askell, et al. 2020. Language models are few-shot580
learners. arXiv preprint arXiv:2005.14165.581

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-582
Gazpio, and Lucia Specia. 2017. Semeval-2017583
task 1: Semantic textual similarity-multilingual and584
cross-lingual focused evaluation. arXiv preprint585
arXiv:1708.00055.586

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and587
Kristina Toutanova. 2019. Bert: Pre-training of deep588
bidirectional transformers for language understand-589
ing. In Proceedings of the 2019 Conference of the590
North American Chapter of the Association for Com-591
putational Linguistics: Human Language Technolo-592
gies, Volume 1 (Long and Short Papers), pages 4171–593
4186.594

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.595
Making pre-trained language models better few-shot596
learners. arXiv preprint arXiv:2012.15723.597

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.598
Simcse: Simple contrastive learning of sentence em-599
beddings. arXiv preprint arXiv:2104.08821.600

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian601
Sun. 2016. Deep residual learning for image recog-602
nition. In Proceedings of the IEEE conference on603
computer vision and pattern recognition, pages 770–604
778.605

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng606
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing,607
and Luo Si. 2021. On the effectiveness of adapter-608
based tuning for pretrained language model adapta-609
tion. arXiv preprint arXiv:2106.03164.610

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,611
Bruna Morrone, Quentin De Laroussilhe, Andrea612
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.613
Parameter-efficient transfer learning for nlp. In In-614
ternational Conference on Machine Learning, pages615
2790–2799. PMLR.616

Minqing Hu and Bing Liu. 2004. Mining and summa-617
rizing customer reviews. In Proceedings of the tenth618
ACM SIGKDD international conference on Knowl-619
edge discovery and data mining, pages 168–177.620

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.621
The power of scale for parameter-efficient prompt622
tuning. arXiv preprint arXiv:2104.08691.623

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,624
Yiming Yang, and Lei Li. 2020. On the sentence em-625
beddings from pre-trained language models. arXiv626
preprint arXiv:2011.05864.627

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 628
Optimizing continuous prompts for generation. arXiv 629
preprint arXiv:2101.00190. 630

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, 631
Zhilin Yang, and Jie Tang. 2021a. P-tuning v2: 632
Prompt tuning can be comparable to fine-tuning 633
universally across scales and tasks. arXiv preprint 634
arXiv:2110.07602. 635

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, 636
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt 637
understands, too. arXiv preprint arXiv:2103.10385. 638

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 639
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 640
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 641
Roberta: A robustly optimized bert pretraining ap- 642
proach. arXiv preprint arXiv:1907.11692. 643

Rabeeh Karimi Mahabadi, James Henderson, and Se- 644
bastian Ruder. 2021. Compacter: Efficient low- 645
rank hypercomplex adapter layers. arXiv preprint 646
arXiv:2106.04647. 647

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, 648
Sam Gross, Nathan Ng, David Grangier, and Michael 649
Auli. 2019. fairseq: A fast, extensible toolkit for 650
sequence modeling. In Proceedings of NAACL-HLT 651
2019: Demonstrations. 652

Bo Pang and Lillian Lee. 2004. A sentimental education: 653
Sentiment analysis using subjectivity summarization 654
based on minimum cuts. arXiv preprint cs/0409058. 655

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting 656
class relationships for sentiment categorization with 657
respect to rating scales. arXiv preprint cs/0506075. 658

Jeffrey Pennington, Richard Socher, and Christopher D 659
Manning. 2014. Glove: Global vectors for word rep- 660
resentation. In Proceedings of the 2014 conference 661
on empirical methods in natural language processing 662
(EMNLP), pages 1532–1543. 663

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 664
Kyunghyun Cho, and Iryna Gurevych. 2020a. 665
Adapterfusion: Non-destructive task composition for 666
transfer learning. arXiv preprint arXiv:2005.00247. 667
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A Appendix 705

A.1 Experimental Settings 706

A.1.1 Training hyperparameters 707

We use RoBERTa-Large (Liu et al., 2019) model implemented by Fairseq (Ott et al., 2019) as our basic 708

model. The detailed model hyperparameters are listed below: 709

Hyperparam Supplmentary Finetune few-shot

#Layers 24 24 24

Hidden size 1024 1024 1024

FFN inner hidden size 4096 4096 4096

Attention heads 16 16 16

Attention head size 64 64 64

dropout 0.1 0.1 0.1

Learning Rate linearly decayed fixed fixed

Peak Learning Rate 1e−5 {5e−3,1e−3,5e−4,1e−4} 5e−4

Batch Size 32 {16, 32} 16

Weight Decay 0.1 0.1 0.1

Training Epoch 10 50 50

Adam ε 1e-6 1e-6 1e-6

Adam β1 0.9 0.9 0.9

Adam β2 0.98 0.98 0.98

Table 4: Hyperparameters for supplmentary training, fine-tuning, few-shot fine-tuning.

Note that for both transformer fine-tuning methods including RoBERTa (Liu et al., 2019) and 710

EFL (Wang et al., 2021), we follow their official training instructions, i.e., using a polynomial learning 711

rate scheduler with 6% of total steps to warm up and tuning for 10 epochs. 712

A.1.2 Model hyperparameters 713

We report the detailed model hyperparameters for each method in Table 1 and illustrate how numbers in 714

Table 2 are computed. 715

Compacter: hidden size d = 1024, adapter hidden size m = 16, user defined n = 4, each transformer 716

layer inserts 2 compacters. Down-project si matrix takes 1024/4× 4× 24× 2 = 48K, down-project ti 717

matrix takes 16/4×4×24×2 = 0.75K, hidden bias takes 16×24×2 = 0.75K, up-project si and ti matrix 718

takes the same number of parameters as down-projector, the output bias takes 1024×24×2 = 48K, the 719

shared matrix Ai takes 43 × 24× 2 = 3K. Total parameters: 48+ 0.75+ 0.75+ 48+ 0.75+ 48+ 3 = 720

149.25K. 721

Adapter: hidden size d = 1024, adapter hidden size m = 16. Total parameters: (1024×16+16+ 722

16×1024+1024)×24×2 = 1.55M. 723

Prompt-tuning: prompt length t = 5. Total parameters: 5×1024 = 5K. 724

Prompt-tuning-134: prompt length t = 134. Total parameters: 134×1024 = 134K. 725

P-tuning v2: prompt length t = 5, inserted layers 24. Total parameters: 5×24×1024 = 120K. 726

S-IDPG-PHM: hidden size d = 1024, generator hidden size m = 256, prompt length t = 5, user defined 727

n = 16 (Cf. Equation 4). First PHM layer W1 takes 1024/16×256/16×16+256 = 16.25K parameters, 728

second PHM layer W2 takes 256/16×5×1024/16×16+5×1024 = 85K parameters, the shared matrix 729

Ai takes 163 = 4K (Note we use one shared matrix in single version IDPG). Total parameters: 105K. 730

S-IDPG-DNN: hidden size d = 1024, generator hidden size m = 256, prompt length t = 5. Total 731

parameters: 1024×256+256+256×5×1024+5×1024 = 1.5M. 732

M-IDPG-PHM-GloVe: input vector size 300, generator hidden size m = 16, prompt length t = 5, user 733

defined n = 4 (Cf. Equation 4). First PHM layer W1 takes 300/4× 16/4× 4+ 16 = 1216 parameters, 734

second PHM layer W2 takes 16/4×5×1024/4×4+5×1024×24 = 140K parameters, the shared matrix 735

Ai takes 43 ×2 = 128. Total parameters: 141K. 736
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M-IDPG-PHM: hidden size d = 1024, generator hidden size m = 16, prompt length t = 5, user defined737

n = 16 (Cf. Equation 4). First PHM layer W1 takes 1024/16×16/16×16+16 = 1K parameters, second738

PHM layer W2 takes 16/16×5×1024/16×16+5×1024×24 = 125K parameters, the shared matrix739

Ai takes 16316×2 = 8K. Total parameters: 134K.740

M-IDPG-DNN: hidden size d = 1024, generator hidden size m = 16, prompt length t = 5. Total741

parameters: 1024×16+16+16×5×1024+5×1024×24 = 216K.742

A.2 Datasets743

We provide a detailed information in Table 5 for 10 NLU datasets we used.

Corpus |Train| |Valiadation| Task Evaluation Metrics

Single Sentence Tasks

CR 1,775 2,000 sentiment accuracy
MR 8,662 2,000 sentiment accuracy
SUBJ 8,000 2,000 sentiment accuracy
MPQA 8,606 2,000 opinion polarity accuracy
SST-2 67,349 1,821 sentiment analysis accuracy

Sentence Pair Tasks

QNLI 104,743 5,463 NLI accuracy
RTE 2,491 278 NLI accuracy
MRPC 3,668 409 paraphrase accuracy/F1
QQP 363,846 40,430 paraphrase accuracy/F1
STS-B 5,749 1,500 sentence similarity Pearson/Spearman corr.

Table 5: The datasets evaluated in this work.
744

A.3 Detailed results for Multi-layer Architecture Exploration745

We provide a detailed result table for all compared methods in Section 4.5.3. Note that the M ver-746

sion model with m = 16 and previous layer as input one is slightly higher than the results shown747

in Table 1(Cf. M-IDPG-PHM), this is because we tune the learning rate more carefully in Table 6748

(lr ∈ {1e−2,7e−3,5e−3,3e−3,1e−3,7e−4,5e−4,3e−4,1e−4}) to seek the best performance each model749

can reach. While in Table 1, we tune the learning rate from {5e−3,1e−3,5e−4,1e−4} to make the fair750

comparison with other models.751

Figure 4: Length difference of GLUE sentence pair datasets.

A.4 Supplementary Training for Single-layer IDPG752

According to previous works (Phang et al., 2018; Wang et al., 2021), supplementing pre-trained LMs with753

rich data helps tasks with limited labels and stabilizes downstream fine-tuning. Following this idea, we754

conduct intermediate training for single-layer IDPG.755

However, a drawback of supplementary training is that if the data distribution of the downstream tasks756

is quite different from the supplementary training task, i.e., MRPC vs. MNLI (Wang et al., 2018), it may757
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Table 6: Main results of different transfer learning method. Each methods are evaluated on full test sets (dev sets
for GLUE tasks). We report average results across 5 runs with different initialization. We report the average of
accuracy and F1 for both MRPC and QQP, and average of Pearson and Spearman correlation coefficients for STS-B.
For all the other tasks, we report accuracy.

Method m MPQA Subj CR MR SST-2 QNLI RTE MRPC STS-B QQP Avg

Input: Layer 0

S version 256 91.2±0.2 97.6±0.1 93.8±0.3 92.6±0.2 95.9±0.1 93.8±0.1 79.9±8.0 90.8±0.5 90.9±0.4 85.9±0.4 91.2
M version 256 91.2±0.3 97.5±0.1 93.6±0.3 92.7±0.2 95.7±0.2 94.3±0.1 85.5±1.0 91.8±0.3 91.4±0.2 87.0±0.4 92.1
L version 256 91.3±0.1 97.6±0.2 93.8±0.3 92.6±0.1 95.5±0.2 94.5±0.2 86.5±0.5 92.5±0.8 91.6±0.1 87.3±0.3 92.3

Input: Previous Layer

S version 256 91.2±0.2 97.5±0.1 93.5±0.3 92.6±0.1 95.8±0.3 94.0±0.1 83.4±1.5 91.9±0.3 91.1±0.3 86.9±0.2 91.8
M version 256 91.0±0.2 97.5±0.1 93.4±0.4 92.6±0.2 96.0±0.1 94.4±0.2 86.6±1.2 91.5±0.4 91.4±0.2 86.3±0.1 92.1
L version 256 91.3±0.2 97.4±0.0 93.3±0.3 92.5±0.2 95.8±0.1 94.5±0.3 86.9±0.8 92.1±0.4 91.7±0.2 87.1±0.2 92.3

Input: Previous Layer

S version 16 91.4±0.2 97.5±0.1 93.6±0.2 92.5±0.2 95.7±0.2 93.9±0.0 83.6±0.8 91.9±0.4 90.9±0.3 85.5±0.4 91.6
M version 16 91.2±0.2 97.5±0.1 93.4±0.3 92.6±0.3 96.0±0.3 94.5±0.1 83.5±0.7 92.3±0.2 91.4±0.4 87.1±0.1 92.0

harm the downstream performance. Figure 4 provides a comprehensive statistic among all sentence pair 758

tasks in GLUE benchmark. For example, the length of the first sentence in MNLI is 9.8 longer than the 759

second sentence on average, while this length difference in MRPC is only 0.6. One natural solution to 760

smooth the length distribution difference between tasks is to insert prompt in both supplementary training 761

and downstream fine-tuning stage. For example, assuming that we are adding a prompt with a length 762

t = 5 after the second sentence in the supplementary training stage on MNLI. Then, when fine-tuning 763

downstream tasks such as MRPC, we concatenate the prompt after the first sentence. In this way, the length 764

difference in MNLI and MRPC becomes more balanced: 4.8 vs. 0.6+5 = 5.6. As shown in Figure 5, 765

we test five different insertion positions (Pos 0–4) for sentence pair tasks and three different positions 766

(Pos 0, 1, 4) for single sentence tasks. We further reduce the distribution difference by reconstructing the 767

supplementary training data. We double the MNLI dataset by reordering the two sentences on one shard, 768

and use the doubled dataset during intermediate training.

[CLS] [SEP]Sent1 [SEP]Sent2

prompt prompt prompt prompt

[SEP]

[SEP] prompt [SEP]

0 1 2 3 4

Figure 5: Insertion positions for sentence-pair tasks.
769

Architecture Avg Voting

PHM 86.1 86.9

+residual 85.9 86.7

+LayerNorm 86.1 87.1

+residual+LayerNorm 77.8 81.2

Table 7: Ablation study on generator architecture.

A.5 Ablation study for single-layer IDPG 770

A.5.1 Generator Architecture Exploration 771

We explore three different architectures for the proposed PHM-based generator: (i) Residual: a residual 772

structure (He et al., 2016) is applied to add the sentence representation to each generated tokens; (ii) Lay- 773

erNorm: layer normalization (Ba et al., 2016) is also added to normalize the generated token embedding; 774

(iii) residual + layerNorm: a mixed model that uses both the residual component and LayerNorm. Note 775
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Figure 6: Impact of prompt position on (a) downstream tasks; (b) supplementary training phase.
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(a) The number of pairs of each group in Top-100 cosine
similarity ranking.
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(b) The number of pairs of each group in Top-300 cosine
similarity ranking.

Figure 7: The number of pairs of each group in Top-k cosine similarity ranking.

that, to balance the token embedding and sentence embedding, we apply LayerNorm to each embedding776

first, then after the add-up, use LayerNorm again to control the generated tokens. We observe that adding777

LayerNorm slightly improves the voting results, while residual performs slightly worse. One surprising778

result is that the mixed model of Residual and LayerNorm has significantly poorer performance compared779

to other methods.780

A.5.2 Prompt Position781

As we discussed in Section A.4, the prompt position has a direct impact on the prediction results. We782

conduct a comprehensive study of the prompt position for our proposed method in both supplementary783

training and downstream fine-tuning phases.784

Looking at the prompt position in downstream tasks first, Figure 6(a) shows that for both standard785

prompt tuning and our proposed method, the best position is 0 for single-sentence tasks and 1 for sentence-786

pair tasks. This result is intuitive for single-sentence tasks since prompt in position 0 can be regarded as787

the premise and original input sentence as the hypothesis. For sentence-pair tasks, we hypothesize that788

inserting prompt into position 1 can better align the two input sentences. Figure 6(b) illustrates the effect789

of prompt position on the supplementary training phase. It is interesting that IDPG achieves best results in790

position 0 while the standard prompt-tuning achieves the best results in position 4 for both single-sentence791

and sentence-pair tasks.792

A.6 Cosine Similarity Distributions in STS-B793

We present the cosine similarity distributions when k = 100 and k = 300 in Figure 7a and in Figure 7b,794

respectively.795
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Figure 8: Impact of prompt length.

A.7 Ablation Study on Prompt Length 796

We present the impact of prompt length among several prompt tuning methods in Figure 7. IDPG shows 797

its stability when scaling to larger models with longer prompts. 798

A.8 Potential Risks 799

Our proposed model IDPG is a novel efficient transfer learning method. It tunes small portion parameters 800

while directly employs backbone model parameters without any changing. However, if the backbone 801

model stored online is attacked, whether IDPG could still work well remains unknown. One should be 802

careful to apply our proposed model and all other prompt tuning methods in high-stakes areas without a 803

comprehensive test. 804
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