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ABSTRACT

A federated kernet-means algorithm is developed in this paper. This algorithm
resolves two challenging issues: 1) how to distributedlyesdhe optimization
problem of kernek-means under federated settings; 2) how to maintain commu-
nication efficiency in the algorithm. To tackle the first dbabe, a distributed
stochastic proximal gradient descent (DSPGD) algorithmeigeloped to deter-
mine an approximate solution to the optimization problerkerhelk-means. To
tackle the second challenge, a communication efficient em@sim (CEM) is de-
signed to reduce the communication cost. Besides, thedtstbkernek-means
provides two levels of privacy preservation) users’ local data are not exposed
to the cloud server; 2) the cloud server cannot recover uleea data from the
local computational results via matrix operatiofifieoretical analysis shows: 1)
DSPGD with CEM converges with af?(1/T) rate, wherel" is the number of
iterations; 2) the communication cost of DSPGD with CEM isalated to the
number of data samples; 8)e clustering quality of the federated kerkeieans
approaches that of the standard kerkweheans, with &1 + ¢) approximate ra-
tio. The experimental results show that the federated keérneeans achieves the
highest clustering quality with the communication cosuezt by more tha60%

in most cases.

1 INTRODUCTION

Conventionally, kernek-means|(Dhillon et all, 2004) is conducted in a centralizeshmer where
training data are stored in one place, such as a cloud séfiesvever, as a rapidly growing num-
ber of devices are connected to the Internet, the volume mérgéed data increase exponentially
(Chiang & Zhang| 2016). Uploading all these data to the clserer can lead to large cost of
communication bandwidth. For example, a smartphone maturéx usually needs to analyze us-
age patterns of its smartphones, purposing to optimizeggremnsumption performance of these
smartphones. The usage patterns can be obtained by ahgstsers’ energy consumption data via
kernel k-means. However, if the number of users reaches the ordeillaimg, it may not be a
cost-effective scheme to upload all the users’ energy aoption data to the cloud server. Besides,
uploading users’ raw data to the cloud server can lead toplaiacy issuesTo resolve these issues,
a promising approach is to develop a distributed keknaleans algorithm that can be executed
under federated settings (McMahan etlal., 2017; Yangle2@1l9) where raw data are maintained
by users and the cloud has no access to the raw datthis algorithm, a local training process
is conducted at each user’s device, based on the local dtaTme local computational results,
rather than the local data, are then uploaded to the clowéiser accomplish the kernétmeans
clustering.During this procedure, users’ local data are no longer eeghts the cloud server, which
provides a basic level of privacy. Besides, it is usually encommunication efficient to upload the
local computational results than to upload the local dathéacloud server.

However, it is nontrivial to design a federated learningoallthm for kernelk-means due to three
challenging issues: 1) how to solve the optimization prnoblef kernelk-means in a distributed
manner without sending users’ data to a central place; 2)tbamaintain communication efficiency
in the algorithm; 3) how to protect users’ data privacy in #tgorithm. Considering the first issue
under federated settings, the key problem is to obtain theigenpairs of the kernel matriK (as

required by kernek-means) in a distributed manner. To solve this problem, @iloiged stochastic
proximal gradient descent (DSPGD) algorithm is developefbdows. SinceK is not available



Under review as a conference paper at ICLR 2021

under federated settings, an estimatdofdenoted ag, is first constructed distributively at users’
devices based on random featutes (Rahimi & Récht,|2008)af ttata samples. Since the estimate
is distributed among different devices, it is processedheydistributed Lanczos algorithm (DLA)
(Penna & Staczak| 20114) to obtain an estimateldf(denoted a&) at the cloud server. Afterwards,
an approximate version of the top eigenpaird&btan be obtained froriZ through singular value
decomposition (SVD). To improve the accuracy of approxiomtthe former steps are conducted
in an iterative way. More specifically, in theth iteration, an estimatg, is constructed at users’
devices, and then the estimale at the cloud server is updated %y, ; via stochastic proximal
gradient descent (SPGD) (Zhang etlal., 2016). It is provati tter sufficient iterationsZ, can
converge to a low rank matrix whose top eigenpairs are theesmsrthose oK[] As a result, top
eigenpairs oK are finally obtained at the cloud server.

To resolve the second issue, DLA operations in DSPGD nee@ tenbanced to reduce commu-
nication cost. When DLA is executed in DSPGD, the process tdining an updated.,; at the
cloud server results in high communication cost betweensugevices and the cloud server, be-
cause the operation is conducted upon matrices (€&.pwith the number of rows/columns equal
to the number of data samples. To prevent the communicatisnfiom growing with the number
of data samples, a communication efficient mechanism (CEMgsigned so that DLA is operated
upon a different type of matrices whose dimensions are emtlaad independent of the number of
data samples. More specifically, a new maWk, is designed such that: ZWtVVtT has the same
eigenvectors as those &f , ;, but its eigenvalues are smaller by a constanty\2) andZ, can be
constructed distributively at users’ devices based orl \adaes ofg,. Furthermore, DLA is applied
to W:Wt (instead othWtT), S0 its operations are performed upon matrices with a higH
duced dimension. Via DLA operations between users’ devacesthe cloud serveWV, andZ; are
updated iteratively, and then the top eigenpairwfwt are obtained at users’ devices. Orfe
converges, users’ devices transform the top eigenpaﬁwﬁfwt to those othWtT and further
obtain the eigenpairs d&;. Instead of sending these eigenpairs to the cloud servastrébdted
linear k-means algorithm_ (Balcan ef al., 2013) is incorpetanto CEM so that the cloud server can
perform clustering directly on the eigenpairs of the cogeeiZ,. As shown in the process of CEM,
the communication efficiency of DSPGD is significantly imyed.

For the third issue, FK-means based on DSPGD and CEM provides two levels of priveesep-
vation: 1) users’ local data are not exposed to the cloudesg®y the cloud server cannot recover
users’ local data from the local computational results vérir operations. To provide stronger pri-
vacy, a differential privacy mechanism (Dwork et al., 2006gds to be integrated with Fikmeans,
which is subject to future study.

The theoretical analysis shows that DSPGD with CEM conwetg&™ at anO(1/T') rate, where

T is the iteration number. The communication cost of DSPGIMWIEM is linear to the dimension
of the right singular vector times the number of users, wigih be much smaller than the number
of data samplesThe clustering quality of the federated kerkeineans approaches that of kerhel
means, with &1+¢) approximate ratioThe experimental results show that, compared with the-state
of-the-art scheme&K k-means achieves the highest clustering quality with thensamcation cost
reduced by more thabt0% in most cases.

2 RELATED WORK

2.1 DISTRIBUTED KERNEL k-MEANS

Many algorithms have been developed to conduct the kérmekans clustering in a distributed
way. The kernel approximation method is a popular approagbi@yed in these algorithms, such as
the Nystbm method|(Chitta et al., 2011; 2014; Wang etlal., 2019) arddhdom feature method
(Chitta et al.] 2012). A trimmed kernét-means algorithm (Tsapanos et al., 2015) decreases the
computational cost and the space complexity by signifigargitiucing the non-zero entries i

via a kernel matrix trimming algorithm. In_(Elgohary et #014) an approximate nearest centroid
(APNC) embedding is developed to embed the data sampleasththclustering assignment step

*More specifically, the top eigenvectors of the low rank matrix are the sartteoae ofiK and its nonzero
eigenvalues are smaller than thosdoby a constant.
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of kernelk-means can be parallel executed. A communication efficiemted principle component
analysis (PCA) algorithm_(Balcan et/ &l., 2016) along witktidbuted linerk-means can approx-
imately solve the optimization problem of kernelmeans while maintaining the communication
efficiency.However, these algorithms are designed with an assumjitairitiey are executed at the
cloud server where users’ raw data are collected. Besidasy wf these algorithm$ (Chitta ef al.,
[2011;[201Pf 2014; Wang etldl., 2019) are one-shot algorithesthey only determine an approx-
imate kernel matriXiK once. Thus, their clustering quality is limited by the aemyr of K. In
contrast to these algorithms, Fikkmeans is the first distributed kernelmeans scheme designed
under federated settings. In addition, EMneans is an iterative algorithm that can approach the top
eigenpairs oK more accurately by employing more iterations.

2.2 FEDERATEDLEARNING

Federated learning (McMahan et al., 2017) is a new machareileg framework aiming to protect
users’ data privacy and save the communication cost dunimé¢etrning process. In the framework,
alocal model is updated at each user’s device, and thedenhockels instead of users’ local data are
then aggregated at the cloud server to generate a global nfdaedistributed optimization method
in the framework is applicable to the models whose optinoraproblem can be decomposed into
several independent subproblems, such as neural netwankismany algorithm.,
[2016; Yang et all, 2018; Yurochkin et al., 2019) are devedoptowever, it is non-trivial to decom-
pose the optimization problem of kernelmeans under the federated learning framework. Some
algorithms|(Liu et all., 2017; Caldas ef al., 2018) improwtefated multi-task learning (Smith et al.,

) with kernel. However, these algorithms either emgrplicit feature mapping_(Liu et al.,
[2017) that can lead to impractical computational cost, guire to send the support vectors of users’
local data (i.e., some local data samples) to the cloud s¢Baddas et all, 2018), which can leak
users’ privacy information. Due to these limitations, thedgorithms are not applicable to kernel
k-means under the federated learning framework. Recentigneept of clustered federated learn-
ing (Ghosh et &ll, 2020; Sattler et @;Mms_o_ulelzagd)) is proposed, where the clients are
clustered according to their gradient updates or theirl lowalels. However, their clustering prob-
lems are different from the optimization problem of kerkeheans, and thus are not feasible for
the optimization problem of kernélmeans in the federated setting.

2.3 STOCHASTICKERNEL PCA

In (Zhang et al.. 2016), the stochastic kernel PCA is accimingtl a stochastic proximal gradient
descent (SPGD) algorithm. As a result, SPGD is a centratipedterpart of the distributed proxi-
mal gradient descent (DSPGD) algorithm in EKneans. However, DSPGD is distinct from SPGD
in three features. First, DSPGD is conducted under fediissttings while SPGD is conducted in
a centralized manner where users’ raw data are collecté@ alaud server. Second, the communi-
cation cost is considered in the design of DSPGD, which tesulCEM, while the communication
cost is not considered in SPGD. Third, although both DSPGDtlae SPGD aim at approaching the
top eigenpairs oK, in thet-th iteration, DSPGD only needs to obtain an approximatetsm Z,  ;

to the problem of updating, instead of the exact solutidf;_ ; to the same problem like SPGD,
which leads to less communication cost under federateihgett

3 PRELIMINARY

Let {x;}, C X be a set ofV data samples. Given a feature mappiig : X — H and the
number of clusters, the problem of kernet-means whose objective is to find an optimal indicator
matrix Y* can be written as

min Tr(K) - Tr(L?Y TKYL?) stY1, =1,, 1)
Ye{0,1}Nxk

. . . 1 . .
whgreK is the k_erne! matrix with each entdy; ; = (x;) To(x), L? :_Dlag([ﬁ, - ﬁ_}) is
a diagonal matrix}V; is the number of samples in tli¢h cluster, and ;, is a column vector with all
the k items equal td.. However, the problem in equatio (1) is an NP-hard problemrégetal.,
1982; Wang et all, 2019). To this end, an approximate sailiias required An efficient approach
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to obtaining the approximate solution is as follovi§.is decomposed & = UAU ' via eigen-
value decomposition (EVD), and then lindameans is applied to the matHf = UA? to obtain

Y (Ding et al.| 2005; Chitta et al.. 2012; Wang et al.. 2019)r&duce the computational comEIex-

only the firsts column vectors oH are selected as the input of lindameans l.,

).

4 FEDERATED KERNEL k-MEANS

In FK k-means, the approximate solution to the problem in equdipis also determined based on
the tops eigenpairs of the kernel matriK. To obtain these eigenpairs under federated settings, a
distributed stochastic proximal gradient descent (DSP&@9rithm is developed in Sectibn #.1. A
communication efficient mechanism is then designed to ethe communication cost of DSPGD

in Sectior 4.P.

4.1 DISTRIBUTED STOCHASTIC PROXIMAL GRADIENT DESCENT

The key problem for designing FK-means is to obtain the the tepeigenpairs ofK in a dis-
tributed manner. To solve this problem, a distributed ststih proximal gradient descent algorithm
is developed as follows. Under the federated settings, twa ohallenge on determining the tep-
eigenpairs ofK is thatK is not available since users’ local data cannot be exposéuetaloud
server or other users. To this end, an estimat&pfienoted ag, is constructed distributively at

users’ devices based on the random featlres (Rahimi & R2@08&; Kar & Karnick| 2012) of their
local data samples. More specificalfy= 7 LAAT andE[¢] = K, whereD is the number of ran-
dom features of each data samples, And: [A[1]T,...,A[M]"]" is the random feature matrix
distributed overM users’ devices (the details of the random feature methodhaheded in Ap-
pendixA). Sincet is distributed over users’ devices, it is then processedheylistributed Lanczos
algorithm (DLA) (Penna & Staczak/ 2014) to obtain an estimatelsf i.e., Z at the cloud server.
Afterwards, an approximate version of the top eigenpails a&n be obtained fror#é through SVD.
To improve the accuracy of approximation, one method isdceiase the value dp. However, this
method is only feasible when each user’s device has enougtorgespace. To adapt DSPGD to de-
vices with different memory space, DSPGD improves the amguof approximation via an iterative
method. More specifically, in theth iteration, an estimatg, is constructed at users’ devices, and
then the estimat&; at the cloud server is updatedZg. ; via stochastic proximal gradient descent

(zhang et all, 2016):

Zt+1fargm1nf||Z Zi|[3 + (2 — Zy, Zy — €,) + M| 2],
ZeRnxn 2

wherer, is a learning rateZ, 1 has an explicit expressicfy .1 = 3,5, , - (Nie =m0,
Where(ﬁ“, \i¢) is thei-th eigenpair of a matriR; = (1 — 7;)Z; + n:&,. Since¢ is distributed
over users’ device?,, , is determined via DLA at the cloud server. It is proved thégrasufficient

iterations,Z; can converge to a low rank matri = D i (Ai — Mu;u; where(u;, \;) is the
i-th eigenpair ofK. As a result, the top eigenpairs Kf are flnally obtained at the cloud server.

Thet-th iteration of DSPGD is executed as follows. The main tagk iapproach the top eigenpairs
of R, via DLA. The cloud server first initializes a random vectgre R™. In theg-th iteration of

DLA, the cloud server determines a vectgy = Ric, = (1 —m)Zicy + ntAtAtch/D, where
Z.c, is computed at the cloud server, aAdAtch is computed in a distributed manner. The
computation ofAtAtT cq is accomplished by five steps: 1) the cloud server partittbesvector
cg = [cg[1]7, ..., c,[M]T] Tinto M parts and sends the-th partc,[m] to the usemm; 2) the user

m computes a Iocal vectok,[m] " c,[m] and uploads the vector to the cloud server; 3) the cloud
server sums up these vectors to obtain the veator, and then broadcasts this vector to all the
users; 4) then-th user computes a new local vecty [m]A:cq and then uploads this vectors to

the cloud server; 5) the cloud server finally concatenatesethectors from users to for&y A, c,;
Wheng,, is determined, the cloud server then applies the Lanczasitiign to the collected vectors
{g1,.--,8,} to approximate the top eigenpairsBf, (the details about the Lanczos algorithm and

4
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the complete procedure of DLA are provided in Apperidix BYeAsufficient iterations of DLA, the
top eigenpairs oR; are obtained at the cloud server, and tign, is determined accordingly.

4.2 COMMUNICATION EFFICIENT MECHANISM

When DLA is executed in DSPGD, the process of obtaining antepda at the cloud server results
in high communication cost between the cloud server andsudevices, because its operation is
upon matrices (e.g§,) with the number of rows/columns equal to the number of datages. To
prevent the communication cost from growing with the numifestata samples, a communication
efficient mechanism (CEM) is designed so that DLA is operaigoh a different type of matrices
whose dimensions are independent from the number of dataleam

A new matrixW, that satisfied¥, W, equalsR, is designed as follows. L&, = thAthtT be

the eigendecomposition &;, andB, equalfjt[&f. Based orB; and the random feature matrix
A, W, is constructed a®, = [\/EA,,/T—n,B,]. Assume thaB, is divided like A,, i.e.,
B; = [By[1]",...,B¢{M]"]", andB;[m] is maintained at then-th user’s device. As a result, a
submatrix of W can be constructed at the-th device byW,[m] = [\/%A;[m], /T — ;B [m]].

Furthermore, DLA is applied thtTWt instead othWtT. The number of rows/columns of
WtTWt equals, + D wherer, is the rank ofZ, andD is the number of random features. Compared
with the number of data sampl@§ r, + D is usually much smaller thalN, so the operation of DLA

is upon matrices with a highly reduced dimension. In gkt iteration of DLA, the computation
ofg, = W:Wth is accomplished by three steps: 1) the cloud server firstdoass a vector
c,; 2) each usem computes a local vectoV[m] " W,[m]c, and uploads the vector to the cloud
server; 3) the cloud server sums up these vectors to opfaiihe cloud server then transforgs

into ¢, following the Lanzcos iteration. After sufficient iterati® of DLA, the tops, eigenpairs
{NiesVig),i=1,....8}o0f WtTWt converge at the cloud server. The cloud server then broedcas
the obtained top; eigenpairs to all the users’ devices. Since the useteepsW,[m], it then

determiness; vectorsu, ;[m] = —A—W,[m]v;;,i = 1,...,s;, whereq, ;[m] is one part of the

Vi

eigenvectom; ;, i.e.,0;; = [W;4[1]7,...,0;,[M]"]T. Based on the vectorsi; ;[m],i = 1, ..., s:}
and the eigenvalueg\, ;,i = 1, ..., s }, the usemn also determines a submati; [m] of B, 41

via By y1[m] = [\/ A1 — med g [m], s A/ Nio1.e — meA@; 1 ¢[m]], which enables thét + 1)-th
iteration of DSPGD with CEM.

As DSPGD with CEM converges aftéf iterations, a matrix[m] is constructed at then-

th user’s device byH[m] = [\/Al,T + (1 =np)Aay,riml, ..., \/)\S,T + (1 =nr)Aas r[m]]. A
distributed lineark-means algorithm/_(Balcan etlal., 2013) is then applied tordves of H =
[H[1]T,...,H[M]"]" to obtain the clustering result. DSPGD with CEM and the isted linear
k-means algorithm constitute FK-means. The pseudo code of FKmeans is shown in Algo-
rithm[d.

5 THEORETICAL ANALYSIS

The convergence of DSPGD with CEM is analyzed in Sedfioh ie communication cost of
CEM is analyzed in Sectidn 8.2, which shows CEM is importantfK k-means to maintain the
communication efficiency. It is then proved that the clusgequality of FK k-means can approach
that of the standard kernékmeans in Sectioh 3.3. Besides, the privacy preservatioviged by
FK k-means is analyzed in Sectibnlb.4.

5.1 CONVERGENCEANALYSIS FORDSPDG

The convergence rate of DSPGD with CEM is derived in Thedem 1

Theorem 1. Definey = maxer) ||Z:|| andC? = maxe(7y [|Z: — &,||F. Assumélé, — K||p <
G, and ||Z, — Z*||r < H, Vt > 2. By settingn, = 2/t, the following upper bound of
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Algorithm 1 Federated Kerndl-Means Algorithm

1: Input: The threshold parametar the number of eigenvectossto be approached, the number
of random feature®, the maximal number of iteratioris, local datasetx,,,,m = 1,..., M,
the initial local matrixB[m] =0,m =1,.... M

2: Output; the clustering assignment for each data sample

3: Server executes:

4: fort=1,2,...,7Tdo

5: Initialize n, = 1/t,q =0

6:

7

8

for each clientn, m = 1,2, ..., M in parallel do
ComputeA,[m] by applying a random feature methoddg,
: ConstructW,[m] = [\/E A [m], T = ;B [m]]
9: end for _
10: Call DLA to determine the eigenpaif$; ;, V1), =1, ..., s, } of WtTWt
11: for each clientn, m = 1,2, ..., M in parallel do

12: Computeﬁm[m] = \/%Wt[m]\?i,t fori = 1,..., 8¢

13: ComputeBt+1[m] = [\/ S\I,t — ’l’]t)\ﬁl’t[mL IORY S\St,t — nt)\ﬁstyt[m]]

14: end for

15: end for

16: for each clientn, m = 1,2, ..., M in parallel do

7. ConstructH[m] — [\/A1T+(1 — ) [m], e e + (1= )X ]
18: end for

19: Apply a distributed lineak-means algorithm over the rows B = [H[1] T, ..., H[M]T]"
20: Return clustering assignment for each data sample

||Z1+1 — Z*||% holds with a probability at least — §

|| Zri1 — Z*||% < <02+A /4 2GT + GHT+GH> O(1/T), 2)

wherer = log 7(2 log, T

The result in Theoref 1 indicates that DSPGD with CEM coreetgZ” at anO(1/T) rate. The
proof of Theoreni I is provided in Appendix C.

5.2 COMMUNICATION COSTANALYSIS FORCEM

Define the communication cost as the number of floating-puimibers uploaded from users’ de-
vices to the cloud server. In Theordh 2, the communicatiat c6DSPGD with CEM and the
communication cost of DSPGD without CEM are both analyzed.

Theorem 2. For DSPGD with CEM, in the-th iteration, its communication cost is lineartp+ D
wherer, is the rank ofZ; and D is the number of random features. Define the communicatiom ra
as the ratio of the communication cost of DSPGD without CEkéb of DSPGD with CEM. In the

h ; ot ; +MD)Q ; .
t th_ iteration, the communication ratio equa%m whereN is the nL_meer of data samples,
M is the number of usersy), and @), are the number of Lanczos iterations for DSPGD without

CEM and DSPGD with CEM, respectively.

By Theoreni2, the communication cost of DSPGD with CEM is latesl to the number of data
samplesV, and the communication cost reduced by CEM can be revealéelmatio. The values

of Qg and @) are affected by the selection of initial vecior. However, empirically the values of
Qo andQ), are at the same order no matter which initial vectors areaho¥he dominant factor
of the ratio is still 5, N+MD . SinceZ; is used to approach the topeigenpairs ofK, empirically

its rankr; has an upper bound In our experiments, the valuge; @f at the same order of i.e.

the number of eigenvectors B to be determined by DSPGD. Usually, the number of data sample
at a user’s device is much larger thaso that it is easy to satisfied that > Mr;, and CEM can
definitely reduce the communication cost for DSPGD in theses. The proof of Theorem 2 and
the empirical results for; are given in AppendikD.
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5.3 APPROXIMATE RATIO ANALYSIS FOR FEDERATED KERNEL k-MEANS

Before the analysis, @&approximate algorithm is first defined as follows.

Definition 1. A linear k-means algorithm is applied to a matHt with » row, where an indicator
matrix Y is obtained. This algorithm is called g-approximate algorithm if, for any matriki,
Ff(Y;H) < ~yminy f(Y;H) wheref is the objective function of linedr-means.

It has been proved that the standard kerheheans algorithm| (Dhillon et all, 2004) is &
approximate algorithm _(Wang etlal., 2019). The approximati® is then derived in Theoref 3
for FK k-means.

Theorem 3. The objective function of kernéktmeans in[(l) is denoted g5;. Hr is the output
of DSPGD with CEM aftefl’ iterations, and ay-approximate algorithm is applied to the first

columns oftIr to obtain\?T. Assume the assumptions in Iheo@m 1 hold.%r the following
inequality holds with a probability at leagt— §(7), i.e., fx (Y1) < y(1+e+ f) miny fx(Y),
wheres = O(\/ 7).

Note that ag increases§(7') decreases. lf = O(k/¢), T = O(k/<?), then the clustering quality
(in terms of the losg'x (Y)) of FK k-means approaches that of the standard kérmekans with a
(1 + ¢)-approximate ratio. The proof of Theorém 3 is given in Apprild

5.4 PRIVACY ANALYSIS FORFEDERATED KERNEL k-MEANS

FK k-means can provide two levels of privacy preservation: B)wser’s local data are not exposed
to the cloud server and other users; 2) the cloud server taaoover users’ local data from the
collected local computational results via matrix opematidhe first level can be easily verified from
the procedure of Fik-means. The second level is proved by Thedrém 4.

Theorem 4. Based on the collected local computational results, thadkerver can at most recover
the matrices{W,[m]" W;[m],m = 1,..., M} via matrix operations. Moreover, recovering the
random feature matrixA; from such matrices is an ill-posed problem with infinite siolos.

By Theoren4, the cloud server cannot recover the randorrfeanatrices from the local com-
putational results. Without such random feature matrides, infeasible for the cloud server to
recover users' local data via matrix operations. More exafi@n and the proof of Theorelnh 4 are
provided in AppendikF. Moreover, FK-means can incorporate the differential privacy mechanism
(Dwork et al., 2006; Su et al., 2016) or random perturbatlan,(2016) to provide higher level of
privacy preservation, which is subject to future work.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTING

Four types of existing schemes are considered in the expatém centralized kerngf-means
(zha et al.; 2001) (denoted as GKmeans), scalable kernkimeans|(Wang et al., 2019) (denoted
as SKk-means), distributed kernétmeans with random feature (Chitta et al., 2012) (denoted as
RFK k-means), and communication efficient distributed kerneAFBalcan et al., 2016) (denoted
as CE PCA). CKk-means and SKe-means are executed at the cloud server (denoted as cloud-
based algorithms), and the rest methods are executed itributied manner where users’ raw data
cannot be uploaded to the cloud server (denoted as clisetsl@gorithms). Besides, Gaussian ker-
nel is used in each algorithm. Four datasets are selectgreftmrmance evaluation: Three public
datasets (Mushrooms, MNIST, and Covtype) from the LIBSVNhadat repository and one dataset
(Smartphone) provided by a company. In additi2h,000 data samples are randomly selected from
the dataset MNIST to construct a dataset MNIST-small thased to validate the convergence of
DSPGD. The statistical information of these datasets isrgin Table[]l. The description of the
Smartphone dataset and the existing methods are includgubiendixG.

The hyperparameters of Fkcmeans are determined as follows. The kernel parametgrcom-
puted based on the average interpoint distance in the giataset (Wang etal., 2019)yy =
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Table 1: Datasets statistics and hyperparameter settngfk-means

Dataset #samples\)  #featuresq)  #clustersk)  #random featuresl)  #eigenvectorss)
Mushrooms 8,124 112 2 15 2
MNIST-small 20, 000 780 10 200 10

MNIST 60, 000 780 10 200 12

Covtype 581,012 54 7 30 10
Smartphone 177,029 12 4 20 6
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Figure 1: The convergence curves of the two versions of DSB@Dstandard deviation curves of
the normalized recover error on the Mushrooms dataset &l ST-small dataset.

SV Z}V\jj . The threshold parameter of DSPGD is set to thék + 2)-th eigenvalue
obtained in the first iteration of DSPGD. The configuratioth&f number of random featurésand

the parametes in the tops eigenvectors for each dataset is provided in Table 1 (therpgrameter
configuration of the existing methods and a discussion ondhéguration ofD are provided in Ap-
pendixG). In the experimentd/ = 5 worker processes and one coordinator process are generated
to simulate users’ devices and the cloud server, respéctiféne worker processes communicate
with the coordinator process via the message passingact(MPI) in a synchronized manner. All

the experiments are executed in a server with Grgsb0k CPU and32 GB RAM.

6.2 BEXPERIMENTAL RESULTS

The experimental results are presented from three asperts.the convergence results of DSPGD
is shown in Figur&ll to verify its convergence rate. Secolnel,average communication cost per
iteration of the two versions of DSPGD is provided in Figiul®Zhow that CEM highly reduces
the communication cost of DSPGD. Third, in Figlile 3, Fneans is compared with the cloud-
based kernet-means schemes in terms of clustering quality to showkFHKeans can achieve the
comparable clustering results as that of the cloud-baseenses; FKi-means is also compared
with the existing distributed kernétmeans schemes under the federated settings to show ther high
communication efficiency of FKk-means.

The convergence of DSPGD is validated over two datasetshidoms and MNIST-small, whose
low rank matriceX = "7, A;u;u; can be computed by performing SVD on their kernel matrices

K. A normalized recover errow (Zhang g t al., 2016) is recorded for each iteratianf

DSPGD, wheréK; = Aip + (1 —n)A)a, tuz , is the estimation oK at iterationt. In the

left subfigure of Flgurm) and that of FIgL-(b) the egence curves of DSPGD are lower
than the curve 0.4/t and the curve 06.03 /¢, respectively, which verifies DSPGD converges at an
O(1/t) rate. In Figuré I(&) afjd I{b), the curves of two versions d?B8 nearly overlap, indicating
that CEM has little impact on the convergence of DSPGD.

The average communication cost per iteration of DSPGD wHMGind that of DSPGD without
CEM are compared in Figufé 2 to evaluate the effectivene€Edl. The log-scale is used for the
y-axis of each subfigure, and the unit of the y-axis is the remolb the floating-point numbers\s
shown in the four subfigures, CEM can reduce communicatish@oDSPGD by more tha®’%,
which indicates that CEM is important for Fkcmeans to maintain communication efficiency.

In order to evaluate the clustering quality and the comnatioa cost of FKk-means, curves of
average normalized mutual information (NMI)_(Strehl & GHp2002) versus average communi-
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Figure 3: The NMI score versus the average communicationafdsK k-means and the existing
methods on the four datasets.

cation cost are plotted in Figufé 3 for Fikmeans and the existing schemes. The error bars in
Figure[3 are th@5% confidence interval of the average NMI scores. For the thubdipdatasets,

FK k-means can achieve comparable average NMI scores to tha ofdud-based algorithms (CK
k-means for Mushroom dataset and &Kneans for MNIST dataset and covtype dataset). For a
cloud-based algorithm, its communication cost equalsaostiume of a dataset, which is too large
to be shown. Thus, in Figufe 3[&), 3(b), dnd B(c) the dashdimg represents the average NMI
scores rather than the relationship of average NMI sconessigghe corresponding communication
cost. In Figur¢ 3(&) arid 3(b), given a fixed communication,d€s k-means can achieve the highest
average NMI scores among the three client-based algoritBesides, if 3(), FK-means nearly
achieves the upper bound of the average NMI score with a lemnmanication cost. To reach such

a NMI score, FKk-means reduces the communication cost by more éhghcompared with RFK
k-means. In Figure 3(c), FK-means has a similar performance to that of Ri~kieans. Compared
with CE PCA, FKk-means reduces the communication cost by more @& when the highest
average NMI score is considered. For the Smartphone dasaset it has no labels, the cluster qual-
ity of a given clustering algorithm is evaluated by meaayitime similarity between the clustering
results of the algorithm and that of Skmeans. To this end, the clustering results of Skeans

are used as the labels to compute NMI scores. It is shown iaréfi§(d) that FKk-means has a
much higher upper bound for the average NMI score (clogedpthan that of RFKk-means and
CE PCA.

7 CONCLUSION

In this paper, FKk-means was developed. In the algorithm, a distributed siahproximal gra-
dient descent approach was first designed to determine gfempmairs of the kernel matrix in a
distributed manner. A communication efficient mechanisns teen designed to reduce the com-
munication cost. In theoretical analysis, DSPGD with CEMs\weoved to converge at an(1/7)
rate. The communication cost of DSPGD with CEM is unrelatethe number of data samples.
The clustering loss of FK:-means can approach that of the centralized kekpmleans. It was
also analyzed that FKk-means provided two levels of privacy preservation. Theaifeness of
the FKk-means was validated by experiments on several real-watkksdtsFK k-means can still
be improved in terms of the asynchronous execution, thestabss to dropout users, and stronger
privacy, which can be interesting topics in our future work.
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Algorithm 2 Lanczos Algorithm

1: Input: An symmetric matrixR, an initial vectorc,

2: Output: An approximationP to the eigenvectors oR, and an approximationr =
[01, ..., 0¢] to the eigenvalues &R

3: Initialize 5y = 0 andcy =0

4: forg=1,2,...,Qdo

5: g = Rc,

6: Qg = c:;g

7

8

g =8 04Cq — ﬂq—lcq—l
D B =llgll2
9: if 3, = 0then
10: break
11: end if

12: cq41 =8/, S
13: Construct a symmetric tridiagonal matflx,

14: Perform EVD onT to obtain its eigenvectoiB, and its eigenvalues = [0, ..., 0]
15: ComputeCyPg
16: end for

A DETAILS OF RANDOM FEATURE METHOD

For a kernel matriXK, a random feature method (Rahimi & Recht, 2008; Kar & KarngL2) can
generate an unbiased estimatdfdenoted ag, with the following expression:

1, T
= —AA
£=5 ;

where thei-th row of A is the random feature vectosgx;) for the data samplg;. The matrix¢
satisfieE[¢] = K.

We then use the example of shift-invariant kernels to show aaandom feature vector is con-
structed. For popular shift-invariant kernelé;, x;) with Fourier representation

K(X;,Xj) = /p(w)exp(ij(xi —x;))dw

wherep(w) is a probability density function, they can be estimatedhgyrandom Fourier features
(Rahimi & Recht| 2008) as follows. By randomly drawidindependent samplegsvy, ..., wp}
from p(w), a random feature vectai(x;) for a data samplex; can be written asa(x;) =
[V2cos(w{ x;+b1),...,v2cos(whx;+bp)]T where{bs,...,bp} are independent random vari-
ables drawn fron0, 27) uniformly. As a result, an unbiased estimationKfcan be written as
¢ =LAAT whereA = [a(x), - ,a(x,)]"

B DETAILS ABOUT DISTRIBUTED LANCZOS ALGORITHM

To find the eigenpairs of a symmetric mati the Lanczos algorithm (LA) (Lanczas, 1950) first
build a Krylov subspac&’, (R, c1) = span[cq, Rey, ..., R 'c;] wherec; is an initial vector, and
then it employs the Rayliegh-Ritz procedure to construetiliest approximate eigenpairs frin
the Krylov subspace. In the first step, LA constructs an gi¢imal basis of the Krylov subspace
following the procedure of line 5 to line 12 in Algorithiii 2. ewhile, a symmetric tridiagonal

matrixTq = CgRCQ can be explicitly constructed wittr, andg3, via
ar B

T, = |1
Bo-1
Bo-1 aq
Based oril'(, the Rayliegh-Ritz procedure can be utilized to approxathe eigenpairs dR. Let
Tg = PQZ]QPCT2 be the eigendecomposition@,. It has been proved that the columng&h P

12
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and the diagonal entries &f, are the optimal approximation to the eigenvectors and gajeas of

R, respectivelyl(Demmel, 1997). Thus, in the Rayliegh-Ritcedure P andX, are determined

by performing EVD oril', and therC P g are computed as the approximation to the eigenvectors
of R. As the number of iteratio) increases, the columns &foP¢ and the diagonal entries of
3¢ can converge to the eigenvectors and eigenvalu@, oéspectively (Demmel, 1997).

As for the distributed Lanczos algorithm (DLA), only thest& line 5 in Algorithm2 is conducted
in a distributed manner, and other steps are conducted alathe server. In our problem, if

R=1—m)Z+m& = (1—m)Z + %AtA;rv
whereZ, andc, are known at the cloud server, and = [A[1]7,..., A;[M]"]T are distributed
over M users’ devices, thefl — 7,)Z;c, is computed at the cloud server andA;A/ c,/D is

computed in a distributed manner as follows. The veetpr= [c,[1]T,...,¢c,[M]T]T is first
partitioned inta)/ parts at the cloud server, and theth partc,[m] is sent to then-th user’s device.

A local vectorA,[m] " c,[m] is then computed at the-th user’s device. These local vectors from
M users’ devices are summed up at the cloud to obtain a veilar,. A/ c, is then broadcast
to M users’ devices, and a vectdy,[m]A, c, is computed at then-th user’s device. Thes&/
vectors are sent back to the cloud server where they are emratad to formA; A, c,. If
M
R=W/W,=>" Wm] W,m],
m=1

where W, [m] "W ,[m] can be computed at the-th user’s device, then each user’ devices first
determinesw,[m] ' W ,[m|c, locally, and thesé\/ vectors are then uploaded to the cloud server

where they are summed up to fthTWth.

In the t-th iteration of DSPGD, DLA is used to compute the eigenvallaeger tham A of the R;.
Thus, in practice, the convergence criterion of DLA is tHattee approximated eigenvalues larger
thann, A converge, rather than that the number of iteration readhesaximal value).

One issue of LA and DLA in practice is that they can only be caned in floating point arithmetic,
which can destroy the orthogonality of the columnsdp, and further affect the convergence of
DSPGD. To this end, a full reorthogonalization method (Dexnim997) is utilized to guarantee that
C, is an orthogonal matrix with a high probability. The key id#feahis method to generate a new
vectorc, from a subspace that is orthogonal to all the previous ve€iar, ..., c,—1 }, which can be
accomplished by replacing line 7 in AlgoritHth 2 with

q—1
g=g— ZgTCiCZw 3)
i=1

The operation in[{3) can be called multiple times in one tteraof LA to increase the probability
thatC, is an orthogonal matrix. In the implementation of federatexhelk-means, such operation
is called twice in each iteration of DLA. Note that the fulbréhogonalization only requires more
flops at the cloud server, which does not affect the algoritbmplexity at users’ devices.

C PRrROOF OFTHEOREM[

This proof partially follows the proof of Theorem 1 lin Zhanpeé (2016). The difference is that
the ¢-th iteration of Z* obtained by DSPGD, i.eZ;, may not equalZ; = D,,\[(1 — n:)Z; +
n:€,]. The gap betweeR, andZ; is caused by that the distributed Lanczos algorithm (DLAyon
approximates the eigenpairs of a target matrix. Thus, sighoof, it is assumed that

I|Zt—Z:H%‘ <e Vt’ (4)
when DLA reaches its convergence criterion, where 1.

Before the proof, we first define

F(Z) = E|Z — €13,

1u2) =517~ €113

13
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For au-strongly convex functiot(Z), if i(Z1) > I(Zs), then
UZ0) ~U(2Z2) > 5|20~ Zol (5)

Inthet+1-th iteration of DSPGD, the goal is to determine the optinséison Z; , , to the following
optimization problem

1
Jin Sl|Z = Zyl[f +mi(Z = Zo, Vfi(Z0) + A2 (6)

By DLA, an approximate solutio, ; that satisfied {(4) can be obtained. The following lemma is a
key step in this proof.

Lemma 1. Before the convergence of DSPGD, the following inequabitdsy i.e.,

1

§|\Zt+1 — Zollp + 1e(Zis1 — Zo, V o(Ze)) + 0| Zosr ||«

(7)
1 * * *

§§|\Z — Zi||[F 4+ ni(Z* — Zy, V Fi(Zy)) + 0| 27|

Proof. The objective function if{6) can be rewritten as
1
SN2 = Zullfe + (2 = 20, V £1(Z0) + 0 2]
“Lz_—zp Z-7 Z 0 Z 2 _1E Z)||% +n)\||Z
=51l el +m( 6 V[ie(Ze)) + IV fi(Zo)ll7 = S IV Fe(Zo)ll7 + 02«
1 772
=512 = (1= m)Ze + mlll + A2l = IV £(Z0)][7-
Since@HVft(Zt)H% is a constant, we can only consider

2) = 312~ (1~ 1) + €]l + 2]l
in the following part of the proof. Now we first assume th&*) < /(Z;1), then we have
UZasr) = 1(Z70) 2 U(Z7) = U2 ) > B1123 - 27 (8)
Moreover,l(Z:y1) — I(Z;, ) can be expanded as
WZiy1) — UZi1y)
= 1Zer ~ Rlle 4 mMIZealle — 5112540 — Ry + mA 124l
= (1Zees — Rall ~ 12721~ Rull) (1201~ Ralle 11274, ~ Rlle) ©
+ A Zesr ]l — 1214 ]1)
S%IIZm = Zipllp (124 = Ziga [l + 21250 = Rllp) + nedl|Zes — Zgalls

It is well known that given a matrid the following inequality holds for its nuclear norm and its
Frobenius norm, i.e||M||? < rank(M)||M]||%. By this inequality, we have

1Zess = Zialle < VFl|Zegs — Zia llp < Ve, (10)
wherer is the rank of(Z, ., — Z;_ ;). Substitute[(4) and(10) intpl(9), we have

* 1 *
UZiy1) = UZisr) < 5€ +el| 20y = Rellr + mAv/re.

Since||Z;, ; — R:||r is a constant, this upper boundi¢¥, ) — [(Z;,,) can become arbitrarily
small if € is arbitrarily small. Hence, according @ (8)Z;, ; — Z*||% can also be arbitrarily small.

However, this contradicts thaZ;, , — Z*||%. cannot become arbitrarily small before the conver-
gence of DSPGD. Therefore, before the convergence of DSP@D), > I(Z;1) is satisfied. O
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The rest part then follows the proof of TheorEin 1in Zhang e(24116). Based on Lemnid 1 and
the property of strongly convex function ial (5), the updatie of SPDG implies

1

§|\Zt+1 — Zo||F + (L1 — Ze, V f1(Ze)) + M| Zegr ||«
1 1 (12)
§§|\Z* — Zo||F + e(Z* = 2y, V fo(Ze)) + M| 27| — §\|Z* — Ziya|3

SinceF'(Z) is 1-strongly convex, it can be shown that
1 )
S\ — 2|13
SF(Zy) + M|Zi|l« = F(Z7) = AZ7«
* 1 * *
(Z = 27, VF(Z0)) = 51120 = 27|74+ M| Zul |- = 27

% * 1 *
=(Zy — 2",V fi(Zy)) — N|Z7|]« _Tm”Zt_Z %

1 . 1 . )
+)\|\Zt|\*—§\|zt—z ||%+277t||zt_z % + (VF(Z¢) — V fi(Ze), Z¢ — Z7)

1 1 «
SAZy — L1, Vi(Ze)) = M|Zig ]|+ — TmHth —Zil|7 — Tm”Z — Zel%

]' 1 * *
FAZll + 5 (77 - 1) 120 — 2|3 + (VF(Z)) — V i(Z0), 2 — Z°)
t
<max (W, V£(Z0) — - [[WIE) = o1 Zuss — 2|1
max - — - — —
=W 5 t t 27]t I 27]t t+1 F

1 1 * *
N = MZenille+ 5 (2= 1) 12 -2\ + (VF@0) - V(2.2 - 2)
t

Ui 2 1 *(12
=—|IV fi(Z ——||Z —7Z
Al AN Al

N A Zell g (1) 12 20|+ (VF@0) - V(2.2 - 2
(12)
where the third inquality holds based on the inequality ) (1
By substitutingy, = (¢, — K, Z, — Z*) andC? = maxc (77 || Z; — &,||3 into (T2),
1Ze1 = 277 < 0fC% + 206 + 22 (11 Ze | — [|Zesa]l) + (1= 200) [|Ze — Z7||F. (13)

The inequality in[(IB) is the same as the result of Lemmall iangtet al.|(2016). Thus, the fol-
lowing lemmag] from|Zhang et al.[(2016) can be directly utilized to deriveralability bound for

|Zer — Z7| |3
Lemma 2 (Lemma 2 il Zhang et &l (2016)Pefiney = max;c (7 [|Z:||.. By settingy, = 2, an
upper bound of|Z:11 — Z*||% can be written as

) 4C% + Ny - - .
27 -zl < A4 2 NGRS MEHIEAEAT
t= t=2

The upper bound oZtT=2 (t — 1)4, in Lemmd2 is then provided in Lemrha 3.
Lemma 3 (Lemma 3 in Zhang et al. (2016)Assums|¢, — K| < G, and||Z; — Z*||r < H,
vt > 2. With a probability at least — 4, Z;‘FZZ (t — 1)d; is upper bounded by
T T
(t—1) <

t=2 t=2

(t—V||Z¢ — Z*||% +2G*7(T — 1) + %GH(T ~ )7+ GH(T - 1),

NN

2These lemmas can be found in the supplementary matefial of ZhandZ@#65) that can be downloaded
from https://cs.nju.edu.cn/zlj/pdf/AAAI-2016-Zhang-S.pdf
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Figure 4: The values a, and@, versus the number of iteratigrfor the four real-world datasets

[2log, T

wherer = log -~

Based on LemmAl2 and Lemrha 3, the following upper bounfZf ; — Z*||% holds with a
probability at least — §

4 2
|| Zpy1 — Z¥||% < T (02 + Ay +2G3*7 + gGHT + GH) =0(1/T). (14)

D PROOF OFTHEOREM[Z AND EMPIRICAL RESULTS

For DSPGD with CEM, in the-the iteration, then-th user’s device only needs to upload one vector
in each iteration of DLA, i.e.W,[m]" W[m]c,. SinceW[m] = [\/EA;[m], /T —nB[m]],

the dimension oW [m] " W [m]c, equalsD + r,, wherer, is the rank ofZ; and D is the number

of random feature. Moreover, DLA requires several Lancremiions to approach the eigenpairs
of WtTWt. Thus, the communication cost of DSPGD with CEM is lineafxe- r;.

To compute the ratio, we first derive the communication cosDISPGD without CEM. in thé-the
iteration, then-th user’s device needs to upload two vectors in each iterai DLA: A;[m] " c,[m]

andA;[m]A; c,, where the dimension ok, c, equalsD. For the concatenation of alll vectors

{A;[m]A/c,,m = 1,.., M}, its dimension equals the number of data sampVes Thus, the
communication cost of DSPGD without CEM is linearXo+ M D.

Given the number of Lanczos iteratiog for DSPGD without CEM and the number of Lanczos

iterations, for DSPGD with CEM, the ratio can be determined J;ﬁg;gf .

According to Figurd ¥, it can be seen that the average valug,dé close to that of); in each

iterationt, which indicatesg—g ~ 1. As a result, the dominant factor of the ratio is jﬁg)

Empirically, the figures of the average valuergfversus the number of iteratiorisfor the four
real-world datasets are shown in Figlife 5. The results shawthe rank; tends to converge as
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Figure 5: The rank of; versus the number of iteratidrfor the four real-world datasets

the value oft increases. Besides, the upper bound,aé a constant factor larger than the number
of eigenvectors in Table[1, and such upper bound is much smaller than the nuoflbsers’ local
data samples, which can explain the dramatical reductich@gommunication cost in Figulé 2.

E PrROOF OFTHEOREM[3

DefineK = UAU ', andP = UAZ. The low-rank approximation d& with rank s is denoted as

1
K, = UA,U", andP, = UA? where the diagonal o, contains thes largest eigenvalues &
while its rest diagonal entries are all zero. The output oPB® at iteratiort is an estimation of

K., denoted a¥,, andK; = 1~3tf’:.
The following two lemmas will be used in the proof of Theorlgm 3

Lemma 4. GivenKy, the following inequality holds with a probability at leaist- § for any rankk
projection matrixIT € R™*",

Tr(I(K, — K,)) < O(\/f)

Proof. Sincell is a rankk projection matrix, it is obvious that
Tr(T(K, — K;)) < |[Kq — K[«
For a ranks matrix A, the following inequality holds for its Nuclear norm and obenius norm
IA][Z < sl|A|f7

Hence,
HKS - KtH* < \/EHKs - KtHF-
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By TheorenfLZ,; converges t&* at anO(1/t) rate. NoteZ™ has the same eigenvectorsIss.
Thus,K; constructed based &£ also converges tK at anO(1/t) rate with a probability at least
1—4,i.e,||Ks — K;||% has an upper bound as

1K, — K[ < O(1/%).
Hence, the following inequality holds with a probabilityleastl — §
Tr(II(K, - K,)) < /5K, — K[

< O(\/f)-

Lemma 5. Fix an error parametee € (0, 1). For any rankk projection matrixIT € R™*",

Tr (H(K - f{t)n) < (e+ g)HP — P2

Proof. It holds that
Tr ((In ) (K - f(t)) ~Tv(K - K,) — Tr (H(K - f{t)n)
= |K - K.||. + Tr(K, — K;) — Tr (H(K - f(t)n) .
Thus, Tr (H(K - f{t)n) can be rewritten as
Tr (H(K - f(t)n) = |IK - K,||. + Tr(K, — K;) — Tr ((In ~ (K — K;)(I, — H)) .

It follows that
Tr (L, ~ (K - K)(L, - 1))

—Tr (I, — I)(K — K,)(I, — II)) + Tr ((In “T)(K, - K)(I, — n))
( —

:TI'( In H)(K - Ks)(In - H)) + TI‘(KS - Kt) - Tr(H(Ks - Rt))

>[|P = Pl + Tr(K, — i) - O(/7),
where the last inequality comes from Lemipha 4. Thus,

~ S
T (0K~ ROT) < 1 K.l [P~ g+ 00 )

S
HP - Ps”%‘ - HP *P9+k||%" +O(\/;)

n ) B n ) f
Y e - Y a@ron/))
i=s+1 i=s+k+1
s+k

.S a?<P>+0<\/;>

1=s+1

s+k
<5y amro?),

i=k+1

SinceO(,/%) can be arbitrarily small, it can be rewritten @,/) = ¢||P — P;||%. Besides,
Zfi,fﬂ o}(P) <>, 07(P) =[P —Py||3. Hence, it can be obtained that

Tr (H(K - I~{t)1'[) <(e+ S)HP —Pill%.
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It can be obtained that
(L, — TOP|% — |(T, - IPy|[3 = Te((L, - MPPT) - Tx((L, - PP,
— T(PP' — PP, ) - TH(TI(PP | — P, P, )II).
Leta — Tr(PP" — P,P, ), and then the above equation can be rewritten as
(T, ~ TP[3 + Te(TI(PPT — B, )TI) = o + [|(T, — TP, 3.

After sufficient iterations, both and Tr(IT(PP " — f’tf’:)l'[) are non-negative with a high prob-
ability. Thus, by Lemm@l5 it holds that

(L, — IDP|[% < a + [|(L, — P2
~ ~T
=||(L, - WP} + Te(I((PP " — P, P, )II) (15)
k
< (1 +e+ )T, — TOP[7.
~ ~ ~T ~ . ) )
Based on[(15), Theoreh 3 can be proved as followsILet Y,L;Y, , whereY, is the indicator
matrix obtained by applying @-approximate algorithm t&,, then
~ ~ ~T ~ ~ ~T ~
(L, = YL Y, P[|E < o+ [|(T, = YL Y, )Py|[%
~k~k ~ x|~
<a+9|(I, - Y, LY, )PtH%v
Where?: is the optimal indicator matrix for the linedrmeans problem o, Sincey > 1, it
follows that
~k~k ~ ok [~ Sk ~
a+ (L = Y LY, )P|[p <a+ql|(L, - Y'LY )P |%
k
<91 +e+ )T - Y'LY )P
Thus,
ST k * T kN
[1(Tn = Y LY, )P < v(1+ e+ )T, - LY P,

which is equivalent tofx (Y ;) < v(1 + ¢ + &) miny fx(Y).

F PrIVACY PRESERVATIONPROPERTY OFFEDERATED KERNEL k-MEANS

F.1 RECOVERUSERS DATA FROM RANDOM FEATURE MATRICES

A random feature for a data sampighas the forntos(w " x; +b) where thev andb are determined
by the cloud server. Since the valuesf x;4-b cannot be arbitrarily large, the number of its possible
values is limited. If enough such random features are delteche cloud server can determine the
value ofw "x; + b for each random feature, and then recoxerby solving a system of linear
equations.

F.2 PROOF OFTHEOREMHA

We then prove that the cloud server can at most recover thecea{W,[m|' W;[m],m =
1,...,M} (only the multiplicationW [m]" W [m] not the matrixW[m]) from the local com-
putational results (e.gW[m] " W,[m]c,). The eigenpair® ;[m]" W[m] are determined via the
distributed Lanczos algorithm. Since

Wi [m]TWt [m] = LA [m] " A[m] \/@At [m] "By [m)]
m(ll;m)Bt[m]TAt[m] (1- nt)Bt[m]TBt[m]

A[m]T A;[m] can be recovered frofiV,[m] " W [m].
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For a matrixA,[m] € R"»*P (n,, < D), amatrixA’ € R*=*P can be constructed via
A'=U,A, [m],

whereU, € R"=*"m is an arbitrary orthogonal matrix WitUOTUO = I,,. By this construction, it
can be derived that

ATA = A m]TUULA [m] = A[m] "1, A m] = Ay [m] T Ay [m].

Since there exist infinite matric&$, satisfyingUZUo =1, the problemA;[m| " A;[m] = A'TA’
has infinite solutions. Hence, recovering the random featuatrix A, [m] from A,[m]" A;[m] is
an ill-posed problem with infinite solutions.

Since by employing CEM, the cloud cannot recover the randsaitufe matrices via matrix opera-
tions, according to SectidnF.1, it is infeasible for theucl®erver to recover users’ data by solving
a system of linear equations.

G ADDITIONAL EXPERIMENTAL SETTINGS

The three public datasets (Mushrooms, MNIST, Covijpe® selected from the LIBSVM dataset
repository. The Smartphone dataset is provided by a comdmeysmartphone dataset contains the
power consumption data of one app on users’ smartphonesvdlge features represent the power
consumption on twelve hardware components. The clusteasi for this dataset is to find the
distinct usage patterns of the app based on the power cotisumdiata. For the concern of privacy,
the Smartphone dataset will not be disclosed.

The description of the four existing methods used in the expnts are listed as follows.

1. Centralized kernet-means Zha et all. (2001) (denoted as &heans): directly perform

truncated SVD on the kernel matriX = UAU' to obtain a matrix that consists of the
first s column vectors olJA 2, and then apply linedt-means to this matrix;

2. Scalable kernét-means Wang et al. (2019) (denoted asiSKieans): utilize the Nyshm
method to approximate the kernel matk and conduct kernél-means over the approx-
imated kernel matrix;

3. Distributed kernek-means with random feature (Chitta et al., 2012) (denotddFs k-
means): first transform the raw data samples to the corréappmnandom vector via the
random Fourier feature method (Rahimi & Recht, 2008) and thiéize a distributed linear
k-means to find the clusters in space of these random features;

4. Communication efficient distributed kernel PCA Balcanle(2016) (denoted as CE PCA):
first conduct dimension reduction on the raw data samplesugfir the communication
efficient kernel PCA that integrates subspace embeddingdagtive sampling techniques
to perform approximated kernel PCA in a distributed manaed, then apply a distributed
linear k-means algorithm to the data samples after the dimensiarctied.

For three distributed algorithms (Fikmeans, RFKk-means, and CE PCA), the distributed linéar
means algorithm developed in (Balcan €tlal., 2013) is etilito obtain the clustering results. Thus,
the number of data samplésin the coreset should be assigned.

For FK k-means, the maximal iteration numkgiis selected fronf10, 20, 30, 40, 50]. In the exper-
iments of the Mushrooms datasét,is set t01000. In the experiment of the MNIST datasét,is
set t01000. In the experiment of the Covtype datasétjs set t04000. In the experiment of the
Smartphone datasét, is set to4000.

RFK k-means has two hyperparameters: the kernel paramessd the number of random features
D. The hyperparameter configuration for REKmeans is set as follows. The valuepfs the
same as that of FKk-means. In the experiments of the Mushrooms datd3et; 200, andC' is
selected fron 100, 300, 500, 700]. In the experiment of the MNIST datasd®, = 800, andC' is

*These datasets can be downloaded from
https://www.csie.ntu.edu.tw/ ~ ¢Jlin/libsvmtools/datasets/
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selected fron 100, 300, 500, 700, 900]. In the experiment of the Covtype datasBt,= 100, and
C' is selected fronj1000, 2000, 3000, 4000, 5000]. In the experiment of the Smartphone dataset,
D =50, andC is selected fron500, 1000, 2000, 3000].

CE PCA has six hyperparameters: the kernel paramettre number of principle componenis
after PCA, the number of random featurBs the subspace embedding dimension for the feature
expansioni,, The subspace embedding dimension for the data pdjntand the number of repre-
sentative pointp. The hyperparameter configuration for CE PCA is set as falofihe value ofy

is the same as that of Fkkmeans In the experiments over different datasets, somerpgameters
of these two methods are not changed. For CE RCA= 50, d, = 250, andp = 500. Besides, the
number of principle componentsin CE PCA is the same as the number of eigenvectans=K k-
means. To obtain different communication cost and norredlimutual information scores, the value
of D is set to different values for both methods. In the experirogar the Mushrooms datasél,is
selected fronj20, 50, 100, 200], andC' is set to1000. In the experiment over the MNIST datasg,

is selected fronj100, 200, 400, 800], C' is set to1000. In the experiment over the Covtype dataset,
D are selected fror20, 50, 100, 200], andC' is set to4000. In the experiment over the Smartphone
datasetD is selected froni20, 50, 100], C is set to4000.

The discussion of the configuration bfis as follows. For RFK:-means and CE PCA) is usually
set to large values (more than0). While for federated kernéd-means,D can be set to relatively
small values (less thabD). The reason is as follows. RFk-means (and CE PCA) only employs
random feature once to estimate the kernel matrix. Thusdqtiires a large number of random
features to obtain an estimation of the kernel matrix with &pproximation error, and furthermore
a high NMI score. In contrast, federated kerkemeans is an iterative algorithm where random
features are employed in each iteration to reduce the gapebatthe estimation and the kernel
matrix. Hence, the number of random feature is not necededng set to a large value in each
iteration.

The communication cost of the three algorithms are detexthas follows. For FKk-means, the
communication cost is the communication cost of DSPGD wHM®lus the that of the distributed
linear k-means. For RFKg-means, its communication cost equals the communicatishafahe
distributed lineark-means. For CE PCA, its communication cost is the communitatost of
performing distributed PCA plus the communication costhaf distributed lineak-means. The
communication cost the distributed lindameans equals the number of data samples in the coreset
times the dimension of a data sample. In both Fkheans and CE PCA, the dimension of a data
sample equals the number of eigenvectois RFK k-means, the dimension of a data sample equals
the number of random featuréssince the raw data cannot be exposed to the cloud serverngnd o
the random feature vectors can be uploaded to the cloudrserve
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