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ABSTRACT

A federated kernelk-means algorithm is developed in this paper. This algorithm
resolves two challenging issues: 1) how to distributedly solve the optimization
problem of kernelk-means under federated settings; 2) how to maintain commu-
nication efficiency in the algorithm. To tackle the first challenge, a distributed
stochastic proximal gradient descent (DSPGD) algorithm isdeveloped to deter-
mine an approximate solution to the optimization problem ofkernelk-means. To
tackle the second challenge, a communication efficient mechanism (CEM) is de-
signed to reduce the communication cost. Besides, the federated kernelk-means
provides two levels of privacy preservation: 1) users’ local data are not exposed
to the cloud server; 2) the cloud server cannot recover users’ local data from the
local computational results via matrix operations.Theoretical analysis shows: 1)
DSPGD with CEM converges with anO(1/T ) rate, whereT is the number of
iterations; 2) the communication cost of DSPGD with CEM is unrelated to the
number of data samples; 3)the clustering quality of the federated kernelk-means
approaches that of the standard kernelk-means, with a(1 + ǫ) approximate ra-
tio. The experimental results show that the federated kernel k-means achieves the
highest clustering quality with the communication cost reduced by more than60%
in most cases.

1 INTRODUCTION

Conventionally, kernelk-means (Dhillon et al., 2004) is conducted in a centralized manner where
training data are stored in one place, such as a cloud server.However, as a rapidly growing num-
ber of devices are connected to the Internet, the volume of generated data increase exponentially
(Chiang & Zhang, 2016). Uploading all these data to the cloudserver can lead to large cost of
communication bandwidth. For example, a smartphone manufacturer usually needs to analyze us-
age patterns of its smartphones, purposing to optimize energy consumption performance of these
smartphones. The usage patterns can be obtained by clustering users’ energy consumption data via
kernelk-means. However, if the number of users reaches the order of millions, it may not be a
cost-effective scheme to upload all the users’ energy consumption data to the cloud server. Besides,
uploading users’ raw data to the cloud server can lead to dataprivacy issues.To resolve these issues,
a promising approach is to develop a distributed kernelk-means algorithm that can be executed
under federated settings (McMahan et al., 2017; Yang et al.,2019) where raw data are maintained
by users and the cloud has no access to the raw data.In this algorithm, a local training process
is conducted at each user’s device, based on the local data only. The local computational results,
rather than the local data, are then uploaded to the cloud server to accomplish the kernelk-means
clustering.During this procedure, users’ local data are no longer exposed to the cloud server, which
provides a basic level of privacy. Besides, it is usually more communication efficient to upload the
local computational results than to upload the local data tothe cloud server.

However, it is nontrivial to design a federated learning algorithm for kernelk-means due to three
challenging issues: 1) how to solve the optimization problem of kernelk-means in a distributed
manner without sending users’ data to a central place; 2) howto maintain communication efficiency
in the algorithm; 3) how to protect users’ data privacy in thealgorithm. Considering the first issue
under federated settings, the key problem is to obtain the top eigenpairs of the kernel matrixK (as
required by kernelk-means) in a distributed manner. To solve this problem, a distributed stochastic
proximal gradient descent (DSPGD) algorithm is developed as follows. SinceK is not available
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under federated settings, an estimate ofK, denoted asξ, is first constructed distributively at users’
devices based on random features (Rahimi & Recht, 2008) of local data samples. Since the estimate
is distributed among different devices, it is processed by the distributed Lanczos algorithm (DLA)
(Penna & Stánczak, 2014) to obtain an estimate ofK (denoted asZ) at the cloud server. Afterwards,
an approximate version of the top eigenpairs ofK can be obtained fromZ through singular value
decomposition (SVD). To improve the accuracy of approximation, the former steps are conducted
in an iterative way. More specifically, in thet-th iteration, an estimateξt is constructed at users’
devices, and then the estimateZt at the cloud server is updated toZt+1 via stochastic proximal
gradient descent (SPGD) (Zhang et al., 2016). It is proved that, after sufficient iterations,Zt can
converge to a low rank matrix whose top eigenpairs are the same as those ofK1 As a result, top
eigenpairs ofK are finally obtained at the cloud server.

To resolve the second issue, DLA operations in DSPGD need to be enhanced to reduce commu-
nication cost. When DLA is executed in DSPGD, the process of obtaining an updatedZt at the
cloud server results in high communication cost between users’ devices and the cloud server, be-
cause the operation is conducted upon matrices (e.g.,ξt) with the number of rows/columns equal
to the number of data samples. To prevent the communication cost from growing with the number
of data samples, a communication efficient mechanism (CEM) is designed so that DLA is operated
upon a different type of matrices whose dimensions are reduced and independent of the number of
data samples. More specifically, a new matrixWt is designed such that: 1)WtW

⊤
t has the same

eigenvectors as those ofZt+1, but its eigenvalues are smaller by a constant; 2)Wt andZt can be
constructed distributively at users’ devices based on local values ofξt. Furthermore, DLA is applied
to W⊤

t Wt (instead ofWtW
⊤
t ), so its operations are performed upon matrices with a highly re-

duced dimension. Via DLA operations between users’ devicesand the cloud server,Wt andZt are
updated iteratively, and then the top eigenpairs ofW⊤

t Wt are obtained at users’ devices. OnceZt

converges, users’ devices transform the top eigenpairs ofW⊤
t Wt to those ofWtW

⊤
t and further

obtain the eigenpairs ofZt. Instead of sending these eigenpairs to the cloud server, a distributed
linear k-means algorithm (Balcan et al., 2013) is incorporated into CEM so that the cloud server can
perform clustering directly on the eigenpairs of the convergedZt. As shown in the process of CEM,
the communication efficiency of DSPGD is significantly improved.

For the third issue, FKk-means based on DSPGD and CEM provides two levels of privacy preser-
vation: 1) users’ local data are not exposed to the cloud server; 2) the cloud server cannot recover
users’ local data from the local computational results via matrix operations. To provide stronger pri-
vacy, a differential privacy mechanism (Dwork et al., 2006)needs to be integrated with FKk-means,
which is subject to future study.

The theoretical analysis shows that DSPGD with CEM converges toZ∗ at anO(1/T ) rate, where
T is the iteration number. The communication cost of DSPGD with CEM is linear to the dimension
of the right singular vector times the number of users, whichcan be much smaller than the number
of data samples.The clustering quality of the federated kernelk-means approaches that of kernelk-
means, with a(1+ǫ) approximate ratio.The experimental results show that, compared with the state-
of-the-art schemes,FK k-means achieves the highest clustering quality with the communication cost
reduced by more than60% in most cases.

2 RELATED WORK

2.1 DISTRIBUTED KERNEL k-MEANS

Many algorithms have been developed to conduct the kernelk-means clustering in a distributed
way. The kernel approximation method is a popular approach employed in these algorithms, such as
the Nystr̈om method (Chitta et al., 2011; 2014; Wang et al., 2019) and the random feature method
(Chitta et al., 2012). A trimmed kernelk-means algorithm (Tsapanos et al., 2015) decreases the
computational cost and the space complexity by significantly reducing the non-zero entries inK
via a kernel matrix trimming algorithm. In (Elgohary et al.,2014) an approximate nearest centroid
(APNC) embedding is developed to embed the data samples so that the clustering assignment step

1More specifically, the top eigenvectors of the low rank matrix are the same as those ofK and its nonzero
eigenvalues are smaller than those ofK by a constant.
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of kernelk-means can be parallel executed. A communication efficient kernel principle component
analysis (PCA) algorithm (Balcan et al., 2016) along with distributed linerk-means can approx-
imately solve the optimization problem of kernelk-means while maintaining the communication
efficiency.However, these algorithms are designed with an assumption that they are executed at the
cloud server where users’ raw data are collected. Besides, many of these algorithms (Chitta et al.,
2011; 2012; 2014; Wang et al., 2019) are one-shot algorithms, i.e., they only determine an approx-
imate kernel matrixK̃ once. Thus, their clustering quality is limited by the accuracy of K̃. In
contrast to these algorithms, FKk-means is the first distributed kernelk-means scheme designed
under federated settings. In addition, FKk-means is an iterative algorithm that can approach the top
eigenpairs ofK more accurately by employing more iterations.

2.2 FEDERATED LEARNING

Federated learning (McMahan et al., 2017) is a new machine learning framework aiming to protect
users’ data privacy and save the communication cost during the learning process. In the framework,
a local model is updated at each user’s device, and these local models instead of users’ local data are
then aggregated at the cloud server to generate a global model. The distributed optimization method
in the framework is applicable to the models whose optimization problem can be decomposed into
several independent subproblems, such as neural networks.and many algorithms (Konečnỳ et al.,
2016; Yang et al., 2018; Yurochkin et al., 2019) are developed. However, it is non-trivial to decom-
pose the optimization problem of kernelk-means under the federated learning framework. Some
algorithms (Liu et al., 2017; Caldas et al., 2018) improve federated multi-task learning (Smith et al.,
2017) with kernel. However, these algorithms either employexplicit feature mapping (Liu et al.,
2017) that can lead to impractical computational cost, or require to send the support vectors of users’
local data (i.e., some local data samples) to the cloud server (Caldas et al., 2018), which can leak
users’ privacy information. Due to these limitations, these algorithms are not applicable to kernel
k-means under the federated learning framework. Recently, aconcept of clustered federated learn-
ing (Ghosh et al., 2020; Sattler et al., 2020; Mansour et al.,2020) is proposed, where the clients are
clustered according to their gradient updates or their local models. However, their clustering prob-
lems are different from the optimization problem of kernelk-means, and thus are not feasible for
the optimization problem of kernelk-means in the federated setting.

2.3 STOCHASTIC KERNEL PCA

In (Zhang et al., 2016), the stochastic kernel PCA is accomplished a stochastic proximal gradient
descent (SPGD) algorithm. As a result, SPGD is a centralizedcounterpart of the distributed proxi-
mal gradient descent (DSPGD) algorithm in FKk-means. However, DSPGD is distinct from SPGD
in three features. First, DSPGD is conducted under federated settings while SPGD is conducted in
a centralized manner where users’ raw data are collected at the cloud server. Second, the communi-
cation cost is considered in the design of DSPGD, which results in CEM, while the communication
cost is not considered in SPGD. Third, although both DSPGD and the SPGD aim at approaching the
top eigenpairs ofK, in thet-th iteration, DSPGD only needs to obtain an approximate solutionZt+1

to the problem of updatingZt instead of the exact solutionZ∗
t+1 to the same problem like SPGD,

which leads to less communication cost under federated settings.

3 PRELIMINARY

Let {xi}Ni=1 ⊆ X be a set ofN data samples. Given a feature mappingφ(·) : X 7→ H and the
number of clustersk, the problem of kernelk-means whose objective is to find an optimal indicator
matrixY∗ can be written as

min
Y∈{0,1}N×k

Tr(K)− Tr(L
1

2Y⊤KYL
1

2 ) s.t.Y1k = 1n, (1)

whereK is the kernel matrix with each entryKij = φ(xi)
⊤φ(xj), L

1

2 = Diag([ 1√
N1

, . . . , 1√
Nk

]) is
a diagonal matrix,Ni is the number of samples in thei-th cluster, and1k is a column vector with all
thek items equal to1. However, the problem in equation (1) is an NP-hard problem (Garey et al.,
1982; Wang et al., 2019). To this end, an approximate solution Ỹ is required.An efficient approach
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to obtaining the approximate solution is as follows.K is decomposed asK = UΛU⊤ via eigen-
value decomposition (EVD), and then lineark-means is applied to the matrixH = UΛ

1

2 to obtain
Ỹ (Ding et al., 2005; Chitta et al., 2012; Wang et al., 2019). Toreduce the computational complex-
ity, only the firsts column vectors ofH are selected as the input of lineark-means (Cohen et al.,
2015).

4 FEDERATED KERNEL k-MEANS

In FK k-means, the approximate solution to the problem in equation(1) is also determined based on
the top-s eigenpairs of the kernel matrixK. To obtain these eigenpairs under federated settings, a
distributed stochastic proximal gradient descent (DSPGD)algorithm is developed in Section 4.1. A
communication efficient mechanism is then designed to reduce the communication cost of DSPGD
in Section 4.2.

4.1 DISTRIBUTED STOCHASTIC PROXIMAL GRADIENT DESCENT

The key problem for designing FKk-means is to obtain the the top-s eigenpairs ofK in a dis-
tributed manner. To solve this problem, a distributed stochastic proximal gradient descent algorithm
is developed as follows. Under the federated settings, the main challenge on determining the top-s
eigenpairs ofK is thatK is not available since users’ local data cannot be exposed tothe cloud
server or other users. To this end, an estimate ofK, denoted asξ, is constructed distributively at
users’ devices based on the random features (Rahimi & Recht,2008; Kar & Karnick, 2012) of their
local data samples. More specifically,ξ = 1

D
AA⊤ andE[ξ] = K, whereD is the number of ran-

dom features of each data samples, andA = [A[1]⊤, . . . ,A[M ]⊤]⊤ is the random feature matrix
distributed overM users’ devices (the details of the random feature method areincluded in Ap-
pendix A). Sinceξ is distributed over users’ devices, it is then processed by the distributed Lanczos
algorithm (DLA) (Penna & Stánczak, 2014) to obtain an estimate ofK, i.e.,Z at the cloud server.
Afterwards, an approximate version of the top eigenpairs ofK can be obtained fromZ through SVD.
To improve the accuracy of approximation, one method is to increase the value ofD. However, this
method is only feasible when each user’s device has enough memory space. To adapt DSPGD to de-
vices with different memory space, DSPGD improves the accuracy of approximation via an iterative
method. More specifically, in thet-th iteration, an estimateξt is constructed at users’ devices, and
then the estimateZt at the cloud server is updated toZt+1 via stochastic proximal gradient descent
(Zhang et al., 2016):

Zt+1 = argmin
Z∈Rn×n

1

2
||Z− Zt||2F + ηt〈Z− Zt,Zt − ξt〉+ ηtλ||Z||∗,

whereηt is a learning rate.Zt+1 has an explicit expressionZt+1 =
∑

i:λ̃i,t>ηtλ
(λ̃i,t − ηtλ)ũi,tũ

⊤
i,t,

where(ũi,t, λ̃i,t) is thei-th eigenpair of a matrixRt = (1 − ηt)Zt + ηtξt. Sinceξ is distributed
over users’ devices,Zt+1 is determined via DLA at the cloud server. It is proved that, after sufficient
iterations,Zt can converge to a low rank matrix̂K =

∑
i:λi>λ (λi − λ)uiu

⊤
i where(ui, λi) is the

i-th eigenpair ofK. As a result, the top eigenpairs ofK are finally obtained at the cloud server.

Thet-th iteration of DSPGD is executed as follows. The main task is to approach the top eigenpairs
of Rt via DLA. The cloud server first initializes a random vectorc1 ∈ R

N . In theq-th iteration of
DLA, the cloud server determines a vectorgq = Rtcq = (1 − ηt)Ztcq + ηtAtA

⊤
t cq/D, where

Ztcq is computed at the cloud server, andAtA
⊤
t cq is computed in a distributed manner. The

computation ofAtA
⊤
t cq is accomplished by five steps: 1) the cloud server partitionsthe vector

cq = [cq[1]
⊤, . . . , cq[M ]⊤]⊤into M parts and sends them-th partcq[m] to the userm; 2) the user

m computes a local vectorAt[m]⊤cq[m] and uploads the vector to the cloud server; 3) the cloud
server sums up these vectors to obtain the vectorA⊤

t cq and then broadcasts this vector to all the
users; 4) them-th user computes a new local vectorAt[m]A⊤

t cq and then uploads this vectors to
the cloud server; 5) the cloud server finally concatenates these vectors from users to formAtA

⊤
t cq;

Whengq is determined, the cloud server then applies the Lanczos algorithm to the collected vectors
{g1, ...,gq} to approximate the top eigenpairs ofRt (the details about the Lanczos algorithm and
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the complete procedure of DLA are provided in Appendix B). After sufficient iterations of DLA, the
top eigenpairs ofRt are obtained at the cloud server, and thenZt+1 is determined accordingly.

4.2 COMMUNICATION EFFICIENT MECHANISM

When DLA is executed in DSPGD, the process of obtaining an updatedZt at the cloud server results
in high communication cost between the cloud server and users’ devices, because its operation is
upon matrices (e.g.,ξt) with the number of rows/columns equal to the number of data samples. To
prevent the communication cost from growing with the numberof data samples, a communication
efficient mechanism (CEM) is designed so that DLA is operatedupon a different type of matrices
whose dimensions are independent from the number of data samples.

A new matrixWt that satisfiesWtW
⊤
t equalsRt is designed as follows. LetZt = ŨtΛ̃tŨ

⊤
t be

the eigendecomposition ofZt, andBt equalŨtΛ̃
1

2

t . Based onBt and the random feature matrix
At, Wt is constructed asWt = [

√
ηt

D
At,

√
1− ηtBt]. Assume thatBt is divided likeAt, i.e.,

Bt = [Bt[1]
⊤, . . . ,Bt[M ]⊤]⊤, andBt[m] is maintained at them-th user’s device. As a result, a

submatrix ofWt can be constructed at them-th device byWt[m] = [
√

ηt

D
At[m],

√
1− ηtBt[m]].

Furthermore, DLA is applied toW⊤
t Wt instead ofWtW

⊤
t . The number of rows/columns of

W⊤
t Wt equalsrt+D wherert is the rank ofZt andD is the number of random features. Compared

with the number of data samplesN , rt+D is usually much smaller thanN , so the operation of DLA
is upon matrices with a highly reduced dimension. In theq-th iteration of DLA, the computation
of gq = W⊤

t Wtcq is accomplished by three steps: 1) the cloud server first broadcasts a vector
cq; 2) each userm computes a local vectorWt[m]⊤Wt[m]cq and uploads the vector to the cloud
server; 3) the cloud server sums up these vectors to obtaingq. The cloud server then transformsgq

into cq+1 following the Lanzcos iteration. After sufficient iterations of DLA, the top-st eigenpairs
{(λ̃i,t, ṽi,t), i = 1, ..., st} of W⊤

t Wt converge at the cloud server. The cloud server then broadcasts
the obtained top-st eigenpairs to all the users’ devices. Since the userm keepsWt[m], it then
determinesst vectorsũi,t[m] = 1√

λ̃i,t

Wt[m]ṽi,t, i = 1, ..., st, whereũi,t[m] is one part of the

eigenvector̃ui,t, i.e.,ũi,t = [ũi,t[1]
⊤, ..., ũi,t[M ]⊤]⊤. Based on the vectors{ũi,t[m], i = 1, ..., st}

and the eigenvalues{λ̃i,t, i = 1, ..., st}, the userm also determines a submatrixBt+1[m] of Bt+1

via Bt+1[m] = [
√

λ̃1,t − ηtλũ1,t[m], ...,
√

λ̃i−1,t − ηtλũi−1,t[m]], which enables the(t + 1)-th
iteration of DSPGD with CEM.

As DSPGD with CEM converges afterT iterations, a matrixH[m] is constructed at them-

th user’s device byH[m] = [
√

λ̃1,T + (1− ηT )λũ1,T [m], ...,
√

λ̃s,T + (1− ηT )λũs,T [m]]. A
distributed lineark-means algorithm (Balcan et al., 2013) is then applied to therows of H =
[H[1]⊤, ...,H[M ]⊤]⊤ to obtain the clustering result. DSPGD with CEM and the distributed linear
k-means algorithm constitute FKk-means. The pseudo code of FKk-means is shown in Algo-
rithm 1.

5 THEORETICAL ANALYSIS

The convergence of DSPGD with CEM is analyzed in Section 5.1.The communication cost of
CEM is analyzed in Section 5.2, which shows CEM is important for FK k-means to maintain the
communication efficiency. It is then proved that the clustering quality of FKk-means can approach
that of the standard kernelk-means in Section 5.3. Besides, the privacy preservation provided by
FK k-means is analyzed in Section 5.4.

5.1 CONVERGENCEANALYSIS FOR DSPDG

The convergence rate of DSPGD with CEM is derived in Theorem 1.

Theorem 1. Defineγ = maxt∈[T ] ||Zt||∗ andC2 = maxt∈[T ] ||Zt − ξt||2F . Assume||ξt −K||F ≤
G, and ||Zt − Z∗||F ≤ H, ∀t > 2. By settingηt = 2/t, the following upper bound of
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Algorithm 1 Federated Kernelk-Means Algorithm
1: Input: The threshold parameterλ, the number of eigenvectorss to be approached, the number

of random featuresD, the maximal number of iterationsT , local datasetsLm,m = 1, ...,M ,
the initial local matrixB1[m] = 0,m = 1, ...,M

2: Output: the clustering assignment for each data sample
3: Server executes:
4: for t = 1, 2, . . . , T do
5: Initialize ηt = 1/t, q = 0
6: for each clientm, m = 1, 2, ...,M in parallel do
7: ComputeAt[m] by applying a random feature method toLm

8: ConstructWt[m] = [
√

ηt

D
At[m],

√
1− ηtBt[m]]

9: end for
10: Call DLA to determine the eigenpairs{(λ̃i,t, ṽ1,t), i = 1, ..., st} of W⊤

t Wt

11: for each clientm, m = 1, 2, ...,M in parallel do
12: Computeũi,t[m] = 1√

λ̃i,t

Wt[m]ṽi,t for i = 1, ..., st

13: ComputeBt+1[m] = [
√
λ̃1,t − ηtλũ1,t[m], ...,

√
λ̃st,t − ηtλũst,t[m]]

14: end for
15: end for
16: for each clientm, m = 1, 2, ...,M in parallel do

17: ConstructH[m] = [
√
λ̃1,T + (1− ηT )λũ1,T [m], ...,

√
λ̃s,T + (1− ηT )λũs,T [m]]

18: end for
19: Apply a distributed lineark-means algorithm over the rows ofH = [H[1]⊤, ...,H[M ]⊤]⊤

20: Return clustering assignment for each data sample

||ZT+1 − Z∗||2F holds with a probability at least1− δ

||ZT+1 − Z∗||2F ≤ 4

T

(
C2 + λγ + 2G2τ +

2

3
GHτ +GH

)
= O(1/T ), (2)

whereτ = log ⌈2 log
2
T⌉

δ
.

The result in Theorem 1 indicates that DSPGD with CEM converges toZ∗ at anO(1/T ) rate. The
proof of Theorem 1 is provided in Appendix C.

5.2 COMMUNICATION COST ANALYSIS FOR CEM

Define the communication cost as the number of floating-pointnumbers uploaded from users’ de-
vices to the cloud server. In Theorem 2, the communication cost of DSPGD with CEM and the
communication cost of DSPGD without CEM are both analyzed.
Theorem 2. For DSPGD with CEM, in thet-th iteration, its communication cost is linear tort+D
wherert is the rank ofZt andD is the number of random features. Define the communication ratio
as the ratio of the communication cost of DSPGD without CEM tothat of DSPGD with CEM. In the
t-th iteration, the communication ratio equals(N+MD)Q0

M(rt+D)Q1

whereN is the number of data samples;
M is the number of users;Q0 andQ1 are the number of Lanczos iterations for DSPGD without
CEM and DSPGD with CEM, respectively.

By Theorem 2, the communication cost of DSPGD with CEM is unrelated to the number of data
samplesN , and the communication cost reduced by CEM can be revealed bythe ratio. The values
of Q0 andQ1 are affected by the selection of initial vectorc1. However, empirically the values of
Q0 andQ1 are at the same order no matter which initial vectors are chosen. The dominant factor
of the ratio is still N+MD

M(rt+D) . SinceZt is used to approach the top-s eigenpairs ofK, empirically
its rankrt has an upper bound. In our experiments, the value ofrt is at the same order ofs, i.e.
the number of eigenvectors ofK to be determined by DSPGD. Usually, the number of data samples
at a user’s device is much larger thans so that it is easy to satisfied thatN > Mrt, and CEM can
definitely reduce the communication cost for DSPGD in these cases. The proof of Theorem 2 and
the empirical results forrt are given in Appendix D.
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5.3 APPROXIMATE RATIO ANALYSIS FOR FEDERATED KERNEL k-MEANS

Before the analysis, aγ-approximate algorithm is first defined as follows.

Definition 1. A linear k-means algorithm is applied to a matrixH with n row, where an indicator
matrix Ỹ is obtained. This algorithm is called aγ-approximate algorithm if, for any matrixH,
f(Ỹ;H) ≤ γminY f(Y;H) wheref is the objective function of lineark-means.

It has been proved that the standard kernelk-means algorithm (Dhillon et al., 2004) is aγ-
approximate algorithm (Wang et al., 2019). The approximateratio is then derived in Theorem 3
for FK k-means.

Theorem 3. The objective function of kernelk-means in (1) is denoted asfK . HT is the output
of DSPGD with CEM afterT iterations, and aγ-approximate algorithm is applied to the firsts
columns ofHT to obtainỸT . Assume the assumptions in Theorem 1 hold. ForỸT , the following
inequality holds with a probability at least1 − δ(T ), i.e.,fK(ỸT ) ≤ γ(1 + ε + k

s
)minY fK(Y),

whereε = O(
√

s
T
).

Note that asT increases,δ(T ) decreases. Ifs = O(k/ε), T = O(k/ε3), then the clustering quality
(in terms of the lossfK(Y)) of FK k-means approaches that of the standard kernelk-means with a
(1 + ε)-approximate ratio. The proof of Theorem 3 is given in Appendix E.

5.4 PRIVACY ANALYSIS FOR FEDERATED KERNEL k-MEANS

FK k-means can provide two levels of privacy preservation: 1) one user’s local data are not exposed
to the cloud server and other users; 2) the cloud server cannot recover users’ local data from the
collected local computational results via matrix operation. The first level can be easily verified from
the procedure of FKk-means. The second level is proved by Theorem 4.

Theorem 4. Based on the collected local computational results, the cloud server can at most recover
the matrices{Wt[m]⊤Wt[m],m = 1, ...,M} via matrix operations. Moreover, recovering the
random feature matrixAt from such matrices is an ill-posed problem with infinite solutions.

By Theorem 4, the cloud server cannot recover the random feature matrices from the local com-
putational results. Without such random feature matrices,it is infeasible for the cloud server to
recover users’ local data via matrix operations. More explanation and the proof of Theorem 4 are
provided in Appendix F. Moreover, FKk-means can incorporate the differential privacy mechanism
(Dwork et al., 2006; Su et al., 2016) or random perturbation (Lin, 2016) to provide higher level of
privacy preservation, which is subject to future work.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTING

Four types of existing schemes are considered in the experiments: centralized kernelk-means
(Zha et al., 2001) (denoted as CKk-means), scalable kernelk-means (Wang et al., 2019) (denoted
as SKk-means), distributed kernelk-means with random feature (Chitta et al., 2012) (denoted as
RFK k-means), and communication efficient distributed kernel PCA (Balcan et al., 2016) (denoted
as CE PCA). CKk-means and SKk-means are executed at the cloud server (denoted as cloud-
based algorithms), and the rest methods are executed in a distributed manner where users’ raw data
cannot be uploaded to the cloud server (denoted as client-based algorithms). Besides, Gaussian ker-
nel is used in each algorithm. Four datasets are selected forperformance evaluation: Three public
datasets (Mushrooms, MNIST, and Covtype) from the LIBSVM dataset repository and one dataset
(Smartphone) provided by a company. In addition,20, 000 data samples are randomly selected from
the dataset MNIST to construct a dataset MNIST-small that isused to validate the convergence of
DSPGD. The statistical information of these datasets is given in Table 1. The description of the
Smartphone dataset and the existing methods are included inAppendix G.

The hyperparameters of FKk-means are determined as follows. The kernel parameterγ is com-
puted based on the average interpoint distance in the given dataset (Wang et al., 2019):γ =

7
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Table 1: Datasets statistics and hyperparameter settings for FK k-means
Dataset #samples (N ) #features (d) #clusters (k) #random features (D) #eigenvectors (s)

Mushrooms 8, 124 112 2 15 2
MNIST-small 20, 000 780 10 200 10

MNIST 60, 000 780 10 200 12
Covtype 581, 012 54 7 30 10

Smartphone 177, 029 12 4 20 6

(a) Mushrooms (b) MNIST-small

Figure 1: The convergence curves of the two versions of DSPGDand standard deviation curves of
the normalized recover error on the Mushrooms dataset and the MNIST-small dataset.

N2

2
∑

N
i=1

∑
N
j=1

‖xi−xj‖2

2

. The threshold parameterλ of DSPGD is set to the(k + 2)-th eigenvalue

obtained in the first iteration of DSPGD. The configuration ofthe number of random featuresD and
the parameters in the top-s eigenvectors for each dataset is provided in Table 1 (the hyperparameter
configuration of the existing methods and a discussion on theconfiguration ofD are provided in Ap-
pendix G). In the experiments,M = 5 worker processes and one coordinator process are generated
to simulate users’ devices and the cloud server, respectively. The worker processes communicate
with the coordinator process via the message passing interface (MPI) in a synchronized manner. All
the experiments are executed in a server with one i7-6850k CPU and32 GB RAM.

6.2 EXPERIMENTAL RESULTS

The experimental results are presented from three aspects.First, the convergence results of DSPGD
is shown in Figure 1 to verify its convergence rate. Second, the average communication cost per
iteration of the two versions of DSPGD is provided in Figure 2to show that CEM highly reduces
the communication cost of DSPGD. Third, in Figure 3, FKk-means is compared with the cloud-
based kernelk-means schemes in terms of clustering quality to show FKk-means can achieve the
comparable clustering results as that of the cloud-based schemes; FKk-means is also compared
with the existing distributed kernelk-means schemes under the federated settings to show the higher
communication efficiency of FKk-means.

The convergence of DSPGD is validated over two datasets, Mushrooms and MNIST-small, whose
low rank matriceŝK =

∑s
i=1 λiuiu

⊤
i can be computed by performing SVD on their kernel matrices

K. A normalized recover error||Kt−K̂||2F
N2 (Zhang et al., 2016) is recorded for each iterationt of

DSPGD, whereKt =
∑s

i=1 (λ̃i,t + (1− ηt)λ)ũi,tũ
⊤
i,t is the estimation of̂K at iterationt. In the

left subfigure of Figure 1(a) and that of Figure 1(b), the convergence curves of DSPGD are lower
than the curve of0.4/t and the curve of0.03/t, respectively, which verifies DSPGD converges at an
O(1/t) rate. In Figure 1(a) and 1(b), the curves of two versions of DSPGD nearly overlap, indicating
that CEM has little impact on the convergence of DSPGD.

The average communication cost per iteration of DSPGD with CEM and that of DSPGD without
CEM are compared in Figure 2 to evaluate the effectiveness ofCEM. The log-scale is used for the
y-axis of each subfigure, and the unit of the y-axis is the number of the floating-point numbers.As
shown in the four subfigures, CEM can reduce communication cost of DSPGD by more than98%,
which indicates that CEM is important for FKk-means to maintain communication efficiency.

In order to evaluate the clustering quality and the communication cost of FKk-means, curves of
average normalized mutual information (NMI) (Strehl & Ghosh, 2002) versus average communi-

8
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(a) Mushrooms (b) MNIST (c) Covtype (d) Smartphone

Figure 2: The average communication cost per iteration of the two versions of DSPGD.

(a) Mushrooms (b) MNIST (c) Covtype (d) Smartphone

Figure 3: The NMI score versus the average communication cost of FK k-means and the existing
methods on the four datasets.

cation cost are plotted in Figure 3 for FKk-means and the existing schemes. The error bars in
Figure 3 are the95% confidence interval of the average NMI scores. For the three public datasets,
FK k-means can achieve comparable average NMI scores to that of the cloud-based algorithms (CK
k-means for Mushroom dataset and SKk-means for MNIST dataset and covtype dataset). For a
cloud-based algorithm, its communication cost equals to the volume of a dataset, which is too large
to be shown. Thus, in Figure 3(a), 3(b), and 3(c) the dash lineonly represents the average NMI
scores rather than the relationship of average NMI scores versus the corresponding communication
cost. In Figure 3(a) and 3(b), given a fixed communication cost, FK k-means can achieve the highest
average NMI scores among the three client-based algorithms. Besides, in 3(b), FKk-means nearly
achieves the upper bound of the average NMI score with a low communication cost. To reach such
a NMI score, FKk-means reduces the communication cost by more than60% compared with RFK
k-means. In Figure 3(c), FKk-means has a similar performance to that of RFKk-means. Compared
with CE PCA, FKk-means reduces the communication cost by more than60% when the highest
average NMI score is considered. For the Smartphone dataset, since it has no labels, the cluster qual-
ity of a given clustering algorithm is evaluated by measuring the similarity between the clustering
results of the algorithm and that of SKk-means. To this end, the clustering results of SKk-means
are used as the labels to compute NMI scores. It is shown in Figure 3(d) that FKk-means has a
much higher upper bound for the average NMI score (close to0.9) than that of RFKk-means and
CE PCA.

7 CONCLUSION

In this paper, FKk-means was developed. In the algorithm, a distributed stochastic proximal gra-
dient descent approach was first designed to determine the eigenpairs of the kernel matrix in a
distributed manner. A communication efficient mechanism was then designed to reduce the com-
munication cost. In theoretical analysis, DSPGD with CEM was proved to converge at anO(1/T )
rate. The communication cost of DSPGD with CEM is unrelated to the number of data samples.
The clustering loss of FKk-means can approach that of the centralized kernelk-means. It was
also analyzed that FKk-means provided two levels of privacy preservation. The effectiveness of
the FKk-means was validated by experiments on several real-world datasets.FK k-means can still
be improved in terms of the asynchronous execution, the robustness to dropout users, and stronger
privacy, which can be interesting topics in our future work.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Maria Florina Balcan, Yingyu Liang, Le Song, David Woodruff, and Bo Xie. Communication effi-
cient distributed kernel principal component analysis. InProceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 725–734, 2016.

Maria-Florina F Balcan, Steven Ehrlich, and Yingyu Liang. Distributedk-means andk-median
clustering on general topologies. InAdvances in Neural Information Processing Systems 26, pp.
1995–2003, 2013.

Sebastian Caldas, Virginia Smith, and Ameet Talwalkar. Federated kernelized multi-task learning.
In SysML Conference 2018, 2018.

Mung Chiang and Tao Zhang. Fog and iot: An overview of research opportunities.IEEE Internet of
Things Journal, 3(6):854–864, 2016.

Radha Chitta, Rong Jin, Timothy C Havens, and Anil K Jain. Approximate kernel k-means: So-
lution to large scale kernel clustering. InProceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 895–903, 2011.

Radha Chitta, Rong Jin, and Anil K Jain. Efficient kernel clustering using random fourier features.
In 2012 IEEE 12th International Conference on Data Mining, pp. 161–170, 2012.

Radha Chitta, Rong Jin, Timothy C Havens, and Anil K Jain. Scalable kernel clustering: Approxi-
mate kernel k-means.arXiv preprint arXiv:1402.3849, 2014.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. InProceedings of the
47th Annual ACM Symposium on Theory of Computing, pp. 163–172, 2015.

James W Demmel.Applied numerical linear algebra. SIAM, 1997.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and nor-
malized cuts. InProceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 551–556, 2004.

Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of nonnegative matrix factoriza-
tion and spectral clustering. InProceedings of the 2005 SIAM International Conference on Data
Mining, pp. 606–610, 2005.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. InTheory of cryptography conference, pp. 265–284, 2006.

Ahmed Elgohary, Ahmed K Farahat, Mohamed S Kamel, and FakhriKarray. Embed and conquer:
Scalable embeddings for kernel k-means on mapreduce. InProceedings of the 2014 SIAM Inter-
national Conference on Data Mining, pp. 425–433, 2014.

MR Garey, David Johnson, and Hans Witsenhausen. The complexity of the generalized lloyd-max
problem (corresp.).IEEE Transactions on Information Theory, 28(2):255–256, 1982.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning.arXiv preprint arXiv:2006.04088, 2020.

Purushottam Kar and Harish Karnick. Random feature maps fordot product kernels. InProceedings
of the 15th International Conference on Artificial Intelligence and Statistics, pp. 583–591, 2012.
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Algorithm 2 Lanczos Algorithm
1: Input: An symmetric matrixR, an initial vectorc1
2: Output: An approximationPQ to the eigenvectors ofR, and an approximationσ =

[σ1, ..., σQ] to the eigenvalues ofR
3: Initialize β0 = 0 andc0 = 0
4: for q = 1, 2, . . . , Q do
5: g = Rcq
6: αq = c⊤q g
7: g = g − αqcq − βq−1cq−1

8: βq = ||g||2
9: if βq = 0 then

10: break
11: end if
12: cq+1 = g/βq

13: Construct a symmetric tridiagonal matrixTQ

14: Perform EVD onTQ to obtain its eigenvectorsPQ and its eigenvaluesσ = [σ1, ..., σQ]
15: ComputeCQPQ

16: end for

A DETAILS OF RANDOM FEATURE METHOD

For a kernel matrixK, a random feature method (Rahimi & Recht, 2008; Kar & Karnick, 2012) can
generate an unbiased estimate ofK, denoted asξ, with the following expression:

ξ =
1

D
AA⊤,

where thei-th row ofA is the random feature vectorsa(xi) for the data samplexi. The matrixξ
satisfiesE[ξ] = K.

We then use the example of shift-invariant kernels to show how a random feature vector is con-
structed. For popular shift-invariant kernelsκ(xi,xj) with Fourier representation

κ(xi,xj) =

∫
p(w)exp(jw⊤(xi − xj))dw

wherep(w) is a probability density function, they can be estimated by the random Fourier features
(Rahimi & Recht, 2008) as follows. By randomly drawingD independent samples{w1, . . . ,wD}
from p(w), a random feature vectora(xi) for a data samplexi can be written asa(xi) =

[
√
2 cos(w⊤

1 xi+b1), . . . ,
√
2 cos(w⊤

Dxi+bD)]⊤ where{b1, . . . , bD} are independent random vari-
ables drawn from[0, 2π) uniformly. As a result, an unbiased estimation ofK can be written as
ξ = 1

D
AA⊤ whereA = [a(x1), · · · ,a(xn)]

⊤.

B DETAILS ABOUT DISTRIBUTED LANCZOS ALGORITHM

To find the eigenpairs of a symmetric matrixR, the Lanczos algorithm (LA) (Lanczos, 1950) first
build a Krylov subspaceKq(R, c1) = span[c1,Rc1, ...,R

q−1c1] wherec1 is an initial vector, and
then it employs the Rayliegh-Ritz procedure to construct the best approximate eigenpairs forR in
the Krylov subspace. In the first step, LA constructs an orthogonal basis of the Krylov subspace
following the procedure of line 5 to line 12 in Algorithm 2. Meanwhile, a symmetric tridiagonal
matrixTQ = C⊤

QRCQ can be explicitly constructed withαQ andβQ via

TQ =




α1 β1

β1
. . .

. . .
. . .

. . . βQ−1

βQ−1 αQ


 .

Based onTQ, the Rayliegh-Ritz procedure can be utilized to approximate the eigenpairs ofR. Let
TQ = PQΣQP

⊤
Q be the eigendecomposition ofTQ. It has been proved that the columns ofCQPQ
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and the diagonal entries ofΣQ are the optimal approximation to the eigenvectors and eigenvalues of
R, respectively (Demmel, 1997). Thus, in the Rayliegh-Ritz procedure,PQ andΣQ are determined
by performing EVD onTQ, and thenCQPQ are computed as the approximation to the eigenvectors
of R. As the number of iterationQ increases, the columns ofCQPQ and the diagonal entries of
ΣQ can converge to the eigenvectors and eigenvalues ofR, respectively (Demmel, 1997).

As for the distributed Lanczos algorithm (DLA), only the step of line 5 in Algorithm 2 is conducted
in a distributed manner, and other steps are conducted at thecloud server. In our problem, if

R = (1− ηt)Zt + ηtξt = (1− ηt)Zt +
ηt
D
AtA

⊤
t ,

whereZt andcq are known at the cloud server, andAt = [At[1]
⊤, . . . ,At[M ]⊤]⊤ are distributed

overM users’ devices, then(1 − ηt)Ztcq is computed at the cloud server andηtAtA
⊤
t cq/D is

computed in a distributed manner as follows. The vectorcq = [cq[1]
⊤, . . . , cq[M ]⊤]⊤ is first

partitioned intoM parts at the cloud server, and them-th partcq[m] is sent to them-th user’s device.
A local vectorAt[m]⊤cq[m] is then computed at them-th user’s device. These local vectors from
M users’ devices are summed up at the cloud to obtain a vectorA⊤

t cq. A⊤
t cq is then broadcast

to M users’ devices, and a vectorAt[m]A⊤
t cq is computed at them-th user’s device. TheseM

vectors are sent back to the cloud server where they are concatenated to formAtA
⊤
t cq. If

R = W⊤
t Wt =

M∑

m=1

Wt[m]⊤Wt[m],

whereWt[m]⊤Wt[m] can be computed at them-th user’s device, then each user’ devices first
determinesWt[m]⊤Wt[m]cq locally, and theseM vectors are then uploaded to the cloud server
where they are summed up to formW⊤

t Wtcq.

In thet-th iteration of DSPGD, DLA is used to compute the eigenvalues larger thanηtλ of theRt.
Thus, in practice, the convergence criterion of DLA is that all the approximated eigenvalues larger
thanηtλ converge, rather than that the number of iteration reaches its maximal valueQ.

One issue of LA and DLA in practice is that they can only be conducted in floating point arithmetic,
which can destroy the orthogonality of the columns inCq, and further affect the convergence of
DSPGD. To this end, a full reorthogonalization method (Demmel, 1997) is utilized to guarantee that
Cq is an orthogonal matrix with a high probability. The key ideaof this method to generate a new
vectorcq from a subspace that is orthogonal to all the previous vectors{c1, ..., cq−1}, which can be
accomplished by replacing line 7 in Algorithm 2 with

g = g −
q−1∑

i=1

g⊤cici. (3)

The operation in (3) can be called multiple times in one iteration of LA to increase the probability
thatCq is an orthogonal matrix. In the implementation of federatedkernelk-means, such operation
is called twice in each iteration of DLA. Note that the full reorthogonalization only requires more
flops at the cloud server, which does not affect the algorithmcomplexity at users’ devices.

C PROOF OFTHEOREM 1

This proof partially follows the proof of Theorem 1 in Zhang et al. (2016). The difference is that
the t-th iteration ofZ∗ obtained by DSPGD, i.e.,Zt, may not equalZ∗

t = Dηtλ[(1 − ηt)Zt +
ηtξt]. The gap betweenZt andZ∗

t is caused by that the distributed Lanczos algorithm (DLA) only
approximates the eigenpairs of a target matrix. Thus, in this proof, it is assumed that

||Zt − Z∗
t ||2F ≤ ǫ, ∀t, (4)

when DLA reaches its convergence criterion, whereǫ ≪ 1.

Before the proof, we first define

F (Z) =
1

2
E[||Z− ξ||2F ],

ft(Z) =
1

2
||Z− ξt||2F .
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For aµ-strongly convex functionl(Z), if l(Z1) ≥ l(Z2), then

l(Z1)− l(Z2) ≥
µ

2
||Z1 − Z2||2F . (5)

In thet+1-th iteration of DSPGD, the goal is to determine the optimal solutionZ∗
t+1 to the following

optimization problem

min
Z∈Rn×n

1

2
||Z− Zt||2F + ηt〈Z− Zt,∇ft(Zt)〉+ ηλ||Z||∗. (6)

By DLA, an approximate solutionZt+1 that satisfies (4) can be obtained. The following lemma is a
key step in this proof.

Lemma 1. Before the convergence of DSPGD, the following inequality holds, i.e.,

1

2
||Zt+1 − Zt||2F + ηt〈Zt+1 − Zt,∇ft(Zt)〉+ ηλ||Zt+1||∗

≤1

2
||Z∗ − Zt||2F + ηt〈Z∗ − Zt,∇ft(Zt)〉+ ηλ||Z∗||∗.

(7)

Proof. The objective function in (6) can be rewritten as

1

2
||Z− Zt||2F + ηt〈Z− Zt,∇ft(Zt)〉+ ηλ||Z||∗

=
1

2
||Z− Zt||2F + ηt〈Z− Zt,∇ft(Zt)〉+

η2t
2
||∇ft(Zt)||2F − η2t

2
||∇ft(Zt)||2F + ηλ||Z||∗

=
1

2
||Z− [(1− ηt)Zt + ηtξ]||2F + ηλ||Z||∗ −

η2t
2
||∇ft(Zt)||2F .

Sinceη2

t

2 ||∇ft(Zt)||2F is a constant, we can only consider

l(Z) =
1

2
||Z− [(1− ηt)Zt + ηtξ]||2F + ηλ||Z||∗

in the following part of the proof. Now we first assume thatl(Z∗) ≤ l(Zt+1), then we have

l(Zt+1)− l(Z∗
t+1) ≥ l(Z∗)− l(Z∗

t+1) ≥
µ

2
||Z∗

t+1 − Z∗||2F . (8)

Moreover,l(Zt+1)− l(Z∗
t+1) can be expanded as

l(Zt+1)− l(Z∗
t+1)

=
1

2
||Zt+1 −Rt||2F + ηλ||Zt+1||∗ −

1

2
||Z∗

t+1 −Rt||2F + ηλ||Z∗
t+1||∗

=
1

2
(||Zt+1 −Rt||F − ||Z∗

t+1 −Rt||F )(||Zt+1 −Rt||F + ||Z∗
t+1 −R||F )

+ ηtλ(||Zt+1||∗ − ||Z∗
t+1||∗)

≤1

2
||Zt+1 − Z∗

t+1||F (||Zt+1 − Z∗
t+1||F + 2||Z∗

t+1 −R||F ) + ηtλ||Zt+1 − Z∗
t+1||∗

(9)

It is well known that given a matrixM the following inequality holds for its nuclear norm and its
Frobenius norm, i.e.,||M||2∗ ≤ rank(M)||M||2F . By this inequality, we have

||Zt+1 − Z∗
t+1||∗ ≤

√
r||Zt+1 − Z∗

t+1||F ≤
√
rǫ, (10)

wherer is the rank of(Zt+1 − Z∗
t+1). Substitute (4) and (10) into (9), we have

l(Zt+1)− l(Z∗
t+1) ≤

1

2
ǫ2 + ǫ||Z∗

t+1 −Rt||F + ηtλ
√
rǫ.

Since||Z∗
t+1 −Rt||F is a constant, this upper bound ofl(Zt+1) − l(Z∗

t+1) can become arbitrarily
small if ǫ is arbitrarily small. Hence, according to (8),||Z∗

t+1 − Z∗||2F can also be arbitrarily small.
However, this contradicts that||Z∗

t+1 − Z∗||2F cannot become arbitrarily small before the conver-
gence of DSPGD. Therefore, before the convergence of DSPGD,l(Z∗) ≥ l(Zt+1) is satisfied.
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The rest part then follows the proof of Theorem 1 in Zhang et al. (2016). Based on Lemma 1 and
the property of strongly convex function in (5), the update rule of SPDG implies

1

2
||Zt+1 − Zt||2F + ηt〈Zt+1 − Zt,∇ft(Zt)〉+ ηλ||Zt+1||∗

≤1

2
||Z∗ − Zt||2F + ηt〈Z∗ − Zt,∇ft(Zt)〉+ ηtλ||Z∗||∗ −

1

2
||Z∗ − Zt+1||2F .

(11)

SinceF (Z) is 1-strongly convex, it can be shown that
1

2
||Zt − Z∗||2F

≤F (Zt) + λ||Zt||∗ − F (Z∗)− λ||Z∗||∗

≤〈Zt − Z∗,∇F (Zt)〉 −
1

2
||Zt − Z∗||2F + λ||Zt||∗ − λ||Z∗||∗

=〈Zt − Z∗,∇ft(Zt)〉 − λ||Z∗||∗ −
1

2ηt
||Zt − Z∗||2F

+ λ||Zt||∗ −
1

2
||Zt − Z∗||2F +

1

2ηt
||Zt − Z∗||2F + 〈∇F (Zt)−∇ft(Zt),Zt − Z∗〉

(11)
≤ 〈Zt − Zt+1,∇ft(Zt)〉 − λ||Zt+1||∗ −

1

2ηt
||Zt+1 − Zt||2F − 1

2ηt
||Z∗ − Zt+1||2F

+ λ||Zt||∗ +
1

2

(
1

ηt
− 1

)
||Zt − Z∗||2F + 〈∇F (Zt)−∇ft(Zt),Zt − Z∗〉

≤max
W

(
〈W,∇ft(Zt)〉 −

1

2ηt
||W||2F

)
− 1

2ηt
||Zt+1 − Z∗||2F

+ λ||Zt||∗ − λ||Zt+1||∗ +
1

2

(
1

ηt
− 1

)
||Zt − Z∗||2F + 〈∇F (Zt)−∇ft(Zt),Zt − Z∗〉

=
ηt
2
||∇ft(Zt)||2F − 1

2ηt
||Zt+1 − Z∗||2F

+ λ||Zt||∗ − λ||Zt+1||∗ +
1

2

(
1

ηt
− 1

)
||Zt − Z∗||2F + 〈∇F (Zt)−∇ft(Zt),Zt − Z∗〉,

(12)

where the third inquality holds based on the inequality in (11).

By substitutingδt = 〈ξt −K,Zt − Z∗〉 andC2 = maxt∈[T ] ||Zt − ξt||2F into (12),

||Zt+1 − Z∗||2F ≤ η2tC
2 + 2ηtδt + 2ληt (||Zt||∗ − ||Zt+1||∗) + (1− 2ηt) ||Zt − Z∗||2F . (13)

The inequality in (13) is the same as the result of Lemma 1 in Zhang et al. (2016). Thus, the fol-
lowing lemmas2 from Zhang et al. (2016) can be directly utilized to derive a probability bound for
||Zt+1 − Z∗||2F .

Lemma 2 (Lemma 2 in Zhang et al. (2016)). Defineγ = maxt∈[T ] ||Zt||∗. By settingηt = 2
t
, an

upper bound of||Zt+1 − Z∗||2F can be written as

||ZT+1 − Z∗||2F ≤ 4(C2 + λγ)

T
+

2

T (T − 1)

[
2

T∑

t=2

(t− 1)δt −
T∑

t=2

(t− 1)||Zt − Z∗||2F

]
.

The upper bound of
∑T

t=2 (t− 1)δt in Lemma 2 is then provided in Lemma 3.
Lemma 3 (Lemma 3 in Zhang et al. (2016)). Assume||ξt −K||F ≤ G, and ||Zt − Z∗||F ≤ H,
∀t > 2. With a probability at least1− δ,

∑T
t=2 (t− 1)δt is upper bounded by

T∑

t=2

(t− 1)δt ≤
1

2

T∑

t=2

(t− 1)||Zt − Z∗||2F + 2G2τ(T − 1) +
2

3
GH(T − 1)τ +GH(T − 1),

2These lemmas can be found in the supplementary material of Zhang et al.(2016) that can be downloaded
from https://cs.nju.edu.cn/zlj/pdf/AAAI-2016-Zhang-S.pdf
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(a) Mushrooms (b) MNIST

(c) Covtype (d) Smartphone

Figure 4: The values ofQ0 andQ1 versus the number of iterationt for the four real-world datasets

whereτ = log ⌈2 log
2
T⌉

δ
.

Based on Lemma 2 and Lemma 3, the following upper bound of||ZT+1 − Z∗||2F holds with a
probability at least1− δ

||ZT+1 − Z∗||2F ≤ 4

T

(
C2 + λγ + 2G2τ +

2

3
GHτ +GH

)
= O(1/T ). (14)

D PROOF OFTHEOREM 2 AND EMPIRICAL RESULTS

For DSPGD with CEM, in thet-the iteration, them-th user’s device only needs to upload one vector
in each iteration of DLA, i.e.,Wt[m]⊤Wt[m]cq. SinceWt[m] = [

√
ηt

D
At[m],

√
1− ηtBt[m]],

the dimension ofWt[m]⊤Wt[m]cq equalsD + rt, wherert is the rank ofZt andD is the number
of random feature. Moreover, DLA requires several Lanczos iterations to approach the eigenpairs
of W⊤

t Wt. Thus, the communication cost of DSPGD with CEM is linear toD + rt.

To compute the ratio, we first derive the communication cost for DSPGD without CEM. in thet-the
iteration, them-th user’s device needs to upload two vectors in each iteration of DLA: At[m]⊤cq[m]

andAt[m]A⊤
t cq, where the dimension ofA⊤

t cq equalsD. For the concatenation of allM vectors
{At[m]A⊤

t cq,m = 1, ...,M}, its dimension equals the number of data samplesN . Thus, the
communication cost of DSPGD without CEM is linear toN +MD.

Given the number of Lanczos iterationsQ0 for DSPGD without CEM and the number of Lanczos
iterationsQ1 for DSPGD with CEM, the ratio can be determined by(N+MD)Q0

M(rt+D)Q1

.

According to Figure 4, it can be seen that the average value ofQ0 is close to that ofQ1 in each
iterationt, which indicatesQ0

Q1

≈ 1. As a result, the dominant factor of the ratio is stillN+MD
M(rt+D)

Empirically, the figures of the average value ofrt versus the number of iterationst for the four
real-world datasets are shown in Figure 5. The results show that the rankrt tends to converge as
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(a) Mushrooms (b) MNIST

(c) Covtype (d) Smartphone

Figure 5: The rank ofZt versus the number of iterationt for the four real-world datasets

the value oft increases. Besides, the upper bound ofrt is a constant factor larger than the number
of eigenvectorss in Table 1, and such upper bound is much smaller than the number of users’ local
data samples, which can explain the dramatical reduction onthe communication cost in Figure 2.

E PROOF OFTHEOREM 3

DefineK = UΛU⊤, andP = UΛ
1

2 . The low-rank approximation ofK with ranks is denoted as

Ks = UΛsU
⊤, andPs = UΛ

1

2

s where the diagonal ofΛs contains thes largest eigenvalues ofK
while its rest diagonal entries are all zero. The output of DSPGD at iterationt is an estimation of

Ks, denoted as̃Kt, andK̃t = P̃tP̃
⊤
t .

The following two lemmas will be used in the proof of Theorem 3.

Lemma 4. GivenK̃t, the following inequality holds with a probability at least1− δ for any rankk
projection matrixΠ ∈ R

n×n,

Tr(Π(Ks − K̃t)) ≤ O(

√
s

t
)

Proof. SinceΠ is a rank-k projection matrix, it is obvious that

Tr(Π(Ks − K̃t)) ≤ ||Ks − K̃t||∗.

For a rank-s matrixA, the following inequality holds for its Nuclear norm and itsFrobenius norm

||A||2∗ ≤ s||A||2F .

Hence,
||Ks − K̃t||∗ ≤

√
s||Ks − K̃t||F .
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By Theorem 1,Zt converges toZ∗ at anO(1/t) rate. NoteZ∗ has the same eigenvectors asKs.
Thus,K̃t constructed based onZt also converges toKs at anO(1/t) rate with a probability at least
1− δ, i.e.,||Ks − K̃t||2F has an upper bound as

||Ks − K̃t||2F ≤ O(1/t).

Hence, the following inequality holds with a probability atleast1− δ

Tr(Π(Ks − K̃t)) ≤
√
s||Ks − K̃t||F

≤ O(

√
s

t
).

Lemma 5. Fix an error parameterε ∈ (0, 1). For any rankk projection matrixΠ ∈ R
n×n,

Tr
(
Π(K− K̃t)Π

)
≤ (ε+

k

s
)||P−ΠP||2F .

Proof. It holds that

Tr
(
(In −Π)(K− K̃t)

)
= Tr(K− K̃t)− Tr

(
Π(K− K̃t)Π

)

= ||K−Ks||∗ +Tr(Ks − K̃t)− Tr
(
Π(K− K̃t)Π

)
.

Thus,Tr
(
Π(K− K̃t)Π

)
can be rewritten as

Tr
(
Π(K− K̃t)Π

)
= ||K−Ks||∗ +Tr(Ks − K̃t)− Tr

(
(In −Π)(K− K̃t)(In −Π)

)
.

It follows that

Tr
(
(In −Π)(K− K̃t)(In −Π)

)

=Tr ((In −Π)(K−Ks)(In −Π)) + Tr
(
(In −Π)(Ks − K̃t)(In −Π)

)

=Tr ((In −Π)(K−Ks)(In −Π)) + Tr(Ks − K̃t)− Tr(Π(Ks − K̃t))

≥||P−Ps+k||2F +Tr(Ks − K̃t)−O(

√
s

t
),

where the last inequality comes from Lemma 4. Thus,

Tr
(
Π(K− K̃t)Π

)
≤ ||K−Ks||∗ − ||P−Ps+k||2F +O(

√
s

t
)

= ||P−Ps||2F − ||P−Ps+k||2F +O(

√
s

t
)

=
n∑

i=s+1

σ2
i (P)−

n∑

i=s+k+1

σ2
i (P) +O(

√
s

t
)

=

s+k∑

i=s+1

σ2
i (P) +O(

√
s

t
)

≤ k

s

s+k∑

i=k+1

σ2
i (P) +O(

√
s

t
).

SinceO(
√

s
t
) can be arbitrarily small, it can be rewritten asO(

√
s
t
) = ε||P−Pk||2F . Besides,∑s+k

i=k+1 σ
2
i (P) ≤

∑n
i=k+1 σ

2
i (P) = ||P−Pk||2F . Hence, it can be obtained that

Tr
(
Π(K− K̃t)Π

)
≤ (ε+

k

s
)||P−Pk||2F .
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It can be obtained that

||(In −Π)P||2F − ||(In −Π)P̃t||2F = Tr((In −Π)PP⊤)− Tr((In −Π)P̃tP̃
⊤
t )

= Tr(PP⊤ − P̃tP̃
⊤
t )− Tr(Π(PP⊤ − P̃tP̃

⊤
t )Π).

Let α = Tr(PP⊤ − P̃tP̃
⊤
t ), and then the above equation can be rewritten as

||(In −Π)P||2F +Tr(Π(PP⊤ − P̃tP̃
⊤
t )Π) = α+ ||(In −Π)P̃t||2F .

After sufficient iterations, bothα andTr(Π(PP⊤ − P̃tP̃
⊤
t )Π) are non-negative with a high prob-

ability. Thus, by Lemma 5 it holds that

||(In −Π)P||2F ≤ α+ ||(In −Π)P̃t||2F
= ||(In −Π)P||2F +Tr(Π(PP⊤ − P̃tP̃

⊤
t )Π)

≤ (1 + ε+
k

s
)||(In −Π)P||2F .

(15)

Based on (15), Theorem 3 can be proved as follows. LetΠ = ỸtL̃tỸ
⊤
t , whereỸt is the indicator

matrix obtained by applying aγ-approximate algorithm tõPt, then

||(In − ỸtL̃tỸ
⊤
t )P||2F ≤ α+ ||(In − ỸtL̃tỸ

⊤
t )P̃t||2F

≤ α+ γ||(In − Ỹ
∗
t L̃

∗
t Ỹ

∗⊤
t )P̃t||2F ,

whereỸ
∗
t is the optimal indicator matrix for the lineark-means problem oñPt. Sinceγ > 1, it

follows that

α+ γ||(In − Ỹ
∗
t L̃

∗
t Ỹ

∗⊤
t )P̃t||2F ≤ α+ γ||(In −Y∗L∗Y∗⊤)P̃t||2F

≤ γ(1 + ε+
k

s
)||(In −Y∗L∗Y∗⊤)P||2F .

Thus,

||(In − ỸtL̃tỸ
⊤
t )P||2F ≤ γ(1 + ε+

k

s
)||(In −Y∗L∗Y∗⊤)P||2F ,

which is equivalent tofK(Ỹt) ≤ γ(1 + ε+ k
s
)minY fK(Y).

F PRIVACY PRESERVATIONPROPERTY OFFEDERATED KERNEL k-MEANS

F.1 RECOVERUSERS’ DATA FROM RANDOM FEATURE MATRICES

A random feature for a data samplexi has the formcos(ω⊤xi+b) where theω andb are determined
by the cloud server. Since the value ofω⊤xi+b cannot be arbitrarily large, the number of its possible
values is limited. If enough such random features are collected, the cloud server can determine the
value ofω⊤xi + b for each random feature, and then recoverxi by solving a system of linear
equations.

F.2 PROOF OFTHEOREM 4

We then prove that the cloud server can at most recover the matrices {Wt[m]⊤Wt[m],m =
1, ...,M} (only the multiplicationWt[m]⊤Wt[m] not the matrixWt[m]) from the local com-
putational results (e.g.,Wt[m]⊤Wt[m]cq). The eigenpairsWt[m]⊤Wt[m] are determined via the
distributed Lanczos algorithm. Since

Wt[m]⊤Wt[m] =




ηt

D
At[m]⊤At[m]

√
ηt(1−ηt)

D
At[m]⊤Bt[m]√

ηt(1−ηt)
D

Bt[m]⊤At[m] (1− ηt)Bt[m]⊤Bt[m]


 ,

At[m]⊤At[m] can be recovered fromWt[m]⊤Wt[m].
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For a matrixAt[m] ∈ R
nm×D (nm < D), a matrixA′ ∈ R

nm×D can be constructed via

A′ = UoAt[m],

whereUo ∈ R
nm×nm is an arbitrary orthogonal matrix withU⊤

o Uo = In. By this construction, it
can be derived that

A′⊤A′ = At[m]⊤U⊤
o UoAt[m] = At[m]⊤InAt[m] = At[m]⊤At[m].

Since there exist infinite matricesUo satisfyingU⊤
o Uo = In, the problemAt[m]⊤At[m] = A′⊤A′

has infinite solutions. Hence, recovering the random feature matrixAt[m] from At[m]⊤At[m] is
an ill-posed problem with infinite solutions.

Since by employing CEM, the cloud cannot recover the random feature matrices via matrix opera-
tions, according to Section F.1, it is infeasible for the cloud server to recover users’ data by solving
a system of linear equations.

G ADDITIONAL EXPERIMENTAL SETTINGS

The three public datasets (Mushrooms, MNIST, Covtype)3 are selected from the LIBSVM dataset
repository. The Smartphone dataset is provided by a company. The smartphone dataset contains the
power consumption data of one app on users’ smartphones. Itstwelve features represent the power
consumption on twelve hardware components. The clusteringtask for this dataset is to find the
distinct usage patterns of the app based on the power consumption data. For the concern of privacy,
the Smartphone dataset will not be disclosed.

The description of the four existing methods used in the experiments are listed as follows.

1. Centralized kernelk-means Zha et al. (2001) (denoted as CKk-means): directly perform
truncated SVD on the kernel matrixK = UΛU⊤ to obtain a matrix that consists of the
first s column vectors ofUΛ

1

2 , and then apply lineark-means to this matrix;

2. Scalable kernelk-means Wang et al. (2019) (denoted as SKk-means): utilize the Nyström
method to approximate the kernel matrixK, and conduct kernelk-means over the approx-
imated kernel matrix;

3. Distributed kernelk-means with random feature (Chitta et al., 2012) (denoted asRFK k-
means): first transform the raw data samples to the corresponding random vector via the
random Fourier feature method (Rahimi & Recht, 2008) and then utilize a distributed linear
k-means to find the clusters in space of these random features;

4. Communication efficient distributed kernel PCA Balcan etal. (2016) (denoted as CE PCA):
first conduct dimension reduction on the raw data samples through the communication
efficient kernel PCA that integrates subspace embedding andadaptive sampling techniques
to perform approximated kernel PCA in a distributed manner,and then apply a distributed
lineark-means algorithm to the data samples after the dimension reduction.

For three distributed algorithms (FKk-means, RFKk-means, and CE PCA), the distributed lineark-
means algorithm developed in (Balcan et al., 2013) is utilized to obtain the clustering results. Thus,
the number of data samplesC in the coreset should be assigned.

For FKk-means, the maximal iteration numberT is selected from[10, 20, 30, 40, 50]. In the exper-
iments of the Mushrooms dataset,C is set to1000. In the experiment of the MNIST dataset,C is
set to1000. In the experiment of the Covtype dataset,C is set to4000. In the experiment of the
Smartphone dataset,C is set to4000.

RFK k-means has two hyperparameters: the kernel parameterγ, and the number of random features
D. The hyperparameter configuration for RFKk-means is set as follows. The value ofγ is the
same as that of FKk-means. In the experiments of the Mushrooms dataset,D = 200, andC is
selected from[100, 300, 500, 700]. In the experiment of the MNIST dataset,D = 800, andC is

3These datasets can be downloaded from
https://www.csie.ntu.edu.tw/ ˜ cjlin/libsvmtools/datasets/ .
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selected from[100, 300, 500, 700, 900]. In the experiment of the Covtype dataset,D = 100, and
C is selected from[1000, 2000, 3000, 4000, 5000]. In the experiment of the Smartphone dataset,
D = 50, andC is selected from[500, 1000, 2000, 3000].

CE PCA has six hyperparameters: the kernel parameterγ, the number of principle componentsd
after PCA, the number of random featuresD, the subspace embedding dimension for the feature
expansionds, The subspace embedding dimension for the data pointsdp, and the number of repre-
sentative pointsp. The hyperparameter configuration for CE PCA is set as follows. The value ofγ
is the same as that of FKk-means In the experiments over different datasets, some hyperparameters
of these two methods are not changed. For CE PCA,ds = 50, dp = 250, andp = 500. Besides, the
number of principle componentsd in CE PCA is the same as the number of eigenvectorss in FK k-
means. To obtain different communication cost and normalized mutual information scores, the value
of D is set to different values for both methods. In the experiment over the Mushrooms dataset,D is
selected from[20, 50, 100, 200], andC is set to1000. In the experiment over the MNIST dataset,D
is selected from[100, 200, 400, 800], C is set to1000. In the experiment over the Covtype dataset,
D are selected from[20, 50, 100, 200], andC is set to4000. In the experiment over the Smartphone
dataset,D is selected from[20, 50, 100], C is set to4000.

The discussion of the configuration ofD is as follows. For RFKk-means and CE PCA,D is usually
set to large values (more than100). While for federated kernelk-means,D can be set to relatively
small values (less than50). The reason is as follows. RFKk-means (and CE PCA) only employs
random feature once to estimate the kernel matrix. Thus, it requires a large number of random
features to obtain an estimation of the kernel matrix with low approximation error, and furthermore
a high NMI score. In contrast, federated kernelk-means is an iterative algorithm where random
features are employed in each iteration to reduce the gap between the estimation and the kernel
matrix. Hence, the number of random feature is not necessaryto be set to a large value in each
iteration.

The communication cost of the three algorithms are determined as follows. For FKk-means, the
communication cost is the communication cost of DSPGD with CEM plus the that of the distributed
lineark-means. For RFKk-means, its communication cost equals the communication cost of the
distributed lineark-means. For CE PCA, its communication cost is the communication cost of
performing distributed PCA plus the communication cost of the distributed lineark-means. The
communication cost the distributed lineark-means equals the number of data samples in the coreset
times the dimension of a data sample. In both FKk-means and CE PCA, the dimension of a data
sample equals the number of eigenvectorss. In RFKk-means, the dimension of a data sample equals
the number of random featuresD since the raw data cannot be exposed to the cloud server, and only
the random feature vectors can be uploaded to the cloud server.
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