
Efficient Time Series Processing for Transformers and
State-Space Models through Token Merging

Leon Götz1 Marcel Kollovieh2 Stephan Günnemann2 Leo Schwinn2

1Volkswagen AG 2Technical University of Munich & Munich Data Science Institute

Correspondence to: leon.goetz@volkswagen.de
The results, opinions and conclusions expressed in this publication are not necessarily those of Volkswagen Aktiengesellschaft.

Abstract

Transformer architectures and state-space models have shown promising results in
time series analysis. However, processing very long sequences imposes significant
computational requirements. Token merging, which involves replacing multiple
tokens with a single one calculated as their linear combination, has shown to
considerably improve the throughput of vision transformer architectures while
maintaining accuracy. In this work, we perform the first investigations of token
merging in time series analysis. We further introduce local merging, a domain-
specific token merging algorithm that selectively combines tokens within a local
neighborhood, achieving two major benefits: a) Local merging can adjust its the
computational complexity from quadratic to linear based on the neighborhood
size to effectively scale token merging to long sequences; b) Local merging is
the first causal merging scheme enabling token merging in transformer decoders.
Our comprehensive empirical evaluation demonstrates that token merging offers
substantial computational benefits with minimal impact on accuracy across various
models and datasets. On the recently proposed Chronos foundation model, we
achieve accelerations up to 5400% with only minor accuracy degradations.

1 Introduction

INTERNAL

31 2 4 65

1

3

5

2 4 6 8

7

k

Sloc ={ }
k=1

Sloc ={ }
k=2

Figure 1: Local token merging:
Computing token similarity on a
subset Sloc under locality con-
straint k reduces token merging’s
quadratic complexity to linear.

Since their inception in NLP [1], transformers have extended their
influence into various domains, including computer vision [2],
graphs [3], and time series processing [4]. However, the compu-
tational complexity of the standard attention mechanism used in
transformer architectures scales quadratically with the number of
input tokens, resulting in high memory requirements. This scalabil-
ity issue becomes especially pronounced in time series processing,
where sequences frequently comprise thousands of tokens [5]. Con-
sequently, recent foundational models in time series [6, 7, 8, 9],
such as Chronos [10], exhibit impressive zero-shot generalization
capabilities but demand substantial computational resources.

Recently, state-space models have emerged as a solution to mitigate
the computational burden of transformers. Their complexity scales
subquadratically with the sequence length [11], which allows them to
process millions of tokens [12]. However, even in state-space models,
very long sequences will impose high computational demands.

Bolya et al. [13], have shown that the efficiency of ViTs can be
improved by merging tokens throughout the transformer architecture.
Specifically, they compute similarity scores between tokens and combine them into single tokens

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.

through a convex combination. However, they only study ViT architectures. In contrast to sparse
attention [14] and token skipping [15], token merging can accelerate already trained models and does
not require any training data or fine-tuning. This is especially important for foundation models.

In this empirical study, we for the first time explore token merging within the time series domain. We
further introduce a novel local token merging algorithm whose computational complexity varies from
quadratic to linear, based on the neighborhood considered for each token merge. This allows token
merging to scale to long sequences. Additionally, local merging preserves causality and therefore
enables token merging in transformer decoders. The algorithm is illustrated in figure 1. Through
comprehensive empirical evaluations, we analyze the impact of token merging on various time
series transformer models and state-space models in detail. Specifically, token merging enhances the
throughput of the foundation model Chronos by up to 54.76×, with a marginal quality drop of 3% in
relative MSE. Across four out of five datasets, we identify Pareto optimal points where token merging
simultaneously boosts throughput and increases accuracy. See appendix A.1 for further related work.

2 Token merging

In the following, we first outline the token merging algorithm introduced by Bolya et al. [13] for ViT
architectures. We then propose local merging, enabling efficient token merging for long sequence
processing. Finally, we introduce causal merging to allow for token merging in decoder architectures.

(Global) Token merging in computer vision Let a neural network f(x) = ΦL◦ΦL−1◦· · ·◦Φ1(x)
consist of L layers denoted as Φl, where each layer takes the output of the previous layer as input. We
assume that the input xl ∈ Rtl×d consists of tl tokens with dimension d. Thereby, the input tokens
are generated by a tokenizer g : Rz → Rt×d out of z-dimensional input data u. In the computer
vision domain, u usually takes the form u ∈ Rw×h×c, where w, h, c are the width, height, and
channels of the input image, respectively, and w · h · c = z.
To improve the computational efficiency of a given model, Bolya et al. [13] combine the r most
similar tokens in each layer, reducing the tokens to be processed in layer l+1 to tl+1 = tl − r.
Therefore, they split the set of all tokens into two disjoint subsets A,B in alternation to avoid merging
conflicts and allow for a parallelized computation of merging correspondences. Here A and B contain
tl/2 elements each, denoted as ai and bj respectively. The authors compute the cosine similarity
between all tokens in both subsets S = (sij) and merge the top r most similar correspondences by
averaging the tokens accordingly. This results in a global token merging algorithm with quadratic
complexity. Lastly, the authors use a fixed r to enable batch processing without needing to pad
individual batch elements to the same shape after token reduction.

(Local) Token merging for time series In this work, we design token merging mechanisms for
time series architectures and demonstrate run-time and even performance improvements over various
datasets and models. We assume that the input u consists of m time stamps with n variates.

Previous work on token merging in image processing explored global merging schemes, where
every token of each subset A and B could be merged with each other [13, 16]. However, computing
the similarity S ∈ Rtl/2× tl/2 between both sets of tokens has a complexity of O(t2l /4), which is
suboptimal for sequential data often consisting of long token sequences [5, 17], and state-space
models featuring subquadratic complexity [11, 12].
Therefore, we propose local merging - a superset of token merging - by introducing k ∈ N, 1 ⩽
k ⩽ tl/2 as a locality constraint where we compute the similarity only on a local subset of tokens
Sloc = {sij | 1 ⩽ i, j ⩽ tl/2, |i − j| < k}. Figure 1 illustrates the proposed merging algorithm.
The locality constraint reduces the complexity to O(tl/2 + (k − 1)(tl − k)). Varying the locality,
we achieve linear complexity by considering only neighboring tokens for merging up to quadratic
complexity by considering a global merging pool, possibly exploiting more redundancy. For efficient
computation, we refactor Sloc into a rectangular tensor. An upper bound for the resulting speed up
can be given by speed up ⩽ 3L 4L−1 · (4L−1)−1. The acceleration of deeper models is expected to
increase as more subsequent layers can profit from already merged tokens. Local merging additionally
preserves order and locality as an inductive bias for sequence processing.
Some time series transformers use processing mechanisms that require a minimum number of tokens
in the forward pass. To universally enable token merging in these architectures, we further introduce
q as the minimum number of remaining tokens. When encountering odd numbers of tokens tl, we

2

exclude the most recent token from merging as we expect it to contain the most relevant information.
We derive the complexity of the token merging procedures in appendix A.2.

As global merging combines tokens over arbitrary ranges, it is not a causal transformation. To enable
token merging in transformer decoders, such as for recent decoder-only foundation models [7] and
encoder-decoder architectures [10], we propose a special case of local merging: By restricting the
merging neighborhood to only adjacent tokens with k = 1, local merging preserves causality.
However, many architectures require a fixed number of decoder output tokens or fixed dimensions for
linear projection output layers. To maintain a constant output dimensionality while merging tokens to
speed up the decoder, we unmerge all tokens in a final step. For this, we split a merged token into two
neighboring identical ones. Bolya and Hoffman [16] propose an unmerging algorithm for computer
vision. However, they only leverage non-causal global token merging. Moreover, they immediately
unmerge after every merge, which makes it unsuitable for long sequence processing, as it is unable to
utilize the cumulative effect of reducing tokens.

3 Results

We first present our main results for token merging in transformer foundation models. We then explore
token merging in 5 other transformer architectures with different inductive biases for time series.
Finally, we demonstrate first token merging for state-space models. Additionally, we ablate different
merging patterns, investigate why token merging improves prediction quality, analyze dependencies
on input length, explore the redundancy of input tokens and investigate dynamic merging schemes in
appendices A.7 to A.11. We list our experimental settings in appendix A.3.

Table 1: Token merging acceleration (Accel.) for all Chronos foundation models from tiny to large, measured
for zero-shot forecasting. Applying token merging, we aim for two objectives: the best MSE and the fastest
acceleration. Among all Chronos models, we choose the best without token merging as reference (MSE). As
token merging improves MSE (negative MSE∆) while speeding up the model, we can choose small Chronos
models while surpassing prediction quality of larger ones.

Dataset MSE Best Fastest

Accel. MSE∆ Accel. MSE∆

ETTh1 0.45 14.17× −6% 32.76× 2%
ETTm1 0.41 1.23× −4% 6.47× 3%
Weather 0.17 1.16× −1% 54.76× 3%
Electricity 0.14 1.02× 0% 2.91× 3%
Traffic 0.61 1.16× −9% 2.91× 1%

3.1 Token merging in foundation models

We investigate token merging on Chronos in zero-shot forecasting setting [10]. We apply token
merging during inference only, as accelerating already trained models is of high practical relevance.
In all our experiments, we find Pareto optimal points with token merging. For four out of five datasets,
token merging improves both accuracy and throughput simultaneously (see appendix A.6). Our

0.00 0.02 0.04 0.06 0.08 0.10
Model execution time standardized [s]

0.40

0.45

0.50

0.55

0.60

0.65

M
SE

ETTh1

0.00 0.02 0.04 0.06 0.08 0.10
Model execution time standardized [s]

0.2

0.3

0.4

0.5

M
SE

Electricity

Chronos tiny
Chronos mini
Chronos small
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 2: MSE for different token merging in Chronos models during zero-shot testing on two datasets. Choosing
larger models with token merging is beneficial compared to smaller ones without.

3

results demonstrate that it is often beneficial to choose a larger Chronos model with token merging
over a smaller one without, as in figure 2. We report our results in table 1, choosing the best Chronos
model without token merging as reference. We illustrate two cases: 1) Selecting the token merging
setting that provides the best MSE, 2) selecting the setting with the fastest throughput. For 2), we
constrain the MSE of token merging trials to be lower than the second-best model without token
merging. In addition, we allow a maximum increase in MSE of 3% compared to the reference. In
our experiments, we can improve Chronos MSE by up to 9% and speed up inference by 54.76×.

3.2 Token merging in non-foundation models

Table 2: Token merging speeds up 8 layer Non-
stationary Transformers with minimal change in
forecasting quality.

Dataset Nonstationary

MSE Accel. MSE∆

ETTh1 0.48 2.93× 0%
ETTm1 0.46 2.10× −2%
Weather 0.20 3.14× 0%
Electricity 0.17 2.76× 0%
Traffic 0.59 2.69× 1%

We investigate token merging on 5 time series trans-
former architectures in 5 model sizes on 5 datasets and
list full results in appendix A.4. Table 2 shows our
results for 8 layer Non-stationary Transformers [18].
Token merging substantially increases the throughput
of most model architectures, sizes and datasets, up
to 3.80×, often with no change in forecasting quality.
(See appendix A.4) In line with the formal analysis of
potential speed up conducted in section 2, we generally
observe higher accelerations for larger models, as more
subsequent layers can profit from already merged to-
kens. Independent of model size, token merging finds
Pareto optimal points in 17 of 25 settings and has no
negative effect in the remaining cases.

3.3 Token merging in state-space models

Table 3: Comparison of global and local token
merging for HyenaDNA on the long sequence
Dummy Mouse Enhancers Ensembl dataset.
Best, second.

Token merging Accel. Accuracy

No merging 1.00× 78.9 %
Local merging 3.62× 74.0 %
Global merging 2.93× 69.4 %

State-space models can process very long sequences
with millions of tokens due to their subquadratic com-
plexity. Our proposed local merging algorithm is specif-
ically designed to match this subquadratic complexity,
enabling effective token merging in state-space models.
Additionally, it preserves locality and order as inductive
bias for sequence processing.
We explore token merging in HyenaDNA [12]. We
use a classification task for the experiment, where the
data consists of long genomic sequences with 16 000
nucleotides each. Our local merging with k = 1 fea-
turing linear complexity and locality bias outperforms global merging with k = tl/2 and quadratic
complexity. Table 3 illustrates that local merging achieves substantially larger speed up and better
accuracy than global merging. This experiment indicates that architecture and domain-specific biases
are important when applying token merging to a task. Local merging accelerates HyenaDNA 3.62×
with a 4.9% decrease in accuracy. Compared to the baseline model of Grešová et al. [17] with 69.0%
accuracy, local merging is superior. Less aggressive merging schemes might further improve MSE.
To the best of our knowledge, this is the first study that investigates merging individual states in
state-space models to improve their sequence modeling performance.

4 Conclusion

In this work, we explore token merging in the time series domain for the first time. We introduce a
domain-specific local merging algorithm with variable complexity for long sequence processing and
state-space models. Additionally, local merging is the first causal token merging scheme for decoder
architectures. In our large empirical study, we demonstrate that local merging can substantially
accelerate models, notably without training, and sometimes even improve their prediction quality.
Finally, we conduct several ablation studies to investigate when token merging is most effective. We
hope that token merging will have a positive effect on reducing the environmental impact of time
series models. Still, future work can explore more flexible merging schemes without dividing all
tokens into two sets and restricting merging to occur only between tokens from different sets.

4

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz

Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

[3] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. In Advances in Neural Information Processing Systems, 2019.

[4] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan.
Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In
Advances in Neural Information Processing Systems, 2019.

[5] Rakshitha Wathsadini Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob Hyndman, and Pablo
Montero-Manso. Monash time series forecasting archive. In Neural Information Processing Systems
Datasets and Benchmarks Track, 2021.

[6] Azul Garza and Max Mergenthaler-Canseco. Timegpt-1. arXiv:2310.03589, 2023.

[7] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv:2310.10688, 2023.

[8] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian Khorasani,
Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir Hassen, Marin Biloš,
Sahil Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin, Valentina Zantedeschi, Yuriy
Nevmyvaka, and Irina Rish. Lag-llama: Towards foundation models for probabilistic time series forecasting.
arXiv:2310.08278, 2023.

[9] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Unified
training of universal time series forecasting transformers. arXiv:2402.02592, 2024.

[10] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Olek-
sandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner,
Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael
Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the language of time series. arXiv:2403.07815,
2024.

[11] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,
Stefano Ermon, and Christopher Re. Hyena hierarchy: Towards larger convolutional language models. In
International Conference on Machine Learning, 2023.

[12] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes, Stefano
Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, Stefano Ermon, Christopher Ré, and Stephen
Baccus. Hyenadna: Long-range genomic sequence modeling at single nucleotide resolution. In Advances
in Neural Information Processing Systems, 2023.

[13] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy Hoffman.
Token merging: Your vit but faster. In International Conference on Learning Representations, 2023.

[14] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv:1904.10509, 2019.

[15] David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language models.
arXiv:2404.02258, 2024.

[16] Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. CVPR Workshop on Efficient
Deep Learning for Computer Vision, 2023.

[17] Katarína Grešová, Vlastimil Martinek, David Čechák, Petr Šimeček, and Panagiotis Alexiou. Genomic
benchmarks: a collection of datasets for genomic sequence classification. In BMC Genomic Data, 2023.

[18] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the
stationarity in time series forecasting. In Advances in Neural Information Processing Systems, 2022.

[19] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI Conference on
Artificial Intelligence, 2021.

[20] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv:2202.01381, 2022.

5

[21] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. In Advances in Neural Information Processing
Systems, 2021.

[22] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference on
Machine Learning, 2022.

[23] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
Long-term forecasting with transformers. In International Conference on Learning Representations, 2023.

[24] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In
International Conference on Learning Representations, 2022.

[25] Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan. Triformer:
Triangular, variable-specific attentions for long sequence multivariate time series forecasting–full version.
arXiv:2204.13767, 2022.

[26] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations, 2023.

[27] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. Itrans-
former: Inverted transformers are effective for time series forecasting. arXiv:2310.06625, 2023.

[28] Tian Zhou, Peisong Niu, xue wang, Liang Sun, and Rong Jin. One fits all: Power general time series
analysis by pretrained lm. In Advances in Neural Information Processing Systems, 2023.

[29] Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot time
series forecasters. In Advances in Neural Information Processing Systems, 2023.

[30] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Combining
recurrent, convolutional, and continuous-time models with linear state space layers. In Advances in Neural
Information Processing Systems, 2021.

[31] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state
spaces. In International Conference on Learning Representations, 2022.

[32] Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and
Yuyang Bernie Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic time
series forecasting. Advances in Neural Information Processing Systems, 36, 2024.

[33] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv:2312.00752, 2023.

[34] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim.
Adavit: Adaptive vision transformers for efficient image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2022.

[35] Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. Power-bert: Accelerating bert inference via progressive word-vector elimination. In
International Conference on Machine Learning, 2020.

[36] Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and Oncel
Tuzel. Token pooling in vision transformers. arXiv:2110.03860, 2021.

[37] Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridging the
gap between token pruning and token merging. In IEEE Winter Conference on Applications of Computer
Vision, 2024.

[38] Maxim Bonnaerens and Joni Dambre. Learned thresholds token merging and pruning for vision transform-
ers. Transactions on Machine Learning Research, 2023.

[39] Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji, Yu Qiao,
and Ping Luo. Diffrate: Differentiable compression rate for efficient vision transformers. In IEEE
International Conference on Computer Vision, 2023.

[40] Alexander Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan-Rhys Griffiths,
Alexandre Maravel, Jianye Hao, Jun Wang, Jan Peters, and Haitham Bou Ammar. Hebo: Pushing the limits
of sample-efficient hyperparameter optimisation. In Journal of Artificial Intelligence Research, 2022.

[41] Diederik P. Kingma and Jimmy L. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[42] Ligeng Zhu. Thop: Pytorch-opcounter. https://github.com/Lyken17/pytorch-OpCounter, 2022.
[43] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting?

In AAAI Conference on Artificial Intelligence, 2023.
[44] Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An investigation

on linear mapping. arXiv:2305.10721, 2023.

6

https://github.com/Lyken17/pytorch-OpCounter

A Appendix

Supplementary material such as derivations, further details and additional results are listed below.

A.1 Related work

Here we give a broader overview of related work.

Time series transformers In recent years, many transformer architectures with inductive biases for time
series have been proposed, successfully outperforming classical and other deep-learning-based methods in time
series forecasting quality like recurrent neural networks [4]. Most of them focus on reducing complexity by
modifying the attention mechanism. LogTrans uses LogSparse attention [4], while Informer focuses only on the
most relevant queries using ProbSparse attention [19]. Additionally, many architectures adopt decomposition
techniques to model trend and seasonal patterns [20, 21, 22, 18]. Autoformer leverages autocorrelation as a
sequence-based similarity measure in the attention mechanism [21]. FEDformer uses the frequency domain to
model time series effectively [22]. Non-stationary Transformers further mitigate the effect of the time series
distribution changing over time [18]. PatchTST embeds subsequences as tokens to capture local semantic
information and reduce complexity [23]. Other works apply hierarchical attention [24, 25] or leverage attention
between the time series variates to better model multivariate patterns [26, 27].
Due to their success in the vision and NLP domain, transformer-based foundation models have recently emerged
for time series, often used in zero-shot settings. Many works focus on training transformers directly on large and
diverse time series datasets, usually with billions of tokens [6, 7, 8, 9]. Inspired by the success of foundation
models in NLP, the recently proposed Chronos model converts continuous time series data into a fixed vocabulary
and is trained on both real-world and synthetic data [10]. Besides, other research branches focus on fine-tuning
vision or NLP models for time series [28] and on applying large language models directly on time series
data [29].

State-space models Due to the quadratic scaling of the attention mechanism, transformer architectures suffer
from significant computational cost when processing very long input sequences. Recently, state-space models
have shown promising results in overcoming the quadratic complexity of transformers with respect to input
length. Linear state-space layers solve the sequential processing requirement of RNNs through linear state-space
representations [30]. The S4 model reduces memory requirements by conditioning the state-space matrix
with a low-rank correction [31] and has successfully been applied to time series forecasting [32]. By using
implicit convolutions and a data-aware gating mechanism, Hyena [11] became one of the first state-space model
architectures to match transformers on NLP tasks. Later work uses hardware-aware algorithms to improve the
performance of state-space models on modern accelerators [33].

Reducing tokens Many works reduce the number of processed tokens to increase the efficiency of transformer
architectures in computer vision and NLP, often by pruning [34, 35]. Marin et al. [36] merge tokens in ViT
architectures to reduce the loss of information associated with pruning. Bolya et al. [13] enhance the token
merging algorithm, which they successfully apply to already trained encoder-only models. Besides initial work
on classification tasks [13], subsequent work applies token merging to diffusion models [16]. Kim et al. [37]
combine merging and pruning, while other work investigates optimal merging and pruning rates [38, 39].

Sparse attention and token skipping Besides reducing the number of tokens, sparse attention [14, 4, 19, 21]
and token skipping [15] also decrease the computational requirements of transformer models. Sparse attention
computes a subset of the attention matrix. Therefore, it can only accelerate the attention mechanism itself
and not the subsequent MLP, in contrast to reducing the number of tokens during token merging. According
to [36], this MLP can take over 60% of the total computation in a ViT layer. Further, altering the network
architecture from full attention to sparse attention requires a retraining of the model. Concurrent work, such as
token skipping [15], involves the selection of a subset of tokens to be processed in a transformer layer. However,
it has only been shown in NLP when training from scratch. In contrast to sparse attention and token skipping,
token merging can accelerate already trained models and does not require any training data or fine-tuning.
This is especially important for recent foundation models, which are expensive to train. In our experiments
in appendices A.4 and A.5, token merging successfully accelerates Informer and Autoformer, which already
employ sparse attention. We therefore consider token merging as an orthogonal approach.

In this work, we propose a token merging algorithm for the time series domain, which extends beyond previous
investigations of token merging in ViTs [13, 16]. We systematically evaluate the potential to reduce computational
effort in time-series-specific transformer architectures and state-space models.

7

A.2 Derivations

In the following, we derive our theoretical results in section 2.

Complexity of local merging To compute Sloc for local merging we need to compute the main diagonal
of S ∈ Rtl/2× tl/2 and depending on k also secondary diagonals which are symmetrical but shorter than the
main diagonal for k > 1. We derive the complexity of local merging depending on k in the following:

complexity Sloc =
tl
2
+ 2

k∑
p=2

tl
2
−(p− 1)

=
tl
2
+ 2

k−1∑
p=1

tl
2
− p

=
tl
2
+ 2

(
(k − 1) tl

2
−

k−1∑
p=1

p

)

=
tl
2
+ 2

(
(k − 1) tl

2
− (k − 1)

k

2

)
=

tl
2
+ (k − 1)(tl − k)

Merging speed up bound We roughly estimate the upper bound of the speed up we can achieve by merging
tokens in a L-layer transformer model. Therefore, we only consider attention due to its quadratic scaling with
tl. We disregard additional effects reducing speed up such as merging overhead to estimate the upper bound.
Further, we assume merging half of the tokens in each layer. The attention in the first layer is unaffected by
merging, as we apply token merging between the attention and MLP.

speed up ⩽
L t2

t2 +
(
t
2

)
2 +

(
t
4

)
2 + · · ·+

(
t

2L−2

)
2 +

(
t

2L−1

)
2

=
L∑L−1

p=0

(
1
2p

)2
=

L∑L−1
p=0

(
1
4

)p using geometric series

S∑
s=0

vs =
1− vS+1

1− v
for v ̸= 1

⇒
L
(
1− 1

4

)
1−

(
1
4

)L
= 3L 4L−1 · (4L − 1)−1

8

A.3 Experiments

We investigate token merging in large foundation models using Chronos in a zero-shot setting [10]. Additionally,
we systematically explore token merging in diverse settings on 5 time series datasets and 5 model architectures
in 5 different sizes each. Finally, we demonstrate that token merging can be applied to state-space models for
long sequence processing by using a novel local merging algorithm featuring subquadratic complexity.

Datasets We base our experiments on 5 commonly used multivariate time series datasets covering different
forecasting applications: ETTh1 and ETTm1 consist of 7 variates measuring the power load and temperature
of electric transformers in hourly and quarter-hourly granularity [19]. Weather consists of 21 meteorological
quantities such as air temperature and is recorded every 10 minutes in 2020.1 Electricity measures the energy
demand of 321 consumers every hour [5]. Traffic consists of 862 sensors in the San Francisco Bay Area
measuring the road occupancy hourly [5]. We use the same data splits for training, validation and test as Wu
et al. [21] for consistency.
Since the Chronos foundation model operates univariately and requires considerable computational resources,
we randomly sample the same 7000 time series from the test set for all Chronos evaluations. For the ETTh1
dataset, we do not observe relevant differences when comparing the results to the full test set.
To explore token merging in an additional sequence-based domain and on a second task, we use the Dummy
Mouse Enhancers Ensembl dataset [17] for classifying genomic data. It contains very long sequences of
nucleotides from a mouse.

Model architectures For experiments on Chronos, we use the default input length of m = 512 and prediction
horizon p = 64 [10]. We compute the median from Chronos probabilistic forecasts and report the MSE.
For our experiments on non-foundation models, we use 5 architectures, including Autoformer, FEDformer,
Informer, Non-stationary Transformer, and the vanilla Transformer [1] as reference. For each model, we
evaluate token merging for different model sizes with L ∈ {2, 4, 6, 8, 10} encoder layers, which we train doing
hyperparameter optimization. We use an input length of m = 192, following the results of Nie et al. [23], and a
prediction horizon p = 96 samples. Longer sequences would generally benefit token merging.
For our experiments on state-space models, we use HyenaDNA medium, a genomic foundation model [12]
based on the Hyena architecture [11]. We use a large input length of m = 16 000 nucleotides utilizing Hyenas
subquadratic complexity. We chose Hyena over Mamba [33] to avoid specialized CUDA kernels and hope to
make more general statements about the capabilities of token merging.

Applying token merging In our experiments, we generally find it beneficial to allow self-attention to transfer
information between tokens before merging them. Therefore, we apply local merging after self-attention in the
transformer blocks. Many transformers exhibit quadratic attention, imposing considerable computational cost.
As a result, we do not find the token merging algorithm to introduce a substantially additional overhead. Thus,
we choose k = tl/2 to profit from a global merging pool for transformer encoders. In transformer decoders
we apply our casual local merging with k = 1 and finally unmerge all decoder tokens. Therefore, we use
different merging strategies in transformer encoders and decoders. In architectures utilizing additional tensors
like attention masks or positional biases, we merge them using the same correspondences. In state-space models,
we merge tokens after the Hyena operator and choose k = 1 to not introduce an operation with quadratic
complexity into the architecture.

Hyperparameter optimization For each transformer architecture, model size, and dataset we train 32 models
without token merging doing hyperparameter tuning of learning rate and dropout using HEBO [40]. Here, we
apply token merging during inference-time only. We choose the best model based on its validation MSE. We
train 17 models with the found hyperparameters, the minimum possible qtrain, and different uniformly spaced
rtrain until all tokens are merged. We again choose the best model based on the MSE for further evaluation.
We do 185 hyperparameter optimization trials of both chosen models, trained with and without token merging,
using HEBO to find token merging inference hyperparameters rtest and qtest on the validation set. Please note
that r and q might be different for local merging in the encoder and causal local merging in the decoder. Finally,
we evaluate once on the test set to report our results.

Hyperparameters In table 4 we list the most relevant hyperparameters we used for training the transformer
models including the vanilla Transformer, Autoformer, FEDformer, Informer and Non-stationary Transformer.
For training and testing HyenaDNA [12] and for testing Chronos [10] we used their default hyperparameters.

1https://www.bgc-jena.mpg.de/wetter/

9

https://www.bgc-jena.mpg.de/wetter/

Table 4: Hyperparameters for training the transformer models.

Hyperparameter Value

Training
Seed 2024
Optimizer Adam [41]
Learning rate Search space loguniform[10−6, 10−2]
Learning rate decay Exponential, γ = 0.97
Dropout Search space uniform[0.0, 0.25]
Batch size 32
Epochs 100
Early stopping patience 7
Loss MSE

Model
Input length m = 192
Prediction horizon p = 96
Token dimension d = 512
Encoder layers L ∈ {2, 4, 6, 8, 10}
Decoder layers 1
Attention heads 8
MLP hidden dimension 2048
Activation GELU

Reproducibility of measurements We report all results on the same Nvidia A6000 GPU. For training, we
utilize Nvidia V100 and A100 GPUs. We measure the end-to-end inference time of the models using 2 warm-ups
and 2 measurement runs per batch. The standard deviation of the execution time is generally < 2% in our
experiments. Besides the inference time as practically most relevant quantity, we report FLOPs as a more
hardware independent measure using the thop library [42]. We choose the maximum possible batch size and
standardize the results.

Computational effort We estimate the computational effort for reproducing our experiments in table 5. Please
note that we base some of our experiments on model checkpoints acquired in previous experiments.

Table 5: Computational effort to reproduce our experiments.

Experiment Accelerator GPU hours

Token merging in pretrained models A6000 100
V100 6720

Token merging during training A6000 50
V100 3840

Scaling to large models A6000 500
Token merging improves model performance A6000 30
Dependencies on input length A6000 80
Redundancy of input tokens A6000 5
Dynamic merging A6000 140

Token merging in state-space models A6000 40
A100 6

10

A.4 Token merging in pretrained non-foundation models

We investigate token merging on diverse time series transformer models with different inductive biases. All
models are specifically trained on the target dataset and token merging is applied only during inference time, as
accelerating already trained models is of high practical relevance. We choose token merging hyperparameters as
described in appendix A.3, selecting the fastest token merging trial on the validation set that is within an 0.01
increase in MSE compared to the reference without token merging. If we do not find a trial with token merging
satisfying these tight criteria, we report results without token merging, mimicking how token merging might be
applied in practice. We perform all selections on the validation set and report all results on the test set.
The vanilla and Non-stationary Transformers have quadratic attention mechanisms, while the remaining architec-
tures feature subquadratic attention complexities of O(tl · log(tl)) for Autoformer and Informer and O(tl) for
FEDformer. Regardless, token merging substantially increases the throughput of most models, up to 3.80×,
often with no change in forecasting quality, as table 6 shows. In some experiments, token merging even improves
the MSE. In line with the formal analysis of potential speed up from token merging conducted in section 2, we
generally observe higher accelerations for larger models, as more subsequent layers can profit from already
merged tokens.
In some cases, we do not find a model with decent forecasting quality satisfying our criteria. Here, token merging
during test only has a larger impact on model accuracy, such as for Autoformer on the Traffic dataset. We address
this issue when training with token merging in appendix A.5.

Table 6: Token merging speeds up (Accel.) various pretrained transformer architectures of different sizes on
several multivariate time series datasets. Merging induces minimal change in quality (MSE∆) compared to the
reference without token merging (MSE).

Dataset Layers L Transformer Autoformer FEDformer Informer Nonstationary

MSE Accel. MSE∆ MSE Accel. MSE∆ MSE Accel. MSE∆ MSE Accel. MSE∆ MSE Accel. MSE∆

ETTh1

2 0.75 1.38× 0% 0.42 1.00× 0% 0.38 1.29× 0% 0.87 1.40× 0% 0.55 1.36× 0%
4 0.71 1.81× 0% 0.40 1.39× 1% 0.39 1.74× 0% 0.92 1.30× 1% 0.47 1.82× 2%
6 0.66 2.33× 0% 0.44 2.12× 0% 0.38 2.27× 0% 0.93 2.39× 0% 0.46 2.39× 0%
8 0.84 2.90× 0% 0.41 2.68× −5% 0.39 2.81× 0% 1.23 2.20× 9% 0.48 2.93× 0%

10 0.69 3.51× 0% 0.39 3.14× 0% 0.38 3.36× 0% 1.16 2.45× 4% 0.57 3.56× 0%

ETTm1

2 0.52 1.35× 0% 0.44 1.00× 0% 0.36 1.00× 0% 0.65 1.40× 0% 0.42 1.36× 0%
4 0.58 1.85× 2% 0.43 1.00× 0% 0.37 1.76× 2% 0.60 1.78× −1% 0.48 1.72× 0%
6 0.62 2.11× 4% 0.45 1.00× 0% 0.38 1.00× 0% 0.59 2.16× −1% 0.38 2.52× 0%
8 0.60 3.09× 1% 0.58 2.60× 0% 0.33 1.00× 0% 0.61 1.61× 0% 0.46 2.10× −2%

10 0.62 3.72× 0% 0.54 1.69× 0% 0.36 1.00× 0% 0.57 1.00× 0% 0.41 3.80× 0%

Weather

2 0.25 1.44× −1% 0.28 1.10× 0% 0.27 1.37× −2% 0.35 1.43× −1% 0.19 1.46× 1%
4 0.28 1.95× 0% 0.24 1.00× 0% 0.26 1.74× 0% 0.24 1.89× 2% 0.19 1.95× 0%
6 0.28 2.19× 9% 0.26 2.03× 2% 0.27 2.42× 0% 0.21 2.19× 2% 0.20 2.54× 0%
8 0.32 2.20× 5% 0.26 1.56× 4% 0.27 2.88× 0% 0.30 1.56× 1% 0.20 3.14× 0%

10 0.35 2.49× 8% 0.26 1.72× 3% 0.24 1.00× 0% 0.31 1.69× 1% 0.19 3.76× 0%

Electricity

2 0.25 1.30× 0% 0.18 1.00× 0% 0.20 1.24× 0% 0.30 1.23× 8% 0.17 1.31× 0%
4 0.26 1.75× 0% 0.19 1.00× 0% 0.19 1.64× 0% 0.30 1.60× 7% 0.17 1.73× 1%
6 0.25 2.29× 0% 0.19 1.00× 0% 0.20 2.22× 0% 0.29 1.00× 0% 0.17 2.26× 0%
8 0.25 2.84× 0% 0.19 1.00× 0% 0.20 2.72× 0% 0.31 1.00× 0% 0.17 2.76× 0%

10 0.25 3.31× 0% 0.18 1.00× 0% 0.20 3.33× 0% 0.30 1.00× 0% 0.18 2.53× 7%

Traffic

2 0.66 1.28× 1% 0.63 1.00× 0% 0.59 1.21× 0% 0.68 1.19× 6% 0.60 1.27× 2%
4 0.66 1.56× 3% 0.60 1.00× 0% 0.58 1.65× 0% 0.68 1.00× 0% 0.59 1.68× 1%
6 0.64 2.13× 1% 0.61 1.00× 0% 0.57 2.10× 0% 0.69 1.00× 0% 0.62 1.58× 2%
8 0.68 2.67× 0% 0.60 1.00× 0% 0.59 2.61× 0% 0.71 1.00× 0% 0.59 2.69× 1%

10 0.67 3.25× −1% 0.59 1.00× 0% 0.58 3.12× 0% 0.69 1.00× 0% 0.59 3.16× 0%

11

A.5 Token merging during training in non-foundation models

Here, we apply token merging during training to reduce the model’s sensitivity to the algorithm at inference time.
As shown in figure 3, models trained with token merging often outperform those trained without it, even if token
merging is not applied during testing. This approach enables us to accelerate models such as Autoformer on the
Traffic dataset without sacrificing accuracy, which was previously not feasible when applying token merging
only during inference. Additionally, token merging accelerates the training process itself by up to 2.27× for
Autoformer on the Traffic dataset.

0.4 0.6
Model execution time standardized [ms]

0.600

0.625

0.650

0.675

0.700

M
SE

Non-stationary Transformer 6 layers on Traffic

Test only
+ Training
No merging

2 4 6 8 10
Number of layers L

1×

2×

3×

A
cc

el
er

at
io

n

Autoformer on Traffic

Test only
+ Training

1

9

17

To
ke

n
m

er
gi

ng
 r
tr
a
in

Figure 3: (Left) Training with different token merging rtrain fractions compared to applying token merging
only during inference. Even if token merging is not applied during testing (no merging), models trained with
token merging achieve better MSE. (Right) Additionally, models that showed high MSE degradation with token
merging without training show high accelerations while maintaining MSE (increases up to 6%) when enabling
token merging during training.

12

A.6 Token merging in foundation models

In this section, we show complete results on applying token merging to Chronos, a time series foundation model.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.40

0.45

0.50

0.55

0.60

0.65
M

SE
Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 4: Token merging in different Chronos models on ETTh1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.4

0.5

0.6

0.7

0.8

0.9

M
SE

Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 5: Token merging in different Chronos models on ETTm1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

M
SE

Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 6: Token merging in different Chronos models on Weather

13

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 7: Token merging in different Chronos models on Electricity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model execution time standardized [s]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
SE

Chronos tiny
Chronos mini
Chronos small
Chronos base
Chronos large
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 8: Token merging in different Chronos models on Traffic

14

A.7 Merging patterns

We observe three distinct merging patterns when combining tokens in transformer architectures.

Increasing MSE As the number of merged token increases, the MSE increases almost monotonically (see fig-
ure 2). This behavior can be explained due to a loss of information when combining multiple tokens and also
occurs in the vision domain [13].

0.2 0.4 0.6
Model execution time standardized [ms]

0.65

0.70

0.75

0.80

M
SE

2 Layers
4 Layers
6 Layers
No merging

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f t
ok

en
s m

er
ge

d

Figure 9: Transformer models on ETTh1 show
constant MSE, independent of the amount of
token merging r.

Constant MSE For the vanilla Transformer on ETTh1 and
for FEDformer on ETTh1, Weather, Electricity, and Traffic,
we observe a constant MSE when applying token merging as
shown in figure 9. For the Transformer model, we find all
tokens to be similar after the first attention block. Thus, token
merging does not affect the model performance. Nevertheless,
we find that in most cases, these models still provide reason-
able forecasts. In our experiments, transformer models trained
on larger or more complex datasets containing more variates
do not show this behavior. We argue that this might be a lim-
itation of transformers on small time series datasets [43, 44].
Still, token merging successfully improves the throughput
while maintaining accuracy for these models.

Decreasing MSE Token merging increases forecasting qual-
ity, most prominently in Chronos models, as in figure 2. We
explain this behavior in appendix A.8.

15

A.8 When does token merging improve model performance

In our experiments, applying token merging sometimes improves MSE. Our hypothesis is that averaging similar
tokens smoothes the time series, reducing noise and acting as a low-pass filer. To validate our hypothesis, we
low-pass filter the input time series using Gaussian kernels without token merging in figure 10. On ETTh1
and Traffic, both token merging and Gaussian filtering improve the MSE. On Electricity, token merging and
Gaussian filtering do not positively impact the MSE. All of these observations are in line with our hypothesis.
Applying token merging together with the Gaussian kernel leads to the best results. Other averaging kernels
were significantly worse.

0 1 2
Gaussian filter σ

0.40

0.42

0.44

0.46

0.48

M
SE

ETTh1

0 1 2 3
Gaussian filter σ

0.20

0.25

0.30

0.35

0.40
Electricity

No merging
Gaussian filter
Token merging
Gaussian+merging

0 1 2 3
Gaussian filter σ

0.6

0.7

0.8

0.9
Traffic

Figure 10: Comparison of the effects of low-pass filtering the input time series with a Gaussian filter and token
merging for Chronos small. The Gaussian filter has a similar effect on MSE as token merging, supporting our
hypothesis that token merging selectively low-pass filters data. However, token merging accelerates the model
unlike the Gaussian filter.

16

A.9 Dependencies on input length

Token merging effectively reduces the number of tokens in a transformer layer. Here, we explore if we can
achieve similar accelerations while maintaining the same prediction quality by varying the number of input
samples m. For better comparison, we keep the predicted time series snippet fixed and only vary the input
sequence.
Our results demonstrate that varying the input length cannot replace token merging. In figure 11, we investigate
input length dependence for two objectives in more detail: First, we explore the token merging setup that leads
to the best MSE and compare the results to the model without merging. Here, token merging yields considerable
throughput increases while improving predictive quality at the same time. Secondly, we compare the fastest
model with token merging, which shows no quality decreases, to a standard model. We find models with token
merging to scale favorable to long sequences compared to models without merging.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Model execution time standardized [s]

0.4

0.5

0.6

M
SE

Input 128
Input 256
Input 512
Input 768
No merging

0.00

0.25

0.50

0.75

1.00

R
at

io
 o

f t
ok

en
s m

er
ge

d

0 512 1024 1536 2048
Input lenght m

0.0

0.2

0.4

Ti
m

e
[s

]

Fastest execution time

No merging
Token merging
Acceleration

1.2

1.4

1.6

1.8

A
cc

el
er

at
io

n
0 512 1024 1536 2048

Input lenght m

0.45

0.50

0.55

M
SE

Best MSE

Figure 11: Effect of different input lengths on forecasting quality (top left) and model execution time (top right)
for token merging in Chronos small models on ETTh1. A shorter input length can not replace token merging
(bottom).

17

A.10 Redundancy of input tokens

0 2000 4000 6000
Number of input tokens t

0

1000

2000

3000

N
um

be
r o

f s
im

ila
r t

ok
en

s Merging limit
Raw tokens
+ Pos. embed.

4 5 6 7
Model execution FLOPs 1e10

0.45

0.50

0.55

M
SE

Fixed merging
Dynamic merging

0.87

0.90

0.93

0.96

0.99

Si
m

ila
rit

y
th

re
sh

ol
d

Figure 12: Relative number of redundant tokens for differ-
ent similarity thresholds on ETTh1 with and without added
positional embedding.

Token merging exploits similarities in data. Intu-
itively, the number of tokens that can be merged
without affecting predictive performance should
depend on the redundancy of the tokens. We ex-
plore factors influencing the redundancy of input
tokens, including their number and positional em-
beddings. In the following, we use Autoformer’s
time stamp positional embedding for our ablation.
First, we investigate whether scaling the number
of input tokens increases average redundancy on
the ETTh1 dataset. As demonstrated in figure 12,
the same relative number of tokens are merged for
a given merging threshold, independent of input
length. Therefore, we suggest scaling the num-
ber of merged tokens in each layer r linearly with
the input length. Positional embeddings add in-
formation about the location of a token within a
sequence. As a result, two identical tokens without
positional embeddings may show considerable differences when positional embeddings are included, potentially
preventing merging. However, figure 12 shows that this effect on token merging is only marginal.

18

A.11 Dynamic merging

0 2000 4000 6000
Number of input tokens t

0

1000

2000

3000

N
um

be
r o

f s
im

ila
r t

ok
en

s Merging limit
Raw tokens
+ Pos. embed.

4 5 6 7
Model execution FLOPs 1e10

0.45

0.50

0.55

M
SE

Fixed merging
Dynamic merging

0.87

0.90

0.93

0.96

0.99

Si
m

ila
rit

y
th

re
sh

ol
d

Figure 13: Comparison of dynamic merging
based on a similarity threshold with fixed r
merging in single-sample settings for Chronos
small on ETTh1.

A fixed merging objective allows for batch processing with-
out needing to pad individual time series to the same length.
However, it enforces a fixed r among independent batch ele-
ments, which might not always be optimal. Determining the
number of tokens to be merged dynamically using a similarity
threshold might increase quality as no dissimilar tokens are
combined. Here, we leverage the single-sample case to explore
dynamic merging in optimal conditions. From a practical per-
spective, this case might be relevant for on-device applications
like smartphones or automated driving.
In figure 13, we compare token merging utilizing a fixed r
to dynamic merging varying the cosine similarity threshold.
Dynamic merging improves quality slightly in most settings.
Therefore, we suggest using a fixed merging schedule for batch
applications and dynamic merging just for the single-sample
case. There is no equivalent r to dynamic merging schedules
as they are similarity-based and strongly layer-dependent. We
report FLOPs as we observe substantial execution overhead in
time measurements.

19

	Introduction
	Token merging
	Results
	Token merging in foundation models
	Token merging in non-foundation models
	Token merging in state-space models

	Conclusion
	Appendix
	Related work
	Derivations
	Experiments
	Token merging in pretrained non-foundation models
	Token merging during training in non-foundation models
	Token merging in foundation models
	Merging patterns
	When does token merging improve model performance
	Dependencies on input length
	Redundancy of input tokens
	Dynamic merging

