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Abstract

We propose a probabilistic interpretation of transformers as unrolled inference
steps, assuming an approximate probabilistic Laplacian Eigenmaps model from
the ProbDR framework. Our derivation shows that at initialization, transformers
perform “linear” dimensionality reduction. We also show that within the trans-
former block, a graph Laplacian term arises from our arguments rather than an
attention matrix (which we interpret as an adjacency matrix). We demonstrate
that simply subtracting the identity from the attention matrix (and thereby taking a
graph diffusion step) improves validation performance on a language model and a
simple vision transformer.

1 Introduction

Transformers, introduced in|Vaswani et al.|(2017)), have been an incredibly successful architecture for
deep learning, leading to vastly scaled models used for language as part of Large Language Models
(LLMs), such as BERT (Devlin et al.,[2019), vision transformers (ViTs) (Dosovitskiy et al.,|2021)),
and foundation models for speech (e.g., wav2vec) (Baevski et al.,|2020), as well as in many other
application areas.

The mathematical basis for their success is an active area of interest. Good generalization cannot be
achieved without some assumptions about the underlying data distribution. In this paper, we show
that transformers can be seen to perform probabilistic dimensionality reduction. Dimensionality
reduction enables generalization by imposing a lower dimensional manifold structure on the high
dimensional data. Our mathematical approach is heavily inspired by the white-box transformer of [Yu
et al.| (2023)), who show that transformers can be viewed as unrolled inference assuming a mixture of
Gaussians on latent representations. We provide an alternate interpretation, arguing that each block of
a single-head transformer, at initialization, performs gradient descent on a variational lower bound of
the probabilistic Laplacian Eigenmaps model of Ravuri et al.| (2023)). As part of a visual experiment,
we show that MNIST flattened images cluster tightly by class when input to a transformer.

We use our interpretation of the transformer algorithm to guide us in improving its generalization
performance by showing that a modification—simply subtracting an identity matrix from the at-
tention matrix (in other words, performing graph diffusion or Laplacian smoothing in the attention
step)—follows from our interpretation. We show that this architectural change can be more performant
on a language model and vision transformer fit on the tiny Shakespeare and OpenWebText datasets
(Karpathy, 2015} |Gokaslan et al.l 2019)), and the downsampled Imagenet datasets (Russakovsky et al.,
2015} [Chrabaszcz et al., 2017) respectively. This work is a proof of concept on how the insights of
Ravuri et al.[(2023) can be used to improve engineering tools.
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Related Work

In our work, we interpret the attention matrix as an adjacency matrix of a nearest-neighbor graph
and show that unrolled optimization in a dimensionality reduction model leads to the transformer
architecture.

The interpretation of attention matrices as matrices of data-point similarity or relevance has a long
history; [Vaswani et al.|(2017)) and many works since, for instance, [Weng| (2018)); |Chefer et al.| (2021)),
have visualized attention matrices corresponding to text inputs, image patches, etc., for the purposes
of interpretability. Recent work has interpreted the attention matrix as an adjacency matrix and shown
that graph convolutions improve the performance of the architecture (Choi et al., 2024). In our work,
we show that the graph diffusion steps also increase the performance of the architecture. In the realm
of graph convolutional networks, [Kipf & Welling| (2017)) motivate their architecture from a spectral
graph convolutional perspective, and using a slightly different derivation of their updates, we find that
an update also involves a graph Laplacian term of the form yx + 6; Lx. More recently, Joshil (2025))
laid out transformer attention matrices as fully connected graph adjacencies to relate transformers to
graph attention networks of |Velickovi€ et al.| (2018).

Our interpretation of the weight matrices as learning rotation and step size suggests that transformers
learn to learn or learn to optimize quickly (i.e., perform optimization in a latent variable model with
just npjocks Steps), which is a well studied field; an overview of the field of learning-to-optimize and
its major ideas is presented in|Chen et al.| (2021]).

2 Background

We recap ProbDR’s variational Laplacian Eigenmaps formulation, which forms the basis of our
interpretation. Laplacian Eigenmaps is a dimensionality reduction algorithm that reduces the size of
a dataset Y € R™*¢ to a smaller matrix of representations X € R™*%a dq << d. The probabilistic
Laplacian Eigenmaps model is a probabilistic interpretation of the algorithm (i.e. a model, inference
within which leads to the algorithm in question). It can be written as follows, where a Wishart
distribution is placed on a precision matrix, of which the graph Laplacian L is an estimate,

d-L(Y) ~W(XXT + 1)1, d).

MAP inference for latent embeddings X € R™% in this model is equivalent to KL minimization
over a random variable I', where the model and variational constraints are written as,

log p(T) = log W(T|(XXT + )", d),  logq(T) = log W(T[L(Y),d),

where L(Y) € S7 is a graph Laplac1a1ﬂ matrix encoding a k-nearest neighbour graph, calculated

using the data Y The model graphs are shown in the footnoteﬂ It was shown in [Ravuri et al.
(2023)) that the maximum of ELBO, which simplifies as —KL(g(T")||p(T")), is attained when the
latent embeddings are estimated as follows,

. . 1/2
X =U, (Adq _ mdq) R,

where Uy, are the d, eigenvectors of the graph Laplacian corresponding to the smallest non-zero
eigenvalues encoded within the diagonal matrix A, and where R € O(n) is an arbitrary rotation
matrix. Further, note that, with an additional constraint, namely XTX =1, the optimal estimate
becomeﬂ

X =U,R.

In the later case, assuming that the empirical mean of the embeddings is zero, the empirical variance
is equal to >, X3, /n =1/n.

'We denote the adjacency matrix as A, hence L = D — A, withD;; = >, A &
The model graph can be drawn as: ®—>® and the variational graph as:

3This is a consequence of the trace minimisation theorem, as the objective is simply tr(LXXT) Any
arbitrary rotation still remains a solution as the objective and the constraint are invariant to rotations.
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The variational interpretation of SimSiam, a Semi-Supervised Learning method

We make a short digression to show how the model graph of ProbDR is not atypical in the represen-
tation learning field. Let Y2, Y?, ... be augmentations/views/modalities of a data point. SimSiam,
introduced in/Chen & He|(2020), is a semi-supervised learning method that constructs representations
of the data by minimising the negative inner product,

Li=— Y FOY)TFY™),

Ma,Mp

where the element in red is under stop-grad, and with f(Y7), f(h(Y™)) € S%~!. Nakamura et al.
(2023)) show that this loss function has a variational interpretation, where,

p(X|Yi) oc [[YMEXKIF(A(Y), k), a(XalYa) oc D 8(XKal F(YT))

m

= KL(qllp) = ¢ = Eqx, v, (log p(Xi i) = = D f(A(OY]™) T F(Y]") = L.

Ma,Mp

Due to the stop-grad applied to the elements of the loss that form the variational constraint, we
note that the model graphs are very similar to ProbDR, in that the variational constraint is treated
as an observed random variable. We see the variational constraint as approximating a reasonable
embedding of the data at every iteration of the optimisation process. As an example, if f were
initialised as a random projection of the data, it is known that certain properties of the data are
retained in the resulting embedding (due to the Johnson-Lindenstrauss lemma). If an optimisation
step corresponding to the model preserves/improves these properties (and does not make f degenerate
or collapse), we can rely on the variational constraint to always provide an approximate but valid
“view” of the data for the model to approach. We apply a similar principle in section 3]

Transformers as unrolled optimisation

We now summarise the idea of |Yu et al.| (2023) on how transformers correspond to unrolled optimi-
sation. Assume a random variable X € R™*%  where d, is the number of latent dimensions and
n is the number of i.i.d. data points (of image patches, text tokens, high-dimensional signals, etc.)
to which rows of the representations X correspond. Assuming a latent variable model on X and a
corresponding probabilistic objective £ (a negative log density — log p(X) or an upper bound on it),
gradient descent with m steps of the objective can be unrolled as a sequence of random variables,

T T T
X; — X9 — ... — X,.

Yu et al.[(2023) showed that the gradient descent operation 7" is very similar to the operations that
occur in an (encoder) transformer block, assuming a Gaussian mixture model with a sparse prior
on the latent representations X. We note that due to the representations being latent, the model
considered in|Yu et al.|(2023)) can also be thought of as a mixture of principal component analysersﬂ
therefore suggesting that transformers perform linear (non-kernelized) dimensionality reduction.

3 Transformers as ProbDR Inference

In this work, we present an alternative interpretation to that of [Yu et al.| (2023)), that shows that
transformers perform gradient descent on a variational objective derived using a variational form of
the probabilistic Laplacian Eigenmaps model of Ravuri et al.|(2023). We rewrite the random variable
corresponding to latents as Z, and treat X as a parameter that encodes latent positions. We modify
the model by adding a prior on the latents,

logp(T, Z) = logW (T|(ZZ" + BI)~') ,d) + logU*(Z).

U* is a matrix von-Mises-Fisher distribution (a uniform over matrices, with rows that lie on a d-

dimensional hypersphere), with an additional constraint that for every row x, Z?q x; = 0 (the rows
have zero mean, and hence the coordinates lie on a hyperplane). Projected optimisation with this
prior will lead to LayerNorm steps during optimisation.

“in a dual sense—acting on the latents and not the components.
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We force the random variable Z to take values X a.s., and we modify the calculation of the graph
Laplacian used in the variational constraint, so that it’s a function of the latents Z and not the data Y,

q(T,Z) = W(T|L(Z), d) * 6(Z|X).

The graph Laplacian is computed as L = I — A(Z) = I — 0(kZZT — M) where o is the softmax
function, applied row-wise (so that the row sums of the input matrix all equal one). A, we argue,
is a soft (differentiable) proxy to the true nearest neighbour adjacency matrix, particularly when
the latent embeddings X are initialised with PCA or random projections, as XX " is a minimal-
error estimate of the empirical covariance of the data, and the covariance between similar points is
expected to be similar in value. This leads to the row-wise softmax being similar and high for similar
points, encoding a similarity structure. M is a mask matrix (for example, if we were to disallow
self-adjacency, M can be set to (I, with « — ©0), and « is a hyperparameter that can be tuned such
that the proxy adjacency A is “close to” a reference nearest neighbour matrix.

In a similar fashion to ProbDR, and the variational interpretation to SimSiam, we treat the variational
constraint as an observed random variable, and hence do not account for gradient updates to terms
leading from the variational constraint. Hence, the KL-div. with stop-grad applied to the variational
constraint is,

KL(¢(T, Z)|[p(T, Z)) o tr(L(XX " + BI)) — logdet(XX " + BI) +c,

Ldutu chg
where Vi : X; € 8% 1 and > j X,; = 0. |Yu et al|(2023) show that a transformer block’s
sequence of updates follows gradient descent of an objective in steps; given an objective £(X) =

Laaa(X) + Lyeg(X), they interpret a transformer block calculations as an alternating optimisation
process involving the updates,

d‘Cdata dﬁreg
dx ’ dx’ -

In this work, we analyze the transformer at initialization (e.g., with all weights set to diagonal
matrices) and consider transformers with single heads, which simplifies the analysis for exposition.
We believe that this can be trivially extended by considering a product-of-experts type distribution as
part of the variational constraint. Furthermore, for this work, we ignore the ReL U activation that is
part of the fully connected segment of the transformer for ease of exposition; however, this can be
re-added simply by incorporating a sparsity prior, derived in|Yu et al.|(2023)), as our regularization
term is identical to theirs (the sparsity terms notwithstanding).

X' +— X —nx X +— X' —nx

‘We now show how an (encoder) transformer block’s operations arise as optimisation steps of our

objective. First, note that, d£/dX = 2LX = 2(A —1I), and a gradient descent update for optimisation
of Lgata follows,

X ¢ X +2n(o0(kXX T — I — M) — D)X.
The element highlighted (which is the degree matrix, in this case, the identity matrix) in red shows
the only difference to a standard attention operation (as the attention matrix is the only term that

appears in the ordinary architecture). Next, we must take a projection step to ensure that Vi : X; €
S%—1 and >, Xi;j = 0, and hence,
X +— LayerNorm(X).

We now optimise w.r.t. L..,. Note that this is exactly the same form of regularisation (apart from the
sparse prior that gives rise to the ReLLU, which is ignored for the sake of exposition, but can trivially
be introduced) as the term that appears in|Yu et al.| (2023)). We refer the reader to that work for a
careful argument for how this term approximately gives rise to a linear update, but here, we simply
approximate dLee /dX = 2(XXT + pI)"'X ~ 2/(d, + 8)X, and our remaining optimisation
steps simply involve this update and another projection,

2n
B+d,
X +— LayerNorm(X),

which completes the transformer block operations, assuming simple initialisations. Note that a key
insight is that the probabilistic interpretation differs from practice in that the former does Laplacian
smoothing (graph diffusion - i.e. the subtraction of an identity matrix, or a degree matrix, from the
attention matrix), whereas the later does not.

X+—X-— X
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An interpretation of the weight matrices

We posit that an update such as X +— X + X'Wy;, can be interpret as a rotation (which, under the
probabilistic Laplacian Eigenmaps model, the solution is invariant to) and a scaling, which, under
our interpretation, corresponds to a learnt step size n = \W|1/ da; this is a restatement of the belief
that transformers learn to learn, in other words, perform optimisation (assuming a dimensionality
reduction or clustering model) with few steps.

4 Experiments

We provide three main experiments to show validity of the ideas presented thus far. In the first, we
show that a transformer initialised in a simple way performs dimensionality reduction, using flattened
images from the MNIST dataset. In the second, we show that removing an identity matrix from the
attention matrix as suggested by our derivations increases performance on the Shakespeare dataset
and a downsampled (16-by-16) version of Imagenet. In the third, we show that training of GPT-2
converges faster with our modification, than without.

4.1 Transformers perform Dimensionality Reduction

The details of our dimensionality reduction experiment are as follows. We set up a sequential neural
network, with an initial projection layer with weight Wy, ~ MN(0,14/d,14,) that is randomly
initialised with Gaussian entries (i.e. a Gaussian random projection). Next, the network consists
of a set of nplocks = 8 encoder transformer blocks. We found that increasing the number of blocks
makes the latents collapse into extremely tight clusters. The LayerNorms have post-normalization
weights associated with them, W, = I/4/n, which is because we expect the optimum to be akin
to eigenvectors of a graph Laplacian, which would have variance 1/n, as explained in the background.

The transformer block weights are W = /knI, Wy = /kn/ql and W, = 27 corresponding
to the query, key, value weight matrices. The query and key matrices were set up such that the
attention matrix, pre-normalisation, has a diagonal equal to k. We set k = 30, based on the clustering
empirically observed in the resulting graph Laplacian’s eigenvectors. Finally, the feed-forward block
is a single layer with weight Wy, = —2n. Note that, based on our derivation (specifically, the scalar
coefficient to the attention matrix),  can be a maximum of 0.5 to avoid magnitudes of the updates
being too large, and so we use the learning rate 7 = 0.4. We use the latent dimension d, = 128.
Passing the flattened images through the transformer can be seen to perform clustering, as illustrated

in fig. [T}

5

Figure 1: The first two latent dimensions corresponding to flattened MNIST images after a random
initialisation (i.e. the initial random projection layer that converts pixels to a latent representation)
(left), and after eight steps through a transformer block (right), showing that transformer blocks
cluster points in the latent space.

4.2 Graph Diffusion improves performance

In the second experiment, we simply replace the attention matrix A within a transformer architecture,
found in nanoGPT (Karpathyl 2022) with the negative graph Laplacian A — I, and run the model
multiple times on the Shakespeare dataset. We also repurpose the code to build a small vision
transformer, and train it naively (i.e. without random augmentations, learning rate schedules, etc.)
on the downsampled Imagenet dataset, wherein all images are 16 by 16 pixels. On this dataset, a
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benchmark given in (Chrabaszcz et al.|(2017)) achieves 40% validation accuracy, whereas our naive
ViT acheives around 26%. In both cases however, validation performance improves when we replace
the attention matrix by the negative graph Laplacian.

nanoGPT Shakespeare VIT Imagenet 16*16

1470 \
1465 /
\ i

1.460 /
1455

Vanilla Laplacian Smth Vanilla Laplacian Smth
Method Method

NN
o o
o

o
S

Validation Loss
Validation Accuracy

o

1.450

o
o

1.445

Figure 2: Left: validation losses on the Shakespeare dataset and right: validation accuracies on a
downsampled Imagenet dataset, showing that Laplacian smoothing achieves a better performance in
both cases.

4.3 GPT-2 converges faster with Graph Diffusion

In fig. 3] we show the difference in training losses between a run without graph diffusion, and a run
with our modification. We use the same pre-training strategy laid out in|Karpathy| (2022), however,
we train our GPT-2 model (with about 125M parameters) on a single GH200 GPU (instead of using
torch parallelisation), and we increase batch size and learning rate by a factor of six to make use of
the large memory available.

nanoGPT-2

cian Smth)

oy

Train loss diff, (Vanilla - Lapla
! .

Figure 3: Visualisation of the difference in training losses with and without graph diffusion. A
positive difference indicates that the graph diffusion run has achieved a higher performance at any
iteration just before convergence. This shows that the graph diffusion run converges slightly faster
than the run without any modifications.

5 Conclusion

We have shown that transformer blocks correspond to unrolled inference assuming a probabilistic
Laplacian Eigenmaps model, and that a simple architectural tweak—using a negative Laplacian A — 1
in place of the attention matrix A—yields consistent gains in language and vision settings. Future
work will make more careful approximations of the ideas presented, expand on the experimental
validation (current limitations of the work), explore whether non-linear (kernelized) probabilistic
models of dimensionality reduction (from Ravuri & Lawrence (2024EI) can increase performance in
models with lower latent dimensionality, and relate transformers to other generalized architectures.
Code used for this paper can be found at (link removed for anonymity) (note that, for the GPT
experiments, this is a very simple modification of Karpathy| (2022)).

>A simplified version of their objective can be stated as tr(LXX ") + > V/(A+ X =X I*), and it can
be shown that an update step with this new regularization term also involves a graph-diffusion-type update.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code provided to run model and visualise data. The data must be obtained
independently due to license reasons, but preparation code has also provided (link removed
for anonymity).

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Settings needed for understanding the paper have been provided, most other
experimental settings are based on Karpathy| (2022).

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars provided for smaller experiments, for training GPT-2 it has not been
as it’s computationally expensive to run.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: The GPU used has been provided, for most other experiments, a much smaller
GPU will suffice.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Theoretical research.
Guidelines:

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: NA
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The code that our project is based on is open source and has been cited.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: NA
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: NA

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

10


https://neurips.cc/public/EthicsGuidelines

330 Answer: [Yes]
331 Justification: Details have been provided on the experimental setup.
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