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Abstract

We propose a probabilistic interpretation of transformers as unrolled inference1

steps, assuming an approximate probabilistic Laplacian Eigenmaps model from2

the ProbDR framework. Our derivation shows that at initialization, transformers3

perform “linear” dimensionality reduction. We also show that within the trans-4

former block, a graph Laplacian term arises from our arguments rather than an5

attention matrix (which we interpret as an adjacency matrix). We demonstrate6

that simply subtracting the identity from the attention matrix (and thereby taking a7

graph diffusion step) improves validation performance on a language model and a8

simple vision transformer.9

1 Introduction10

Transformers, introduced in Vaswani et al. (2017), have been an incredibly successful architecture for11

deep learning, leading to vastly scaled models used for language as part of Large Language Models12

(LLMs), such as BERT (Devlin et al., 2019), vision transformers (ViTs) (Dosovitskiy et al., 2021),13

and foundation models for speech (e.g., wav2vec) (Baevski et al., 2020), as well as in many other14

application areas.15

The mathematical basis for their success is an active area of interest. Good generalization cannot be16

achieved without some assumptions about the underlying data distribution. In this paper, we show17

that transformers can be seen to perform probabilistic dimensionality reduction. Dimensionality18

reduction enables generalization by imposing a lower dimensional manifold structure on the high19

dimensional data. Our mathematical approach is heavily inspired by the white-box transformer of Yu20

et al. (2023), who show that transformers can be viewed as unrolled inference assuming a mixture of21

Gaussians on latent representations. We provide an alternate interpretation, arguing that each block of22

a single-head transformer, at initialization, performs gradient descent on a variational lower bound of23

the probabilistic Laplacian Eigenmaps model of Ravuri et al. (2023). As part of a visual experiment,24

we show that MNIST flattened images cluster tightly by class when input to a transformer.25

We use our interpretation of the transformer algorithm to guide us in improving its generalization26

performance by showing that a modification—simply subtracting an identity matrix from the at-27

tention matrix (in other words, performing graph diffusion or Laplacian smoothing in the attention28

step)—follows from our interpretation. We show that this architectural change can be more performant29

on a language model and vision transformer fit on the tiny Shakespeare and OpenWebText datasets30

(Karpathy, 2015; Gokaslan et al., 2019), and the downsampled Imagenet datasets (Russakovsky et al.,31

2015; Chrabaszcz et al., 2017) respectively. This work is a proof of concept on how the insights of32

Ravuri et al. (2023) can be used to improve engineering tools.33
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Related Work34

In our work, we interpret the attention matrix as an adjacency matrix of a nearest-neighbor graph35

and show that unrolled optimization in a dimensionality reduction model leads to the transformer36

architecture.37

The interpretation of attention matrices as matrices of data-point similarity or relevance has a long38

history; Vaswani et al. (2017) and many works since, for instance, Weng (2018); Chefer et al. (2021),39

have visualized attention matrices corresponding to text inputs, image patches, etc., for the purposes40

of interpretability. Recent work has interpreted the attention matrix as an adjacency matrix and shown41

that graph convolutions improve the performance of the architecture (Choi et al., 2024). In our work,42

we show that the graph diffusion steps also increase the performance of the architecture. In the realm43

of graph convolutional networks, Kipf & Welling (2017) motivate their architecture from a spectral44

graph convolutional perspective, and using a slightly different derivation of their updates, we find that45

an update also involves a graph Laplacian term of the form θ0x+ θ1Lx. More recently, Joshi (2025)46

laid out transformer attention matrices as fully connected graph adjacencies to relate transformers to47

graph attention networks of Veličković et al. (2018).48

Our interpretation of the weight matrices as learning rotation and step size suggests that transformers49

learn to learn or learn to optimize quickly (i.e., perform optimization in a latent variable model with50

just nblocks steps), which is a well studied field; an overview of the field of learning-to-optimize and51

its major ideas is presented in Chen et al. (2021).52

2 Background53

We recap ProbDR’s variational Laplacian Eigenmaps formulation, which forms the basis of our
interpretation. Laplacian Eigenmaps is a dimensionality reduction algorithm that reduces the size of
a dataset Y ∈ Rn×d to a smaller matrix of representations X ∈ Rn×dq , dq << d. The probabilistic
Laplacian Eigenmaps model is a probabilistic interpretation of the algorithm (i.e. a model, inference
within which leads to the algorithm in question). It can be written as follows, where a Wishart
distribution is placed on a precision matrix, of which the graph Laplacian L is an estimate,

d · L(Y) ∼ W((XXT + βI)−1, d).

MAP inference for latent embeddings X ∈ Rn,dq in this model is equivalent to KL minimization
over a random variable Γ, where the model and variational constraints are written as,

log p(Γ) = logW(Γ|(XXT + βI)−1, d), log q(Γ) = logW(Γ|L(Y), d),

where L(Y) ∈ Sn
+ is a graph Laplacian1 matrix encoding a k-nearest neighbour graph, calculated

using the data Y. The model graphs are shown in the footnote2. It was shown in Ravuri et al.
(2023) that the maximum of ELBO, which simplifies as −KL(q(Γ)∥p(Γ)), is attained when the
latent embeddings are estimated as follows,

X̂ = Udq

(
Λ−1

dq
− βIdq

)1/2

R,

where Udq are the dq eigenvectors of the graph Laplacian corresponding to the smallest non-zero
eigenvalues encoded within the diagonal matrix Λ, and where R ∈ O(n) is an arbitrary rotation
matrix. Further, note that, with an additional constraint, namely X⊤X = I, the optimal estimate
becomes3,

X̂ = Udq
R.

In the later case, assuming that the empirical mean of the embeddings is zero, the empirical variance54

is equal to
∑

k X̂
2
kj/n = 1/n.55

1We denote the adjacency matrix as A, hence L = D−A, with Dii =
∑

k Aik.
2The model graph can be drawn as: X Γ and the variational graph as: Y Γ .
3This is a consequence of the trace minimisation theorem, as the objective is simply tr(LXXT ). Any

arbitrary rotation still remains a solution as the objective and the constraint are invariant to rotations.
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The variational interpretation of SimSiam, a Semi-Supervised Learning method56

We make a short digression to show how the model graph of ProbDR is not atypical in the represen-
tation learning field. Let Ya

i ,Y
b
i , ... be augmentations/views/modalities of a data point. SimSiam,

introduced in Chen & He (2020), is a semi-supervised learning method that constructs representations
of the data by minimising the negative inner product,

Li = −
∑

ma,mb

f(h(Yma
i ))⊤f(Ymb

i ),

where the element in red is under stop-grad, and with f(Ym
i ), f(h(Ym

i )) ∈ Sdq−1. Nakamura et al.57

(2023) show that this loss function has a variational interpretation, where,58

p(Xi|Yi) ∝
∏
m

vMF(Xi|f(h(Ym
i )), κ), q(Xi|Yi) ∝

∑
m

δ(Xi|f(Ym
i ))

⇒ KL(q||p) = c− Eq(Xi|Yi)(log p(Xi|Yi)) = −
∑

ma,mb

f(h(Yma
i ))⊤f(Ymb

i ) = Li.

Due to the stop-grad applied to the elements of the loss that form the variational constraint, we59

note that the model graphs are very similar to ProbDR, in that the variational constraint is treated60

as an observed random variable. We see the variational constraint as approximating a reasonable61

embedding of the data at every iteration of the optimisation process. As an example, if f were62

initialised as a random projection of the data, it is known that certain properties of the data are63

retained in the resulting embedding (due to the Johnson–Lindenstrauss lemma). If an optimisation64

step corresponding to the model preserves/improves these properties (and does not make f degenerate65

or collapse), we can rely on the variational constraint to always provide an approximate but valid66

“view” of the data for the model to approach. We apply a similar principle in section 3.67

Transformers as unrolled optimisation68

We now summarise the idea of Yu et al. (2023) on how transformers correspond to unrolled optimi-
sation. Assume a random variable X ∈ Rn×dq , where dq is the number of latent dimensions and
n is the number of i.i.d. data points (of image patches, text tokens, high-dimensional signals, etc.)
to which rows of the representations X correspond. Assuming a latent variable model on X and a
corresponding probabilistic objective L (a negative log density − log p(X) or an upper bound on it),
gradient descent with m steps of the objective can be unrolled as a sequence of random variables,

X1
T−→ X2

T−→ ...
T−→ Xs.

Yu et al. (2023) showed that the gradient descent operation T is very similar to the operations that69

occur in an (encoder) transformer block, assuming a Gaussian mixture model with a sparse prior70

on the latent representations X. We note that due to the representations being latent, the model71

considered in Yu et al. (2023) can also be thought of as a mixture of principal component analysers4,72

therefore suggesting that transformers perform linear (non-kernelized) dimensionality reduction.73

3 Transformers as ProbDR Inference74

In this work, we present an alternative interpretation to that of Yu et al. (2023), that shows that
transformers perform gradient descent on a variational objective derived using a variational form of
the probabilistic Laplacian Eigenmaps model of Ravuri et al. (2023). We rewrite the random variable
corresponding to latents as Z, and treat X as a parameter that encodes latent positions. We modify
the model by adding a prior on the latents,

log p(Γ,Z) = logW
(
Γ|(ZZ⊤ + βI)−1

)
, d) + logU∗(Z).

U∗ is a matrix von-Mises-Fisher distribution (a uniform over matrices, with rows that lie on a dq-75

dimensional hypersphere), with an additional constraint that for every row x,
∑dq

i xi = 0 (the rows76

have zero mean, and hence the coordinates lie on a hyperplane). Projected optimisation with this77

prior will lead to LayerNorm steps during optimisation.78

4in a dual sense—acting on the latents and not the components.
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We force the random variable Z to take values X a.s., and we modify the calculation of the graph
Laplacian used in the variational constraint, so that it’s a function of the latents Z and not the data Y,

q(Γ,Z) =W(Γ|L̃(Z), d) ∗ δ(Z|X).

The graph Laplacian is computed as L̃ = I− Ã(Z) = I− σ(κZZT −M) where σ is the softmax79

function, applied row-wise (so that the row sums of the input matrix all equal one). Ã, we argue,80

is a soft (differentiable) proxy to the true nearest neighbour adjacency matrix, particularly when81

the latent embeddings X are initialised with PCA or random projections, as XX⊤ is a minimal-82

error estimate of the empirical covariance of the data, and the covariance between similar points is83

expected to be similar in value. This leads to the row-wise softmax being similar and high for similar84

points, encoding a similarity structure. M is a mask matrix (for example, if we were to disallow85

self-adjacency, M can be set to ιI, with ι→∞), and κ is a hyperparameter that can be tuned such86

that the proxy adjacency Ã is “close to” a reference nearest neighbour matrix.87

In a similar fashion to ProbDR, and the variational interpretation to SimSiam, we treat the variational88

constraint as an observed random variable, and hence do not account for gradient updates to terms89

leading from the variational constraint. Hence, the KL-div. with stop-grad applied to the variational90

constraint is,91

KL
(
q(Γ,Z)∥p(Γ,Z)

)
∝ tr

(
L̃(XX⊤ + βI)

)︸ ︷︷ ︸
Ldata

− log det(XX⊤ + βI)︸ ︷︷ ︸
Lreg

+c,

where ∀i : Xi ∈ Sdq−1 and
∑

j Xij = 0. Yu et al. (2023) show that a transformer block’s92

sequence of updates follows gradient descent of an objective in steps; given an objective L(X) =93

Ldata(X) + Lreg(X), they interpret a transformer block calculations as an alternating optimisation94

process involving the updates,95

X′ ←− X− η ∗ dLdata

dX
, X←− X′ − η ∗

dLreg

dX′ .

In this work, we analyze the transformer at initialization (e.g., with all weights set to diagonal96

matrices) and consider transformers with single heads, which simplifies the analysis for exposition.97

We believe that this can be trivially extended by considering a product-of-experts type distribution as98

part of the variational constraint. Furthermore, for this work, we ignore the ReLU activation that is99

part of the fully connected segment of the transformer for ease of exposition; however, this can be100

re-added simply by incorporating a sparsity prior, derived in Yu et al. (2023), as our regularization101

term is identical to theirs (the sparsity terms notwithstanding).102

We now show how an (encoder) transformer block’s operations arise as optimisation steps of our103

objective. First, note that, dL/dX = 2L̃X = 2(Ã−I), and a gradient descent update for optimisation104

of Ldata follows,105

X←− X+ 2η(σ(κXX⊤ − βI−M)− I)X.

The element highlighted (which is the degree matrix, in this case, the identity matrix) in red shows106

the only difference to a standard attention operation (as the attention matrix is the only term that107

appears in the ordinary architecture). Next, we must take a projection step to ensure that ∀i : Xi ∈108

Sdq−1 and
∑

j Xij = 0, and hence,109

X←− LayerNorm(X).

We now optimise w.r.t. Lreg. Note that this is exactly the same form of regularisation (apart from the110

sparse prior that gives rise to the ReLU, which is ignored for the sake of exposition, but can trivially111

be introduced) as the term that appears in Yu et al. (2023). We refer the reader to that work for a112

careful argument for how this term approximately gives rise to a linear update, but here, we simply113

approximate dLreg/dX = 2(XXT + βI)−1X ≈ 2/(dq + β)X, and our remaining optimisation114

steps simply involve this update and another projection,115

X←− X− 2η

β + dq
X

X←− LayerNorm(X),

which completes the transformer block operations, assuming simple initialisations. Note that a key116

insight is that the probabilistic interpretation differs from practice in that the former does Laplacian117

smoothing (graph diffusion - i.e. the subtraction of an identity matrix, or a degree matrix, from the118

attention matrix), whereas the later does not.119
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An interpretation of the weight matrices120

We posit that an update such as X←− X+XWlin can be interpret as a rotation (which, under the121

probabilistic Laplacian Eigenmaps model, the solution is invariant to) and a scaling, which, under122

our interpretation, corresponds to a learnt step size η = |W|1/dq ; this is a restatement of the belief123

that transformers learn to learn, in other words, perform optimisation (assuming a dimensionality124

reduction or clustering model) with few steps.125

4 Experiments126

We provide three main experiments to show validity of the ideas presented thus far. In the first, we127

show that a transformer initialised in a simple way performs dimensionality reduction, using flattened128

images from the MNIST dataset. In the second, we show that removing an identity matrix from the129

attention matrix as suggested by our derivations increases performance on the Shakespeare dataset130

and a downsampled (16-by-16) version of Imagenet. In the third, we show that training of GPT-2131

converges faster with our modification, than without.132

4.1 Transformers perform Dimensionality Reduction133

The details of our dimensionality reduction experiment are as follows. We set up a sequential neural134

network, with an initial projection layer with weight Wproj ∼MN (0, Id/d, Idq
) that is randomly135

initialised with Gaussian entries (i.e. a Gaussian random projection). Next, the network consists136

of a set of nblocks = 8 encoder transformer blocks. We found that increasing the number of blocks137

makes the latents collapse into extremely tight clusters. The LayerNorms have post-normalization138

weights associated with them, Wnorm = I/
√
n, which is because we expect the optimum to be akin139

to eigenvectors of a graph Laplacian, which would have variance 1/n, as explained in the background.140

The transformer block weights are Wq =
√
κnI,Wk =

√
κn/qI and Wv = 2η corresponding141

to the query, key, value weight matrices. The query and key matrices were set up such that the142

attention matrix, pre-normalisation, has a diagonal equal to κ. We set κ = 30, based on the clustering143

empirically observed in the resulting graph Laplacian’s eigenvectors. Finally, the feed-forward block144

is a single layer with weight Wlin = −2η. Note that, based on our derivation (specifically, the scalar145

coefficient to the attention matrix), η can be a maximum of 0.5 to avoid magnitudes of the updates146

being too large, and so we use the learning rate η = 0.4. We use the latent dimension dq = 128.147

Passing the flattened images through the transformer can be seen to perform clustering, as illustrated148

in fig. 1.

Figure 1: The first two latent dimensions corresponding to flattened MNIST images after a random
initialisation (i.e. the initial random projection layer that converts pixels to a latent representation)
(left), and after eight steps through a transformer block (right), showing that transformer blocks
cluster points in the latent space.

149

4.2 Graph Diffusion improves performance150

In the second experiment, we simply replace the attention matrix A within a transformer architecture,151

found in nanoGPT (Karpathy, 2022) with the negative graph Laplacian A− I, and run the model152

multiple times on the Shakespeare dataset. We also repurpose the code to build a small vision153

transformer, and train it naively (i.e. without random augmentations, learning rate schedules, etc.)154

on the downsampled Imagenet dataset, wherein all images are 16 by 16 pixels. On this dataset, a155
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benchmark given in Chrabaszcz et al. (2017) achieves 40% validation accuracy, whereas our naïve156

ViT acheives around 26%. In both cases however, validation performance improves when we replace157

the attention matrix by the negative graph Laplacian.

Figure 2: Left: validation losses on the Shakespeare dataset and right: validation accuracies on a
downsampled Imagenet dataset, showing that Laplacian smoothing achieves a better performance in
both cases.

158

4.3 GPT-2 converges faster with Graph Diffusion159

In fig. 3, we show the difference in training losses between a run without graph diffusion, and a run160

with our modification. We use the same pre-training strategy laid out in Karpathy (2022), however,161

we train our GPT-2 model (with about 125M parameters) on a single GH200 GPU (instead of using162

torch parallelisation), and we increase batch size and learning rate by a factor of six to make use of163

the large memory available.164

Figure 3: Visualisation of the difference in training losses with and without graph diffusion. A
positive difference indicates that the graph diffusion run has achieved a higher performance at any
iteration just before convergence. This shows that the graph diffusion run converges slightly faster
than the run without any modifications.

5 Conclusion165

We have shown that transformer blocks correspond to unrolled inference assuming a probabilistic166

Laplacian Eigenmaps model, and that a simple architectural tweak—using a negative Laplacian A−I167

in place of the attention matrix A—yields consistent gains in language and vision settings. Future168

work will make more careful approximations of the ideas presented, expand on the experimental169

validation (current limitations of the work), explore whether non-linear (kernelized) probabilistic170

models of dimensionality reduction (from Ravuri & Lawrence (2024)5) can increase performance in171

models with lower latent dimensionality, and relate transformers to other generalized architectures.172

Code used for this paper can be found at (link removed for anonymity) (note that, for the GPT173

experiments, this is a very simple modification of Karpathy (2022)).174

5A simplified version of their objective can be stated as tr(LXX⊤) +
∑

ij 1/(1 + ∥Xi −Xj∥2), and it can
be shown that an update step with this new regularization term also involves a graph-diffusion-type update.
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Justification: Code provided to run model and visualise data. The data must be obtained260

independently due to license reasons, but preparation code has also provided (link removed261

for anonymity).262

6. Experimental setting/details263

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-264

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the265

results?266

Answer: [Yes]267

Justification: Settings needed for understanding the paper have been provided, most other268

experimental settings are based on Karpathy (2022).269

7. Experiment statistical significance270

Question: Does the paper report error bars suitably and correctly defined or other appropriate271

information about the statistical significance of the experiments?272

Answer: [Yes]273

Justification: Error bars provided for smaller experiments, for training GPT-2 it has not been274

as it’s computationally expensive to run.275

8. Experiments compute resources276

Question: For each experiment, does the paper provide sufficient information on the com-277

puter resources (type of compute workers, memory, time of execution) needed to reproduce278

the experiments?279

Answer: [Yes]280
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Justification: The GPU used has been provided, for most other experiments, a much smaller281

GPU will suffice.282

9. Code of ethics283

Question: Does the research conducted in the paper conform, in every respect, with the284

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?285

Answer: [Yes]286

Justification: Yes.287

10. Broader impacts288

Question: Does the paper discuss both potential positive societal impacts and negative289

societal impacts of the work performed?290

Answer: [No]291

Justification: Theoretical research.292

Guidelines:293

11. Safeguards294

Question: Does the paper describe safeguards that have been put in place for responsible295

release of data or models that have a high risk for misuse (e.g., pretrained language models,296

image generators, or scraped datasets)?297

Answer: [NA]298

Justification: NA299

12. Licenses for existing assets300

Question: Are the creators or original owners of assets (e.g., code, data, models), used in301

the paper, properly credited and are the license and terms of use explicitly mentioned and302

properly respected?303

Answer: [Yes]304

Justification: The code that our project is based on is open source and has been cited.305

13. New assets306

Question: Are new assets introduced in the paper well documented and is the documentation307

provided alongside the assets?308

Answer: [NA]309

Justification: NA310

14. Crowdsourcing and research with human subjects311

Question: For crowdsourcing experiments and research with human subjects, does the paper312

include the full text of instructions given to participants and screenshots, if applicable, as313

well as details about compensation (if any)?314

Answer: [NA]315

Justification: NA316

15. Institutional review board (IRB) approvals or equivalent for research with human317

subjects318

Question: Does the paper describe potential risks incurred by study participants, whether319

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)320

approvals (or an equivalent approval/review based on the requirements of your country or321

institution) were obtained?322

Answer: [NA]323

Justification: NA324

16. Declaration of LLM usage325

Question: Does the paper describe the usage of LLMs if it is an important, original, or326

non-standard component of the core methods in this research? Note that if the LLM is used327

only for writing, editing, or formatting purposes and does not impact the core methodology,328

scientific rigorousness, or originality of the research, declaration is not required.329
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Answer: [Yes]330

Justification: Details have been provided on the experimental setup.331
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