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ABSTRACT

This paper presents a novel approach to object completion, with the primary goal1

of reconstructing a complete object from its partially visible components. Our2

method, named MaskComp, delineates the completion process through iterative3

stages of generation and segmentation. In each iteration, the object mask is pro-4

vided as an additional condition to boost image generation, and, in return, the5

generated images can lead to a more accurate mask by fusing the segmentation of6

images. We demonstrate that the combination of one generation and one segmen-7

tation stage effectively functions as a mask denoiser. Through alternation between8

the generation and segmentation stages, the partial object mask is progressively re-9

fined, providing precise shape guidance and yielding superior object completion10

results. Our experiments demonstrate the superiority of MaskComp over existing11

approaches, e.g., ControlNet and Stable Diffusion, establishing it as an effective12

solution for object completion.13

1 INTRODUCTION14

In recent years, creative image editing has attracted substantial attention and seen significant ad-15

vancements. Recent breakthroughs in image generation techniques have delivered impressive results16

across various image editing tasks, including image inpainting (Xie et al., 2023), composition (Yang17

et al., 2023a) and colorization (Chang et al., 2023). However, another intriguing challenge lies in the18

domain of object completion. This task involves the restoration of partially occluded objects within19

an image. Unlike other conditional generation tasks, e.g., image inpainting, which only generates20

and integrates complete objects into images, object completion requires a seamless alignment be-21

tween the generated content and the given partial object, which imposes more challenges to recover22

realistic and comprehensive object shapes.23

To guide the generative model in producing images according to a specific shape, additional con-24

ditions can be incorporated (Koley et al., 2023; Yang et al., 2023b). Image segmentation has been25

shown to be a critical technique for enhancing the realism and stability of generative models by26
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Figure 1: Illustration of iterative mask denoising (IMD). Starting from an initial partial object
and its corresponding mask, IMD utilizes alternating generation and segmentation stages to pro-
gressively refine the partial mask until it converges to the complete mask. With the complete mask
as the condition, the final complete object can be seamlessly generated.
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providing pixel-level guidance during the synthesis process. Recent research, as exemplified in the27

latest study by Zhang et al. (Zhang et al., 2023), showcases that, by supplying object segmentations28

as additional conditions for shaping the objects, it becomes possible to generate complex images of29

remarkable fidelity.30

In this paper, we present MaskComp, a novel approach that bridges image generation and segmenta-31

tion for effective object completion. MaskComp is rooted in a fundamental observation: the quality32

of the resulting image in the mask-conditioned generation is directly influenced by the quality of the33

conditioned mask (Zhang et al., 2023). That says the more detailed the conditioned mask, the more34

realistic the generated image. Based on this observation, unlike prior object completion methods that35

solely rely on partially visible objects for generating complete objects, MaskComp introduces an ad-36

ditional mask condition combined with an interactive mask denoising (IMD) process, progressively37

refining the incomplete mask to provide comprehensive shape guidance to the object completion.38

Our approach formulates the partial mask as a noisy form of the complete mask and the IMD process39

is designed to iteratively denoise this noisy partial mask, eventually leading to the attainment of the40

complete mask. As illustrated in Figure 1, each IMD step comprises two crucial stages: generation41

and segmentation. The generation stage’s objective is to produce complete object images condition-42

ing on the visible portion of the target object and an object mask. Meanwhile, the segmentation stage43

is geared towards segmenting the object mask within the generated images and aggregating these44

segmented masks to obtain a superior mask that serves as the condition for the subsequent IMD step.45

By seamlessly integrating the generation and segmentation stages, we demonstrate that each IMD46

step effectively operates as a mask-denoising mechanism, taking a partially observed mask as input47

and yielding a progressively more complete mask as output. Consequently, through this iterative48

mask denoising process, the originally incomplete mask evolves into a satisfactory complete object49

mask, enabling the generation of complete objects guided by this refined mask.50

The effectiveness of MaskComp is demonstrated by its capacity to address scenarios involving heav-51

ily occluded objects and its ability to generate realistic object representations through the utilization52

of mask guidance. In contrast to recent progress in the field of image generation research, our53

contributions can be succinctly outlined as follows:54

• We explore and unveil the benefits of incorporating object masks into the object completion55

task. A novel approach, MaskComp, is proposed to seamlessly bridge the generation and56

segmentation.57

• We formulate the partial mask as a form of noisy complete mask and introduce an itera-58

tive mask denoising (IMD) process, consisting of alternating generation and segmentation59

stages, to refine the object mask and thus improve the object completion.60

• We conduct extensive experiments for analysis and comparison, the results of which indi-61

cate the superiority and robustness of MaskComp against previous methods, e.g., Stable62

Diffusion.63

2 RELATED WORKS64

2.1 CONDITIONAL IMAGE GENERATION65

Conditional image generation Van den Oord et al. (2016); Lee et al. (2022); Gafni et al. (2022); Li66

et al. (2023b) involves the process of creating images based on specific conditions. These conditions67

can take various forms, such as layout (Li et al., 2020; Sun & Wu, 2019; Zhao et al., 2019), sketch68

(Koley et al., 2023), or semantic masks (Gu et al., 2019). For instance, Cascaded Diffusion Mod-69

els (Ho et al., 2022) utilize ImageNet class labels as conditions, employing a two-stage pipeline of70

multiple diffusion models to generate high-resolution images. Meanwhile, in the work by (Sehwag71

et al., 2022), diffusion models are guided to produce novel images from low-density regions within72

the data manifold. Another noteworthy approach is CLIP (Radford et al., 2021), which has gained73

widespread adoption in guiding image generation in GANs using text prompts (Galatolo et al., 2021;74

Gal et al., 2022; Zhou et al., 2021b). In the realm of diffusion models, Semantic Diffusion Guidance75

(Liu et al., 2023) explores a unified framework for diffusion-based image generation with language,76

image, or multi-modal conditions. Dhariwal et al. (Dhariwal & Nichol, 2021) employ an ablated77

diffusion model that utilizes the gradients of a classifier to guide the diffusion process, balancing78
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diversity and fidelity. Furthermore, Ho et al. (Ho & Salimans, 2022) introduce classifier-free guid-79

ance in conditional diffusion models, incorporating score estimates from both a conditional diffusion80

model and a jointly trained unconditional diffusion model.81

2.2 IMAGE SEGMENTATION82

In the realm of image segmentation, traditional approaches have traditionally leaned on domain-83

specific network architectures to tackle various segmentation tasks, including semantic, instance,84

and panoptic segmentation (Long et al., 2015; Chen et al., 2015; He et al., 2017; Neven et al.,85

2019; Newell et al., 2017; Wang et al., 2020b; Cheng et al., 2020; Wang et al., 2021; 2020a; Li et al.,86

2023a). However, recent strides in transformer-based methodologies, have highlighted the effective-87

ness of treating these tasks as mask classification challenges (Cheng et al., 2021; Zhang et al., 2021;88

Cheng et al., 2022; Carion et al., 2020). MaskFormer (Cheng et al., 2021) and its enhanced variant89

(Cheng et al., 2022) have introduced transformer-based architectures, coupling each mask predic-90

tion with a learnable query. Unlike prior techniques that learn semantic labels at the pixel level,91

they directly link semantic labels with mask predictions through query-based prediction. Notably,92

the Segment Anything Model (SAM) (Kirillov et al., 2023) represents a cutting-edge segmentation93

model that accommodates diverse visual and textual cues for zero-shot object segmentation. Simi-94

larly, SEEM (Zou et al., 2023) is another universal segmentation model that extends its capabilities95

to include object referencing through audio and scribble inputs. By leveraging those foundation96

segmentation models, e.g., SAM and SEEM, a number of downstream tasks can be boosted (Ma &97

Wang, 2023; Cen et al., 2023; Yu et al., 2023).98

3 OBJECT COMPLETION VIA ITERATIVE MASK DENOISING99

Problem definition. We address the task of object completion task, wherein the objective is to100

predict the image of a complete object Ic ∈ R3×H×W , based on its visible (non-occluded) part101

Ip ∈ R3×H×W .102
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Figure 2: Object completion with different mask conditions.

We first discuss the high-level idea103

of the proposed Iterative Mask104

Denoising (IMD) and then illustrate105

the module details in Section 3.1 and106

Section 3.2. The core of IMD is107

based on an essential observation:108

In the mask-conditioned generation,109

the quality of the generated object110

is intricately tied to the quality of111

the conditioned mask. As shown in112

Fig. 2, we visualize the completion113

result of the same partial object but114

with different conditioning masks. We notice a more complete object mask condition will result in115

a more complete and realistic object image. Based on this observation, high-quality occluded object116

completion can be achieved by providing a complete object mask as the condition.117

However, in real-world scenarios, the complete object mask is not available. To address this prob-118

lem, we propose the IMD process which leverages intertwined generation and segmentation pro-119

cesses to gradually approach the partial mask to the complete mask. Given a partially visible object120

Ip and its corresponding partial mask Mp, the conventional object completion task aims to find a121

generative model G such that Ic ← G(Ip), where Ic is the complete object. Here, we additionally122

add the partial mask Mp to the condition Ic ← G(Ip,Mp), where Mp can be assumed as an addition123

of the complete mask and a noise Mp = Mc +∆. By introducing a segmentation model S, we can124

find a mask denoiser S(G(·)) from the object completion model:125

Mc ← S(G(Ip,Mc +∆)) (1)

where Mc = S(Ic). Starting from the visible mask M0 = Mp, as shown in Fig. 1, we repeatedly126

apply the mask denoiser S(G(·)) to gradually approach the visible mask Mp to complete mask127

Mc. In each step, the input mask is denoised with a stack of generation and segmentation stages.128

Specifically, as the S(G(·)) includes a generative process, we can obtain a set of estimations of129
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Figure 3: Illustation of Mask-denoising ControlNet. The Mask-denoising Controlnet aims to
recover the complete object from the partial object and a conditioning mask. Given a complete
object Ic and its corresponding mask Mc, we first occlude the complete object and keep the visible
part as Ip. Specifically, we sample a mask M from the interpolations between visible and complete
masks as the condition of the generative model during training.

denoised mask {M (i)
t }. Here, we utilize a function V(·) to find a more complete and reasonable130

mask from the N sampled masks and leverage it as the input mask for the next iteration to further131

denoise. The updating rule can be written as:132

M̂t = V(M (1)
t , · · · ,M (N)

t ), {M (i)
t }Ni=1 = S(G(Ip, M̂t−1)) (2)

where N is the number of sampled images in each iteration. With a satisfactory complete mask M̂T133

after T iterations, the object completion can be achieved accordingly by G(Ip, M̂T ). The mathemat-134

ical explanation of the process will be discussed in Section 3.3.135

3.1 GENERATION STAGE136

We introduce a mask-denoising ControlNet as the generative model G for object completion. Dif-137

ferent from the conventional object completion methods that solely rely on the visible part of the138

object, we introduce an additional mask term as the condition.139

Mask as a condition. In the initial stage of our pipeline, as illustrated on the left side of Fig. 3,140

we begin with a complete object Ic and its corresponding mask Mc. Our approach commences by141

occluding the complete object, retaining only the partially visible portion as Ip. Recall that the mask-142

denoising procedure initiates with the partial mask Mp and culminates with the complete mask Mc.143

To facilitate this iterative denoising, the model must effectively handle any mask that falls within the144

interpolation between the initial partial mask and the target complete mask. Consequently, during145

training, we introduce a mask M obtained from interpolations between the partial and complete146

masks as a conditioning factor for the generative model.147

Diffusion model. Diffusion models have achieved notable progress in synthesizing unprecedented148

image quality and have been successfully applied to many text-based image generation works (Rom-149

bach et al., 2022; Zhang et al., 2023). For our object completion task, the complete object can be150

generated by leveraging the diffusion process.151

Specifically, the diffusion model generates image latent x by gradually reversing a Markov forward152

process. As shown in Figure 3, starting from x0 = E(Ic), the forward process yields a sequence of153

increasing noisy tokens {xτ |τ ∈ [1, TG ]}, where xτ =
√
ᾱτy0+

√
1− ᾱτ ϵ, ϵ is the Gaussian noise,154

and ατ decreases with the timestep τ . For the denoising process, the diffusion model progressively155

denoises a noisy token from the last step given the conditions c = (Ip,M,E) by minimizing the156

following loss function: L = Eτ,x0,ϵ∥ϵθ(xτ , c, τ) − ϵ∥22. Ip, M , and E are the partial object,157

conditioned mask, and text prompt respectively.158

Mask-denoising ControlNet. Previous work (Zhang et al., 2023) has demonstrated an effective159

way to add additional control to generative diffusion models. We follow this architecture and make160
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Figure 4: We calculate the mask probability map by averaging and normalizing the masks of sampled
images. We show a cross-section of the lower leg to better visualize (shown as yellow).

necessary modifications to adapt the architecture to object completion. As shown in Figure 3, given161

the visible object Ip and the conditioning mask M , we first concatenate them and extract the partial162

token cp with an object encoder. Different from ControlNet (Zhang et al., 2023) assuming the163

condition is accurate, the object completion task relies on incomplete conditions. Specifically, in the164

early diffusion steps, the condition information is vital to complete the object. Nevertheless, in the165

later steps, inaccurate information in the condition can degrade the generated object. To tackle this166

problem, we introduce a time-variant gating operation to adjust the importance of conditions in the167

diffusion steps. We learn a linear transform f : RC → R1 upon the time embedding eτ ∈ RC and168

then apply it to the partial token as f(eτ ) · cp before feeding it to the ControlNet. In this way, the169

importance of visible features can be adjusted as the diffusion steps forward.170

3.2 SEGMENTATION STAGE171

In the segmentation stage, illustrated in Figure 4 (a), our approach initiates by sampling N images172

denoted as {I(i)t }Ni=1 from the generative model, where t is the IMD step. Subsequently, we employ173

an off-the-shelf object segmentation model denoted as S(·) to generate object masks {M (i)
t } from174

these sampled images.175

To derive an improved mask for the subsequent IMD step, we seek a function V(·) that can produce176

a high-quality mask prediction from the set of N generated masks. In Figure 4 (b), we provide a177

visualization of the probability map associated with a set of object masks with the same conditions,178

which is computed by taking the normalized average of the masks. To enhance the visualization of179

this probability distribution, we focus on a specific cross-section of the fully occluded portion in im-180

age Ip (the lower leg, represented as a yellow section) and visualize the probability as a function of181

the horizontal coordinate which demonstrates an obvious unimodal and symmetric property. Lever-182

aging this observation, we can find an improved mask by taking the high-probability region. The183

updating can be achieved by conducting a voting process across the N estimated masks, as defined184

by the following equation:185

M̂t[i, j] =

{
1, if

∑N
i=1 M

(i)
t [i,j]

N ≥ τ

0, otherwise
(3)

where [i, j] denotes the coordinate, and τ is the threshold employed for the mask voting process.186

3.3 DISCUSSION187

In this section, we discuss the mathematical explanation of MaskComp, where we will omit the188

conditioned partial image Ip for simplicity.189

Joint modeling of mask and object. In practical scenarios where the complete object mask Mc190

is unavailable, modeling object completion through a marginal probability p(Ic|Mc) becomes in-191

feasible. Instead, it necessitates the more challenging joint modeling of objects and masks, denoted192

as p(I,M), where the images and masks can range from partial to complete. Let us understand the193

joint distribution by exploring its marginals. Since the relation between mask and image is one-to-194

many (each object image only has one mask while the same mask can be segmented from multiple195

images), the p(M |I) is actually a Dirac delta distribution δ and only the p(I|M) is a real distribution.196
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In this way, the joint distribution of mask and image is discrete and complex, making the modeling197

difficult. To address this issue, we introduce a slack condition to the joint distribution p(I,M) that198

the mask and image can follow a many-to-many relation, which makes its marginal p(M |I) a real199

distribution and permits p(I|M) to predict an image I that has a different shape as the conditioned200

M and vice versa.201

Complete MaskPartial Mask

Complete 
Object

Partial 
Object

Segmentation Stage Generation Stage

𝑀

𝐼

Figure 5: Mutual-benificial sampling.

Mutual-beneficial sampling. After discussing the202

joint distribution that we are targeting, we intro-203

duce the mathematical explanation of MaskComp.204

MaskComp introduces the alternating modeling of205

two marginal distributions p(I|M) (generation stage)206

and p(M |I) (segmentation stage), which is actually207

a Markov Chain Monte Carlo-like (MCMC-like) pro-208

cess and more specifically Gibbs sampling-like. It209

samples the joint distribution p(I,M) by iterative210

sampling from the marginal distributions. Two core211

insights are incorporated in MaskComp: (1) providing212

a mask as a condition can effectively enhance object213

generation and (2) fusing the mask of generated object214

images can result in a more accurate and complete ob-215

ject mask. Based on these insights, we train Mask-denoising ControlNet to maximize p(I|M) and216

leverage mask voting to maximize the p(M |I). As shown in Fig. 5, MaskComp develops a mutual-217

beneficial sampling process from the joint distribution p(I,M), where the object mask is provided to218

boost the image generation and, in return, the generated images can lead to a more accurate mask by219

fusing the segmentation of images. Through alternating sampling from the marginal distributions,220

we can effectively address the object completion task.221

4 EXPERIMENT222

Dataset. We evaluate MaskComp on two popular datasets: AHP (Zhou et al., 2021a) and DYCE223

(Ehsani et al., 2018). AHP is an amodal human perception dataset that is composed of a training224

set with 56,302 images with annotations of integrated humans, a validation set with 297 images225

of synthesized occlusion cases, and a test set with 56 images of artificial occlusion cases. As the226

original test split is too small, we resplit 10,000 images from the training set for evaluation. DYCE227

is a synthetic dataset with photo-realistic images and the natural configuration of objects in indoor228

scenes. 41,924 and 27,617 objects are involved in the training set and test sets respectively. For229

both datasets, the non-occluded ground-truth object and its corresponding mask for each object are230

available. We train MaskComp on the AHP and a filtered subset of OpenImage v6 (Kuznetsova231

et al., 2020). OpenImage is a large-scale dataset offering heterogeneous annotations. We select a232

subset of OpenImage that contains 429,358 objects as a training set of MaskComp.233

Evaluation metrics. In accordance with previous methods (Zhou et al., 2021a), we evaluate im-234

age generation quality Fréchet Inception Distance (FID). As the FID score cannot reflect the object235

completeness, we further conduct a user study, leveraging human assessment to compare the quality236

and completeness of images produced by MaskComp and state-of-the-art methods. During the as-237

sessment, given a partially occluded object, the participants are required to rank the generated object238

from different methods based on their completeness and quality. We calculate the averaged ranking239

and the percentage of the image being ranked as the first place as the metrics.240

Implementation details. For the generation stage, we train the masked denoising ControlNet with241

frozen Stable Diffusion (Rombach et al., 2022) on the AHP dataset for 50 epochs. The learning rate242

is set for 1e-5. We adopt batchsize = 8 and an Adam (Loshchilov & Hutter, 2017) optimizer. The243

image is resized to 512 × 512 for both training and inference. The object is cropped and resized to244

have the longest side 360 before sticking on the image. We follow (Zhang et al., 2023) to occlude245

objects. For a more generalized setting, we train the masked denoising ControlNet on a subset of246

the OpenImage (Kuznetsova et al., 2020) dataset for 36 epochs. We generate text prompts using247

BLIP (Li et al., 2022) for all experiments (prompts are necessary to train ControlNet). For the248

segmentation stage, we leverage segment anything model (SAM) (Kirillov et al., 2023) as S(·). We249
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Method AHP (Zhou et al., 2021a) DYCE (Ehsani et al., 2018)
FID-G ↓ FID-S ↓ Rank ↓ Best ↑ FID-G ↓ FID-S ↓ Rank ↓ Best ↑

ControlNet 40.2 45.4 3.4 0.10 42.4 49.4 3.4 0.08
Kandinsky 2.1 43.9 39.2 3.2 0.11 44.3 47.7 3.4 0.06
Stable Diffusion 1.5 35.7 41.4 3.2 0.12 31.2 43.4 3.4 0.11
Stable Diffusion 2.1 30.8 39.9 3.1 0.14 30.0 41.1 3.0 0.12
MaskComp (Ours) 16.9 21.3 2.1 0.53 20.0 25.4 1.9 0.63

Table 1: Quantitative evaluation on object completion task. The computing of FID-G and FID-
S only considers the object areas within ground truth and foreground regions segmented by SAM,
respectively, to eliminate the influence of the generated background. The Rank denotes the average
ranking in the user study. The Best denotes the percentage of samples that are ranked as the best. ↓
and ↑ denote the smaller the better and the larger the better respectively.

MaskComp (Ours)SD 2.1SD 1.5Partial ObjectComplete Object (GT) ControlNet Kandinsky

Figure 6: Qualitative comparison against ControlNet, Kandinsky and Stable Diffusion. The
partial object is the input to the model. The complete object is provided as a good example.

vote mask with a threshold of τ = 0.5. During inference, if no other specification, we conduct the250

IMD process for 5 steps with N = 5 images for each step. We give the class label as the text prompt251

to facilitate the ControlNet to effectively generate objects. All baseline methods are given the same252

text prompts during the experiments. During training, we conduct the random occlusion process253

twice for each complete mask Mc. The partial mask Mp is achieved by considering the occluded254

areas in both of the occlusion processes. The interpolated mask M is generated by using one of the255

occlusions. The time embedding used for the gating operation is shared with the time embedding256

for encoding the diffusion step in the stable diffusion. More implementation details are available in257

the appendix. The code will be made publicly available.258

4.1 MAIN RESULTS259

Quantitative results. We compare the MaskComp with state-of-the-art methods (ControlNet260

(Zhang et al., 2023), Kandinsky 2.1 (Shakhmatov et al., 2023), Stable Diffusion 1.5 (Rombach261

et al., 2022) and Stable Diffusion 2.1 (Rombach et al., 2022)) on AHP (Zhou et al., 2021a) and262

DYCE (Ehsani et al., 2018) dataset. The results in Table 1 indicate that MaskComp consistently263

outperforms other methods, as evidenced by its notably lower FID scores, signifying the superior264

quality of its generated content. We conducted a user study to evaluate object completeness in265

which participants ranked images generated by different approaches. MaskComp achieved an im-266

pressive average ranking of 2.1 and 1.9 on the AHP and DYCE datasets respectively. Furthermore,267

MaskComp also generates the highest number of images ranked as the most complete and realistic268

compared to previous methods. We consider the introduced mask condition and the proposed IMD269

process benefits the performance of MaskComp, where the additional conditioned mask provides270

robust shape guidance to the generation process and the proposed IMD process refines the initial271

conditioned mask to a more complete shape, further enhancing the generated image quality.272

Qualitative results. We present visual comparisons between MaskComp and Stable Diffusion273

(Rombach et al., 2022), illustrated in Fig. 6. Our visualizations showcase MaskComp’s ability to274

produce realistic and complete object images given partial images as the condition, whereas previ-275

ous approaches exhibit noticeable artifacts and struggle to achieve realistic object completion. In276
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Mask Visible Noisy Complete

FID 16.9 15.3 12.7

(a) Conditioned mask.

Occ. 20% 40 % 60 % 80%

FID 13.4 15.7 17.2 29.9

(b) Occlusion rate.

Comp. Gen. Segm. Total

Second 14.3 1.2 15.5

(c) Inference time.

Table 2: Ablation of MaskComp. We report the performance with the AHP dataset. (a) We ablate
the different conditioning masks during inference. (b) We ablate the occlusion rate during inference.
(c) We report the inference time of each component in an IMD step.

T 1 3 5 7

FID 24.7 19.4 16.9 16.1

(a) IMD step number.

N 4 5 6

FID 17.4 16.9 16.8

(b) # of sampled images.

Iter 20 40 50

FID 16.9 15.7 15.1

(c) Iter. for diffusion.

Gating ! %

FID 16.9 18.2

(d) Condition gating.

Table 3: Design choices for IMD. We conduct the experiments on AHP dataset. (a) We ablate the
IMD step number. (b) We ablate the number of sampled images in the segmentation stage. (c) We
ablate the diffusion iteration for the generative model. (d) We ablate on the gating operation in the
mask-denoising ControlNet.

addition, without mask guidance, it is common for previous methods to generate images that fail to277

align with the partial object.278

4.2 ANALYSIS279

Performance with different mask conditions. We conduct ablation studies to investigate the280

impact of different mask conditions on the generative model’s performance. In this analysis, we281

evaluated the quality of generated images when conditioned on the partial object image along with282

three distinct types of masks: (1) visible masks, (2) noisy masks, and (3) complete masks character-283

ized by an occlusion level between that of visible and complete masks. As shown in Table 2a, the284

model achieves its highest performance when it is conditioned with complete object masks, whereas285

relying solely on visible masks yields less optimal results. These results provide strong evidence286

that the quality of the conditioned mask significantly influences the quality of the generated images.287

Performance with different occlusion rates. We perform ablation studies to assess the resilience288

of MaskComp under varying occlusion levels. As presented in Table 2b, we evaluate MaskComp289

across object occlusion rates ranging from 20% to 80%, where the occlusion rate represents the pro-290

portion of the obscured area compared to the complete object. The results indicate that MaskComp’s291

performance declines only slightly as occlusion rates rise. Even at 60% occlusion rates, its robust292

performance holds up. However, a further increase in the occlusion rate to an extreme level will293

result in MaskComp not producing high-quality images.294

Inference time. We demonstrate the inference time of each component in IMD as shown in Ta-295

ble 2c (with a single NVIDIA V100 GPU). Due to the multiple diffusion processes in each IMD296

step, the inference speed of MaskComp is slow. To improve the inference speed, we notice that297

decreasing the diffusion step number in the first several IMD steps will not severely degrade the298

performance. By incorporating this idea into MaskComp, the average running time was reduced to299

2/3 original time with a slight FID increase of 0.5.300

Design choices in IMD. We conduct experiments to ablate the design choices in IMD and their301

impacts on the completion performance. We first study the effect of IMD step number. With a larger302

step number, IMD can better advance the partial mask to the complete mask. As shown in Table 3a,303

we notice that the image quality keeps increasing and slows down at a step number of 5. In this304

way, we choose 5 as our IMD step number. After that, we ablate the number of sampled image in305

the segmentation stage in Table 3b. We notice more sampled images generally leading to a better306

performance. We leverage an image number of 5 with the efficiency consideration. We ablate the307

iterations for the diffusion process. Table 3c demonstrates that a larger diffusion iteration number308

can lead to a better performance which is as expected. In addition, as the input condition for the309

object completion task is not accurate, we introduce a time-variant gating operation to facilitate the310
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Step 1

Occluded 
Obj

GT Obj.

Pred. 
Obj.

Pred. 
Mask

Step 2 Step 3 Step 4 Step 5

Figure 7: Visualization of the IMD process. For each step, we randomly demonstrate one generated
image and the averaged mask for all generated images. We omit the input mask which has the same
shape as the input occluded object.

generation process. As shown in Table 3d, we notice the gating operation improves the generation311

quality by 1.3 FID, indicating the necessity of conditional gating.312

Visualization of iterative mask denoising. To provide a clearer depiction of the iterative IMD313

process, as depicted in Fig. 7, we present visualizations of the generated image and the averaged314

mask for each step. In the initial step, we observe the emergence of artifacts alongside the object.315

As we progress through the steps, both the image and mask quality exhibit continuous improvement.316

Condition Generated Image SAM Mask

Figure 8: Failure case.

Failure case analysis. Despite the robust ca-317

pabilities of the Mask-denoising ControlNet and318

SAM models, they can still generate low-quality319

images and inaccurate segmentation results. In320

Fig. 13, we show a case where the intermediate321

stage of IMD produces a human with an extra right322

arm. To address this, we implement three key323

strategies: (1) Error Mitigation during Segmen-324

tation with SAM: As shown in Fig. 13, SAM effectively filters out incorrectly predicted compo-325

nents, such as a misidentified right arm, resulting in a more coherent shape for subsequent iterations.326

SAM’s robust instance understanding capability extends to not only accurately segmenting objects327

with regular shapes but also filtering out irrelevant parts when additional objects/parts are generated.328

(2) Error Suppression through Mask Voting: In cases where only a few generated images exhibit329

errors, the impact of these errors can be mitigated through mask voting. The generated images are330

converted to masks, and if only a minority display errors, their influence is diminished through the331

voting operation. (3) Error Tolerance in IMD Iteration: We train the mask-denoising ControlNet332

to handle a wide range of occluded masks. Consequently, if the conditioned mask undergoes mini-333

mal improvement or degradation due to the noises in a given iteration, it can still be improved in the334

subsequent iteration. While this may slightly extend the convergence time, it is not anticipated to335

have a significant impact on the ultimate image quality. More analysis is available in the Appendix.336

More ablation studies and analyses are available in the Appendix.337

5 CONCLUSION338

In this paper, we introduce MaskComp, a novel approach for object completion. MaskComp ad-339

dresses the object completion task by seamlessly integrating conditional generation and segmenta-340

tion, capitalizing on the crucial observation that the quality of generated objects is intricately tied to341

the quality of the conditioned masks. We augment the object completion process with an additional342

mask condition and propose an iterative mask denoising (IMD) process. This iterative approach343

gradually refines the partial object mask, ultimately leading to the generation of satisfactory objects344

by leveraging the complete mask as a guiding condition. Our extensive experiments demonstrate the345

robustness and effectiveness of MaskComp, particularly in challenging scenarios involving heavily346

occluded objects.347
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Model Mask2Former ClipSeg SAM

FID 22.5 19.9 16.9

(a) Segmentation model S.

Strategy. Logits (V) Logits (M) Mask (V) Mask (M)

FID 16.9 17.2 17.6 17.0

(b) Voting strategies.

Method AISFormer+ControlNet MaskComp

FID 29.4 16.9

(c) Amodal baseline.

Occ. Rectangle Oval Object

FID 15.3 15.1 16.9

(d) Occlusion type.

Table 4: More ablation of MaskComp. We report the performance with the AHP dataset. (a) We
ablate the segmentation model. (b) We ablate voting strategies. V: voting. M: Mean. (c) We report
the performance compared to the amodal segmentation baseline. (d) We report the performance with
different types of occlusion.

A MORE EXPERIMENTS348

In this section, we provide more ablation experiments and analysis of MaskComp. We conducted ab-349

lation experiments to determine the design choice in the segmentation stage. We report the ablation350

studies about segmentation models and voting strategies in Table 4a and Table 4b. We notice SAM351

and voting with logits achieve the best performance. The current design choice of using SAM and352

voting with logits is based on the ablation results. In addition, a reasonable baseline to compare is353

generating objects using ControlNet with an amodal segmentation model to generate a conditioned354

mask. We leverage the state-of-the-art amodal segmentation AISFormer Tran et al. (2022) to pro-355

vide masks and generate corresponding objects using ControlNet as shown in Table 4c. We notice356

that MaskComp achieves an obviously better performance compared to the baseline. To understand357

the influence of occlusion type, we conduct an ablation study as shown in Table 4d. We notice that358

the occlusion with a more complicated object shape will impose more challenges on the proposed359

model.360

B MORE DISCUSSION361

Type Noise Network Target
Image diffusion Gaussion UNet Predict added noise
Mask denoising Occlusion Mask denoiser S(G(·)) Predict denoised mask

Table 5: Analogy between image diffusion and mask denoising.

Image diffusion v.s. Mask denoising. During the training of the image diffusion model, Gaussian362

noise is introduced to the original image. A denoising U-Net is then trained to predict this noise and363

subsequently recover the image to its clean state during inference.364

Similarly, in the context of the proposed iterative mask denoising (IMD) process, we manually oc-365

clude the complete object (which can be assumed as adding noise) and train a generative model366

to recover the complete object. During inference, as shown in Eq. (1), we employ an iterative ap-367

proach that combines the segmentation and generation model S(G(·)) functioning as a denoiser.368

This denoiser progressively denoises the partial mask to achieve a complete mask, following a sim-369

ilar principle to the denoising diffusion process. By drawing parallels between image diffusion and370

mask denoising, we establish an analogy, as depicted in Table 5. We can notice that the mask de-371

noising process shares the spirits of the image diffusion process and the only difference is that mask372

denoising does not explicitly calculate the added noise but directly predicts the denoised mask. In373

this way, MaskComp can be assumed as a double-loop denoising process with an inner loop for374

image denoising and an outer loop for mask denoising.375

Training without complete object. In the context of image diffusion, though multiple forward376

steps are involved to add noise to the image, the network only learns to predict the noise added377

in a single step during training. Therefore, if we possess a set of noisy images generated through378
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Figure 9: Visualization of IMD process with model trained without complete objects. To better
visualize the iterative mask denoising process, we denote the overlapping masked area from the last
iteration as orange. We can notice that the object shape is gradually refined and converged to a
complete shape.

forward steps, the original image is not required during the training. This motivates us to explore the379

feasibility of training MaskComp without relying on the complete mask. Similar to image diffusion,380

given a partial mask, we can further occlude it and learn to predict the partial mask before further381

occlusion. In this way, MaskComp can be leveraged in a more generic scenario without the strict382

demand for complete objects. We have discussed the quantitative results in Section 4.2. Here,383

we visualize the IMD process with a model trained without complete objects (on OpenImage). To384

better visualize the object shape updating, we denote the overlapping masked area from the last step385

as orange. We can notice that the object shape gradually refines and converges to the complete shape386

as the IMD process forwards. Interestingly, the IMD process can learn to complete the object even387

if only a small portion of the complete object was available in the dataset during the training. We388

consider this property to make it possible to further generalize MaskComp to the scenarios in which389

a complete object is not available.390

What will the marginal distribution p(I|M) and p(M |I) be like without the slack condition?391

The relation between mask and object image is one-to-many. The p(I|M) models a filling color392

operation that paints the color within the given mask area. And as each object image only corre-393

sponds to one mask, the p(M |I) is a deterministic process that can be modeled by a delta function394

δ. Previous methods generally leverage the unslacked setting. For example, the ControlNet assumes395

the given mask condition can accurately reflect the object shape and therefore, it can learn to fill396

colors to the masked regions.397

Figure 10: BG objects.

Background objects in the generated images. The training of398

mask-denoising ControlNet aims to learn an intra-object correlation.399

We leverage a black background to eliminate the influence of back-400

ground objects. However, we notice that even if we train the network401

with the black background as ground truth, it is still possible to gen-402

erate irrelevant objects in the background. As shown in Fig. 10, we403

visualize an image that generates a leather bag near the women. We404

consider the generated background object can result from the learned405

inter-object correlation from the frozen Stable Diffusion model Rom-406

bach et al. (2022). As the generated background object typically will407

not be segmented in the segmentation stage, it will not influence the408

performance of MaskComp.409

Potential applications. Object completion is a fundamental technique that can boost a number410

of applications. For example, a straightforward application is the image editing. With the object411

completion, we can modify the layer of the objects in an image as we modify the components in the412

PowerPoint. It is possible to bring forward and edit objects as shown in Fig. 11. In addition, object413
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Original Image

Segm.

Partial Object Edited ImageComplete Object

MaskComp Editing & 
Composing

Figure 11: Illustation of potential application.

completion is also an important technique for data augmentation. We hope MaskComp can shed414

light on more applications leveraging object completion.415

C MORE EXPERIMENTS416

More implementation details. We leverage two types of occlusion strategies during the training417

of mask-denoising ControlNet. First, we randomly sample a point on the object region, and then418

randomly occlude a rectangle area with the sampled point as the centroid. The width and height of419

the rectangle are determined by the width and height of the bounding box of the ground truth object.420

We uniformly sample a ratio within [0.2, 0.9] and apply it to the ground truth width and height421

to occlude the object. Second, we randomly occlude the object by shifting its mask. Specifically,422

we randomly shift its mask by a range of [0.17, 0.25] and occluded the region within the shifted423

mask. We equally leverage these two occlusion strategies during training. For the object encoder424

to extract partial token cp in the mask-denoising ControlNet, we utilize a Swin-Transformer Liu425

et al. (2021) pre-trained on ImageNet Deng et al. (2009) with an additional convolution layer to426

accept the concatenation of mask and image as input. We initialize the mask-denoising ControlNet427

with the pre-trained weight of ControlNet with additional mask conditions. To segment objects in428

the segmentation stage, we give a mix of box and point prompts to the Segment Anything Model429

(SAM). Specifically, we uniformly sample three points from the partial object as the point prompts430

and we leverage an extended bounding box of the partial object as the box prompts. We also add431

negative point prompts at the corners of the box to further improve the segmentation quality.432

More visualization. As shown in Fig. 12, we provide more qualitative comparisons with Stable433

Diffusion (Rombach et al., 2022). We notice that Stable Diffusion tends to complete irrelevant434

objects to the complete parts and thus leads to an unrealism of objects. Instead, MaskComp is435

guided by a mask shape and successfully captures the correct object shape thus achieving superior436

results.437

Complete Object Partial Object MaskComp

Figure 13: Failure case.

Failure case analysis. We present a failure438

case in Fig. 13, where MaskComp exhibits a439

misunderstanding of the pose of a person bend-440

ing over, resulting in the generation of a hat at441

the waist. We attribute this generation of an442

unrealistic image to the uncommon pose of the443

partial human. Given that the majority of indi-444

viduals in the AHP training set have their heads445

up and feet down, MaskComp may have a ten-446

dency to generate images in this typical position. We consider that with a more diverse dataset,447

including images of individuals in unusual poses, MaskComp could potentially yield superior re-448

sults in handling similar cases.449

Details of user study. There are 16 participants in the user study. All participants have relevant450

knowledge to understand the task. During the assessment, each participant is provided with instruc-451

tions and an example to understand the task. We show an example of the images presented during452

the user study as Fig. 14 and Fig. 15. We list the instructions as follows.453

Task: Given the partial object (lower left), generate the complete object (upper left).454
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Instruction:455

• Ranking images 1-5, put the best on the left and the worst on the right.456

• Please focus on the foreground object and ignore the difference presented in the back-457

ground.458

• Original image is provided as a good example.459

• The criteria for ranking are founded on object quality, encompassing aspects such as com-460

pleteness, realism, sharpness, and more.461

• It must be strictly ordered (no tie).462

• Please rank the image in the following form: 1;2;3;4;5 or 5;4;3;2;1 (Use a colon to separate,463

no space at the beginning)464
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MaskComp (Ours)Stable Diffusion 2.1Stable Diffusion 1.5Partial ObjectComplete Object (GT)

Figure 12: More qualitative comparison with Stable Diffusion (Rombach et al., 2022).
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Figure 14: Examples presented during the user study.
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Figure 15: Examples presented during the user study.
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