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Abstract

A major challenge in sample-based inference
(SBI) for Bayesian neural networks is the size
and structure of the networks’ parameter space.
Our work shows that successful SBI is possible by
embracing the characteristic relationship between
weight and function space, uncovering a system-
atic link between overparameterization and the
difficulty of the sampling problem. Through ex-
tensive experiments, we establish practical guide-
lines for sampling and convergence diagnosis. As
a result, we present a deep ensemble initialized
approach as an effective solution with competitive
performance and uncertainty quantification.

1. Introduction

Bayesian neural networks (BNNs) represent a principled
solution to the problem of probabilistic deep learning. In
the absence of analytically tractable solutions, Bayesians
traditionally rely on sample-based inference (SBI) as it
can in theory recover the true posterior—up to a Monte
Carlo error—and requires no (restrictive) assumptions on
the posterior distributional family. Consequently, SBI has
enormous potential for uncertainty quantification in BNNs
(Farquhar et al., 2020; Izmailov et al., 2021; Wiese et al.,
2023). However, recent research has focused on local ap-
proximations that may not fully capture the multimodality
of BNN posteriors, as noted in Alexos et al. (2022); Arbel
et al. (2023). Such approaches potentially overlook signif-
icant portions of the posterior density, precluding a com-
prehensive quantification of uncertainty. The main reason
behind the reluctance to adopt SBI appears to be its per-
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Figure 1. Log-posterior of a 1-1-1 neural network for different acti-
vation functions h (rows) using a varying N (0, 7) prior (columns).
Red lines: set of maximum likelihood solutions for the non-
identifiable solution of h(w1x)-w2 with x = 1. Orange diamonds:
minimum-norm solutions among the maximum likelihood set.

ceived computational demands, as discussed in Papamarkou
et al. (2022); Sharma et al. (2023b). Indeed, Izmailov et al.
(2021) show that SBI is possible for large state-of-the-art
(SOTA) networks but comes at a high cost. Yet, scalable
software solutions (e.g., JAX, Bradbury et al., 2018) and
methodological adaptations (Nemeth & Fearnhead, 2021)
have made SBI increasingly accessible.

While technological progress continues unabated, work
studying the peculiarities of SBI remains limited. One rea-
son for this research gap, and possibly the most fundamental
problem for BNNSs, is their large number of parameters. The
resulting challenges are uncharted territory for established
Bayesian workflow routines such as the sampling strategy,
the choice of prior, and convergence monitoring. It is tempt-
ing to conclude that parameter space inference should sim-
ply be discarded in favor of addressing uncertainties directly
in the function space (see, e.g., Tran et al., 2022), but this
perspective risks suspending valuable insights.
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In fact, the complex posterior topology contains structures
that can be unraveled and accounted for. Most notably,
overparameterization in BNNs leads to many symmetrical
modes in the posterior density (Chen et al., 1993). It is less
clear whether these modes are “connected” in the parame-
ter space. Yao et al. (2022) point out that BNN posterior
surfaces contain many high-density regions separated by
basins of low probability, making it difficult for samplers
to traverse between modes in finite time. As Fig. 1 shows,
high-density regions of the posterior can behave quite dif-
ferently depending on the influence of the prior. Compared
to the maximum likelihood solutions (red lines), priors can
induce unfavorable starting points (left column) and prevent
the sampler from reaching parameter values of high pre-
dictive capacity. On the other hand, priors are able to link
seemingly disconnected symmetry regions (center and right
column). This observation highlights a fundamental aspect
of the Bayesian paradigm: regions like the non-activated
areas of ReLU networks (center row, left quadrants), which
do not affect the optimization objective but are relevant to
posterior uncertainty, should attain a positive probability of
being sampled. In summary, the connectedness of posterior
modes—and thus the difficulty of the sampling problem—
strongly depends on the interplay between prior information,
data, and overparameterization.

Our Contributions. Among the discussions about the mer-
its of parameter space inference (see also Appendix A), our
paper sheds light on how SBI can be successfully leveraged
for BNNs. We argue that accounting for the idiosyncratic
relationship between weight and function space is key to
affordable SBI. From a broad range of experiments, we ob-
tain insights into SBI's successes and failures. Key findings
include the importance of chain initialization and the in-
creasing connectedness of modes in deeper layers. Moving
beyond classical measures unfit to assess BNN inference,
we develop novel convergence diagnostics that incorporate
heterogeneity of layer-specific variances. As a result, our
work can be seen as an extension of recent investigations
into BNN symmetries (Wiese et al., 2023), prior influence
(Fortuin et al., 2022), and convergence diagnostics (Vehtari
et al., 2021). Our investigations reveal what BNN posteriors
demand from practical SBI, leading us to propose Deep
Ensemble Initialized MCMC (DEI-MCMC) as a straightfor-
ward approach. DEI-MCMC achieves competitive perfor-
mance and uncertainty quantification in a number of tasks.

2. Background and Related Literature

We focus on multi-layer perceptrons (MLPs). Let f : X' —
Y, X CRP Y C R™, represent a fully-connected network.
We collect all weights and biases in & € © C R%. Under
the Bayesian paradigm, @ is a random variable that admits a
prior density p(@). Updating the prior with evidence from

the observed data D € (X x )™ leads to a posterior den-
sity p(6|D) = p(D|0)p(0)/p(D), allowing us to express
epistemic uncertainty about . This epistemic uncertainty
governs the posterior predictive density (PPD) over the label
y* for a new observation * € X

pw'le", D) = [ ply’la” Op(oD)d6. ()
The dispersion of p(y*|x*, D) can be used to quantify
predictive uncertainty about y* (see, e.g., Murphy, 2022).
Since the integral in Eq. (1) usually lacks a closed-form
solution, we rely on Monte Carlo estimates of the form

S
p(y*|a*, D) ~ %Zp(y*\w*ﬁ(s)), ©)
s=1

with S posterior samples 8(*) ~ p(8|D) (Andrieu et al.,
2003). Markov chain Monte Carlo (MCMC) methods, the
workhorse of SBI, construct a Markov chain whose sta-
tionary distribution is the posterior density, meaning that
samples 8(*) from the chain are samples from p(@|D) after
the chain has converged (Gelman et al., 2013).

2.1. Multimodality in the Posterior Landscape

The non-identifiability of deep neural networks (DNNs)
makes inference highly challenging (Wei et al., 2023). The
weight space contains multiple equioutput states, i.e., differ-
ent parameter vectors leading to the same functional map-
ping (Hecht-Nielsen, 1990). This phenomenon generates
symmetries' in the BNN posterior: given equal prior proba-
bility, all equioutput parameters have equal posterior density,
which leads to strong multimodality of the posterior (Wiese
et al., 2023). Being equioutput induces an equivalence rela-
tion (e.g., Klirkova & Kainen, 1994):

0~ 0 < fo(x)=fo(x)VxeX, 0,6’ €O.

Definition 2.1 (Equioutput parameters). We say that two
parameters 6,6’ € © are equioutput iff 8 ~ 6’

Equioutput parameters are related by homeomorphisms
F : © — O (Grigsby et al., 2023). Depending on the
network architecture, there is a huge number of (nontrivial)
transformations F that preserve the input-output mapping,
mainly arising from neuron permutability in hidden layers
and certain activation functions (Chen et al., 1993; Kunin
et al., 2021). Symmetries have been studied at length for
DNNs optimized by empirical risk minimization (ERM).
Building on pioneering work on MLPs with odd activation

'We focus on what Villar et al. (2023) call passive symmetries,
arising purely from modeling choices. In contrast, a separate
field of research studies active symmetries, typically in the quest
of making functions equivariant to symmetric properties of the
physical world (e.g., Cohen & Welling, 2014).
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functions (Sussmann, 1992; Chen et al., 1993; Albertini &
Sontag, 1994; Kirkova & Kainen, 1994), the rise of ReLU
sparked follow-up research for homogeneous activations
(e.g., Neyshabur et al., 2015; Freeman & Bruna, 2017; Bona-
Pellissier et al., 2021; Grigsby et al., 2023). More recently,
symmetries have been rediscovered in efforts to understand
the learning dynamics of DNN optimization (Brea et al.,
2019; Ainsworth et al., 2023; Entezari et al., 2022), where
the closely related phenomenon of overparameterization—
enabling equioutput states in the first place—plays an im-
portant role (Simsek et al., 2021; Bubeck & Sellke, 2022).
Interestingly, symmetries have scarcely been discussed from
a Bayesian viewpoint (with a few notable exceptions, e.g.,
Moore, 2016; Pourzanjani et al., 2017). Since there is a
well-established link between ERM with regularized objec-
tives and Bayesian inference, the above phenomena translate
from loss to posterior landscapes (e.g., MacKay, 1992). In
particular, we consider the following notion:

Definition 2.2 (Posterior symmetry). The posterior density
exhibits a symmetry w.r.t. 8,0’ € © iff p(6|D) = p(6'|D).

Proposition 2.3. For two parameters 0,0 € © with
p(0) = p(0'), being equioutput implies a posterior sym-
metry, et vice versa: 0 ~ 0" <> p(0|D) = p(0’'|D).

Proposition 2.3 follows immediately from Bayes’ theorem
and the fact that equioutput parameters share the same like-
lihood by definition.

2.2. Mode Connectivity

The existence of multiple modes in the posterior (or loss)
landscape begs the question of how inference (or optimiza-
tion) is affected. Loosely speaking, a multimodal surface
with strong curvature makes inference harder because the
sampler will take a long time to travel between modes
through areas of low posterior probability, or even infinitely
long in the worst case of wholly disconnected modes. The
same intuition holds for standard gradient-based optimizers
that risk getting stuck in isolated local optima. As a con-
sequence, the phenomenon of mode connectivity (Garipov
et al., 2018) has received increased attention in the past few
years. Fortunately, local optima generally seem to be con-
nected by low-loss areas for sufficiently benign curvature
of the loss hypersurface (Kuditipudi et al., 2019; Pittorino
et al., 2022; Sharma et al., 2023a; Farrugia-Roberts, 2023).
Draxler et al. (2018) even conjectured that there might in
fact be a single manifold containing all optima. However, it
is crucial to understand that connectivity is a relative notion
in three regards. First, modes will rarely be disconnected
in the actual sense of the word, meaning that areas between
them might be assigned very low, but not zero, posterior
probability. Second, as discussed in the introductory case of
Fig. 1, the curvature of the landscape is modulated by the
relationship between prior belief (or inductive biases; e.g.,

Garipov et al., 2018) and observed data (e.g., Draxler et al.,
2018). Weak priors together with a small amount of train-
ing data, for instance, will produce a rather smooth surface
with less pronounced modes in absence of strong evidence
for any particular hypothesis. Moreover, Ainsworth et al.
(2023) suggest that mode connectivity is inextricably tied
to the implicit regularization of gradient-based optimizers.
Third, and perhaps most importantly for the present work,
theoretical mode connectivity is not all that matters. The
behavior and mobility of a sampler depend directly on its
design (e.g., the propensity of accepting proposals for sam-
pling locations). If the sampler fails to traverse low-density
areas, modes become effectively disconnected even if the
theory suggests the existence of a non-zero-probability link
between them. In addition to the data, inductive biases
and regularization, algorithmic uncertainty of the sampling
process thus also plays a role.

2.3. Inference Methods

Ensemble Approaches. To account for multiple basins of
attraction in the posterior landscape, several inference meth-
ods using ensembles have been proposed. Inspired by ex-
plicit ensembling of DNNss (Lakshminarayanan et al., 2017),
approaches grounded more firmly in a Bayesian mindset in-
clude modifications of the forward pass to (asymptotically)
obtain samples from the Gaussian process posterior (He
et al., 2020) and ensembles of Gaussian posterior approxi-
mators (MultiSWAG; Wilson & Izmailov, 2020).

Sampling-Based Inference. Research on SBI, on the other
hand, is largely disregarding symmetries. Hamiltonian
Monte Carlo (HMC; Neal, 2011), struggling with mul-
timodality just like any other MCMC method, is the de
facto gold standard (Farquhar et al., 2020; Izmailov et al.,
2021). Combinations of SBI with classical optimization ele-
ments have been proposed for scalability, such as stochastic-
gradient MCMC variants (Mandt et al., 2017; Zhang et al.,
2020; Cobb & Jalaian, 2021), minibatch MCMC with
blockwise sampling (Papamarkou, 2023), subsampling of
likelihoods (Goan et al., 2023), or MCMC boosted with
momentum-based information (Bieringer et al., 2023). A
separate strand of research attempts to find more informative
priors (Fortuin et al., 2022; Kim et al., 2023).

However, as of yet, truly feasible SBI for BNNs is still lack-
ing. Setting out to change that, we study in great detail the
state of SBI—with particular attention on the symmetry-
induced multimodality of the posterior—and derive a practi-
cal solution that addresses the uncovered issues.
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Table 1. Average RMSE for different models over different data
sets. All neural networks have two hidden layers with 16 neurons
each. The best method per data set is highlighted in bold.

DATA SET LM RF DNN DE RS BNN

AIRFOIL 0.716 0.255 0.252 0.239 0.250 0.182
BIKESHARING 0.790 0.231 0.374 0.365 0.362 0.253

CONCRETE  0.630 0.304 0.317 0.282 0.554 0.258
ENERGY 0.274 0.050 0.048 0.043 0.062 0.037
PROTEIN 0.863 0.581 0.804 0.803 1.077 0.716
YACHT 0.612 0.072 0.108 0.103 0.032 0.022

3. Experimental Setup

In Sections 4-7, we highlight findings from an extensive grid
of experiments with more details and results in Appendix C.
Our code is available under this URL. Section 4 examines
the general feasibility of SBI, focusing on whether SBI can
achieve SOTA performance. Section 5 investigates how the
multimodality of posteriors influences SBI performance,
after which Section 6 discusses ways of handling multi-
modality to make SBI more practical. Section 7 summarizes
the findings and proposes DEI-MCMC as a competitive
solutions for SBI in BNNs.

Data sets and models. We consider several regression
data sets from the UCI benchmark (Dua & Graff, 2017):
airfoil, concrete, energy and yacht, as well as
two larger data sets, bikesharing and protein. The
MLPs considered vary in width (up to 64 hidden units)
and depth (up to seven layers). We investigate not only
differences in model architecture, the activation function
and the weight priors, but also in the choice of the sampler
and its configuration.

Sampling. In particular, we employ HMC and the No-U-
Turn Sampler (NUTS; Hoffman & Gelman, 2014). The
latter implements HMC with auto-tuning of the trajectory
length and step size, promising a considerable speed-up over
optimizing these critical hyperparameters separately. In all
experiments, we run up to 12 chains with 8,000 samples
each for the smaller and 4,000 samples for the larger data
sets. We use a fixed target acceptance probability of 0.8
and warmup phases of 10,000 steps unless stated otherwise.
While we also examined the effect of a longer warmup by
running up to 100,000 steps, this did not improve perfor-
mance in almost all cases.

Performance metrics. BNN predictions are computed via
(empirical) Bayesian model averaging. In particular, each
posterior sample induces a model from which we obtain the
parameterization of a PPD conditioned on a given test obser-
vation from a test set Diege € (X x V)™= (20% of the data
in all experiments). As a point estimate, we compute the
expectation over those conditional distributions via Monte
Carlo integration. Since we focus on regression, we use the
test root mean squared error (RMSE) to assess predictive

Table 2. Proportion of chains with RMSE performance better than
an LM. Each proportion is the average of 72 experiments with 3
different train-test splits, either 1,000 or 10,000 warmup iterations,
and 12 chains each with 8,000 posterior samples.

2 8 16-16 64 32-32-32
DATA SET RELU TANH RELU TANH RELU TANH RELU TANH RELU TANH

AIRFOIL 0.97 1.00 0.89 1.00 0.14 0.97 0.36 0.64 0.00 0.67
CONCRETE 0.89 1.00 0.69 1.00 0.00 0.92 0.08 0.56 0.00 0.31
ENERGY 0.65 0.88 0.88 1.00 0.06 0.97 0.17 0.53 0.00 0.39
YACHT 0.75 0.82 0.83 1.00 0.14 0.97 0.33 0.64 0.00 0.47

performance. The quality of uncertainty quantification can
be measured by the log-PPD (LPPD; Eq. (7) in Appendix B)
on test data®. We also assess the calibration of the samples
by comparing nominal and empirical coverage of credibility
intervals of the PPD.

4. General Feasibility

We start by investigating the general feasibility of SBI with
HMC and NUTS. We initially focus on predictive perfor-
mance, studying whether it is at all possible to run these
samplers and perform on par with the non-Bayesian SOTA.
We also analyze in Section 6 whether the successful config-
urations provide useful uncertainty quantification. While
various studies reported on the performance of BNNs based
on SBI (e.g., Izmailov et al., 2021), we are not aware of any
other systematic investigation beyond performance.

Insight: For certain architectures and sampling algorithms,
BNNSs using SBI can achieve SOTA performance.

We hypothesize that published results obscure the fact that
samplers cannot deal with all existing BNN posterior prob-
lems off-the-shelf. As a sanity check, we match the RMSE
performance of SBI against that of a linear model (LM).
Using the sampled chains that outperform the LM, we then
compare the resulting BNN performance, i.e., the ensemble
of all chains and their 8,000 samples, to a random forest
(RF; tuned with optuna (Akiba et al., 2019)) as a stronger
baseline, a (non-Bayesian) DNN of the same architecture,
and a deep ensemble (DE; Lakshminarayanan et al., 2017)
with 12 members. The DNN and DE models are trained with
Adam (Kingma & Ba, 2015, further details in Appendix D)
and the BNNs are sampled using NUTS with unit Gaussian
prior and tanh activation. In order to show the ensemble
effect of the BNN, we also report the performance of the
model induced by a single random sample (RS) from the
chains of the BNN.

*Meaningful inference should yield (L)PPDs under which the
true label y* has high posterior density. Intuitively, this can only
be the case for appropriate PPD dispersion (too concentrated—y*
will frequently not coincide with the PPD mode and thus have low
density; too diffuse—no value is assigned high density).
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Figure 2. Bivariate density plot of 10 chains (colors) of two randomly selected weights in the first, second, fifth, and final layer (from left
to right) of a seven-layer BNN showing the varying degree of mode connectedness.

General feasibility and tanh SOTA performance. Using
chains that outperform the LM, samplers indeed yield SOTA
performance across different experimental settings for tanh
activation (cf. Table 1). While individual samples (RS)
cannot outperform the RF, DNN or DE, their ensemble
supersedes the baselines in performance. We discuss the
benefits of multi-chain SBI in Sections 5 and 7.

The unboundedness problem. In contrast to the results
of tanh networks, off-the-shelf SBI does not produce mean-
ingful results for ReL.U-, SiLU- or LeakyReL.U-activated
BNNs across different architectures, prior choices, and data
sets. Instead, we observe what we call dying samplers, get-
ting stuck almost immediately and never leaving the area
of the starting value (cf. Appendix C). This becomes evi-
dent in Table 2 reporting the share of chains that perform
better than an LM in terms of RMSE for ReL.U and tanh
activation. The number of successful chains with ReLU is
notably smaller compared to tanh, which holds true also for
other (unbounded) activation functions (cf. Fig. 14 in the
Appendix). As is known from classical DNN optimization,
weight variances in networks with unbounded activation
functions can explode if not properly initialized (see, e.g.,
He et al., 2015). Similarly, if priors remain constant across
layers with variance independent of the size of each layer,
we observe that SBI will not produce chains better than a
simple baseline. Hence, choosing bounded activation func-
tions might help to achieve good performance. However,
even for tanh, Table 2 shows that the more complex the archi-
tecture, the less reliable the samplers become. We elaborate
on a potential solution of this problem in Section 7.

Superiority of NUTS. NUTS outperforms HMC across
different data sets and activation functions (cf. Table 5 in
the Appendix). Overall, HMC with fixed hyperparameters
can only produce chains with better performance than the
LM in 1% of all experiments, suggesting that the refined
handling of sampling trajectories by NUTS is indispensable
for BNNs. Tuning HMC’s hyperparameters, in turn, might
be less efficient than NUTS, with the latter performing well

out of the box in many cases.

5. Multimodality of Posteriors

For a deeper understanding of the previous results, we now
turn to the peculiarities of BNNs and how they affect SBI.
A key insight in this respect refers to the symmetries caused
by overparameterization (cf. Fig. 1). We observe that this
redundancy becomes more pronounced with network depth.

Insight: In BNNSs, the uncertainty of the weight distribu-
tions progressively increases in deeper layers. This means
that more mode connectivity is observed in deeper layers.

Multimodality of the posterior. Fig. 1 suggests that prior
influence can induce a merging of modes. This means that
practically irrelevant likelihood regions between two pos-
terior modes increase in posterior probability through the
prior contribution, allowing samplers to traverse from one
mode to another. In apparent contrast to this initial hypoth-
esis on mode connectivity, we do observe multimodality
across various settings for different prior variances. Even
in larger networks and smaller data sets, the model com-
plexity and data signal may outweigh prior information and
(initially) induce disconnected modes in the posterior (see
Fig. 2, left, visualizing the densities of weights in different
layers marginalized for two dimensions). Thus, the general
existence of connected mode surfaces is not guaranteed.

More movement deeper down. It turns out, however, that
this phenomenon requires a more nuanced analysis. As
shown in Fig. 2, the posterior density is heavily concen-
trated on disconnected modes in the first layer, but then
becomes more diffuse and thus connected in deeper parts
of the BNN before concentrating again in the output layer.
Our observation is reflected by chains growing notably more
variable in deeper layers (cf. Fig. 3 and 4); only in the last
layer does the variance decrease again. The explanation for
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Figure 3. Range of “motion” of chains per layer (x-axis) and se-
lected data sets (facets). Boxplots show the distribution of absolute
values of slopes obtained by fitting a linear regression for each
chain to capture chain trends during the sampling process, clearly
indicating more movement in deeper layers.

this behavior can be found in the varying degree of over-
parameterization throughout the network. We conjecture
that disconnected modes occur mainly in layers with limited
flexibility, i.e., where the role of the neurons is controlled by
their close connection to the input (or output) that populates
a certain manifold. Hidden-layer weights, by contrast, have
vastly more degrees of freedom in assuming diverse values
and swapping their roles in creating input embeddings as
long as the output is realized in an appropriate range.

Role of network layers. Our intuition about the roles of
different layers echoes recent findings about the varying ro-
bustness of layers to re-initialization during training (where
the initial layer, in accordance with our results, proves much
more sensitive to resetting the parameter values mid-training
than intermediate ones; Zhang et al., 2022). The layerwise
investigation also has interesting relations to the mode con-
nectivity studies in Izmailov et al. (2021). Taking the notion
of mode connectivity to a per-layer level, work concurrent
to ours (Adilova et al., 2024) suggests that intermediate lay-
ers play a different role for the success of layerwise neuron
alignment (interpolating between multiple independent solu-
tions; cf. Ainsworth et al., 2023) than the first or last one. We
further believe our results could shed light on the effective-
ness of methods such as subspace inference (Izmailov et al.,
2020; Dold et al., 2024) that move or sample in directions
of quasi-constant loss. More immediately, as we discuss
in the next section, they have important consequences for
practical SBL

6. Practical SBI
6.1. How to Handle Multimodality in Practice?

Given the existence of multimodal posterior surfaces that
samplers do not seem to be able to traverse, the question
arises of how SBI can still achieve useful results. One pos-
sibility (also mentioned in Riou-Durand et al., 2023; Wiese
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Figure 4. Mean and standard deviation of the between- and within-
chain variance (in different rows) separated by layer (x-axis) for
different data sets (columns) of a seven-layer BNN.

etal., 2023) is to run multiple chains to cover as many modes
as possible. Covering all modes seems to be an impossi-
ble endeavor given that even in small BNNs the number of
symmetric modes easily exceeds 102°° (Wiese et al., 2023).
However, our results in the previous section give reason for
hope and suggest that the number of disconnected modes
(and thus required chains) does not simply scale with the
complexity of the network. As overparametrization induces
smoother posterior surfaces for deeper layers that samplers
can explore much better (cf. Fig. 3), it is likely only neces-
sary to cover the few distinct modes in earlier layers.

We now investigate the joint influence of the number of
chains and the number of samples on the predictive and
uncertainty performance of SBI.

Insight: Multiple samples from multiple chains improve
predictive performance and uncertainty quantification.

Performance and uncertainty. Fig. 5 (further examples
in Appendix C.3) shows a clear upward trend of LPPD in
both the number of chains and the number of samples. The
same general pattern can be observed for the RMSE (Ap-
pendix C.3). Notably, the LPPD increases more strongly for
multiple chains than the RMSE, suggesting the importance
of covering multiple modes, but we also see performance
gains by exploring the region around modes with more sam-
ples. It seems promising that we obtain good results with a
maximum of 12 chains despite the large number of symme-
tries. This is in line with findings from Wiese et al. (2023)
who ran more than 1,200 chains but also observed early
saturation of performance metrics.

Predictive coverage. Bayesian inference enables the com-
putation of predictive credibility intervals which should be
calibrated and cover the true prediction. Fig. 6 (further re-
sults in Appendix C.3) shows the coverage of credibility
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intervals for varying amounts of samples (left) and chains
(right). For a calibrated model (represented by the diagonal),
the observed labels fall within the &% credibility interval in
a% of cases. With increasing chains and samples, we can
see a trend from overconfidence to close-to-nominal cover-
age. These results confirm that the use of multiple chains
and samples indeed produces well-calibrated posteriors.
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Figure 5. Grid for the energy data set showing the change in
LPPD with more samples and chains.

6.2. Convergence Diagnostics

The previous experiments investigated the performance of
different numbers of samples per chain. However, in prac-
tice, it is often not obvious when to stop the sampling pro-
cess. While there are well-established convergence diagnos-
tics for Bayesian statistics, it is unclear whether these work
well for BNNs. In contrast to the existing literature, which
tends to disregard convergence analysis of the parameter
space, we will discuss both parameter and function space
diagnostics. For both, the de facto standard for measuring
convergence is the rank-normalized split R(®) as introduced
in Vehtari et al. (2021, see Appendix B for a definition and
functional extension).

Insight: Due to symmetries and large differences in within-
chain variance across layers, classical diagnostics are not
useful for checking convergence in BNNs.

Parameter space convergence. The classical R diagnostic
assumes identifiable parameters, which is not given in BNNs
due to the aforementioned symmetries. Our experiments
in Appendix B also confirm empirically that R is not a
suitable metric. Another pitfall we can infer from our results
is the aggregation of R over all model parameters. As R is
normalized using the within-chain variance, it decreases in
the later layers of the BNN due to the increase in variance
(Fig. 4), leading to the false conclusion of convergence of
the whole network when averaging across all weights.

Thus, we argue that parameter space convergence should
be measured both chain- and layer-wise. For the chain-

wise convergence, we propose the c/l\%(ﬁ) diagnostic (defined
in Appendix B), which splits a chain’s sample path into x

subchains of equal length as the basis for the R calcula-

—~ (k=4
tion. Empirically, we observe cR( ) values close to or
lower than 1.1 for well-performing and calibrated models,
indicating chain-wise convergence (cf. Fig. 7, left, and 8).

Function space convergence. Various post-hoc methods
exist to evaluate the function space convergence of BNNSs,
all using a hold-out test data set (see Appendix B). While
some report the pointwise R values for the PPD samples
of each test data point (Izmailov et al., 2021) and visu-
ally analyze their distribution (cf. Fig. 10), others calculate
the R for a goodness-of-fit measure over the test data set
(e.g., log-likelihood) to obtain a single diagnostic (Fortuin
et al., 2022). Both approaches penalize disagreement be-
tween chains. Taking into account the disconnectedness
of modes in earlier layers, we cannot, however, expect the
convergence of all chains to a common function outcome.
In particular, our experiments show the existence of sub-
stantial between-chain variance in the function space for
a well-calibrated model (e.g., Fig. 11). We argue that a
proper function space convergence metric should not penal-
ize these chain-wise differences as visiting different modes
is essential for well-working SBI.

Therefore, we propose to monitor the convergence of each
chain individually by the cumulative LPPD, as defined
in Eq. (8) in the Appendix and shown in, e.g., Fig. 7 (right).
By running multiple chains, we can compare the different
cumulative LPPD paths and thereby obtain a better under-
standing of the convergence of each chain and the difference
in chain performance. This can also be used as an early-
stopping criterion of the sampling process for potentially
converged or diverging chains, freeing resources and allow-
ing to start new chains for more efficiency.

Samples ablation Chains ablation
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Figure 6. Nominal vs. empirical coverage of posterior credibility
intervals for different numbers of samples using 10 chains every-
where (left) and different numbers of chains using 100 samples
each (right) for the ai rfoil dataset, NUTS with 10,000 warmup,
two hidden layers of 16 neurons each, tanh activation, and unit
Gaussian priors.
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the process of collecting 4,000 samples and different chains (col-
ors). Both plots are based on the bikesharing data set.

7. Dying Sampler & Deep Ensemble
Initialization

Equipped with a clearer understanding of BNN posteriors
and practical strategies to obtain calibrated SBI, we now ad-
dress the unresolved problem of chains that perform worse
than a simple baseline, leading to samplers “dying” soon af-
ter initialization (cf. Section 4 and Fig. 16 in the Appendix).

7.1. The Dying Sampler Problem

Although Section 4 established that the use of bounded acti-
vation functions largely avoids the dying sampler problem,
it would be unsatisfactory to simply dismiss ReLU BNNs as
infeasible or refrain from using larger architectures. While
previously discussed results on prior variance offer a pos-
sible explanation for this phenomenon, a—if not the most
important—cause is already evident in Fig. 1: Starting val-
ues for chains might prompt the sampler to get stuck or not
explore meaningful hypotheses.

For example, as a consequence of the ReLLU activation func-
tion being zero for negative input signals, many neurons—
just by chance—will not be activated, creating low-density
regions at the locations of the weights associated with those
neurons (the white area in Fig. 1). Subsequent proposals
will then also end up in regions with a posterior probability
of practically zero. We can thus draw an analogy to the
“dying ReLU problem” (Lu et al., 2020) caused by zero
gradients of non-activated ReLU neurons in optimization.

7.2. Deep Ensemble Initialized MCMC

As already elaborated in Section 4, using a different initial-
ization solves convergence issues such as the dying sampler
problem. This motivates our concluding proposal for practi-
cally useful SBI, which we call Deep Ensemble Initialized
MCMC (DEI-MCMC). Inspired by their similarity to DEs
one could also think of them as a Bayesian Deep Ensemble.
Specifically, we suggest running a standard optimization
procedure for M networks in a non-Bayesian fashion, and
using the resulting M sets of network weights as initial

proposals for the samplers. Note that this does not require
changing the prior distribution. We combine the information
of all chains in the classical Bayesian sense by merging their
empirical distributions. DEI-MCMC has several attractive
properties, which we discuss in the following.

Valid starting values. As priors with support on the en-
tire domain do not per se restrict the admissible values of
weights (but activation functions in the model might), we
can expect initialization with the M sets of weights to yield
valid results. In other words, the starting values will produce
non-zero posterior values and, hence, solve the problem of
the dying sampler.

Expected improvement. DEI-MCMC is equivalent to DEs
in the edge case where we only obtain one sample from the
posterior (the initial weight). As DEs have repeatedly shown
top-notch quantifying quantification, this means that DEI-
MCMC is likely at least as good as DEs in this respect. In
our experiments, DEI-MCMC indeed provides better LPPD
for as few as ten samples (cf. Table 3).

A modular Bayesian toolbox. Similar to the Laplace ap-
proximation (Daxberger et al., 2021), DEI-MCMC can be
used post-optimization, allowing to combine prior knowl-
edge of any kind with a non-Bayesian network into a BNN.
In particular, DEI-MCMC is applicable to pre-trained net-
works.

Flexibility. While DEI-MCMC is as expensive as DEs
by design and requires further computation for additional
sampling, this second process can be flexibly adjusted to the
availability of resources and computing time. Furthermore,
since our previous results suggest that a few samples already
yield very good performance when using multiple chains, it
might be possible to shorten the sampling step considerably
by saving on warmup iterations.

7.3. Numerical Experiments

In order to investigate the effectiveness of DEI-MCMC,
we run an additional benchmark study. Proving that the
proposed warm start can solve the dying sampler problem,
we use BNNs with ReLLU activation and compare the per-
formance of DEI-MCMC using all chains to those of an
equivalent DNN and DE. In other words, we do not need to
filter chains for the comparisons as done in Section 4.

Results. We summarize our findings in Table 3. As becomes
evident from the comparisons with the LM and DE, the
warm starts of samplers using the M different network solu-
tions avoid any dying sampler problems (no model shows
worse performance than the baseline LM). Furthermore, we
see the added benefit of sampling around the DE solutions
when continuing the sampling from these solutions after a
very short warmup phase of 100 steps, suggesting that this
process supplies valuable information to the model both for
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Table 3. Average RMSE and LPPD values (&£ their standard deviations) of the LM, a classic DNN, a DE, and our method (i.e., DEI-
MCMC) using different amounts of samples (in brackets) for all benchmark data sets (in rows; abbreviated by their first letter). All
networks have two hidden layers with 16 neurons each and ReLU activations. The best method per data set is highlighted in bold.

RMSE ({) LPPD (1)

LM DNN DE OURS (10) OURS (100) OURS (1000) LM DNN DE OURS (10) OURS (100) OURS (1000)
A 0.72£0.02 0.27+0.01 0.244+0.01 0.214+0.01 0.21£+0.01 0.21+£0.01 -1.094+0.03 -0.17+0.08 0.194+0.05 0.50+0.01 0.53+0.02 0.58+0.03
B 0.77£0.01 0.31+£0.00 0.304+0.00 0.26+0.01 0.25+0.01 0.25+0.01 -1.164+0.01 0.35+£0.00 0.424+0.00 0.60+0.02 0.61+0.02 0.63+0.02
C 0.63+£0.02 0.35+0.04 0.32+0.05 0.40+0.19 0.70+0.71 0.31+£0.05 -0.96+0.03 -0.99+0.38 -0.084+0.20 0.05+0.27 0.19+0.11 0.23+0.12
E 0.27£0.02 0.05+£0.00 0.044+0.01 0.04+0.00 0.04+0.00 0.04+0.00 -0.134+0.06 1.60+0.13 1.934+0.05 1.91+0.28 1.94+0.25 2.06+0.20
P 0.85+0.01 0.77+0.01 0.774+0.01 0.71£0.00 0.71£0.00 0.70+£0.00 -1.254+0.01 -1.06+£0.01 -1.054+0.01 -0.78+0.02 -0.77+0.02 -0.754+0.02
Y 0.61£0.07 0.05+£0.00 0.03+0.01 0.03£0.01 0.03£0.01 0.03+£0.01 -0.944+0.13 1.74+£0.40 2.554+0.05 2.97+0.17 3.00+0.20 3.08+0.20

predictive (RMSE) and uncertainty (LPPD) performance. It
should be noted that, although DEI-MCMC tends to ben-
efit from longer sampling, there is a diminishing return to
extending the sampling phase beyond the 1,000 samples
reported in the last column of Table 3, with only marginal
improvements from drawing even up to 10,000 samples.
While the best cold-started BNNs required 10,000 warmup
steps, DEI-MCMC achieves competitive performance with
a 100x shorter warmup phase. We thus conclude that DEI-
MCMC, though conceptually simple, offers a consistent and
robust improvement over classical BNNs.

8. Discussion

In this work, we discussed sampling-based inference in
BNNs. We argue that sampling from a posterior in these
networks is not only feasible but can achieve SOTA re-
sults when accounting for the nature of posterior landscapes.
Through extensive experiments with different BNN architec-
tures, we present insights into the successes and limitations
of SBI in this context. Critical findings include performance
differences of samplers for bounded and unbounded activa-
tion functions and the increasing connectedness of modes
in deeper layers. Following these results, we recommend a
multi-chain and multi-sample strategy using NUTS, with a
convergence diagnostic that accounts for heterogeneous vari-
ances in different layers. In order to allow samplers to also
explore highly multimodal landscapes, particularly those
induced by ReLL.U networks, we propose a novel approach,
Deep Ensemble Initialized MCMC (DEI-MCMC), which
uses optimized networks as a starting point for posterior sam-
pling. These ensembles can be seen as a modular Bayesian
toolbox applicable to any network post-optimization inde-
pendent of the state of prior knowledge.

Limitations and future work. Due to the multitude of
experiments, as well as the long duration of sampling pro-
cedures, the analysis presented in this paper is limited in
some aspects. In particular, only full-batch sampling rou-
tines were tested. An exciting target for future analysis,
therefore, is to explore the potential of SG-MCMC samplers
in the context of DEI-MCMC, as well as an extension to

larger data sets. Likewise, the performance of DEI-MCMC
in uncertainty-related downstream tasks, such as out-of-
distribution detection, remains an open question. It would
further be interesting to deepen our findings in conjunction
with the insights from mode connectivity (Garipov et al.,
2018) and subspace research (Izmailov et al., 2020). Finally,
inspired by our tentative results and the work by Adilova
et al. (2024), all these avenues of future work should be
pursued adopting a layerwise lens.
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A. Inference in Weight vs. Function Space

Some authors suggest completely disregarding the parameter space (Tran et al., 2022; Arbel et al., 2023) since we arguably
care more about the functions learned by a DNN than about single weights in a million-dimensional space. However, opting
for inference over weights but then deliberately turning a blind eye to everything that happens in the weight space seems
unsatisfactory. Other authors argue that expressing prior beliefs in function space (Tran et al., 2022) is the more meaningful
approach when researchers rarely have actual prior knowledge about BNN weights. Formulating a prior about a complex
functional mapping is, however, not necessarily a simpler problem. While each side has its valid points, a general discussion
of the meaningfulness of sampling and inference in the parameter space of neural networks is beyond the scope of this
work. At this point, we just point out briefly that sampling-based inference will remain highly relevant for simpler models
that offer some degree of interpretability (e.g., in statistics), and since there is no clear cut-off for when a model is too
complex, researchers will eventually use sampling-based inference for BNNS, in particular as computational resources and
performance increase.

B. Details on Convergence Diagnostics
B.1. Parameter Space

The two standard diagnostics for convergence of MCMC methods are currently the rank-normalized split—]% (Gelman et al,,
2013; Vehtari et al., 2021) and the effective sample size (ESS; Vehtari et al., 2021). We extend the rank-normalized split- R
to a functional version. For a transformation v(+) and posterior samples 0% from chaink € 1,...,K,s€1,...,S, we
define the diagnostic as follows:

Definition B.1 (Ed, ). Let v : RY — W: @ + 1/(0) be a transformation function transforming the parameter samples into
some metric of interest. () = L% (%)) and 77 = <13 37 | (p(9*)) — gk~ ) denote the (potentially
vector-valued) empirical mean and variance of the functional of the posterior samples of chain k, respectively. In case
U ¢ R, i.e., 1 is not mapping to (a subset of) R but results in a vector, the (-)? is supposed to be interpreted element-wise
applied to all dimensions of ¥ individually. In all cases considered in this paper, this means that P elther maps a sample toa
scalar statistic or creates a statistic for every of the d dimensions of 8. Further, denote by 8(+) = 7 Z i1 0 ) the grand
mean over all chains and samples. Then, we can define the within-chain variance W and the between-chain variance B as

S A )2

(o)
k=1

K

Z )

k=1

=

= \

where (-)? is again supposed to be interpreted element-wise in case the means represent vectors. Normalizing B with W/

results in (a potentially vector-valued)
[ S—1 1
~ =W+ B
b W Q)

For 1) being the identity we recover the R as defined in Vehtari et al. (2021) and omit the v subscript in this case.

Split-l%fi). Gelman et al. (2013) proposed to apply Rona single chain split into two sub-chains, thus providing a measure
for convergence for K = 2 sub-chains. Intuitively, split-ﬁm) assesses the stationarity of a chain by comparing its mixing
over the first and second half of the considered window. This can again be generalized to M simulated chains by splitting
each of the M chains and setting K’ = 2M. The concept is trivially applicable for the functional version to obtain Split- R( ).

Split-Rf;). We modify Split-pr ) for a general number & of sub-chain splits and denote this convergence measure by Rf;).
Effectively, we construct K = « - M chains from M Markov chains. Suitable values for s ensure the sub-chains retain a
certain length so mean and variance estimates are meaningful. Our experiments suggest that x = 4 often produces good
results.
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Rank normalized split-ﬁif). Lastly, split-ﬁ(") can be improved by rank-normalizing the posterior samples to achieve
standardized sample distributions (see Vehtari et al., 2021, for a detailed description). The concept is again trivially
applicable for the functional version by rank-normalizing the functional values w(0<kvs>).

While R values < 1.1 were originally treated as a sufficient indication of convergence, Vehtari et al. (2021) suggest
that a value of 1.01 is more appropriate. This translates to a maximum between-chain variance of approximately 1% of
within-chain variance times the number of samples. The diagnostics thus heavily penalize if chains converge to different
modes—i.e., high between-chain variance—and implicitly assume identifiability of the parameter of interest.

. . E) .. s . . . . . .
Rank normalized split-cR,, . Since penalizing within-chain variance is not meaningful for multimodal BNN posteriors,
we propose to measure the parameter space convergence both chain- and layerwise. Thus we define the chain-wise measure

0/1\%5:) which refers to the application of ]?Ef) to a single chain (M = 1).

~ —_ 4
A comparison of classical R(?) and cR( ) in the parameter space is given in Fig. 8.
Effective Sample Size (ESS) is another classical MCMC convergence measure.

Definition B.2 (Effective Sample Size (ESS)). Following the Stan Development Team (2024), we define the effective
sample size (ESS) as

S
ESS = ———— 6
1+2307 pe ©

with p; being the autocorrelation between samples at time lag ¢.

The ESS can be interpreted as the number of independent fictitious samples from the posterior itself that suffice to provide
estimates as efficient as estimates from the S MCMC samples. Low ESS means that .S collected samples from the chain
emulate only considerably fewer samples than .S from the true posterior density. Accordingly, we aim for large ESS values,
which indicate low autocorrelation and thus a better exploration of the parameter space. Empirically, however, we observe
that the ESS values of the parameter chains are rather small, in line with results reported in Papamarkou et al. (2022). As
there seems to be no systematic pattern across chains or layers like the ones observed for the R case, we assume that the ESS
is simply not a good measure of convergence in a highly overparametrized model where large autocorrelation of samples is
to be expected. Visualizations of the ESS across layers for our benchmark data sets for a well-performing architecture of
two hidden layers with 16 neurons each are displayed in Figure 9.

B.2. Function Space

Convergence can also be assessed in function space since we are ultimately interested in a good functional mapping. For the
calculation of convergence metrics like the }A%l(;) in function space, a hold-out test data set Dy, € (X x ))™e is required.
We first introduce two popular post-hoc approaches to measure function space convergence (Izmailov et al., 2021; Fortuin
et al., 2022) and then propose an alternative measure that can be used for online computation of diagnostics during the
sampling process.

Each sampled parameter vector 8% and test data point 2* result in one corresponding conditional density function
D (y|0(k’s)(;c*)) from which we sample one observation ¢ (%), hence every model induces K - S samples of outcome
values for each test data point. Therefore, it is straightforward to compute the ﬁ(z) in the output space diagnostic for each
of the test points using the mapping ¢psc(6%*) (x*)) — y#*) (where PSC stands for pointwise sample convergence).
Izmailov et al. (2021) aggregate these R( ) values and report diagnostics using histograms or summary statistics. Such
metrics can be interpreted as a measure of how stationary the samples are for a fixed evaluation point. In other words,
confident disagreement between chains (large difference in the expectation of the PPD and low variance within the chain) is
penalized, which, as we have argued before, is unjustified for high multimodality. We report these function space }A%EZ))SC
values histograms in Fig. 10 across various data sets for well-performing models of the same architecture.

Another popular way of achieving a single diagnostic for function space convergence uses performance-related functions
of the parameters () (2*) induced by the test data set (Fortuin et al., 2022). We will call this approach functional
convergence (FC). The performance function can, for instance, be the RMSE for a single posterior sample or the log
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Figure 8. Average parameter-space, log-transformed R® and cR( ) with standard error bars across layers. For each data set, all fitted
chains with better-than-LM RMSE performance are used. In all cases, the BNN consists of two hidden layers with 16 neurons each and
tanh activation. NUTS with a warmup phase of 10,000 steps and 8,000 samples per chain as well as unit Gaussian priors are used.

pointwise likelihood

LPL*%) = log

> p(vie*I@)

Niteg
test (m* ,y*)GDm

Now, we can calculate the Eff) with 1) being the LPL %), accounting for effects induced by between- and within-chain

variance of the 8(%»*)_ This notion of convergence can be interpreted as whether the chains have reached a stable state in
terms of the performance metric expressed by the aggregation function.

We show in our experiments (LPL**) and RMSE***) chains are provided in Figures 11 and 12, resp.) that FC heavily
depends on the choice of the function. RMSE-based FC, for instance, does not account for the uncertainty of predictions
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Figure 9. The average parameter space ESS with standard error bars across layers and split by weights and bias role. For each data set, all
fitted chains with better than LM RMSE performance are used. In all cases, the BNN consists of 2 hidden layers with 16 neurons each
and tanh activation. NUTS with a warmup phase of 10k steps and 8k samples (4k for the two larger datasets) per chain as well as unit

Gaussian priors are used.
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parameter and test data entry respectively. For each data set, all fitted chains with better than LM RMSE performance are used. In all

cases, the BNN consists of two hidden layers with 16 neurons each and tanh activation. NUTS with a warmup phase of 10k steps and 8k
samples per chain as well as unit Gaussian priors are used.

explicitly. In our experiments, it thus shows better ]%1({2131513 values (rather close to 1.1) compared to often considerably worse
R(2)
R

values for most data sets. This is because the chains in function space indeed show different levels of quality in both
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prediction and uncertainty quantification. Thus, even with rough filtering of very bad chains before the FC calculation, we
obtain low within-chain variance and high between-chain variance in many cases, resulting in a ﬁff ) larger than even 1.1.
This clearly shows that even for overall good models there are differences between the chains concerning their quality of
prediction and uncertainty quantification and, again, proves our point that current metrics are not meaningful in measuring

convergence.
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Figure 12. The RMSE chains that form the basis of the Rl({i,)[SE calculation for the functional convergence assessment. For each data set,
all fitted chains with better than LM RMSE performance are used (colors and boxes). In all cases, the BNN consists of 2 hidden layers
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Expanding-window function space convergence. Convergence diagnostics usually evaluate chain mixing post-hoc. We
propose an expanding-window approach, enabled by chain-wise analysis, that allows us to assess chain-wise convergence
and between-chain agreement in function space at any time point during the sampling process. In particular, this entails the
option of online resource management by early stopping of chains: when the sampler shows evidence of being stuck and
risks wasting compute, the chain can be restarted.

For this, following Gelman et al. (2014) and Wiese et al. (2023), we choose the log posterior predictive density (LPPD) over
a test set, defined as

LPPD =

> log<K1.S§:ip(y 6% (a ))) )

Thest
U (y* @) €D k=1 s=1

The LPPD quantifies how well, on average, the predictive distribution covers the observed label. As we can evaluate the
LPPD chain-wise (using K = 1 in (7)) after every sample update, this motivates the chain-wise expanding-window LPPD
for any time point/ € {1,...,S}:

LPPD; — Y log Zp( 10D (2 )) . 8)

Test
(y*,@*) EDrest <1

In order to assess convergence, we can define an e-threshold and window w € N such that

Z LPPD; | — LPPD;| < e. 9)
l—w<i<l

As soon as convergence or a maximum number of samples is reached, the sampling of the chain can be terminated to start a
new chain. In case of non-convergence, the chain is discarded. This is especially valuable if one aims for more chains rather
than more samples, as suggested in Section 6.1, given a certain computation budget. Another advantage of this metric is
the possibility to compare the LPPD across chains to, e.g., detect outliers. As such, the notion of between-chain variance
is not lost. In contrast to FC, our method does not only evaluate a pointwise performance but reflects the current overall
performance by using the running mean.

Empirically we observe convergence for most chains, as displayed in Fig. 13. Moreover, the convergence to different
levels of LPPD is notably visible, especially for the larger data sets bikesharing and protein. The chain-wise
expanding-window LPPD usually shows convergence already after a few samples per chain. This implies great benefits in
sampling efficiency, allowing to free computational resources early on in the sampling process and to run a large number of
chains (almost) in parallel.
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Figure 13. Cumulative LPPD across data sets for the proposed expanding-window convergence assessment. For each data set, all fitted
chains with better-than-LM RMSE performance are used (colors and boxes). In all cases, the BNN consists of two hidden layers with

16 neurons each and tanh activation. NUTS with a warmup phase of 10,000 steps and 8,000 samples per chain (x-axis) as well as unit
Gaussian priors are used.
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C. Additional Experiments
C.1. General Feasibility

Table 4 contains the results reported in Table 1 with additional standard deviations in parentheses. The architecture is a
two-hidden layer MLP with 16 neurons in each hidden layer. The BNNs are sampled using 10,000 warmup steps of NUTS
and 8,000 samples for each of the 12 chains. Only chains that proved to be better than the baseline LM are considered for the
calculation (here always at least 10). The tanh activation function and unit Gaussian priors are applied. Experiments reported
in Table 2 also use unit Gaussian priors. Note that for the Random Forest baseline an extensive HPO search using optuna
(Akiba et al., 2019) is performed. Thus, the comparison is rather conservative as we do not perform a neural architecture
search for the network-based models. The relevant yardstick in this comparison are the Deep Ensembles which share the
same inductive biases as the BNNs.

Table 4. Average RMSE for different models over different data sets. All networks have two hidden layers with 16 neurons each.. The
best method per data set is highlighted in bold.

DATA SET LM RF (TUNED) DNN DE  BNN (RS) BNN

AIRFOIL 0.716 (0.022) 0.255 (0.005) 0.252 (0.024) 0.239 (0.023) 0.25 (0.009) 0.182 (0.009)
BIKESHARING 0.790 (0.028) 0.231 (0.007) 0.374 (0.002) 0.365 (0.003) 0.362 (0.013) 0.253 (0.036)
CONCRETE 0.630(0.018) 0.304 (0.021) 0.317 (0.015) 0.282 (0.018) 0.554 (0.158) 0.258 (0.020)

ENERGY 0.274 (0.020) 0.051 (0.009) 0.048 (0.006) 0.043 (0.007) 0.062 (0.006) 0.037 (0.006)
PROTEIN 0.863 (0.028) 0.581 (0.004) 0.804 (0.004) 0.803 (0.004) 1.077 (0.085) 0.716 (0.035)
YACHT 0.612 (0.068) 0.072 (0.015) 0.108 (0.032) 0.103 (0.031) 0.032 (0.007) 0.022 (0.007)

Fig. 14 shows the share of chains that are able to outperform the lower baseline of an LM across different activation functions,
clearly pointing towards a problem of unbounded activation functions. Notably, only the truncated ReLU is able to avoid the
dying sampler problem, whereas smoothed ReLLU versions, such as SiLU and leaky ReL U, offer very little mitigation.

trunc. ReLU |

sigmoid - |

tanh- =

leaky ReLUy | F—

Activation

SiLU-

RelUq

0.00 025 050 0.75 1.00
Proportions of chains that are better than an LM

Figure 14. Proportions of BNN chains with better performance than an LM separated for different activation functions. Each proportion is
the average of 72 experiments with 3 different train-test splits of the two data sets airfoil and energy, 1,000 warmup iterations of
NUTS and 12 chains each with 1,000 posterior samples.

In Table 5, reflecting the setting of Table 5 in Izmailov et al. (2021), we contrast the proportion of LM-beating chains
produced by HMC and NUTs for ReLU, SiLLU and tanh activations. We consider a single-hidden layer network with 50
neurons and a Gaussian prior with standard deviation 0.1 HMC is used with fixed step size of 10~°, trajectory length
%0'1 and 10 warmup samples as suggested in Izmailov et al. (2021). The NUTS sampler runs with default settings and a
warmup length of 5k steps. For both samplers 400 samples are drawn from 12 independent chains over 3 random train-test
splits. Again, tanh activations produce fewer below-baseline chains when NUTS is used, whereas HMC with fixed setting

essentially fails in all settings.

Predictive coverage. Bayesian inference enables the computation of predictive credibility intervals, which should be
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calibrated and cover the true prediction. Fig. 15 shows the coverage of credibility intervals for varying amounts of samples
(left) and chains (right). For a calibrated model (represented by the diagonal), the observed labels fall within the a%
credibility interval in a% of cases. With increasing chains and samples, we can see a trend from overconfidence to close-to-
nominal coverage for all data sets. While Fig. 15 covers the nominal coverage levels (0.05,0.1,0.2,0.5,0.8,0.9,0.95) for a
broad overview, the trend observed is even more accentuated for very small and large coverage levels.
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Figure 15. Nominal vs. empirical coverage of posterior credibility intervals for different numbers of samples using 10 chains everywhere
(left) and different numbers of chains using 100 samples each (right) across various data set, NUTS with 10,000 warmup, two hidden
layers of 16 neurons each, tanh activation, and unit Gaussian priors.

Dying NUTS sampler details. In the cases where the NUTS sampler ends up in chains inducing utterly bad models—with,
e.g., RMSE values far worse than a simple LM—a robust pattern emerges. The sampler first tries larger step sizes but then,
as the acceptance probability stays at practically zero, the step size and number of steps are quickly reduced. As a result,
the sampler remains close to the starting values. With the step size now contracted to a very small value, however, the
acceptance probability rises again, in effect causing the sampler to move around the starting value in tiny steps. Since this
unfortunate state is attained fast during the warmup, the sampler only repeats samples from a fraction of the parameter space
close to the initial values. Obviously, those do not result in any meaningful uncertainty quantification and almost always
fail to provide even close-to-good predictive capabilities. A visual example of such a warmup phase is provided in Fig. 16.
Evidently most chains have contracted/died already after fewer than 100 warmup steps.
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Table 5. The proportion of chains resulting in better RMSE performance than the LM. HMC is run with 10 warmup samples, NUTS with
5k warmup samples. Values are averaged across 12 chains and 3 replications.

DATA SET  ACTIVATION  SAMPLER PROPORTION SD

RELU ey 00 003
HMC SILU onoy 000 0.00
e ey 000 000
RELU ey 031 013
NUTS sy EORERE 038 005
TANH ENERGY 067 008
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Figure 16. Traceplots of a randomly selected parameter during the sampling phase of a dying NUTS sampler. The BNN has three hidden
layer of ten neurons each, uses unit Gaussian priors, ReLU activation and is sampled for the energy data set with 1,000 NUTS warmup
samples and 12 chains. The first 400 steps of the sampling are displayed (x-axis).
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C.2. Mulimodality of Posteriors

In the following the experiments for the analyses reported in Figures 2, 3 and 4 are described in detail. The architecture is
always a network with six hidden layers of eight neurons each with tanh activation. Unit Gaussian priors are applied and the
used NUTS sampler is configured with a 10,000 step warmup phase and 8,000 samples for each of the 12 chains. Again, the
few chains (always < 2) that cannot beat a LM with respect to the RMSE are removed from the analysis.

In addition to the analyses reported in Figures 2, 3 and 4, we investigate the sampling path for each chain. Here, instead
of aggregating insights from marginal parameter traces, we take a joint view on the sampling path. In order reduce the
dimensionality of this problem, we perform a principal component analysis (PCA; Wold et al., 1987) given S posterior
samples from the k-th chain ® = (81 @2 @(k-5)T  Taking the three first principal components (each of
dimension |0(k 9 [), we can project the sampling path into three dimensions. The first three principal components explain a
substantial amount of variance of the sampling path (> 50%), which suggests that insights from the PCA-approximated path
are indicative of the original, high-dimensional situation. This is confirmed visually, e.g., in Fig. 17, which is a representative
example for the first chain of the energy dataset. Summing up the element-wise absolute values of the orthonormal vectors
yields a proxy of how important the particular parameter is for the movement of the sampler. Applying this methodology
and grouping the PCA factor loadings layer-wise, as well as averaging across experiments and chains, we obtain Fig. 18.
The same pattern as in Fig. 4 emerges, i.e., deeper layers are more important for the movement of the chain in the parameter
space. We conclude from this that our findings pertain to a robust pattern.

Figure 17. Example sampling path of the first chain of the energy dataset projected in three dimensions using PCA. Sampler moved from
dark to bright.
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Figure 18. Mean and standard deviation of the average absolute PCA loadings separated by layer (x-axis) for different data sets (columns)
of a seven-layer BNN. Average explained variance by the first three principal components in brackets.

The traceplots displayed in Figures 19 and 20 are both examples of the fact that symmetry-induced multimodality exists
and also illustrate how the within-chain variance increases in deeper layers. Moreover, Figure 20 shows how for the same

25



Connecting the Dots: Feasible Sample-Based Inference in Bayesian Neural Networks

setting some (in this case two) chains are “dying”, i.e., have a near-constant trace plot, while others explore the space in a
meaningful way (implied by the good performance of the induced BNN).
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Figure 19. Traceplots of a randomly selected parameter during the sampling phase of a NUTS sampler that performs well for most chains.
The BNN has two hidden layer of 16 neurons each, uses unit Gaussian priors, tanh activation and is sampled for the airfoil data set
with 10,000 NUTS warmup samples and 12 chains. The entire sampling phase, collecting 8,000 samples, is displayed (x-axis).
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Figure 20. Traceplots of a randomly selected parameter during the sampling phase of a NUTS sampler that performs well for most chains.
The BNN has six hidden layer of eight neurons each, uses unit Gaussian priors, tanh activation and is sampled for the airfoil data set
with 10,000 NUTS warmup samples and 12 chains. The entire sampling phase, collecting 8,000 samples, is displayed (x-axis).
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C.3. Practical SBI

Prior choice. Here, we report detailed results for the influence of different prior choices. Tables 6 and 7 show the test
RMSE and the share of chains outperforming the LM, respectively, for the airfoil and concrete data sets. We employ
NUTS with 10,000 warmup steps and 12 chains with 8,000 samples each. Each experiment is replicated on three random
train-test splits of the data. All other tested configurations are displayed in the tables themselves.

Table 6. RMSE hold-out performance across various prior distributions and strengths (standard deviation in parentheses)

2 8 64 32-32-32
DATA SET RELU TANH RELU TANH RELU TANH RELU TANH

AIRFOIL LAPLACE (0.1) | 0.5997 (0.0321)  0.6072 (0.0287) 0.3839 (0.0203) 0.4413 (0.0534) 0.3342(0.0102) 0.3557 (0.0109) 0.2221 (0.0094)
LAPLACE (1) | 0.5876(0.0328) 0.5924 (0.0326) 0.3349 (0.0107)  0.3208 (0.0151)  0.2288 (0.0066)  0.2207 (0.0122) 0.1609 (0.0189)
LAPLACE (10) | 0.5931(0.0436) 0.5916 (0.0297) 0.3346 (0.0080)  0.3289 (0.0022)  0.2467 (0.0241)  0.2209 (0.0121) 0.2498 (0.0302)
NORMAL (0.1) | 0.6420 (0.0428) 0.6703 (0.0188) 0.5831 (0.0254)  0.6475 (0.0295) 0.5841 (0.0287) 0.6558 (0.0276) 0.6340 (0.0368)
NORMAL (1) | 0.5897 (0.0342) 0.5949 (0.0303) 0.3385 (0.0234)  0.3333(0.0029) 0.2325(0.0102)  0.2282 (0.0069) 0.1432 (0.0125)
NORMAL (10) | 0.5833(0.0377) 0.5982(0.0312) 0.3506 (0.0131)  0.3468 (0.0157) 0.2467 (0.0130)  0.2189 (0.0122) 0.2330 (0.0130)

CONCRETE LAPLACE (0.1) | 0.4323(0.0026) 0.4308 (0.0045) 0.3615 (0.0070)  0.3693 (0.0080) - 0.3610(0.0124) - 0.2745 (0.0000)*
LAPLACE (1) | 0.4309 (0.0040) 0.4271 (0.0019) 0.3318 (0.0056)  0.3241 (0.0047) - 0.2676 (0.0278) - 0.3045(0.0119)
LAPLACE (10) | 0.4323(0.0030) 0.4188 (0.0216) 0.3334 (0.0063)  0.3232 (0.0025) - 0.2803(0.0199) - 0.3450 (0.0000)*
NORMAL (0.1) | 0.5012(0.0208)  0.5021 (0.0110)  0.4439 (0.0079)  0.4674 (0.0077) - 0.4718 (0.0041) - 0.4444 (0.0000)*
NORMAL (1) | 0.4323(0.0046) 0.4282 (0.0060) 0.3317 (0.0057)  0.3224 (0.0085) - 0.2844 (0.0262) - 0.3010(0.0169)
NORMAL (10) | 0.4321 (0.0020)  0.4239 (0.0228)  0.3406 (0.0107)  0.3253 (0.0074) - 0.2762 (0.0249) - 0.3767 (0.0000)*

* ONLY ONE
REPLICATION.

Table 7. Proportion of better-than-LM chains across various prior distributions and strengths (standard deviation in parentheses)

2 8 64 32-32-32
DATA SET RELU TANH RELU TANH RELU TANH RELU TANH
AIRFOIL LAPLACE (0.1) | 0.97 (0.05) 1.00(0.00) 0.89(0.10) 1.00(0.00) 0.36(0.10) 0.64 (0.13) 0.00 (0.00) 0.67 (0.25)

LAPLACE (1) | 0.97 (0.05) 1.00(0.00) 0.89 (0.10) 1.00 (0.00) 0.36(0.10) 0.64 (0.13) 0.00(0.00)  0.67 (0.25)
LAPLACE (10) | 0.97 (0.05) 1.00(0.00) 0.89 (0.10) 1.00 (0.00) 0.33(0.08) 0.58 (0.17) 0.00(0.00)  0.56 (0.21)
NORMAL (0.1) | 0.97 (0.05) 1.00(0.00) 0.89 (0.10) 1.00 (0.00) 0.36(0.10) 0.64 (0.13) 0.00(0.00)  0.64 (0.29)
NORMAL (1) | 0.97 (0.05) 1.00(0.00) 0.89 (0.10) 1.00 (0.00) 0.36(0.10) 0.64 (0.13) 0.00(0.00)  0.67 (0.25)
NORMAL (10) | 0.97 (0.05) 1.00(0.00) 0.89 (0.10) 1.00 (0.00) 0.31(0.05) 0.64(0.13) 0.00(0.00)  0.58 (0.25)

CONCRETE LAPLACE (0.1) | 0.89 (0.10) 1.00(0.00) 0.69 (0.10) 1.00 (0.00) 0.08 (0.08) 0.56 (0.05) 0.00 (0.00) 0.33 (0.00)*
LAPLACE (1) | 0.86 (0.13) 1.00(0.00) 0.69 (0.10) 1.00(0.00) 0.08 (0.08) 0.56(0.05) 0.00 (0.00) 0.38 (0.06)
LAPLACE (10) | 0.83 (0.08) 1.00(0.00) 0.64 (0.13) 1.00(0.00) 0.08 (0.08) 0.56 (0.05) 0.00 (0.00) 0.33 (0.00)*
NORMAL (0.1) | 0.89 (0.10)  1.00(0.00) 0.69 (0.10) 1.00 (0.00) 0.08 (0.08) 0.56 (0.05) 0.00 (0.00) 0.33 (0.00)*
NORMAL (1) | 0.89(0.10) 1.00(0.00) 0.69 (0.10) 1.00 (0.00) 0.08 (0.08) 0.56 (0.05) 0.00 (0.00) 0.38 (0.06)
NORMAL (10) | 0.89 (0.10) 1.00(0.00) 0.69 (0.10) 0.97 (0.05) 0.08 (0.08) 0.56 (0.05) 0.00 (0.00) 0.33 (0.00)*

* ONLY ONE
REPLICATION.

Performance and uncertainty. In accordance to Fig. 5, Fig. 21 visualizes the RMSE (left column) and LPPD (right column)
performance for all data sets. Except for the yacht data, we observe the same pattern of improvement along the directions
of both chains and samples, where the former tends to have more effect. In all cases, the BNN consists of two hidden layers
with 16 neurons each and tanh activation. NUTS with a warmup phase of 10,000 steps and 8,000 samples per chain (4,000
for the two larger data sets) as well as unit Gaussian priors are used. Only for concrete, one of the 12 chains is dropped
as it underperformed the weak LM baseline.
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Figure 21. Improvement across samples and chains of RMSE (left column) and LPPD (right column) for different data sets (rows).
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C.4. Dying Sampler and Deep Ensemble Initialization

DEI-MCMC reported in Table 3 uses 12 chains each with 8,000 samples (4,000 for the larger data sets) using the NUTS
sampler with a short warmup phase of 100 steps. The table reports the first 10, 100 and 1,000 samples from these chains.
Each chain’s initial proposal is a parameter set of the converged DE member trained on the same architecture, which is a
network with two hidden layers of 16 neurons each. The priors on the weights are again unit Gaussians, leading to a valid
initialization of the chains. The activation is ReLU.

Moreover, the comparison presented in Table 8 of the LPPD between DEI-MCMC and Deep Ensembles indicates a
significant enhancement in uncertainty quantification also for deeper architectures.

Table 8. Average LPPD values (+ their standard deviations across replications) of a DE, and DEI-MCMC (i.e., a BNN with DNN warm
starts) using 1000 samples for four of the benchmark data sets. All networks have 9 hidden layers with 8 neurons each and ReLU
activations. The best method per data set is highlighted in bold

DATASET DEI-MCMC DEEP ENSEMBLE
AIRFOIL 0.5272 £0.1210 —0.1677 & 0.0766
BIKESHARING 0.6799 4 0.0530 0.4145 4 0.0422
CONCRETE 0.1683 £0.0528 —0.2794 4 0.0622
ENERGY 2.1147 £+ 0.0907 0.8019 4 0.2090

D. Experimental Settings and Further Details

Benchmark data. Table 9 describes the data characteristics for our benchmark data. Note that we have normalized the
features and outcome values for all data sets.

Table 9. Data set characteristics and references.

DATA SET # OBS. # FEAT. REFERENCE

AIRFOIL 1503 5 DuA & GRAFF (2017)

BIKESHARING 17379 13 FANAEE-T (2013)

CONCRETE 1030 8 YEH (1998)

ENERGY 768 8 TSANAS & XIFARA (2012)

PROTEIN 45730 9 DuA & GRAFF (2017)

YACHT 308 6  ORTIGOSA ET AL. (2007); DUA & GRAFF (2017)

Software. Our software is implemented in Python and mainly relies on the jax (Bradbury et al., 2018), numpyro (Phan
etal., 2019) and pytorch (Paszke et al., 2019) libraries. We further use Docker for a reproducible experimental setup.
Our code is available at https://github.com/EmanuelSommer/bnn_connecting_the_dots.

Baselines. For the DNN and DE baselines, we train all models full-batch for 5,000 epochs with a Gaussian negative
log-likelihood loss function. We use the Adam optimizer with an initial learning rate of 10~2 and weight decay equal
to 10~2. Note that the single-DNN performance is computed as the expected value of using one ensemble member, i.e.,
averaging the performance of individual members.

We also explored further settings in a grid search over the strength of weight decay (1073, 1072, 10~1) as well as batch
sizes (32, 64), allowing the training process to terminate if no improvement in validation loss was reached after 30
consecutive epochs. For the latter, we set aside 10% of the data as a validation set (amounting to a 70%/10%/20% split
for training/validation/test). The results for training with tanh activation are displayed in Table 10. However, we could not
detect any systematic improvement in RMSE performance (cf. Table 1) as compared to the above configurations.

Computing environment and times. The experiments were run on 4 CPU instances with 32 cores each and 64GB RAM.
Sampling 12 chains for most experiments allowed to parallelize the sampling such that at all times 2 experiments with 12
chains each can be run. The sampling with NUTS of 12 chains, 10,000 warmup steps and 8,000 samples (4,000 for the larger
data sets) required on average three hours for the smaller data sets, and 30 hours for the larger ones on a two-hidden-layer
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DATA SET WEIGHT DECAY BATCH S1ZE RMSE
AIRFOIL 0.0001 32 0.2712
AIRFOIL 0.0001 64 0.3027
AIRFOIL 0.0010 32 0.2853
AIRFOIL 0.0010 64 0.2858
AIRFOIL 0.0100 32 0.2951
AIRFOIL 0.0100 64 0.3183
BIKESHARING 0.0001 32 0.2779
BIKESHARING 0.0001 64 0.2899
BIKESHARING 0.0010 32 0.2832
BIKESHARING 0.0010 64 0.2886
BIKESHARING 0.0100 32 0.3289
BIKESHARING 0.0100 64 0.3392
CONCRETE 0.0001 32 0.3572
CONCRETE 0.0001 64 0.3646
CONCRETE 0.0010 32 0.3566
CONCRETE 0.0010 64 0.3652
CONCRETE 0.0100 32 0.3592
CONCRETE 0.0100 64 0.3609
ENERGY 0.0001 32 0.2123
ENERGY 0.0001 64 0.2140
ENERGY 0.0010 32 0.2156
ENERGY 0.0010 64 0.2134
ENERGY 0.0100 32 0.2123
ENERGY 0.0100 64 0.2165
PROTEIN 0.0001 32 0.7170
PROTEIN 0.0001 64 0.7210
PROTEIN 0.0010 32 0.7280
PROTEIN 0.0010 64 0.7281
PROTEIN 0.0100 32 0.7943
PROTEIN 0.0100 64 0.7937
YACHT 0.0001 32 0.6096
YACHT 0.0001 64 0.6072
YACHT 0.0010 32 0.6188
YACHT 0.0010 64 0.5277
YACHT 0.0100 32 0.5355
YACHT 0.0100 64 0.6066

Table 10. RMSE performance for non-Bayesian DE with 12 members across different settings of weight decay and batch size. All
networks have two hidden layers of 16 neurons each and tanh activation.

network with 16 neurons in each hidden layer and tanh activation. This results in about half a second and 8 seconds for 12
parallel samples for the small and large data sets, respectively. Decreasing the number of warmup samples as proposed in
DEI-MCMC reduces the number of required samples per chain by more than half, resulting in much faster model fits.
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