
Published as a conference paper at ICLR 2021

C-LEARNING: LEARNING TO ACHIEVE GOALS VIA
RECURSIVE CLASSIFICATION

Benjamin Eysenbach
CMU, Google Brain
beysenba@cs.cmu.edu

Ruslan Salakhutdinov
CMU

Sergey Levine
UC Berkeley, Google Brain

ABSTRACT

We study the problem of predicting and controlling the future state distribution
of an autonomous agent. This problem, which can be viewed as a reframing of
goal-conditioned reinforcement learning (RL), is centered around learning a con-
ditional probability density function over future states. Instead of directly estimat-
ing this density function, we indirectly estimate this density function by training
a classifier to predict whether an observation comes from the future. Via Bayes’
rule, predictions from our classifier can be transformed into predictions over future
states. Importantly, an off-policy variant of our algorithm allows us to predict the
future state distribution of a new policy, without collecting new experience. This
variant allows us to optimize functionals of a policy’s future state distribution,
such as the density of reaching a particular goal state. While conceptually similar
to Q-learning, our work lays a principled foundation for goal-conditioned RL as
density estimation, providing justification for goal-conditioned methods used in
prior work. This foundation makes hypotheses about Q-learning, including the
optimal goal-sampling ratio, which we confirm experimentally. Moreover, our
proposed method is competitive with prior goal-conditioned RL methods.1

1 INTRODUCTION

In this paper, we aim to reframe the goal-conditioned reinforcement learning (RL) problem as one
of predicting and controlling the future state of the world. This reframing is useful not only because
it suggests a new algorithm for goal-conditioned RL, but also because it explains a commonly used
heuristic in prior methods, and suggests how to automatically choose an important hyperparameter.
The problem of predicting the future amounts to learning a probability density function over future
states, agnostic of the time that a future state is reached. The future depends on the actions taken by
the policy, so our predictions should depend on the agent’s policy. While we could simply witness
the future, and fit a density model to the observed states, we will be primarily interested in the
following prediction question: Given experience collected from one policy, can we predict what
states a different policy will visit? Once we can predict the future states of a different policy, we can
control the future by choosing a policy that effects a desired future.

While conceptually similar to Q-learning, our perspective is different in that we make no reliance
on reward functions. Instead, an agent can solve the prediction problem before being given a reward
function, similar to models in model-based RL. Reward functions can require human supervision
to construct and evaluate, so a fully autonomous agent can learn to solve this prediction problem
before being provided any human supervision, and reuse its predictions to solve many different
downstream tasks. Nonetheless, when a reward function is provided, the agent can estimate its
expected reward under the predicted future state distribution. This perspective is different from
prior approaches. For example, directly fitting a density model to future states only solves the
prediction problem in the on-policy setting, precluding us from predicting where a different policy
will go. Model-based approaches, which learn an explicit dynamics model, do allow us to predict
the future state distribution of different policies, but require a reward function or distance metric
to learn goal-reaching policies for controlling the future. Methods based on temporal difference
(TD) learning (Sutton, 1988) have been used to predict the future state distribution (Dayan, 1993;

1Project website with videos and code: https://ben-eysenbach.github.io/c_learning/

1

https://ben-eysenbach.github.io/c_learning/

Published as a conference paper at ICLR 2021

Szepesvari et al., 2014; Barreto et al., 2017) and to learn goal-reaching policies (Kaelbling, 1993;
Schaul et al., 2015). Section 3 will explain why these approaches do not learn a true Q function in
continuous environments with sparse rewards, and it remains unclear what the learned Q function
corresponds to. In contrast, our method will estimate a well defined classifier.

Since it is unclear how to use Q-learning to estimate such a density, we instead adopt a contrastive
approach, learning a classifier to distinguish “future states” from random states, akin to Gutmann &
Hyvärinen (2010). After learning this binary classifier, we apply Bayes’ rule to obtain a probability
density function for the future state distribution, thus solving our prediction problem. While this
initial approach requires on-policy data, we then develop a bootstrapping variant for estimating the
future state distribution for different policies. This bootstrapping procedure is the core of our goal-
conditioned RL algorithm.

The main contribution of our paper is a reframing of goal-conditioned RL as estimating the probabil-
ity density over future states. We derive a method for solving this problem, C-learning, which we use
to construct a complete algorithm for goal-conditioned RL. Our reframing lends insight into goal-
conditioned Q-learning, leading to a hypothesis for the optimal ratio for sampling goals, which we
demonstrate empirically. Experiments demonstrate that C-learning more accurately estimates the
density over future states, while remaining competitive with recent goal-conditioned RL methods
across a suite of simulated robotic tasks.

2 RELATED WORK

Common goal-conditioned RL algorithms are based on behavior cloning (Ghosh et al., 2019; Ding
et al., 2019; Gupta et al., 2019; Eysenbach et al., 2020; Lynch et al., 2020; Oh et al., 2018; Sun
et al., 2019), model-based approaches (Nair et al., 2020; Ebert et al., 2018), Q-learning (Kaelbling,
1993; Schaul et al., 2015; Pong et al., 2018), and semi-parametric planning (Savinov et al., 2018;
Eysenbach et al., 2019; Nasiriany et al., 2019; Chaplot et al., 2020). Most prior work on goal-
conditioned RL relies on manually-specified reward functions or distance metric, limiting the ap-
plicability to high-dimensional tasks. Our method will be most similar to the Q-learning methods,
which are applicable to off-policy data. These Q-learning methods often employ hindsight relabel-
ing (Kaelbling, 1993; Andrychowicz et al., 2017), whereby experience is modified by changing the
commanded goal. New goals are often taken to be a future state or a random state, with the precise
ratio being a sensitive hyperparameter. We emphasize that our discussion of goal sampling concerns
relabeling previously-collected experience, not on the orthogonal problem of sampling goals for
exploration (Pong et al., 2018; Fang et al., 2019; Pitis et al., 2020).

Our work is closely related to prior methods that use TD-learning to predict the future state distri-
bution, such as successor features (Dayan, 1993; Barreto et al., 2017; 2019; Szepesvari et al., 2014)
and generalized value functions (Sutton & Tanner, 2005; Schaul et al., 2015; Schroecker & Isbell,
2020). Our approach bears a resemblance to these prior TD-learning methods, offering insight into
why they work and how hyperparameters such as the goal-sampling ratio should be selected. Our
approach differs in that it does not require a reward function or manually designed relabeling strate-
gies, with the corresponding components being derived from first principles. While prior work on
off-policy evaluation (Liu et al., 2018; Nachum et al., 2019) also aims to predict the future state
distribution, our work differs is that we describe how to control the future state distribution, leading
to goal-conditioned RL algorithm.

Our approach is similar to prior work on noise contrastive estimation (Gutmann & Hyvärinen, 2010),
mutual-information based representation learning (Oord et al., 2018; Nachum et al., 2018), and vari-
ational inference methods (Bickel et al., 2007; Uehara et al., 2016; Dumoulin et al., 2016; Huszár,
2017; Sønderby et al., 2016). Like prior work on the probabilistic perspective on RL (Kappen, 2005;
Todorov, 2008; Theodorou et al., 2010; Ziebart, 2010; Rawlik et al., 2013; Ortega & Braun, 2013;
Levine, 2018), we treat control as a density estimation problem, but our main contribution is or-
thogonal: we propose a method for estimating the future state distribution, which can be used as a
subroutine in both standard RL and these probabilistic RL methods.

3 PRELIMINARIES

We start by introducing notation and prior approaches to goal-conditioned RL. We define a con-
trolled Markov process by an initial state distribution p1(s1) and dynamics function p(st+1 | st,at).

2

Published as a conference paper at ICLR 2021

We control this process by a Markovian policy πθ(at | st) with parameters θ. We use πθ(at | st,g)
to denote a goal-oriented policy, which is additionally conditioned on a goal g ∈ S . We use st+ to
denote the random variable representing a future observation, defined by the following distribution:
Definition 1. The future γ−discounted state density function is

pπ+(st+ | st,at) , (1− γ)

∞∑
∆=1

γ∆pπ∆(st+∆ = st+ | st,at),

where st+∆ denotes the state exactly ∆ in the future, and constant (1− γ) ensures that this density
function integrates to 1.

This density reflects the states that an agent would visit if we collected many infinite-length trajec-
tories and weighted states in the near-term future more highly. Equivalently, p(st+) can be seen as
the distribution over terminal states we would obtain if we (hypothetically) terminated episodes at a
random time step, sampled from a geometric distribution. We need not introduce a reward function
to define the problems of predicting and controlling the future.

In discrete state spaces, we can convert the problem of estimating the future state distribution into
a RL problem by defining a reward function rst+(st,at) = 1(st = st+), and terminating the
episode when the agent arrives at the goal. The Q-function, which typically represents the expected
discounted sum of future rewards, can then be interpreted as a (scaled) probability mass function:

Qπ(st,at, st+) = Eπ

[∑
t

γtrst+(st,at)

]
=
∑
t

γtPπ(st = st+) =
1

1− γ
pπ+(st+ | st,at).

However, in continuous state spaces with some stochasticity in the policy or dynamics, the proba-
bility that any state exactly matches the goal state is zero.
Remark 1. In a stochastic, continuous environment, for any policy π the Q-function for the reward
function rst+ = 1(st = st+) is always zero: Qπ(st,at, st+) = 0.

This Q-function is not useful for predicting or controlling the future state distribution. Fundamen-
tally, this problem arises because the relationship between the reward function, the Q function, and
the future state distribution in prior work remains unclear. Prior work avoids this issue by manu-
ally defining reward functions (Andrychowicz et al., 2017) or distance metrics (Schaul et al., 2015;
Pong et al., 2018; Zhao et al., 2019; Schroecker & Isbell, 2020). An alternative is to use hindsight
relabeling, changing the commanded goal to be the goal actually reached. This form of hindsight
relabeling does not require a reward function, and indeed learns Q-functions that are not zero (Lin
et al., 2019). However, taken literally, Q-functions learned in this way must be incorrect: they do not
reflect the expected discounted reward. An alternative hypothesis is that these Q-functions reflect
probability density functions over future states. However, this also cannot be true:
Remark 2. For any MDP with the sparse reward function 1(st = st+) where the episode terminates
upon reaching the goal, Q-learning with hindsight relabeling acquires a Q-function in the range
Qπ(st,at, st+) ∈ [0, 1], but the probability density function pπ+(st+ | st,at) has a range [0,∞).

For example, if the state space is S = [0, 1
2], then there must exist some state st+ such that

Qπ(st, at, st+1) ≤ 1 < pπ+(st+ = st+ | st, at). See Appendix H for two worked examples. Thus,
Q-learning with hindsight relabeling also fails to learn the future state distribution. In fact, it is un-
clear what quantity Q-learning with hindsight relabeling optimizes. In the rest of this paper, we will
define goal reaching in continuous state spaces in a way that is consistent and admits well-defined
solutions (Sec. 4), and then present a practical algorithm for finding these solutions (Sec. 5).

4 FRAMING GOAL CONDITIONED RL AS DENSITY ESTIMATION

This section presents a novel framing of the goal-conditioned RL problem, which resolves the ambi-
guity discussed in the previous section. Our main idea is to view goal-conditioned RL as a problem
of estimating the density pπ+(st+ | st,at) over future states that a policy π will visit, a problem
that Q-learning does not solve (see Section 3). Section 5 will then explain how to use this estimated
distribution as the core of a complete goal-conditioned RL algorithm.
Definition 2. Given policy π, the future state density estimation problem is to estimate the
γ−discounted state distribution of π: fπθ (st+ | st,at) ≈ pπ+(st+ | st,at).

3

Published as a conference paper at ICLR 2021

The next section will show how to estimate fπθ . Once we have found fπθ , we can determine the
probability that a future state belongs to a set St+ by integrating over that set: P(st+ ∈ St+) =∫
fπθ (st+ | st,at)1(st+ ∈ St+)dst+. Appendix A discusses a similar relationship with partially

observed goals. There is a close connection between this integral and a goal-conditioned Q-function:

Remark 3. For a goal g, define a reward function as an ε-ball around the true goal: rg(st,at) =
1(st+ ∈ B(g; ε)). Then the true Q-function is a scaled version of the probability density, integrated
over the set St+ = B(g; ε): Qπ(st,at, g) = Eπ [

∑
t γ

trg(s, a)] = (1− γ)P(st+ ∈ B(g; ε)).

5 C-LEARNING

We now derive an algorithm (C-learning) for solving the future state density estimation problem
(Def. 2). First (Sec. 5.1), we assume that the policy is fixed, and present on-policy and off-policy
solutions. Based on these ideas, Section 5.2 builds a complete goal-conditioned RL algorithm for
learning an optimal goal-reaching policy. Our algorithm bears a resemblance to Q-learning, and our
derivation makes two hypotheses about when and where Q-learning will work best (Sec. 5.3).

5.1 LEARNING THE CLASSIFIER

Algorithm 1 Monte Carlo C-learning
Input trajectories {τi}
Define p(s, a)← Unif({s, a}(s,a)∼τ),

p(st+)← Unif({st}st∼τ,t>1)
while not converged do

Sample st, at ∼ p(s, a), s
(0)
t+ ∼ p(st+),

∆ ∼ GEOM(1− γ).
Set goal s(1)

t+ ← st+∆

F(θ)← logCπθ (F = 1 | st, at, s(1)
t+)

+ logCπθ (F = 0 | st, at, s(0)
t+)

θ ← θ − η∇θF(θ)

Return classifier Cθ

Rather than estimating the future state density di-
rectly, we will estimate it indirectly by learning a
classifier. Not only is classification generally an eas-
ier problem than density estimation, but also it will
allow us to develop an off-policy algorithm in the
next section. We will call our approach C-learning.
We start by deriving an on-policy Monte Carlo al-
gorithm (Monte Carlo C-learning), and then mod-
ify it to obtain an off-policy, bootstrapping algorithm
(off-policy C-learning). After learning this classifier,
we can apply Bayes’ rule to convert its binary pre-
dictions into future state density estimates. Given a
distribution over state action pairs, p(st,at), we de-
fine the marginal future state distribution p(st+) =∫
pπ+(st+ | st,at)p(st,at)dstdat. The classifier

takes as input a state-action pair (st,at) together with another state st+, and predicts whether st+

was sampled from the future state density pπ+(st+ | st,at) (F = 1) or the marginal state density
p(st+) (F = 0). The Bayes optimal classifier is

p(F = 1 | st,at, st+) =
pπ+(st+ | st,at)

pπ+(st+ | st,at) + p(st+)
. (1)

Thus, using Cπθ (F = 1 | st,at, st+) to denote our learned classifier, we can obtain an estimate
fπθ (st+ | st,at) for the future state density function using our classifier’s predictions as follows:

fπθ (st+ | st,at) =
Cπθ (F = 1 | st,at, st+)

Cπθ (F = 0 | st,at, st+)
p(st+). (2)

While our estimated density fθ depends on the marginal density p(st+), our goal-conditioned RL
algorithm (Sec. 5.2) will note require estimating this marginal density. In particular, we will learn a
policy that chooses the action at that maximizes this density, but the solution to this maximization
problem does not depend on the marginal p(st+).

We now present an on-policy approach for learning the classifier, which we call Monte Carlo C-
Learning. After sampling a state-action pair (st,at) ∼ p(st,at), we can either sample a future state
s

(1)
t+ ∼ pπ+(st+ | st,at) with a label F = 1, or sample s

(0)
t+ ∼ p(st+) with a label F = 0. We then

train the classifier maximize log likelihood (i.e., the negative cross entropy loss):

F(θ) , E st,at∼p(st,at)

s
(1)
t+∼p

π
+(st+|st,at)

[logCπθ (F = 1 | st,at, s
(1)
t+)]+Est,at∼p(st,at)

s
(0)
t+∼p(st+)

[logCπθ (F = 0 | st,at, s
(0)
t+)].

(3)

4

Published as a conference paper at ICLR 2021

To sample future states, we note that the density pπ+(st+ | st,at) is a weighted mixture of distribu-
tions p(st+∆ | st,at) indicating the future state exactly ∆ steps in the future:

pπ+(st+ | st,at) =

∞∑
∆=0

p(st+∆ | st,at)p(∆) where p(∆) = (1−γ)γ∆ = GEOM(∆; 1−γ),

where GEOM is the geometric distribution. Thus, we sample a future state st+ via ancestral sam-
pling: first sample ∆ ∼ GEOM(1− γ) and then, looking at the trajectory containing (st,at), return
the state that is ∆ steps ahead of (st,at). We summarize Monte Carlo C-learning in Alg. 1.

While conceptually simple, this algorithm requires on-policy data, as the distribution pπ+(st+ |
st,at) depends on the current policy π and the commanded goal. Even if we fixed the policy
parameters, we cannot use experience collected when commanding one goal to learn a classifier
for another goal. This limitation precludes an important benefit of goal-conditioned learning: the
ability to readily share experience across tasks. To lift this limitation, the next section will develop
a bootstrapped version of this algorithm that works with off-policy data.

We now extend the Monte Carlo algorithm introduced above to work in the off-policy setting, so that
we can estimate the future state density for different policies. In the off-policy setting, we are given
a dataset of transitions (st,at, st+1) and a new policy π, which we will use to generate actions for
the next time step, at+1 ∼ π(at+1 | st+1). The main challenge is sampling from pπ+(st+ | st,at),
which depends on the new policy π. We address this challenge in two steps. First, we note a
recursive relationship between the future state density at the current time step and the next time step:

pπ+(st+ = st+ | st,at)︸ ︷︷ ︸
future state density at current time step

= (1− γ) p(st+1 = st+ | st,at)︸ ︷︷ ︸
environment dynamics

+γEp(st+1|st,at),
π(at+1|st+1)

[
pπ+(st+ = st+ | st+1,at+1)︸ ︷︷ ︸

future state density at next time step

]
.

(4)

We can now rewrite our classification objective in Eq. 3 as

F(θ, π) = E p(st,at), p(st+1|st,at),
π(at+1|st+1), pπ+(st+|st+1,at+1)

[(1− γ) logCπθ (F = 1 |st,at, st+1) + γ logCπθ (F = 1 |st,at, st+)]

+ Ep(st,at), p(st+) [logCπθ (F = 0 | st,at, st+)] . (5)

This equation is different from the Monte Carlo objective (Eq. 3) because it depends on the new
policy, but it still requires sampling from pπ+(st+ | st+1,at+1), which also depends on the new
policy. Our second step is to observe that we can estimate expectations that use pπ+(st+ | st,at)
by sampling from the marginal st+ ∼ p(st+) and then weighting those samples by an importance
weight, which we can estimate using our learned classifier:

w(st+1,at+1, st+) ,
pπ+(st+ | st+1,at+1)

p(st+)
=
Cπθ (F = 1 | st+1,at+1, st+)

Cπθ (F = 0 | st+1,at+1, st+)
. (6)

The second equality is obtained by taking Eq. 2 and dividing both sides by p(st+). In effect, these
weights account for the effect of the new policy on the future state density. We can now rewrite our
objective by substituting the identity in Eq. 6 for the p(st+) term in the expectation in Eq. 5. The
written objective is F(θ, π) =

Ep(st,at), p(st+1|st,at),
p(st+), π(at+1|st+1)

[(1− γ) logCπθ (F = 1 |st,at, st+1) + γ bw(st+1,at+1, st+)csg logC
π
θ (F = 1 | st,at, st+)

+ logCπθ (F = 0 |st,at, st+)]. (7)

We use b·csg as a reminder that the gradient of an importance-weighted objective should not de-
pend on the gradients of the importance weights. Intuitively, this loss says that next states should
be labeled as positive examples, states sampled from the marginal should be labeled as negative
examples, but reweighted states sampled from the marginal are positive examples.

Algorithm summary. Alg 2 reviews off policy C-learning, which takes as input a policy and a
dataset of transitions. At each iteration, we sample a (st,at, st+1) transition from the dataset, a
potential future state st+ ∼ p(st+) and the next action at+1 ∼ π(at+1 | st+1, st+). We compute
the importance weight using the current estimate from the classifier, and then plug the importance
weight into the loss from Eq. 3. We then update the classifier using the gradient of this objective.

5

Published as a conference paper at ICLR 2021

Algorithm 2 Off-Policy C-learning
Input transitions {st, a, st+1}, policy πφ
while not converged do

Sample (st, at, st+1) ∼ p(st, at, st+1),
st+ ∼ p(st+), at+1 ∼ πφ(at+1 | st, at)
w ← stop grad

(
Cπθ (F=1|st+1,at+1,st+)
Cπθ (F=0|st+1,at+1,st+)

)
F(θ, π)← (1− γ) logCπθ (F =1|st, at, st+1)

+ logCπθ (F =0|st, at, st+)
+γw logCπθ (F =1|st, at, st+)

θ ← θ − η∇θF(θ, π)

Return classifier Cπθ

Algorithm 3 Goal-Conditioned C-learning
Input transitions {st, a, st+1}
while not converged do

Sample (st, at, st+1) ∼ p(st, at, st+1),
st+ ∼ p(st+), at+1 ∼ π(at+1 | st, at, st+)

w ← stop grad
(
Cπθ (F=1|st+1,at+1,st+)
Cπθ (F=0|st+1,at+1,st+)

)
F(θ, π)←(1− γ) logCπθ (F =1|st, at, st+1)

+ logCπθ (F =0|st, at, st+)
+γw logCπθ (F =1|st, at, st+)

θ ← θ − η∇θF(θ, π)
G(φ)←Eπφ(at|st,g=st+)[logCπθ (F =1|st, at, st+)]

φ← φ+ η∇φG(φ)

Return policy πφ

C-learning Bellman Equations. In Appendix D.1, we provide a convergence proof for off-policy
C-learning in the tabular setting. Our proof hinges on the fact that the TD C-learning update rule
has the same effect as applying the following (unknown) Bellman operator:

Cπθ (F = 1 | st,at, st+)

Cπθ (F = 0 | st,at, st+)
= (1−γ)p(st+1 = st+ | st,at)

p(st+)
+γEp(st+1|st,at),

π(at+1|st)

[
Cπθ (F = 1 | st+1,at+1, st+)

Cπθ (F = 0 | st+1,at+1, st+)

]
This equation tells us that C-learning is equivalent to maximizing the reward function rst+(st,at) =
p(st+1 = st+ | st,at)/p(st+), but does so without having to estimate either the dynamics p(st+1 |
st,at) or the marginal distribution p(st).

5.2 GOAL-CONDITIONED RL VIA C-LEARNING

We now build a complete algorithm for goal-conditioned RL based on C-learning. We will derive
this algorithm in two steps. First, while Section 5.1 shows how to estimate the future state density
of a single policy, for goal-conditioned RL we will want to estimate the future state density of
a conditional policy, which may be conditioned on many goals. Second, we will discuss how to
update a policy using the learned density.

To acquire a classifier for a goal-conditioned policy, we need to apply our objective function (Eq. 7)
to all policies {πφ(a | s, g) | g ∈ S}. We can do this efficiently by additionally conditioning the
classifier and the policy on the commanded goal g ∈ S. However, for learning a goal-reaching
policy, we will only need to query the classifier on inputs where st+ = g. Thus, we only need to
learn a classifier conditioned on inputs where st+ = g, resulting in the following objective:

E p(st,at), p(st+1|st,at),
p(st+), π(at+1|st+1,g=st+)

[(1− γ) logCπθ (F = 1 | st,at, st+1) + logCπθ (F = 0 | st,at, st+)

+ γ bw(st+1,at+1, st+)csg logCπθ (F = 1 | st,at, st+)]. (8)

The difference between this objective and the one derived in Section 5.1 (Eq. 7) is that the next
action is sampled from a goal-conditioned policy. The density function obtained from this classifier
(Eq. 2) represents the future state density of st+, given that the policy was commanded to reach goal
g = st+: fπθ (st+ = st+ | st,at) = pπ+(st+ = st+ | st,at, g = st+).

Now that we can estimate the future state density of a goal-conditioned policy, our second step is
to optimize the policy w.r.t. this learned density function. We need to define a reward function that
says how good a particular future state density is for reaching a particular goal. While we can use
any functional of future state density, a natural choice is the KL divergence between a Dirac density
centered at the commanded goal and the future state density of the goal-conditioned policy:

−DKL(1(st+ = g) ‖ pπ+(st+ | st,at, g)) = log pπ+(st+ = g | st,at, g).

Importantly, computing this KL only requires the future state density of the commanded goal. Since
pπ+(st+ | st,at, g = st+) is a monotone increasing function of the classifier predictions (see Eq. 2),
we can write the policy objective in terms of the classifier predictions:

G(φ) = max
φ

Eπφ(at|st,g) [logCπθ (F = 1 | st,at, st+ = g)] .

If we collect new experience during training, then the marginal distribution p(st+) will change
throughout training. While this makes the learning problem for the classifier non-stationary, the
learning problem for the policy (whose solution is independent of p(st+)) remains stationary.

6

Published as a conference paper at ICLR 2021

(a) Hypothesis 1: Underestimating the density (b) Hypothesis 2: Optimal goal sampling ratio

Figure 1: Testing Hypotheses about Q-learning: (Left) As predicted, Q-values often sum to less than 1.
(Right) The performance of Q-learning is sensitive to the relabeling ratio. Our analysis predicts that the optimal
relabeling ratio is approximately λ = 1

2
(1 + γ). C-learning (dashed orange) does not require tuning this ratio

and outperforms Q-learning, even when the relabeling ratio for Q-learning is optimally chosen.

Algorithm Summary: We summarize our approach, which we call goal-conditioned C-learning,
in Alg. 3. Given a dataset of transitions, we alternate between estimating the future state density of
the goal-conditioned policy and updating the policy to maximize the probability density of reaching
the commanded goal. This algorithm is simply to implement by taking a standard actor-critic RL
algorithm and changing the loss function for the critic (a few lines of code). In the tabular setting,
goal-conditioned C-learning converges to the optimal policy (proof in Appendix D.3).

5.3 IMPLICATIONS FOR Q-LEARNING AND HINDSIGHT RELABELING

Off-policy C-learning (Alg. 2) bears a resemblance to Q-learning with hindsight relabeling, so we
now compare these two algorithms to make hypotheses about Q-learning, which we will test in
Section 6. We start by writing the objective for both methods using the cross-entropy loss, CE(·, ·):

FC-learning(θ, π) = (1− γ)CE(Cπθ (F | st,at, st+1), y = 1)

+ (1 + γw)CE
(
Cπθ (F | st,at, st+), y =

γw

γw + 1
=

γCπ
′

θ

γCπ
′

θ + (1− Cπ′
θ)

)
, (9)

FQ-learning(θ, π) = (1− λ)CE(Qπθ (st,at, g = st+1), y = 1)

+ λCE
(
Qπθ (st,at, g = st+), y = γQπθ (st+1,at+1, st+)

)
, (10)

where C ′θ = Cπθ (F = 1 | st+1,at+1, st+) is the classifier prediction at the next state and where
λ ∈ [0, 1] denotes the relabeling ratio used in Q-learning, corresponding to the fraction of goals
sampled from p(st+). There are two differences between these equations, which lead us to make
two hypotheses about the performance of Q-learning, which we will test in Section 6. The first
difference is how the predicted targets are scaled for random goals, with Q-learning scaling the
prediction by γ while C-learning scales the prediction by γ/(γC ′θ + (1 − C ′θ)). Since Q-learning
uses a smaller scale, we make the following hypothesis:
Hypothesis 1. Q-learning will predict smaller future state densities and therefore underestimate
the true future state density function.

This hypothesis is interesting because it predicts that prior methods based on Q-learning will not
learn a proper density function, and therefore fail to solve the future state density estimation prob-
lem. The second difference between C-learning and Q-learning is that Q-learning contains a tunable
parameter λ, which controls the ratio with which next-states and random states are used as goals.
This ratio is equivalent to a weight on the two loss terms, and our experiments will show that Q-
learning with hindsight relabeling is sensitive to this parameter. In contrast, C-learning does not re-
quire specification of this hyperparameter. Matching the coefficients in the Q-learning loss (Eq. 10)
with those in our loss (Eq. 9) (i.e., [1−λ, λ] ∝ [1− γ, 1 + γw]), we make the following hypothesis:
Hypothesis 2. Q-learning with hindsight relabeling will most accurately solve the future state den-
sity estimation problem (Def. 2) when random future states are sampled with probability λ = 1+γ

2 .

Prior work has found that this goal sampling ratio is a sensitive hyperparameter (Andrychowicz et al.,
2017; Pong et al., 2018; Zhao et al., 2019); this hypothesis is useful because it offers an automatic
way to choose the hyperparameter. The next section will experimentally test these hypotheses.

6 EXPERIMENTS

We aim our experiments at answering the following questions:

1. Do Q-learning and C-learning accurately estimate the future state density (Problem 2)?

7

Published as a conference paper at ICLR 2021

2. (Hypothesis 1) Does Q-learning underestimate the future state density function (§ 5.3)?
3. (Hypothesis 2) Is the predicted relabeling ratio λ = (1 + γ)/2 optimal for Q-learning (§ 5.3)?
4. How does C-learning compare with prior goal-conditioned RL methods on benchmark tasks?

Do Q-learning and C-learning accurately predict the future? Our first experiment studies how
well Q-learning and C-learning solve the future state density estimation problem (Def. 2). We use
a continuous version of a gridworld for this task and measure how close the predicted future state
density is to the true future state density using a KL divergence. Since this environment is continuous
and stochastic, Q-learning without hindsight relabelling learns Q = 0 on this environment. In the
on-policy setting, MC C-learning and TD C-learning perform similarly, while the prediction error for
Q-learning (with hindsight relabeling) is more than three times worse. In the off-policy setting, TD
C-learning is more accurate than Q-learning (with hindsight relabeling), achieving a KL divergence
that is 14% lower than that of Q-learning. As expected, TD C-learning performs better than MC
C-learning in the off-policy setting. These experiments demonstrate that C-learning yields a more
accurate solution to the future state density estimation problem, as compared with Q-learning. See
Appendix G.1 for full experimental details and results.

(a) Walker2d-v2 (b) Predicted future states

Figure 2: Predicting the Future: C-learning makes
accurate predictions of the expected future state across
a range of tasks and discount values. In contrast, learn-
ing a 1-step dynamics model and unrolling that model
results in high error for large discount values.

Our next experiment studies the ability of
C-learning to predict the future in higher-
dimensional continuous control tasks. We col-
lected a dataset of experience from agents pre-
trained to solve three locomotion tasks from
OpenAI Gym. We applied C-learning to each
dataset, and used the resulting classifier to pre-
dict the expected future state. As a baseline,
we trained a 1-step dynamics model on this
same dataset and unrolled this model autore-
gressively to obtain a prediction for the ex-
pected future state. Varying the discount factor,
we compared each method on Walker2d-v2 in Fig. 2 and the other tasks in Appendix Fig. 7. The
1-step dynamics model is accurate over short horizons but performance degrades for larger values
of γ, likely due to prediction errors accumulating over time. In contrast, the predictions obtained by
MC C-learning and TD C-learning remain accurate for large values of γ. Appendix G.2 contains for
experimental details; Appendix I and the project website contain more visualizations.

Testing our hypotheses about Q-learning: We now test two hypotheses made in Section 5.3.
The first hypothesis is that Q-learning will underestimate the future state density function.
To test this hypothesis, we compute the sum over the predicted future state density function,∫
st+

pπ+(st+ = st+ | st,at), which in theory should equal one. We compared the predictions from
MC C-learning and Q-learning using on-policy data (details in Appendix G.1). As shown in Fig. 1a,
the predictions from C-learning summed to 1, but the predictions from Q-learning consistently
summed to less than one, especially for large values of λ. However, our next experiment shows
that Q-learning works best when using large values of λ, suggesting that successful hyperparame-
ters for Q-learning are ones for which Q-learning does not learn a proper density function.

Our second hypothesis is that Q-learning will perform best when the relabeling ratio is chosen to
be λ = (1 + γ)/2. Fig. 1b shows the results from this experiment. The performance of Q-learning
is highly sensitive to the relabeling ratio: values of λ that are too large or too small result in Q-
learning performing poorly, worse than simply predicting a uniform distribution. Second, not only
does the optimal choice of λ increase with γ, but our theoretical hypothesis of λ = (1 − γ)/2
almost exactly predicts the optimal value of λ. Our third observation is that C-learning, which
uses a 50-50 sampling ratio, consistently does better than Q-learning, even for the best choice of λ.
These experiments support our hypothesis for the choice of relabeling ratio while reaffirming that
our principled approach to future state density estimation obtains a more accurate solution.

Goal-Conditioned RL for continuous control tasks: Our last set of experiments apply goal-
conditioned C-learning (Alg. 3) to benchmark continuous control tasks from prior work, shown
in Fig. 3. These tasks range in difficulty from the 6-dimensional Sawyer Reach task to the 45-
dimensional Pen task (see Appendix G). The aim of these experiments is to show that C-learning is
competitive with prior goal-conditioned RL methods, without requiring careful tuning of the goal
sampling ratio. We compare C-learning with a number of prior methods based on Q-learning, which

8

Published as a conference paper at ICLR 2021

Figure 3: Goal-conditioned RL: C-learning is competitive with prior goal-conditioned RL methods across a
suite of benchmark tasks, without requiring careful tuning of the relabeling distribution.

differ in how goals are sampled during training: TD3 (Fujimoto et al., 2018) does no relabeling, Lin
et al. (2019) uses 50% next state goals and 50% random goals, and HER (Andrychowicz et al.,
2017) uses final state relabeling (we compare against both 100% and 50% relabeling). None of
these methods require a reward function or distance function for training; for evaluation, we use
the L2 metric between the commanded goal and the terminal state (the average distance to goal and
minimum distance to goal show the same trends). As shown in Fig. 3, C-learning is competitive
with the best of these baselines across all tasks, and substantially better than all baselines on the
Sawyer manipulation tasks. These manipulation tasks are more complex than the others because
they require indirect manipulation of objects in the environment. Visualizing the learned policies,
we observe that C-learning has discovered regrasping and fine-grained adjustment behaviors, behav-
iors that typically require complex reward functions to learn (Popov et al., 2017).2 On the Sawyer
Push and Sawyer Drawer tasks, we found that a hybrid of TD C-learning and MC C-learning per-
formed better than standard C-learning. This variant, which is analogous to an “n-step” version of
C-learning, is simple to implement and is described in Appendix E. In summary, C-learning per-
forms as well as prior methods on simpler tasks and better on complex tasks, does not depend on a
sensitive hyperparameter (the goal sampling ratio), and maximizes a well-defined objective function.

Figure 4: Q-learning is sensitive to the relabeling ratio.
Our analysis predicts the optimal relabeling ratio.

Predicting the goal sampling ratio for goal
conditioned RL: While C-learning prescribes a
precise method for sampling goals, prior hind-
sight relabeling methods are sensitive to these
parameters. To visualize this, we varied the
goal sampling ratio used by Lin et al. (2019) on
the maze2d-umaze-v0 task from Fu et al.
(2020). As shown in Fig. 4, properly choosing
this ratio can result in a 50% decrease in final
distance. Additionally, our hypothesis that the
optimal goal sampling ratio is λ = (1 − γ)/2
accurately predicts the best value for this ratio.

7 CONCLUSION

A goal-oriented agent should be able to predict and control the future state of its environment.
In this paper, we used this idea to reformulate the standard goal-conditioned RL problem as one
of estimating and optimizing the future state density function. We showed that Q-learning does
not directly solve this problem in (stochastic) environments with continuous states, and hindsight
relabeling produces, at best, a mediocre solution for an unclear objective function. In contrast, C-
learning yields more accurate solutions. Moreover, our analysis makes two hypotheses about when
and where hindsight relabeling will most effectively solve this problem, both of which are validated
in our experiments. Our experiments also demonstrate that C-learning scales to high-dimensional
continuous controls tasks, where performance is competitive with state-of-the-art goal conditioned
RL methods while offering an automatic and principled mechanism for hindsight relabeling.

2See the project website for videos: https://ben-eysenbach.github.io/c_learning

9

https://ben-eysenbach.github.io/c_learning

Published as a conference paper at ICLR 2021

ACKNOWLEDGEMENTS

We thank Dibya Ghosh and Vitchyr Pong for discussions about this work, and thank Vincent Vanhouke, Ofir
Nachum, and anonymous reviewers for providing feedback on early versions of this work. This work is
supported by the Fannie and John Hertz Foundation, and the National Science Foundation (DGE-1745016,
IIS1763562), and the US Army (W911NF1920104).

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Advances in
neural information processing systems, pp. 5048–5058, 2017.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David Silver.
Successor features for transfer in reinforcement learning. In Advances in neural information processing
systems, pp. 4055–4065, 2017.

André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel Toyama,
Shibl Mourad, David Silver, Doina Precup, et al. The option keyboard: Combining skills in reinforcement
learning. In Advances in Neural Information Processing Systems, pp. 13052–13062, 2019.

Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning for differing training and test
distributions. In Proceedings of the 24th international conference on Machine learning, pp. 81–88, 2007.

Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh Gupta. Neural topological slam
for visual navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 12875–12884, 2020.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation. Neural
Computation, 5(4):613–624, 1993.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation learning. In
Advances in Neural Information Processing Systems, pp. 15324–15335, 2019.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, and
Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual fore-
sight: Model-based deep reinforcement learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

Benjamin Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging plan-
ning and reinforcement learning. In Advances in Neural Information Processing Systems, pp. 15246–15257,
2019.

Benjamin Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan Salakhutdinov. Rewriting history with inverse
rl: Hindsight inference for policy improvement. arXiv preprint arXiv:2002.11089, 2020.

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight experience
replay. In Advances in Neural Information Processing Systems, pp. 12623–12634, 2019.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-learning algo-
rithms. arXiv preprint arXiv:1902.10250, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. arXiv preprint arXiv:1802.09477, 2018.

Dibya Ghosh, Abhishek Gupta, Justin Fu, Ashwin Reddy, Coline Devin, Benjamin Eysenbach, and Sergey
Levine. Learning to reach goals without reinforcement learning. arXiv preprint arXiv:1912.06088, 2019.

Karol Gregor, George Papamakarios, Frederic Besse, Lars Buesing, and Theophane Weber. Temporal differ-
ence variational auto-encoder. arXiv preprint arXiv:1806.03107, 2018.

Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam Fishman, Ke Wang,
Ekaterina Gonina, Neal Wu, Chris Harris, et al. Tf-agents: A library for reinforcement learning in tensorflow,
2018.

10

Published as a conference paper at ICLR 2021

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learning:
Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,
2019.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnor-
malized statistical models. In Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, pp. 297–304, 2010.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

Ferenc Huszár. Variational inference using implicit distributions. arXiv preprint arXiv:1702.08235, 2017.

Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. On the convergence of stochastic iterative dynamic
programming algorithms. Neural computation, 6(6):1185–1201, 1994.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pp. 1094–1099. Citeseer, 1993.

Hilbert J Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of statistical
mechanics: theory and experiment, 2005(11):P11011, 2005.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

Xingyu Lin, Harjatin Singh Baweja, and David Held. Reinforcement learning without ground-truth state. arXiv
preprint arXiv:1905.07866, 2019.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-horizon
off-policy estimation. In Advances in Neural Information Processing Systems, pp. 5356–5366, 2018.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and Pierre Ser-
manet. Learning latent plans from play. In Conference on Robot Learning, pp. 1113–1132, 2020.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning for hierar-
chical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of discounted
stationary distribution corrections. In Advances in Neural Information Processing Systems, pp. 2318–2328,
2019.

Suraj Nair, Silvio Savarese, and Chelsea Finn. Goal-aware prediction: Learning to model what matters. arXiv
preprint arXiv:2007.07170, 2020.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned policies. In
Advances in Neural Information Processing Systems, pp. 14843–14854, 2019.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. arXiv preprint
arXiv:1806.05635, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

Pedro A Ortega and Daniel A Braun. Thermodynamics as a theory of decision-making with information-
processing costs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
469(2153):20120683, 2013.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain exploration for
long horizon multi-goal reinforcement learning. arXiv preprint arXiv:2007.02832, 2020.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-free deep
rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit: State-
covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej Vecerik, Thomas
Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. Data-efficient deep reinforcement learning for
dexterous manipulation. arXiv preprint arXiv:1704.03073, 2017.

11

Published as a conference paper at ICLR 2021

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and reinforcement
learning by approximate inference. In Twenty-third international joint conference on artificial intelligence,
2013.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory for naviga-
tion. arXiv preprint arXiv:1803.00653, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In
International conference on machine learning, pp. 1312–1320, 2015.

Yannick Schroecker and Charles Isbell. Universal value density estimation for imitation learning and goal-
conditioned reinforcement learning. arXiv preprint arXiv:2002.06473, 2020.

Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward: Self-supervision
for reinforcement learning. arXiv preprint arXiv:1612.07307, 2016.

Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár. Amortised map inference
for image super-resolution. arXiv preprint arXiv:1610.04490, 2016.

Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, and Dahua Lin. Policy continuation with hindsight inverse
dynamics. In Advances in Neural Information Processing Systems, pp. 10265–10275, 2019.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44,
1988.

Richard S Sutton and Brian Tanner. Temporal-difference networks. In Advances in neural information pro-
cessing systems, pp. 1377–1384, 2005.

Csaba Szepesvari, Richard S Sutton, Joseph Modayil, Shalabh Bhatnagar, et al. Universal option models. In
Advances in Neural Information Processing Systems, pp. 990–998, 2014.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, and Nicolas Heess. dm control: Software and tasks for continuous control. arXiv
preprint arXiv:2006.12983, 2020.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized path integral control approach to rein-
forcement learning. The Journal of Machine Learning Research, 11:3137–3181, 2010.

Emanuel Todorov. General duality between optimal control and estimation. In 2008 47th IEEE Conference on
Decision and Control, pp. 4286–4292. IEEE, 2008.

Masatoshi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Generative adversarial
nets from a density ratio estimation perspective. arXiv preprint arXiv:1610.02920, 2016.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pp. 1094–1100, 2020.

Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized multi-goal reinforcement learning.
arXiv preprint arXiv:1905.08786, 2019.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal entropy. 2010.

12

Published as a conference paper at ICLR 2021

A PARTIALLY-OBSERVED GOALS

In many realistic scenarios we have uncertainty over the true goal, with many goals having some
probability of being the user’s true goal. These scenarios might arise because of sensor noise or
because the user wants the agent to focus on a subset of the goal observation (e.g., a robot’s center
of mass).

Noisy Goals. In many prior works, this setting is approached by assuming that a noisy measure-
ment of the goal z ∼ p(z | st+ = g) is observed, and conditioning the Q-function on this measure-
ment. For example, the measurement z might be the VAE latent of the image g (Pong et al., 2019;
Gregor et al., 2018; Shelhamer et al., 2016). In this setting, we will instead aim to estimate the future
discounted measurement distribution,

p(zt+ | st,at) = (1− γ)

∞∑
∆=0

γ∆Est+∆∼p(st+∆|st,at) [p(zt+∆ | st+∆)] .

Whereas the goal-conditioned setting viewed fπθ (st+ | st,at) as defining a measure over goals,
here we view fπθ (zt+ | st,at) as an implicitly-defined distribution over measurements.

Partial Goals. In some settings, the user may want the agent to pay attention to part of the goal,
ignoring certain coordinates or attributes. Applying C-learning to this setting is easy. Let crop(st)
be a user-provided function that extracts relevant coordinates or aspects of the goal state. Then, the
user can simply parametrize the C-learning classifier as Cπθ (F | st,at, g = crop(st+)).

B ANALYTIC FUTURE STATE DISTRIBUTION

In this section we describe how to analytically compute the discounted future state distribution for
the gridworld examples. We started by creating two matrices:

T ∈ R25×25 : T [s, s′] =
∑
a

1(f(s, a) = s′)π(a | s)

T0 ∈ R25×4×25 : T [s, a, s′] = 1(f(s, a) = s′),

where f(s, a) denotes the deterministic transition function. The future discounted state distribution
is then given by:

P = (1− γ)
[
T0 + γT0T + γ2T0T

2 + γ3T0T
3 + · · ·

]
= (1− γ)T0

[
I + γT + γ2T 2 + γ3T 3 + · · ·

]
= (1− γ)T0 (I − γT)

−1

The tensor-matrix product T0T is equivalent to einsum(‘ijk,kh→ ijh’, T0, T). We use the forward
KL divergence for estimating the error in our estimate, DKL(P ‖ Q), where Q is the tensor of
predictions:

Q ∈ R25×4×25 : Q[s, a, g] = q(g | s, a).

C ASSIGNMENT EQUATIONS FOR THE MSE LOSS

In Section 5.3, we derived the assignment equations for C-learning under the cross entropy loss.
In this section we show that using the mean squared error (MSE) loss results in the same update
equations. Equivalently, this can be viewed as using a Gaussian model for Q values instead of a
logistic model. This result suggests that the difference in next-state scaling between C-learning and
Q-learning is not just a quirk of the loss function.

13

Published as a conference paper at ICLR 2021

To start, we write the loss for C-learning using the MSE and then completing the square.

L(θ, π) = (1− γ)(Cπθ (F = 1 | st,at, st+1)− 1)2 + γw(Cπθ (F = 1 | st,at, st+)− 1)2

+ (Cπθ (F = 1 | st,at, st+1)− 0)2

= (1− γ) (Cπθ (F = 1 | st,at, st+1)− 1)
2

+ γw

(
Cπθ (F = 1 | st,at, st+)− γw

γw + 1

)2

+ γw −
(

γw

γw + 1

)2

︸ ︷︷ ︸
constant w.r.t. Cθ

.

The optimal values for Cθ for both cases of goal are the same as for the cross entropy loss:

Cπθ (F = 1 | st,at, st+)←

{
1 if st+1 = st+
γw
γw+1 otherwise

.

Additionally, observe that the weights on the two loss terms are the same as for the cross entropy
loss: the next-state goal loss is scaled by (1− γ) while the random goal loss is scaled by γw.

D A BELLMAN EQUATION FOR C-LEARNING AND CONVERGENCE
GUARANTEES

The aim of this section is to show that off-policy C-learning converges, and that the fixed point
corresponds to the Bayes-optimal classifier. This result guarantees that C-learning will accurate
evaluate the future state density of a given policy. We then provide a policy improvement theorem,
which guarantees that goal-conditioned C-learning converges to the optimal goal-conditioned policy.

D.1 BELLMAN EQUATIONS FOR C-LEARNING

We start by introducing a new Bellman equation for C-learning, which will be satisfied by the Bayes
optimal classifier. While actually evaluating this Bellman equation requires privileged knowledge
of the transition dynamics and the marginal state density, if we knew these quantities we could turn
this Bellman equation into a convergent value iteration procedure. In the next section, we will show
that the updates of off-policy C-learning are equivalent to this value iteration procedure, but do not
require knowledge of the transition dynamics or marginal state density. This equivalence allows us
to conclude that C-learning converges to the Bayes-optimal classifier.

Our Bellman equation says that the future state density function fθ induced by a classifier Cθ should
satisfy the recursive relationship noted in Eq. 4.
Lemma 1 (C-learning Bellman Equation). Let policy π(at | st), dynamics function p(st+1 | st,at),
and marginal distribution p(st+) be given. If a classifier Cθ is the Bayes-optimal classifier, then it
satisfies the follow identity for all states st, actions at, and potential future states st+:

Cπθ (F = 1 | st,at, st+)

Cπθ (F = 0 | st,at, st+)
= (1−γ)p(st+1 = st+ | st,at)

p(st+)
+γEp(st+1|st,at),

π(at+1|st)

[
Cπθ (F = 1 | st+1,at+1, st+)

Cπθ (F = 0 | st+1,at+1, st+)

]
(11)

Proof. If Cθ is the Bayes-optimal classifier, then fπθ (st+ | st,at) = pπ+(st+ | st,at). Substituting
the definition of fθ (Eq. 2) into Eq. 4, we obtain a new Bellman equation:

This Bellman equation is similar to the standard Bellman equation with a goal-conditioned reward
function rst+(st,at) = p(st+1 = st+ | st,at)/p(st+), where Q functions represent the ratio
fπθ (st+ | st,at) = pπ+(st+ | st,at). However, actually computing this reward function to evaluate
this Bellman equation requires knowledge of the densities p(st+1 | st,at) and p(st+), both of
which we assume are unknown to our agent.3 Nonetheless, if we had this privileged information,

3Interestingly, we can efficiently estimate this reward function by learning a next-state classifier, qθ(F |
st,at, st+1), which distinguishes st+1 ∼ p(st+1 | st,at) from st+1 ∼ p(st+1) = p(st+). This classifier

14

Published as a conference paper at ICLR 2021

we could readily turn this Bellman equation into the following assignment equation:
Cπθ (F = 1 | st,at, st+)

Cπθ (F = 0 | st,at, st+)
← (1−γ)p(st+1 = st+ | st,at)

p(st+)
+γEp(st+1|st,at),

π(at+1|st)

[
Cπθ (F = 1 | st+1,at+1, st+)

Cπθ (F = 0 | st+1,at+1, st+)

]
(12)

Lemma 2. If we use a tabular representation for the ratio Cπθ (F=1|st,at,st+)
Cπθ (F=0|st,at,st+) , then iterating the

assignment equation (Eq. 12) converges to the optimal classifier.

Proof. Eq. 12 can be viewed as doing value iteration with a goal-conditioned Q function
parametrized as Q(st,at, st+) =

Cπθ (F=1|st,at,st+)
Cπθ (F=0|st,at,st+) and a goal-conditioned reward function

rst+(st,at) = p(st+1=st+|st,at)
p(st+) . We can then employ standard convergence proofs for Q-learning

to guarantee convergence (Jaakkola et al., 1994, Theorem 1).

D.2 OFF-POLICY C-LEARNING CONVERGES

In this section we show that off-policy C-learning converges to the Bayes-optimal classifier, and
thus recovers the true future state density function. The main idea is to show that the updates for off-
policy C-learning have the same effect as the assignment equation above (Eq. 12), without relying
on knowledge of the dynamics function or marginal density function.
Lemma 3. Off-policy C-learning results in the same updates to the classifier as the assignment
equations for the C-learning Bellman equation (Eq. 12)

Proof. We start by viewing the off-policy C-learning loss (Eq. 9) as a probabilistic assignment
equation. A given triplet (st,at, st+) can appear in Eq. 9 in two ways:

1. We sample a “positive” st+ = st+1, which happens with probability (1 − γ)p(st+1 =
st+ | st,at), and results in the label y = 1.

2. We sample a “negative” st+, which happens with probability (1 + γw)p(st+) and results
in the label y = γw

γw+1 .

Thus, conditioned on the given triplet containing st+, the expected target value y is

E[y | st,at, st+] =
(1− γ)p(st+1 = st+ | st,at) · 1 + E

[
���

��(1 + γw)p(st+) · γw

���γw+1

]
(1− γ)p(st+1 = st+ | st,at) + E [(1 + γw)p(st+)]

=
(1− γ)p(st+1=st+|st,at)

p(st+) + γE[w]

(1− γ)p(st+1=st+|st,at)
p(st+) + γE[w] + 1

. (13)

Note that w is a random variable because it depends on st+1 and at+1, so we take its expectation
above. We can write the assignment equation for C as

Cπθ (F = 1 | st,at, st+)← E[y | st,at, st+].

Noting that the function C
1−C is strictly monotone increasing, the assignment equation is equivalent

to the following assignment for the ratio Cπθ (F=1|st,at,st+)
Cπθ (F=0|st,at,st+) :

Cπθ (F = 1 | st,at, st+)

Cπθ (F = 0 | st,at, st+)
← E[y | st,at, st+]

1− E[y | st,at, st+]
= (1− γ)

p(st+1 = st+ | st,at)

p(st+)
+ γE[w].

The equality follows from substituting Eq. 13 and then simplifying. Substituting our definition of
w, we observe that the assignment equation for off-policy C-learning is exactly the same as the
assignment equation for the C-learning Bellman equation (Eq. 11):
Cπθ (F = 1 | st,at, st+)

Cπθ (F = 0 | st,at, st+)
← (1− γ)

p(st+1 = st+ | st,at)

p(st+)
+ γ

[
Cπθ (F = 1 | st+1,at+1, st+)

Cπθ (F = 0 | st+1,at+1, st+)

]
.

is different from the future state classifier used in C-learning. The reward function can then be estimated as
rst+(st,at) =

qθ(F=1|st,at,st+)

qθ(F=0|st,at,st+)
. If we learned this next state classifier, we estimate the future state density

and learn goal-reaching policies by applying standard Q-learning to this reward function.

15

Published as a conference paper at ICLR 2021

Since the off-policy C-learning assignments are equivalent to the assignments of the C-learning
Bellman equation, any convergence guarantee that applies to the later must apply to the former.
Thus, Lemma 2 tells us that off-policy C-learning must also converge to the Bayes-optimal classifier.
We state this final result formally:
Corollary 3.1. If we use a tabular representation for the classifier, then off-policy C-learning con-
verges to the Bayes-optimal classifier. In this case, the predicted future state density (Eq. 2) also
converges to the true future state density.

D.3 GOAL-CONDITIONED C-LEARNING CONVERGES

In this section we prove that the version of policy improvement done by C-learning is guaranteed
to improve performance. We start by noting a Bellman optimality equation for goal-conditioned
C-learning, which indicates whether a goal-conditioned policy is optimal:
Lemma 4 (C-learning Bellman Optimality Equation). Let dynamics function p(st+1 | st, ca), and
marginal distribution p(st+) be given. If a classifier Cθ is the Bayes-optimal classifier, then it
satisfies the follow identity for all states st, actions at, and goals g = st+:

Cπθ (F = 1 | st,at, st+)

Cπθ (F = 0 | st,at, st+)
= (1−γ)p(st+1 = st+ | st,at)

p(st+)
+γEp(st+1|st,at)

[
max
at+1

Cπθ (F = 1 | st+1,at+1, st+)

Cπθ (F = 0 | st+1,at+1, st+)

]
(14)

We now apply the standard policy improvement theorem to C-learning.
Lemma 5. If the estimate of the future state density is accurate, then updating the policy according
to Eq. 5.2 guarantees improvement at each step.

Proof. We use π to denote the current policy and π′ to denote the policy that acts greedily w.r.t. the
current density function:

π′(at | st, st+) = 1(at = arg max
a

pπ(st+ | st,at))

The proof is quite similar to the standard policy improvement proof for Q-learning.

pπ(st+ | st) = Eπ(at|st,st+)[p
π(st+ | st,at)]

= Eπ(at|st,st+)[(1− γ)p(st+1 = st+ | st,at) + γpπ(st+ | st+1,at+1)]

≤ Eπ′(at|st,st+)[(1− γ)p(st+1 = st+ | st,at) + γpπ(st+ | st+1,at+1)]

= Eπ′(at|st,st+)[(1− γ)p(st+1 = st+ | st,at)

+ E p(st+1|st,at),
π(at+1|st+1,st+)

[γ((1− γ)p(st+1 = st+ | st+1,at+1) + γpπ(st+ | st+2, at+2))]]

≤ Eπ′(at|st,st+)[(1− γ)p(st+1 = st+ | st,at)

+ E p(st+1|st,at),
π′(at+1|st+1,st+)

[γ((1− γ)p(st+1 = st+ | st+1,at+1) + γpπ(st+ | st+2, at+2))]]

· · ·

≤ pπ
′
(st+ | st)

Taken together with the convergence of off-policy C-learning, this proof guarantees that goal-
conditioned C-learning converges to the optimal goal-reaching policy (w.r.t. the functional in
Eq. 5.2) in the tabular setting.

E MIXING TD C-LEARNING WITH MC C-LEARNING

Recall that the main challenge in constructing an off-policy procedure for learning the classifier
was getting samples from the future state distribution of a new policy. Recall that TD C-learning

16

Published as a conference paper at ICLR 2021

(Alg. 3) uses importance weighting to estimate expectations under this new distribution, where the
importance weights are computed using the learned classifier. However, this approach can result in
high-variance, especially when the new policy has a future state distribution that is very different
from the background distribution. In this section we describe how to decrease the variance of this
importance weighting estimator at the cost of increasing bias.

The main idea is to combine TD C-learning with MC C-learning. We will modify off-policy C-
learning to also use samples p̂(st+ | st,at) from previous policies as positive examples. These
samples will be sampled from trajectories in the replay buffer, in the same way that samples were
generated for MC C-learning. We will use a mix of these on-policy samples (which are biased
because they come from a different policy) and importance-weighted samples (which may have
higher variance). Weighting the TD C-learning estimator by λ and the MC C-learning estimator by
(1− λ), we get the following objective:

λEp(st+1|st,at),p(st+)[(1− γ) logC(F = 1 | st,at, st+1) + logC(F = 0 | st,at, st+)

+ γw logC(F = 1 | st,at, st+)

+ (1− λ)Ep̂(ŝt+|st,at),p(st+)[logC(F = 1 | st,at, ŝt+) + logC(F = 0 | st,at, st+)]

This method is surprisingly easy to implement. Given a batch of B transitions (st,at), we label λ2B
with the next state st+1, 1

2B with a random state st+ ∼ p(st+), and 1−λ
2 B with a state sampled

from the empirical future state distribution p̂(st+ | st,at). To make sure that each term in the loss
above receives the correct weight, we scale each of the terms by the inverse sampling probability:

(Next states):
2

�λB
(�λ(1− γ) logC(F = 1 | st,at, st+1)

(Random states):
2

B

(
(�λ+ 1− �λ) logC(F = 0 | st,at, st+) + λγw logC(F = 1 | st,at, st+)

)
(Future states):

2

���
�(1− λ)B
���

�(1− λ) logC(F = 1 | st,at, st+)

Without loss of generality, we scale each term by B
2 . Since each of these terms is a cross entropy

loss, we can simply implement this loss as a weighted cross entropy loss, where the weights and
labels are given in the table below.

Fraction of batch Label Weight
Next states λ

2 1 1− γ
Future states 1−λ

2 1 1

Random states 1
2

λγw
1+λγw (1 + λγw)

On many tasks, we observed that this approach performed no differently than TD C-learning. How-
ever, we found this strategy to be crucial for learning some of the sawyer manipulation tasks. In our
experiments we used λ = 0.6 for the Sawyer Push and Sawyer Drawer tasks, and used λ = 1 (i.e.,
pure TD C-learning) for all other tasks.

F ADDITIONAL EXPERIMENTS

Comparing C-learning and C-learning for Future State Density Estimation Fig. 5 shows the
results of our comparison of C-learning and Q-learning on the “continuous gridworld” environment,
in both the on-policy and off-policy setting. In both settings, off-policy C-learning achieves lower
error than Q-learning. As expected, Monte Carlo C-learning performs well in the on-policy setting,
but poorly in the off-policy setting, motivating the use of off-policy C-learning.

Additional Results on Predicting the Goal Sampling Ratio To further test Hypothesis 2, we
repeated the experiment from Fig. 1b across a range of values for γ. As shown in Fig. 6, our
Hypothesis accurately predicts the optimal goal sampling ratio across a wide range of values for γ.

17

Published as a conference paper at ICLR 2021

(a) On Policy (b) Off Policy

Figure 5: We use C-learning and Q-learning to predict the future state distribution. (Right) In the on-policy
setting, both the Monte Carlo and TD versions of C-learning achieve significantly lower error than Q-learning.
(Right) In the off-policy setting, the TD version of C-learning achieves lower error than Q-learning, while
Monte Carlo C-learning performs poorly, as expected.

Figure 6: The performance of Q-learning (blue line) is sensitive to the relabeling ratio. Our analysis
accurately predicts that the optimal relabeling ratio is approximately λ = 1

2 (1 + γ). Our method,
C-learning, does not require tuning this ratio, and outperforms Q-learning, even with the relabeling
ratio for Q-learning is optimally chosen.

G EXPERIMENTAL DETAILS

G.1 “CONTINUOUS GRIDWORLD” EXPERIMENTS

The “Continuous Gridworld” Environment Our first set of experiments aimed to compare the
predictions of Q-learning and C-learning to the true future state density. We carefully chose the
environment to conduct this experiment. We want it to have stochastic dynamics and a continuous
state space, so that the true Q function for the indicator reward is 0. On the other hand, to evaluate
our hypotheses, we want to be able to analytically compute the true future state density. Thus,
we use a modified 5 × 5 gridworld environment where the agent observes a noisy version of the
current state. Precisely, when the agent is in position (i, j), the agent observes (i + εi, j + εj)
where εi, εj ∼ Unif[−0.5, 0.5]. Note that the observation uniquely identifies the agent’s position, so
there is no partial observability. We can analytically compute the exact future state density function
by first computing the future state density of the underlying gridworld and noting that the density
is uniform within each cell (see Appendix B). We generated a tabular policy by sampling from a
Dirichlet(1) distribution, and sampled 100 trajectories of length 100 from this policy.

On-Policy Experiment We compare C-learning (Algorithms 1 and 2) to Q-learning in the on-
policy setting, where we aim to estimate the future state density function of the same policy that
collected the dataset. This experiment aims to answer whether C-learning and Q-learning solve
the future state density estimation problem (Def. 2). Each of the algorithms used a 2 layer neural
network with a hidden layer of size 32, optimized for 1000 iterations using the Adam optimizer with
a learning rate of 3e-3 and a batch size of 256. C-learning and Q-learning with hindsight relabeling
differ only in their loss functions, and the fact that C-learning acquires a classifier while Q-learning
predicts a continuous Q-value. After training with each of the algorithms, we extracted the estimated
future state distribution fπθ (st+ | st,at) using Eq. 2. We also normalized the predicted distributions
fπθ (st+ | st,at) to sum to 1 (i.e.,

∑
st+

fπθ (st+ = st+ | st,at) = 1 ∀st,at). For evaluation, we
computed the KL divergence with the true future state distribution. We show results in Fig. 5a.

18

Published as a conference paper at ICLR 2021

(a) Walker2d-v2 (b) Hopper-v2 (c) Ant-v2

Figure 7: Predicting the Future with C-Learning: We ran the experiment from Fig. 2 on three
locomotions tasks.

Off-Policy Experiment We use the same “continuous gridworld” environment to compare C-
learning to Q-learning in the off-policy setting, where we want to estimate the future state distribu-
tion of a policy that is different from the behavior policy. Recall that the motivation for deriving
the bootstrapping version of the classifier learning algorithm was precisely to handle this setting. To
conduct this experiment, we generated two tabular policies by sampling from a Dirichlet(1) distri-
bution, using one policy for data collection and the other for evaluation. We show results in Fig. 5b.

Experiment Testing Hypothesis 1 (Fig. 1a) For this experiment, we found that using a slightly
larger network improved the results of both methods, so we increased hidden layer size from 32
to 256.

Experiment Testing Hypothesis 2 (Fig. 1b, Fig. 6) To test this hypothesis, we used the Q-learning
objective in Eq. 10, where λ represents probability of sampling a random state as st+. Following
prior work (Fu et al., 2019), we reweight the loss function instead of changing the actual sampling
probabilities, thereby avoiding additional sampling error. We ran this experiment in the on-policy
setting, using 5 random seeds for each value of λ. For each trial, we normalized the predicted density
function to sum to 1 and then computed the KL divergence with the true future state density function.

G.2 PREDICTION EXPERIMENTS ON MUJOCO LOCOMOTION TASKS

In this section we provide details for the prediction experiment discussed in Sec. 6 and plotted in
Fig. 2 and Fig. 7.

We first describe how we ran the experiment computing the prediction error in Fig. 7a- 7c. For these
experiments, we used the “expert” data provided for each task in Fu et al. (2020). We split these
trajectories into train (80%) and test (20%) splits. All methods (MC C-learning, TD C-learning, and
the 1-step dynamics model) used the same architecture (one hidden layer of size 256 with ReLU
activation), but C-learning output a binary prediction whereas the 1-step dynamics model output a
vector with the same dimension as the observations. While we could have used larger networks and
likely learned more accurate models, the aim of this experiment is to compare the relative perfor-
mance of C-learning and the 1-step dynamics model when they use similarly-expressive networks.
We trained MC C-learning and the 1-step dynamics model for 3e4 batches and trained the TD C-
learning model for just 3e3 batches (we observed overfitting after that point). For TD C-learning, we
clipped w to lie in [0, 20]. To evaluate each model, we randomly sampled a 1000 state-action pairs
from the validation set and computed the average MSE with the empirical expected future state. We
computed the empirical expected future state by taking a geometric-weighted average of the next
100 time steps. We computed the predictions from the 1-step model by unrolling the model for 100
time steps and taking the geometric-weighted average of these predictions. To compute predictions
from the classifier, we evaluate the classifier at 1000 randomly-sampled state-action pairs (taken
from the same dataset), convert these predictions to importance weights using Eq. 2, normalize the
importance weights to sum to 1, and then take the weighted average of the randomly-sampled states.

To visualize the predictions from C-learning (Fig. 2b), we had to modify these environments to in-
clude the global X coordinate of the agent in the observation. We learned policies for solving these
modified tasks by running the SAC (Haarnoja et al., 2018) implementation in (Guadarrama et al.,
2018) using the default hyparameters. We created a dataset of 1e5 transitions for each environment.
We choose the maximum horizon for each task based on when the agent ran out of the frame (200
steps for HalfCheetah-v2, 1000 steps for Hopper-v2, 1000 steps for Walker2d-v2, and
300 steps for Ant-v2). We then trained TD C-learning on each of these datasets. The hyperparam-
eters were the same as before, except that we trained for 3e4 batches. We evaluated the classifier

19

Published as a conference paper at ICLR 2021

Sawyer Reach Jaco Reach Finger Hand

Pen Sawyer Push Sawyer Window Sawyer Drawer

Figure 8: Continuous Control Environments

at 1000 randomly-sampled state-action pairs taken from a separate validation set, computed the im-
portance weights as before, and then took the weighted average of the rendered images of each of
these 1000 randomly-sampled states. We normalized the resulting images to be in [0, 255].

G.3 GOAL-CONDITIONED RL EXPERIMENTS

In this section we describe the continuous control tasks used in our experiments (shown in Fig. 8),
as well as the hyperparameters used in our implementation of goal-conditioned C-learning. One
important detail is that we used a subset of the state coordinates as the goal in many tasks. For
example, in the Jaco Reach task, we used just the joint angles, not the joint velocities, as the goal.
When C-learning is only conditioned on a subset of the state coordinates, it estimates the marginal
future state distribution over just those coordinates. Unless otherwise mentioned, environments used
the default episode length. Code will be released.

• Jaco Reach This task is based on the manipulation environment in Tassa et al. (2020). We
sampled goals by resetting the environment twice, using the state after the first reset as the goal.
For this task we used just the position, not the velocity, of the joint angles as the goal.

• Finger This task is based on the Finger task in Tassa et al. (2018). We sampled goals by
resetting the environment twice, using the state after the first reset as the goal. For this task we
used the position of the spinner as the goal.

• Hand This task is a modified version of the door-human-v0 task in Fu et al. (2020), but
modified to remove the door, so just the hand remains. We sampled goals by taking 50 random
actions, recording the current state as the goal, and then resetting the environment. This task
used the entire state as the goal. Episodes had length 50.

• Pen This task is based on the pen-human-v0 task in Fu et al. (2020). We sampled goals by
randomly choosing a state from a dataset of human demonstrations provided in Fu et al. (2020).
For this task we used the position (but not orientation) of the pen as the goal.

• Sawyer Reach This task is based on the SawyerReachXYZEnv-v0 environment from Yu
et al. (2020). We used the default goal sampling method, and used the end effector position as
the goal. Episodes had length 50.

• Sawyer Push This task is based on the SawyerReachPushPickPlaceEnv-v0
environment from Yu et al. (2020). We sampled goals uniformly from
Unif([−0.1, 0.1], [0.5, 0.9], [0.015, 0.015]), using the same goal for the arm and puck.
Episodes had length 150.

• Sawyer Window This task is based on the SawyerWindowCloseEnv-v0 environment
from Yu et al. (2020). We randomly sampled the initial state and goal state uniformly from
the possible positions of the window inside the frame. The goal for the arm was set to be the
same as the goal for the window. Episodes had length 150.

20

Published as a conference paper at ICLR 2021

C-learning TD3 + Next State Relabeling
Jaco Reach 0.9 0.99

Finger 0.99 0.99
Hand 0.3 0.8
Pen 0.7 0.99

Sawyer Reach 0.99 0.99
Sawyer Push 0.99 0.99

Sawyer Window 0.99 0.99
Sawyer Drawer 0.99 0.99

Table 1: Values of the discount γ for C-learning and TD3 with Next State Relabeling

• Sawyer Drawer This task is based on the SawyerDrawerOpenEnv-v0 environment
from Yu et al. (2020). We randomly sampled the initial state and goal state uniformly from
the feasible positions of the drawer. The goal for the arm was set to be the same as the goal for
the window. Episodes had length 150.

Our implementation of C-learning is based on the TD3 implementation in Guadarrama et al. (2018).
We learned a stochastic policy, but (as expected) found that all methods converged to a deterministic
policy. We list the hyperparameter below, noting that almost all were taken without modification
from the SAC implementation in Guadarrama et al. (2018) (the SAC implementation has much
more reasonable hyperparameters):

• Actor network: 2 fully-connected layers of size 256 with ReLU activations.

• Critic network: 2 fully-connected layers of size 256 with ReLU activations.

• Initial data collection steps: 1e4

• Replay buffer size: 1e6

• Target network updates: Polyak averaging at every iteration with τ = 0.005

• Batch size: 256. We tried tuning this but found no effect.

• Optimizer: Adam with a learning rate of 3e-4 and default values for β

• Data collection: We collect one transition every one gradient step.

When training the policy (Eq. ??), we used the same goals that we sampled for the classifier (Eq. ??),
with 50% being the immediate next state and 50% being random states. The most sensitive hyper-
parameter was the discount, γ. We therefore tuned γ for both C-learning and the most competitive
baseline, TD3 with next state relabeling (Lin et al., 2019). The tuned values for γ are shown in
Table 1. We used γ = 0.99 for the other baselines.

In our implementation of C-learning, we found that values for the importance weightw became quite
larger, likely because the classifier was making overconfident predictions. We therefore clipped the
values of w to be in [0, 2] for most tasks, though later ablation experiments found that the precise
value of the upper bound had little effect. We used a range of [0, 50] for the finger and Sawyer tasks.
Further analysis of the importance weight revealed that it effectively corresponds to the planning
horizon; clipping the importance weight corresponds to ignoring the possibility of reaching goals
beyond some horizon. We therefore suggest that 1/(1−γ) is a reasonable heuristic for choosing the
maximum value of w.

H ANALYTIC EXAMPLES OF Q-LEARNING FAILURES

In this section we describe a few simple MDPs where Q-learning with hindsight relabeling fails to
learn the true future state distribution. While we describe both examples as discrete state MDPs, we
assume that observations are continuous and noisy, as described in Appendix G

21

Published as a conference paper at ICLR 2021

H.1 EXAMPLE 1

The first example is a Markov process with n states. Each state deterministically transitions to itself.
We will examine the one state, s1 (all other states are symmetric). If the agent starts at s1, it will
remain at s1 at every future time step, so p(st+ | st = s1) = 1(st+ = s1).

We use λ, defined above, to denote the relabeling fraction. The only transition including state s1 is
(st = s1, st+1 = s1). We aim to determine Q = Q(st = s1, st+ = s1, st+ = s1). There are two
possible ways we can observe the transition (st = s1, st+ = s1, st+ = s1). First, with probability
1−λwe sample the next state as st+, and the TD target is 1. Second, with probability λwe sample a
random state with TD target γQ, and with probability 1/n this random state is s1. Thus, conditioned
on st+ = s1, the Bellman equation is

Q =

{
1 w.p. 1− λ
γQ w.p. λn

.

Solving for Q, we get Q∗ = 1−γ
1−λγn

. This Q function is clearly different from the true future state

distribution, p(st+ | st = s1) = 1(st+ = s1). First, since λ
n < 1, the Q function is greater than one

(Q∗ > 1), but a density function over a discrete set of states cannot be greater than one. Second,
even if we normalized this Q function to be less than one, we observe that the Q function depends on
the discount (γ), the relabeling ratio (λ), and the number of states (n). However, the true future state
distribution has no such dependence. Thus, we conclude that even scaling the optimal Q function
by a constant (even one that depends on γ!) would not yield the true future state distribution.

H.2 EXAMPLE 2

Our second example is a stochastic Markov process with two states, s1 and s2. The transition
probabilities are

p(st+1 | st = s1) =

{
1
2 if st+1 = s1
1
2 if st+1 = s2

, p(st+1 | st = s2) = 1(st+1 = s2)

We assume that we have observed each transition once. To simplify notation, we will use Qij =
Q(st = si, st+ = sj). There are three ways to end up with Q11 on the LHS of a Bellman equation:
(1) the next state is s1 and we sample the next state as the goal, (2) the next state is s1 and we sample
a random state as the goal, and (3) the next state is s2 and we sample a random state as the goal.

Q11 =

1 w.p. 1− λ
γQ11 w.p. λ2
γQ21 w.p. λ2

.

We can likewise observe Q12 on the LHS in the same three ways: (1) the next state is s2 and we
sample the next state as the goal, (2) the next state is s1 and we sample a random state as the goal,
and (3) the next state is s2 and we sample a random state as the goal.

Q12 =

1 w.p. 1− λ
γQ12 w.p. λ2
γQ22 w.p. λ2

. (15)

We can only observe Q21 on the LHS in one way: the next state is s2 and we sample we sample a
random state as the goal:

Q21 =
{
γQ21 w.p. 1 . (16)

We can observe Q22 on the LHS in two ways: (1) the next state is s2 and we sample the next state
as the goal, (2) the next state is s2 and we sample a random state as the goal:

Q22 =

1 w.p. 1−λ
1−λ+λ

2

γQ22 w.p.
λ
2

1−λ+λ
2

. (17)

22

Published as a conference paper at ICLR 2021

To solve these equations, we immediately note that the only solution to Eq. 16 isQ21 = 0. Intuitively
this makes sense, as there is zero probability of transition s2 → s1. We can also solve Eq. 17 directly:

(1− γλ

2− λ
)Q22 =

2− 2λ

2− λ
=⇒ 2− λ+ γλ

���2− λ
Q22 =

2− 2λ

���2− λ
=⇒ Q22 =

2− 2λ

2− λ+ γλ
.

Next, we solve Eq. 15. We start by rearranging terms and substituting our solution to Q22:

(1− γλ

2
)Q12 = 1− λ+

γλ

2
Q22 = 1− λ+

γλ

2

2− 2λ

2− λ+ γλ
= (1− λ)

2− λ+ γλ+ γλ

2− λ+ γλ

Rearranging terms, we obtain the following:

Q12 =
2(1− λ)(2− λ+ 2γλ)

(2− γλ)(2− λ+ γλ)

Finally, we solve for Q11, recalling that our solution Q21 = 0:

(1− γλ

2
)Q11 = 1− λ+

γλ

2 �
��*

0
Q21 =⇒ Q11 =

2− 2λ

2− γλ
To summarize, Q-learning with hindsight relabeling obtains the following Q values:

Q11 =
2(1− λ)

2− γλ
,Q12 =

2(1− λ)(2− λ+ 2γλ)

(2− γλ)(2− λ+ γλ)
, Q21 = 0, Q22 =

2− 2λ

2− λ+ γλ
.

For comparison, we compute p(st+ = s1 | s1), the probability that the agent remains in state s1 in
the future. The probability that the agent is in s1 at time step ∆ is 1/2∆, so the total, discounted
probability is

p(st+ = s1 | s1) = (1− γ)(1 +
1

2
γ +

1

4
γ2 + · · ·)

= (1− γ)

∞∑
∆=0

(γ
2

)∆

=
1− γ

1− γ/2
=

2− 2γ

2− γ
.

Thus, in general, the Q value Q11 does not equal the future state distribution. One might imagine
that Q-learning acquires Q values that are only accurate up to scale, so we should consider the
normalized prediction:

Q11

Q11 +Q12
=

1

1 + 2−λ+2γλ
2−λ+γλ

=
2− λ+ γλ

4− 2λ+ 3γλ

However, this normalized Q-learning prediction is also different from the true future state distribu-
tion.

23

Published as a conference paper at ICLR 2021

I PREDICTIONS FROM C-LEARNING

Figures 9 and 10 visualizes additional predictions from the C-learning model in Sec. 6. In each
image, the top half shows the current state and the bottom half shows the predicted expected future
state. Animations of these results can be found on the project website.

(a) HalfCheetah-v2, γ = 0.9

(b) HalfCheetah-v2, γ = 0.9

(c) Ant-v2, γ = 0.5

(d) Ant-v2, γ = 0.9

(e) Ant-v2, γ = 0.99

Figure 9: Predictions from C-learning

24

Published as a conference paper at ICLR 2021

(a) Walker2d-v2, γ = 0.5

(b) Walker2d-v2, γ = 0.9

(c) Walker2d-v2, γ = 0.99

(d) Hopper-v2, γ = 0.5

(e) Hopper-v2, γ = 0.9

Figure 10: More Predictions from C-learning

25

	Introduction
	Related Work
	Preliminaries
	Framing Goal Conditioned RL as Density Estimation
	C-Learning
	Learning the classifier
	Goal-Conditioned RL via C-Learning
	Implications for Q-learning and Hindsight Relabeling

	Experiments
	Conclusion
	Partially-Observed Goals
	Analytic Future State Distribution
	Assignment Equations for the MSE Loss
	A Bellman Equation for C-Learning and Convergence Guarantees
	Bellman Equations for C-Learning
	Off-Policy C-learning Converges
	Goal-Conditioned C-Learning Converges

	Mixing TD C-learning with MC C-learning
	Additional Experiments
	Experimental Details
	``Continuous Gridworld'' Experiments
	Prediction Experiments on Mujoco Locomotion Tasks
	Goal-Conditioned RL Experiments

	Analytic Examples of Q-learning Failures
	Example 1
	Example 2

	Predictions from C-Learning

