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Abstract

During multimodal model training and testing, certain data modalities may be absent due
to sensor limitations, cost constraints, privacy concerns, or data loss, which can degrade
performance. Multimodal learning techniques that explicitly account for missing modalities
aim to improve robustness by enabling models to perform reliably even when certain inputs
are unavailable. This survey presents the first comprehensive review of Multimodal Learning
with Missing Modality (MLMM), with a focus on deep learning approaches. We outline the
motivations and key distinctions between MLMM and conventional multimodal learning,
provide a detailed analysis of existing methods, applications, and datasets, and conclude by
highlighting open challenges and future research directions.

1 Introduction

Multimodal learning has become a crucial field in Artificial Intelligence (AI). It focuses on jointly analyz-
ing various data modalities, including visual, textual, auditory, and sensory information. This approach
mirrors the human capacity to combine multiple senses for better understanding and interaction with the
environment. Modern multimodal models leverage the robust generalization capabilities of deep learning
to uncover complex patterns and relationships that single-modal systems might not detect. This capability
is advancing work across multiple domains (Bayoudh et al., 2022; Hu et al., 2023; Streli et al., 2023). Re-
cent surveys show that multimodal learning significantly boosts performance and enables more advanced AI
applications (Baltrušaitis et al., 2018; Zhao et al., 2024; Wu et al., 2024a).

However, real-world multimodal systems frequently encounter scenarios where certain data modalities are
missing or incomplete. Such cases arise from sensor malfunctions, hardware limitations, privacy concerns,
environmental interference, and data transmission failures. Interest in addressing this challenge has grown
considerably in recent years, as reflected in the publication trends shown in figure 1a. For instance, in a
three-modality setting, data samples can be classified as either full-modality (containing all three modalities)
or missing-modality (lacking one or more). Missing modalities can occur at any stage, from data collection
to deployment, and can substantially degrade model performance.

Early works in affective computing (Cohen et al., 2004; Sebe et al., 2005) reported that when collecting facial
and audio data, some image or audio samples were not useful due to excessive microphone noise or camera
obstructions. This has forced them to propose audio-visual models that can handle the missing modality
to recognize human emotional states. In the field of medical AI, privacy concerns and the challenges of
obtaining certain data modalities during surgeries or invasive treatments often lead to missing modalities in
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Figure 1: (a) The trend of papers published on deep multimodal learning with missing modality in the past
10 years (2014-2025.8). The number of publications has increased over time and has received widespread
attention from the community. (b) Description of a three-modality scenario with full- and missing-modality
samples. We abbreviate “Modality” as “Mod” in all figures of this paper and use dashed boxes with fading
colors to represent missing modalities/modules.

multimodal datasets (Zhang et al., 2023b; Li et al., 2025b). Similarly, in space exploration, NASA’s Ingenu-
ity Mars helicopter (Donaldson, 2024) faced a missing modality challenge when its inclinometer failed due
to extreme temperature cycles on Mars. To address this issue, NASA applied a software patch that modi-
fied the initialization of navigation algorithms (Team, 2022). Beyond such domain-specific cases, structural
or quantitative heterogeneity across sensor types, versions, or brands can also yield inconsistent modality
availability. Combined with the unpredictability of real-world scenarios and the diversity of data sources,
these factors make robustness to missing modalities an essential requirement for multimodal systems. Con-
sequently, developing models that can effectively handle incomplete inputs has become a central research
focus.

In this survey, we focus on the challenge of handling incomplete inputs in multimodal learning, which we
refer to as the missing modality problem. We term solutions to this challenge Multimodal Learning
with Missing Modality (MLMM). Unlike the conventional full-modality setting, where all N modalities
are assumed to be consistently available, MLMM must operate when one or more modalities are absent
during training or testing. The central goal of MLMM is to robustly exploit the available modalities while
maintaining performance comparable to systems trained with complete modality information.

This survey reviews recent advances in MLMM and its applications across diverse domains, including in-
formation retrieval (Malitesta et al., 2024; Pipoli et al., 2025), remote sensing (Wei et al., 2023), Pervasive
Computing (Nweke et al., 2018; Van Der Donckt et al., 2024; Chen et al., 2023a), robotic vision (Gunasekar
et al., 2020; Park et al., 2025), (bio-)medical domain (Zhou et al., 2023; Shah et al., 2023; Azad et al.,
2022; Zhu et al., 2025), sentiment analysis (Wagner et al., 2011; Wang et al., 2025b), and multi-view clus-
tering (Chao et al., 2021). We also introduce a fine-grained taxonomy of MLMM methodologies, application
scenarios, and corresponding datasets.

Contributions: (1) A comprehensive survey of MLMM methods across diverse domains, accompanied by
an extensive compilation of relevant datasets, highlighting the versatility of MLMM in addressing real-world
challenges. (2) A novel, fine-grained taxonomy of MLMM methodologies, with a multi-faceted categorization
framework based on multi-modal integration stages and missing modality recovery strategies. (3) An in-
depth analysis of current MLMM approaches, their challenges, and future research directions, contextualized
within the proposed taxonomical framework.

Paper Collection: In our literature search methodology, we primarily source papers from Google Scholar
and major conferences/journals in AI, Machine Learning, Computer Vision, Natural Language Processing,
Audio Signal Processing, Data Mining, Multimedia, Medical Imaging, Remote Sensing and Pervasive Com-
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Figure 2: Our taxonomy of deep multimodal learning with missing modality methods. We categorize ex-
isting methods into two aspects: data processing and strategy design. Data Processing: we differentiate
between modality imputation (handling at the modality data level) and representation-focused models (deal-
ing with at the data representation level). Strategy Design: we distinguish between architecture-focused
models (model architecture adjustments) and model combinations (combining multiple models externally).
“MLLMs”: multimodal large language models.

puting. The collected papers are from, but not limited to, top-tier conferences (e.g., AAAI, IJCAI, NeurIPS,
ICLR, ICML, CVPR, ICCV, ECCV, ACL, EMNLP, KDD, ACM MM, MICCAI, ICASSP) and journals (e.g.,
TPAMI, TIP, TMI, TMM, JMLR, TMLR). Please refer to Section A in the Supplementary Materials for the
full names of these conferences and journals. We have compiled a total of 354 significant papers from the
period spanning 2012 to August 2025. Our search strategy involved using keywords such as “incomplete,”
“missing,” “partial,” “absent,” and “imperfect,” combined with terms like “multimodal learning,” “deep
learning,” “representation learning,” “multi-view learning,” and “neural networks.”

Survey Organization: Firstly, we explain the background and motivation of this survey in section 1.
In section 2, we introduce our taxonomy and categorize existing deep MLMM methods from a methodological
perspective, detailing them in two aspects and four types (figure 2). In the following section 3 and section 4,
we introduce various methods from the aspects of model data processing and strategy design respectively.
We then summarize current application scenarios and corresponding datasets used in this field in section 6.
In section 7, we discuss unresolved challenges and future directions. Finally, we present our conclusions
drawn from the exploration of deep MLMM in section 8.

2 Methodology Taxonomy: An Overview

We review current deep MLMM methods from two key aspects: data processing and strategy design, based
on the contributions of existing work.

2.1 Data Processing Aspect

Methods that focus on exploring the data processing aspect of a model or framework can be divided into
Modality Imputation and Representation-Focused Models, depending on whether the model’s handling of
missing modalities occurs at the modality data level or at the data representation level.

(1) Modality Imputation operates at the modality data level and fills in the missing information by
compositing (Chen et al., 2020; Sun et al., 2024b; Parthasarathy & Sundaram, 2020; Yang et al., 2024;
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Campos et al., 2015) (modality composition methods) or generating (Chen et al., 2024a; Ma et al., 2021c;
Arya & Saha, 2021; Wang et al., 2024c; Tran et al., 2017; Zhang et al., 2023c) absent modalities (modality
generation methods) from available modalities. Those approaches are rooted in the idea that if a missing
modality can be accurately imputed, downstream tasks can continue as if “full” modalities were available.

(2) Representation-Focused Models are designed to address missing modalities at the representation
level. In some cases, the coordinated representation methods (Liang et al., 2019; Wang et al., 2020b; Ma
et al., 2021b) impose some specific constraints to help align the representations of available modalities in
the same semantic space, so that the model can be effectively trained even when facing missing modalities.
Other representation-focused methods either generate the missing-modality representation using available
data (Zheng et al., 2021; Li et al., 2024b; Hoffman et al., 2016; Ma et al., 2021c; Park et al., 2024) or
combine the representations of existing modalities (Zhi et al., 2024; Sun et al., 2024b; Zhou et al., 2021;
Delgado-Escano et al., 2021; Zheng et al., 2024; Zhang et al., 2024) to fill in the gaps.

2.2 Strategy Design Aspect

Methods that explore the strategy design aspect are based on models that can dynamically adapt to different
missing-modality cases during training and testing through flexible adjustments of the model architecture
(internal model architecture adjustment) and the combination of multiple models (external model combina-
tions). We name them Architecture-Focused Models and Model Combinations.

(1) Architecture-Focused Models address missing modalities by designing flexible model architectures
that can adapt to varying numbers of available modalities during training or inference. A key technique here
is based on attention mechanisms (Ge et al., 2023; Yao et al., 2024; Gong et al., 2023; Mordacq et al., 2024;
Radosavovic et al., 2024; Jang et al., 2024; Qiu et al., 2023), which dynamically adjusts the modality fusion
and processing, allowing the model to handle any number of input modalities. Another approach is based
on knowledge distillation (Wang et al., 2020a; Saha et al., 2024; Zhang et al., 2023b; Chen et al., 2024b;
Wang et al., 2023a; Shi et al., 2024; Wang et al., 2023c), where the model is trained to accommodate missing
modalities by transferring knowledge from full-modality models to those operating with incomplete data or
distilling between different branches inside the model. Additionally, graph learning-based methods (Zhao
et al., 2022; Zhang et al., 2022; Lian et al., 2023; Malitesta et al., 2024) exploit the natural relationships
between modalities, using graphs to dynamically fuse and process available modalities while compensating
for missing ones. Finally, MLLMs (Zhan et al., 2024; Wu et al., 2023b; Li et al., 2023a) also play a crucial
role in this category, as their ability to handle long contexts and act as feature processors enables them to
accept and process representations from any number of modalities. These architectural strategies collectively
allow models to maintain performance even when dealing with incomplete multimodal inputs.

(2) Model Combinations tackle missing modality problems by employing strategies that leverage multiple
models or specialized training techniques. One approach is to use dedicated training strategies (Zeng et al.,
2022; Chen et al., 2022; Xue & Marculescu, 2023) tailored for different modality cases, ensuring that each
case is trained for optimal performance. Another approach involves ensemble methods (Hu et al., 2020;
Wang et al., 2021; Lee et al., 2023b), where models trained on either partial/full sets of modalities are
combined, allowing the system to select the most suitable model based on the available modalities to do
joint predictions. Additionally, discrete scheduler methods (Wu et al., 2023a; Shen et al., 2024; Surís et al.,
2023) can incorporate various downstream modules to flexibly process any number of modalities and handle
specific tasks. These schedulers intelligently select and combine the outputs of multiple models or modules
to manage missing-modality scenarios, offering a versatile solution for multimodal tasks.

Our taxonomy (figure 2) can reflect different aspects and levels of multimodal learning—ranging from modal-
ity data to data representations, architectural design, and model combinations—each providing a distinct
way to approach the problem of missing modalities based on the task requirements and available resources.
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Figure 3: Zero/Random values composition methods. If we assume modality 2 is missing, then this modality
will be replaced with zero/random values. “DNN” in all figures of this survey means different kinds of deep
neural networks.
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Figure 4: Retrieval-based modality composition methods search for one or more samples by randomly
selecting or using simple retrieval algorithms like KNN, or its variants, from same-category samples that
have the required missing modalities, and then compose them with the input missing-modality sample to
form a “full”-modality sample.

3 Methodologies in Data Processing Aspect

3.1 Modality Imputation

Modality imputation refers to a technique used by MLMM methods that fills in missing-modality samples
or generates missing modalities to complete the dataset with missing modalities by performing various
transformations or operations on existing modalities. Modality imputation methods addressing the missing
modality problem at the data modality level can be categorized into two types. (1) Modality composition
methods use zero/random values or data copied from similar instances as the input for the missing modality
data. The data produced via these methods to represent the missing data are then composited with the
data from the available modalities to form a “full”-modality sample. (2) Modality generation methods
generate the missing modality data using generative models such as Auto-Encoders (Hinton & Zemel, 1993),
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), or Diffusion Models (Ho et al., 2020).
The generated data is then composited with the data from the available modalities to form a “full”-modality
sample. We provide more details about these two methods in the next sub-sections.

3.1.1 Modality Composition Methods

Modality composition methods are widely employed for its simplicity and effectiveness to maintain the
original dataset size. Zero/Random Values Composition Methods represent a type of modality composition
method that replaces a missing modality with zeros or random values, as shown in figure 3. In recent
research (Chen et al., 2020; Sun et al., 2024b; Liu et al., 2023a; Malitesta et al., 2024), they are often used as
a baseline method for comparison with other more sophisticated methods. For the missing sequential data
problem, such as missing frames in videos, the similar Frame-Zero method (Parthasarathy & Sundaram, 2020)
was proposed to replace the missing frames. These methods are prevalent in typical multimodal learning
procedures and can be used to balance and integrate information from different modalities when making
predictions. This prevents the model from over-relying on dominant modalities available for each sample,
enhancing its robustness by encouraging a more balanced integration of information across all available
modalities.

Retrieval-Based Representation Composition Methods (figure 4) represent another type of modality compo-
sition method, which replaces the missing modality data by copying or averaging data from retrieved samples
with the same classification. Some other methods randomly select a sample that has the same classification
and required missing modality from other samples. The selected modality data is then composed with the
missing-modality sample to form a full-modality sample for training. But those retrieval-based modality

5



Published in Transactions on Machine Learning Research (02/2026)

Mod 1

Mod 2

Mod 3

GEN-2 Mod 2 DNN Representation
Downstream

Task

(a) Individual Modality Generation Methods

Mod 1

Mod 2

Mod 3

GEN

Mod 1

Mod 2

Mod 3

DNN Representation
Downstream 

Task

(b) Unified Modality Generation Methods

Figure 5: Description of two typical modality generation methods. We set modality 2 as the missing modality
for examples and use other available modalities to generate modality 2. “GEN” in both figures represents
modality generation networks. (a) We set up a modality-2 generator (GEN-2) from other modalities. (b)
All modalities are input and generated together by using a single GEN.

composition methods are not applicable to pixel-level tasks, such as segmentation, and are only suitable
for simple tasks (e.g., classification) because they may lead to the overfitting of noisy data, if mismatched
samples are combined. For example, Yang et al. (2024) proposed Modal-mixup to complete the training
datasets by randomly complementing same-category samples with missing modalities. However, such meth-
ods cannot solve the missing modality problem during the testing phase because they rely on known labels
of training data samples. In some multimodal streaming data classification tasks, such as audio-visual ex-
pression recognition, video streams may experience frame drops due to network communication packet loss,
etc. Frame-Repeat (Parthasarathy & Sundaram, 2020) was proposed to to make up for the missing frames
by using past frames.

Other methods (Yang et al., 2024; Campos et al., 2015) also used K-Nearest Neighbors (KNN), or its variants,
to retrieve the best-matched samples for composition. For these matched samples, they select the sample
with the highest score or obtain the average values of these samples to supplement the missing modality
data. Their experiments have shown that KNN-based methods generally perform better than the above
methods, and can handle missing modality during testing. Nevertheless, such KNN retrieval-based modality
composition methods often suffer from high computational complexity, sensitivity to imbalanced data, and
significant memory overhead. In pervasive computing, some researcher (Hussein et al., 2024a) proposed to
cluster sensor data and pre-learns the best imputation pattern for each cluster combination, enabling fast
lookup-based completion of missing modality at runtime.

All methods above can complete datasets with missing modalities, but they reduce the diversity of the dataset
because they may introduce duplicated training samples. This is especially problematic with datasets having
a high rate of modality missing, where most samples have missing-modality data, as it increases the risk
of overfitting to certain classes with few full-modality samples, if they pad missing-modality samples with
duplicated ones.

3.1.2 Modality Generation Methods

With deep learning, synthesizing missing modalities has become more effective by leveraging powerful rep-
resentation learning and generative models that can capture complex cross-modal relationships. Current
methods for generating missing-modality data are divided into individual and unified generative methods.

Individual Modality Generation Methods train an individual generative model for each modality in case
any modality is missing, as shown in figure 5a. Early works used Gaussian processes (Mario Christoudias
et al., 2010) or Boltzmann machines (Sohn et al., 2014) to generate missing modalities from available data.
With deep learning, models like Auto-Encoders (AEs) (Hinton & Zemel, 1993) can be used for missing
modality generation. Li et al. (2014) used 3D-CNN to generate positron emission tomography (PET) data
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Figure 6: Illustration of coordinated-representation methods, which impose constraints to make the learned
representations semantically consistent. Assuming that modality 2 is missing, these methods use constraints
terms between the features of different modalities.

from magnetic resonance imaging (MRI) inputs. Chen et al. (2024a) addressed missing modalities in MRI
segmentation by training U-Net models to generate other two modalities from MRI. A recent work (Ma
et al., 2021c) used AEs as one of the baselines to complete datasets by training one AE per modality. In
domain adaptation, Zhang et al. (2021) proposed a U-Net-based Multi-Modality Data Generation module
with domain adversarial learning to generate each missing modality by learning domain-invariant features.
In immunohistochemical, DeepLIIF (Ghahremani et al., 2022) uses ResNet to generate the various modalities
such as Hematoxylin, mpIF DAPI, mpIF Lap2, and mpIF Ki67. HE2RNA (Schmauch et al., 2020) is a cross-
modal model that predicts gene expression (transcriptomic modality) from H&E whole-slide images (visual
modality), generates spatialized gene-expression heatmaps, and transfers this representation to downstream
clinical tasks.

GANs significantly improved image generation quality by using a generator to create realistic data and a
discriminator to distinguish it from real data. Researchers therefore began replacing above models with GANs
for modality generation. For example, GANs generate missing modalities using latent representations of
existing ones in breast cancer prediction (Arya & Saha, 2021). In remote sensing, Bischke et al. used GANs to
generate depth data, improving segmentation over RGB-only models (Bischke et al., 2018). GANs were also
used in robotic object recognition models to help generate missing RGB and depth images (Gunasekar et al.,
2020). Recent studies (Ma et al., 2021c) show that GANs outperform AEs in generating more realistic missing
modalities and can lead to better downstream-task model performance. SensorGAN (Hussein & Bhat, 2024)
introduces a GAN model that restores absent sensor channels, directly targeting missing-modality recovery
in wearable human-activity-recognition pipelines. Recently, the introduction of Diffusion models has further
improved image generation quality. Wang et al. proposed the IMDer method (Wang et al., 2024c), which uses
available modalities as conditions to make diffusion models generate missing modalities. Experiments showed
it can reduce semantic ambiguity between recovered and missing modalities and achieves good generalization
performance than previous works.

Unified Original Data Generative Methods train a unified model that can generate all modalities simul-
taneously (figure 5b). One representative model is Cascade AE (Tran et al., 2017), which stacks AEs to
capture the differences between missing and existing modalities for generating all missing modalities. Re-
cently, Zhang et al. (2023c), have attempted to use attention and max-pooling to integrate features of
existing modalities, enabling modality-specific decoders to accept available modalities and generate other
missing modalities. Experiments demonstrated that this method is more effective than using max-pooling
alone (Chartsias et al., 2017) to integrate features from any number of modalities for generating all missing
modalities together. Above methods for generating missing modalities can mitigate performance degradation
to some extent. However, when facing a scenraio where one of the modalities is severely missing, training a
generator that can produce high-quality missing modalities remains challenging. Additionally, the modality
generation model significantly increases storage and computational requirements. As the number of modali-
ties grows, the complexity of these generative models also increases, further complicating the training process
and resource demands.
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Figure 7: The general idea of the arithmetic operation-based representation composition methods. The
representation of any number of modalities can be combined to a fixed dimension that is the same as the
dimension required by the subsequent DNN layer.

3.2 Representation-Focused Models

Representation-focused models address the missing modality problem at the representation level. We in-
troduce such models by first presenting two coordinated-representation-based approaches that enhance the
learning of more discriminative and robust representations by imposing specific constraints (figure 6). The
next type of representation-focused methods that we discuss are the representation imputation methods,
which can be categorized into representation composition and representation generation methods. Rep-
resentation composition methods can borrow the solutions described in section 3.1.1 and operate at the
representation level of the modalities or employs arithmetic operations (e.g., pooling) to fuse a dynamic
number of modalities. Finally, we introduce the representation generation methods, which usually use small
generative models to produce the representations of missing modalities.

3.2.1 Coordinated-Representation Methods

Coordinated-representation methods focus on introducing certain constraints between representations of dif-
ferent modalities to make the learned representations semantically consistent. They are usually divided into
two categories, one based on regularization and the other driven by correlation. An example of regularization
is Tensor Rank Regularization (TRR) (Liang et al., 2019). TRR achieves multimodal fusion by taking the
outer products of different-modality tensors and taking the sum of all their outer products. In order to solve
the high rank of multimodal representation tensors caused by imperfect modalities (missing or noisy) in time
series, Paul et al. introduced tensor rank minimization to try to keep the multimodal representation low
rank to better express the tensors of true correlation and potential structure in multimodal data, thereby
alleviating the imperfection of the input.

Some methods train models by coordinating the correlation between different modal features. For exam-
ple, Wang et al. (2020b) use a Deep Canonical Correlation Analysis (CCA) module to maximize feature
associations of available modalities by using Canonical Correlation Coefficient, which enables training on
incomplete datasets. Ma et al. (2021b) proposed a Maximum likelihood function to characterize conditional
distributions of full-modality and missing-modality samples during training. Other research efforts (Liu
et al., 2021b) have added constraints based on the Hilbert-Schmidt Independence Criterion (HSIC), which
helps models learn how to complete missing modality features by enforcing independence between irrelevant
features while maximizing the dependence between relevant ones. These methods (Matsuura et al., 2018; Ma
et al., 2021a; Li et al., 2022a) aid models in learning how to complete missing modality features or training
on incomplete datasets by learning the similarity or correlation between features. A drawback of the above
methods is that they perform well only when two or three modalities are used as input (Zhao et al., 2024),
and their effectiveness tends to degrade as the number of modalities increases. Even when trained on a
dataset with missing modalities, some methods still struggle to effectively address unseen missing modality
combinations or cases during testing.

3.2.2 Representation Composition Methods

There are two types of representation composition methods, which are explained below.
Retrieval-Based Representation Composition Methods attempt to recover the missing modality rep-
resentation by retrieving the modality data from existing samples, similarly to the modality composition
method in section 3.1.1. They typically use pre-trained feature extractors to generate features from available
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Figure 8: Description of two typical representation generation methods. We assume modality 2 is missing
here. (a) Indirect-to-task representation generation methods are supervised by the loss of two tasks, namely:
auxiliary reconstruction and downstream tasks. Note that these two tasks sometimes can be trained sep-
arately, first training the reconstruction task, discarding the generator, and then training the downstream
task, such as the training progress of ActionMAE (Woo et al., 2023). While (b) direct-to-task representation
generation methods directly use a modality generation network (“GEN-2” in figure) to generate representa-
tions of the missing modality 2 during training and inference without reconstructing the modality 2.

samples, storing them in a feature pool (Zhi et al., 2024; Sun et al., 2024b). Cosine similarity is then used
to retrieve matched features for the input sample, with the average of these missing-modality features in
top-K samples filling the representation of missing modalities. Additionally, some methods, such as Missing
Modality Feature Generation (Wang et al., 2023b), replace missing modality features by averaging the
representations of available modalities, assuming similar feature distributions across modalities.

Arithmetic Operation-Based Representation Composition Methods can flexibly fuse any number of modal-
ity representations through arithmetic operations such as pooling without learnable parameters (figure 7).
Researchers (Zhou et al., 2021; Wang et al., 2023b) have fused features through operations like average/max
pooling or addition, offering low computational complexity and efficiency. However, drawbacks include po-
tential loss of important information. To address this, merge operations (Delgado-Escano et al., 2021) use a
sign-max function, which selects the highest absolute value from feature vectors, yielding better results by
preserving both positive and negative activation values. TMFormer (Zhang et al., 2024) introduces token
merging based on cosine similarity. Similar approaches (Zheng et al., 2024) focus on selecting key vectors
or merging tokens to handle missing modalities. A recent work (Sarkar et al., 2025) propose to perform
weighted fusion of these pooled features to learn a fixed-size multimodal embedding

Therefore, those representation composition approaches not only allow the model to flexibly handle features
from any number of modalities but also enable learning without introducing new learnable parameters.
However, they are not good at capturing the inter-modality relationships through learning, as methods like
selecting the largest vector or the feature with the highest score is difficult to fully represent the characteristics
of all modalities.

3.2.3 Representation Generation Methods

Compared to modality generation methods in section 3.1.2, representation generation methods can be in-
tegrated seamlessly into existing multimodal frameworks. Current methods fall into two categories: (1)
Indirect-to-task representation generation methods (figure 8a) treat modality reconstruction as an auxiliary
task during training, helping the model intrinsically generate missing modality representations for down-
stream tasks. Since the auxiliary task aids in representation generation during training but is dropped
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during inference of downstream task, it is termed “indirect-to-task.” (2) Direct-to-task representation gener-
ation methods (figure 8b) train a small generative model to directly map available modality representations
to the missing modalities. We provide more details about these two categories of methods below.

Indirect-to-Task Representation Generation Methods can indirectly generate missing modality representa-
tions and often employ the “encoder-decoder” architecture. During training, modality-specific encoders ex-
tract features from available modalities, reconstruction decoders reconstruct the missing modality, and the
downstream module is supervised by downstream task loss for prediction. Those reconstruction decoders are
discarded during inference, where predictions rely on both the generated missing modality representations
and the existing ones. This approach typically employs Multi-Task Learning, training both downstream tasks
and auxiliary tasks (modality reconstruction) simultaneously. Some methods, inspired by Masked Autoen-
coder (He et al., 2022), split reconstruction and downstream task training. Typically, in the training process
of this type of methods, the features of the available modalities are usually input into the downstream task
module and the reconstruction decoder of different modalities after being fused. However, some methods
accept the outputs of different modality encoders into their respective reconstruction decoders. Based on
this distinction, we divide this type of methods into before-fusion and after-fusion methods.

Before Fusion methods receive the features from modality-specific encoders directly into each specific re-
construction decoder for missing modality reconstruction. For example, MGP-VAE (Hamghalam et al.,
2021) uses output of the VAE encoder of each modality as the input of each reconstruction decoder and
the fused output for Gaussian Process prediction. Similarly, PFNet (Zheng et al., 2021) employs RGB and
thermal-infrared modalities for pedestrian re-identification, feeding outputs of each encoder into correspond-
ing decoders before fusing them together. Li et al. (2024b) adopted a similar approach for brain tumor
segmentation, reconstructing each modality before fusing encoder outputs.

After Fusion methods use the fused features from modality-specific encoders as the input of reconstruction
decoder. Tsai et al. (2018) introduced a Multimodal Factorization Model where modality-specific encoder-
decoders reconstruct the missing modality, while the downstream task module employs a separate multimodal
encoder-decoder. To recover the missing modality features, the outputs of the downstream task model’s
encoder are not only used for predictions of the downstream task decoder, but also fused with the outputs
of each modality-specific encoder for inputting to the each corresponding reconstruction decoder. Chen
et al. (2019) and Li et al. (2025a) also decoupled the encoders for reconstruction and downstream tasks,
showing that disentangling features helped eliminate irrelevant features. Jeong et al. (2022) proposed a
simpler approach using multi-level skip connections in a U-Net architecture to fuse features for missing
modality reconstruction, achieving better generalization in brain tumor segmentation than (Chen et al.,
2019). Further, Zhou (2023) and Sun et al. (2024a) demonstrated effective cross-modal attention fusion
techniques could help enhance reconstruction and segmentation. Most of these methods train reconstruction
and downstream tasks concurrently. However, some approaches, such as ActionMAE (Woo et al., 2023) and
M3AE (Liu et al., 2023a), first train reconstruction tasks and then fine-tune the pre-trained encoders for
downstream tasks.

Although these methods achieve strong performance, they still require the missing modality data to be
present during training to supervise the reconstruction decoders.

Direct-to-Task Representation Generation Methods usually use simple generative models to directly map
information from avaiable modalities to the missing modality representation. The general concept is illus-
trated in figure 8b. Early work (Mario Christoudias et al., 2010) using Gaussian Processes to “hallucinate”
missing modalities inspired Hoffman et al. (Hoffman et al., 2016) to propose a Hallucination Network (HN)
that predicts missing depth modality features from RGB images. The HN aligns intermediate layer features
with another network (trained on depth images) using an L2 loss, allowing RGB inputs to generate depth
features to address missing modality challenges. This method has been extended to pose estimation (Choi
et al., 2017) and land cover classification (Kampffmeyer et al., 2018), where the HN can be used to generate
missing heat distribution and depth features.

In tasks like sentiment analysis, a translation module can map available-modality representations to the
missing ones, with L2 loss applied to align outputs with those from networks trained on missing modali-
ties (Huan et al., 2023). A notable recent work, SMIL (Ma et al., 2021c), employs Bayesian learning and
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meta-regularization to directly generate missing modality representations. SMIL has shown strong gener-
alization on datasets with a high rate of missing modality samples. Subsequent work (Li et al., 2022d)
addressed challenges such as distribution inconsistency, failure to capture specific modality information,
and lack of correspondence between generated and existing modalities. Researchers have also explored
cross-modal distribution transformation methods to align distributions of generated and existing modality
representations, enhancing discriminative ability (Wang et al., 2023d). In audio-visual question answering
(AVQA), Park et al. (2024) proposed a Relation-aware Missing Modal Generator (RMM) that consist of to
generate pseudo features of missing modalities, improving robustness and accuracy. The RMM consists of a
visual generator, auditory generator, and text generator, which generate missing auditory representations by
analyzing the correlations between visual and textual modalities and utilizing learnable parameter vectors
(slots) for reconstruction and synthesis of missing-modality features.

Recently, to address the potential absence of different modalities in sentiment analysis, Guo et al. (2024)
proposed a Missing Modality Generation Module for prompt learning. This module maps prompts of available
modalities to prompts of missing modalities through a set of projection layers. Lin et al. (2024) proposed
Uncertainty Estimation Module which can identify useless tokens in different modality tokens to facilitate
better use of U-Adapter-assisted pre-trained models to better utilize the tokens of available modalities when
downstream tasks face missing modalities. Liao et al. (2025) explore a variety of different conditions of sensor
impairment are and the capabilities of various existing multimodal segmentation models are evaluated. Park
et al. (2025) use the Multi-modal Mixture of Expert, which not only enables the model to dynamically handle
multi-modality, but also allows different branches to focus on their own modalities by sharing a query.

Compared to indirect methods, direct generation methods avoid the cumbersome reconstruction of modality
data, using feature generators that are easier to train and integrate into multimodal models.

In summary, representation generation methods are limited by the imbalance of missing modalities in the
training dataset or the limited number of full-modality samples, which may lead to training procedures
that overfit to the existing modalities. In addition, indirect-to-task representation generation methods can
access complete multimodal data samples during training, which means they can simulate arbitrary missing
modality cases during training by dropping modalities. As a result, they generally achieve better performance
than direct-to-task methods, which must handle incomplete multimodal data samples during training.

4 Methodologies in Strategy Design Aspect

4.1 Architecture-Focused Models

Different from above methods of handling missing modality problems at the modality or representation level,
many researchers adjust the model training or testing architecture to adapt to the missing-modality cases.
We divide them into four categories according to their core contributions in dealing with missing modalities:
attention-based methods, distillation-based methods, graph learning-based methods, and multimodal large
language models.

4.1.1 Attention Based Methods

In the self-attention mechanism (Vaswani et al., 2017), each input is linearly transformed to generate Query,
Key, and Value vectors. Attention weights are computed by multiplying the query of each element with the
keys of others, followed by scaling and softmax to ensure the weights sum to 1. Finally, a weighted sum
of the values generates the output. We classify attention-based MLMM methods into two categories. (1)
Attention fusion methods put attention on modality fusion, integrating multimodal information, which do
not rely on any specific model type and can be suitable for various model types as its input and output
dimensions are the same. (2) Others are transformer-based methods, which stack attention layers to handle
large-scale data with global information capture and parallelization. We provide more details of these two
methods below.

Attention Fusion Methods have the powerful ability to capture key features and can be seen as plug-and-
play modules. We categorize them into two types: intra- and inter-modality attention methods. Intra-
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Figure 9: Two typical attention fusion methods, assuming modality 2 as the missing modality. (a) The
intra-modality attention (“Intra-Atten” in figure) of missing modality 2 can be skipped. Since each Intra-
Atten of different modalities shares the fusion representation (like learnable query in (Ge et al., 2023) or
bottleneck tokens in (Nagrani et al., 2021)), after calculating them one by one, the output representation
can be regarded as the fusion of available modalities. (b) “Missing Modality Mask” is the custom mask
that is generated according to the missing modality 2 and can help inter-modality attention (“Inter-Atten”
in figure) ignore the missing modality 2. By setting the tokens of modality 2 to zero or negative infinity
through masking, we can force the attention mechanism to ignore the missing modality 2.

Modality Attention Methods compute attention for each modality independently before fusing them, as
shown in figure 9a. This approach focuses on relationships within a single modality, and the fusion between
modalities is achieved by sharing partial information. For instance, in 3D detection, the BEV-Evolving
Decoder (Ge et al., 2023) handles sensor failures by sharing same BEV-query with each modality-specific
attention modules, allowing fusion of any number of modalities. Similarly, in clinical diagnosis, Lee et al.
(2023a) proposed modality-aware attention to perform intra-modality attention and predict decisions by
using shared bottleneck fusion tokens (Nagrani et al., 2021). Inter-Modality Attention Methods, often based
on masked attention, treat missing modality features as masked vectors (using zero or negative infinity values)
to better capture dependencies across available modalities, as illustrated in figure 9b. Unlike conventional
cross-modal attention, masked attention models share the same parameters across all embeddings, allowing
flexible handling of missing modalities. For example, Qian & Wang (2023) designed an attention mask matrix
to ignore missing modalities, improving model robustness. Similarly, DrFuse (Yao et al., 2024) decouples
modalities into specific and shared representations, using the shared ones to replace missing modalities, with
a custom mask matrix to help model ignore the specific representations of the missing modality.

Transformer Based Methods can be divided into two types: joint representation learning (JRL) and parame-
ter efficient learning (PEL) according to full parameter training and a small amount of parameter fine-tuning.
Since transformers have long context lengths to handle many feature tokens, the multimodal transformer
can learn joint representations from any number of modality tokens (figure 10). Some methods first use
modality encoders to extract feature tokens from available modalities and then feed them into a multimodal
transformer. Gong et al. (2023) introduced an egocentric multimodal task, proposing a transformer-based
fusion module with a flexible number of modality tokens and a cross-modal contrast alignment loss to map
features into a common space. Similarly, Mordacq et al. (2024) leveraged Masked Multimodal Transformers,
treating missing modalities as masked tokens for robust JRL. Ma et al. (2022) proposed an optimal fusion
strategy search strategy within the multimodal transformer to help find the best fusion method for dif-
ferent missing/full-modality representations. Radosavovic et al. (2024) introduced specially designed mask
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Figure 10: Description of general idea of joint representation learning methods, assuming Modality 2 is the
missing modality. The missing modality 2 tokens can be replaced by specific masked tokens. The modality
encoders (red dashed box) can be replaced by linear projection layers in some methods.

tokens for an autoregressive transformer to manage missing modalities, successfully deploying the model in
real-world scenarios.

With the rise of pre-trained transformer models, PEL methods have been developed to fine-tune these models
by training few parameters. Two common PEL methods for pre-trained models are prompt and adapter
tuning. Initially used in natural language processing, prompt tuning optimizes input prompts while keeping
model parameters fixed. It has since been extended to multimodal models. Jang et al. (2024) introduced
modality-specific prompts to address limitations in earlier methods, which merge when all modalities are
present and allow the model to update all learnable prompts during training. Liu et al. (2024b) further
improved this by proposing Fourier Prompt, which uses fast Fourier transform to encode global spectral
information of available modalities into learnable prompt tokens which can be used to supplement missing-
modality features, enabling cross-attention with feature tokens to address missing modalities. Adapter
tuning, on the other hand, involves inserting lightweight adapter layers (e.g., MLPs) into pre-trained models
to adapt to new tasks without modifying the original parameters. Qiu et al. (2023) proposed a method that
used a classifier to identify different missing-modality cases and used intermediate features of that classifier as
the missing-modality prompt to cooperate with lightweight Adapters to address missing modality problems.

Although attention-based fusion mechanisms in above methods can effectively help deal with the missing
modality problem in any framework, none of them cares about the missing modality that may contain
important information required for prediction. In the transformer-based methods, the JRL methods are
often limited by a large amount of computing resources and require relatively large datasets to achieve
good performance. The PEL methods can achieve efficient fine-tuning, but their performance is still not
comparable to that of JRL.

4.1.2 Distillation Based Methods

Knowledge distillation (Hinton et al., 2015) transfers knowledge from a teacher model to a student model.
The teacher model, with access to more information, helps the student reconstruct missing modalities. Below,
we categorize two types of distillation methods for addressing this problem.

Representation-Based Distillation Methods transfer rich representations from the teacher model to help the
student capture and reconstruct missing modality features. We classify them based on whether they use
logits or intermediate features. figure 11 illustrates this type of method. Response distillation methods
focus on transferring teacher models’ logits to students, helping it mimic probability distributions. Wang
et al. (2020a) trained modality-specific teachers for missing modalities, then used their soft labels to guide
a multimodal student. Hafner & Ban (2023) employed logits from a teacher model trained with optical
data to supervise a reconstruction network for approximating missing optical features from radar data. A
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Figure 11: Description of representation distillation methods. Here we set modality 2 is missing. In order
to distinguish the representations of teachers and students, we add “-T” and “-S” after their representations
in the figure. We refer to intermediate distillation as using features from any combination of intermediate
layers within models.
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Figure 12: Description of two process-based distillation methods. (a) “EMA” means exponential moving
average. To demonstrate the general architecture of Mean Teacher Distillation, we set the loss on the logits
representation. (b) Self-distillation methods for missing modality problems involve the use of models that
act as teachers and students, where these models use their own soft labels/representations from each branch
to refine themselves during training.

Modality-Aware Distillation was proposed by Saha et al. (2024), leveraging both global and local teacher
knowledge in a federated learning setting to help student models to learn how to handle missing modalities.

Intermediate distillation methods align intermediate features between teacher and student models. Shen &
Gao (2019) used Domain Adversarial Similarity Loss to align intermediate layers of the teacher and student,
improving segmentation in missing modality settings. Zhang et al. (2023b) applied intermediate distillation
in endometriosis diagnosis by distilling features from a TVUS-trained teacher to a student using MRI data.
Some researchers propose MultiPro (Xu et al., 2025) to learn the distribution of the missing modality by
distilling unimodal knowledge into learnable unimodal prompts for each modality from all remaining samples
available of this modality. Some also tackles the missing-modality problem in multimodal federated mobile
sensing systems by introducing FedMobile (Liu et al., 2025a), a knowledge-contribution-aware federated
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Figure 13: Illustration of graph fusion methods. We set modality 2 (white circle in the graph) as the missing
modalities. Features from modality 1 and 3 can be aggregated via this graph fusion method and fused
features maintains the same dimension.

learning framework that reconstructs missing features through cross-node multimodal knowledge transfer
and robust aggregation.

Process-Based Distillation Methods focus on overall distillation strategies, like Mean Teacher Distillation
(MTD) (Tarvainen & Valpola, 2017) and self-distillation (Zhang et al., 2019). These methods emphasize
procedural learning over direct representation transfer. MTD enhances stability by using the exponential
moving average of the student model’s parameters as a teacher (figure 12a). Chen et al. (2024b) applied this
to missing modality sentiment analysis, treating missing samples as augmented data. Li et al. (2022c) used
MTD for Lidar-Radar segmentation, improving robustness against missing modalities.

Self-distillation helps a model improve by learning from its own soft representations (figure 12b). Wang
et al. proposed the ShaSpec (Wang et al., 2023a), which utilizes distillation between modality-shared
branches and modality-specific branches of available modalities. Based on ShaSpec, researchers proposed
Meta-learned Cross-modal Knowledge Distillation (Wang et al., 2024a) to further weigh the importance of
different available modalities to improve performance. Ramazanova et al. (2024) used mutual information
and self-distillation for egocentric tasks, making predictions invariant to missing modalities. Shi et al. pro-
posed PASSION (Shi et al., 2024), a self-distillation method designed to use the multi-modal branch to help
other uni-modal branches of available modalities to improve multimodal medical segmentation performance
with missing modality.

Hybrid Distillation Methods combine various distillation approaches to improve student performance. For
medical segmentation, Yang et al. (2022) distilled teacher model knowledge (including logits and intermediate
features) at every decoder layer, outperforming ACNet (Wang et al., 2021). Wang et al. (2023c) introduced
ProtoKD, which captures inter-class feature relationships for improved segmentation under missing modality
conditions. Recently, CorrKD (Li et al., 2024a) leverages contrastive distillation and prototype learning to
enhance performance in uncertain missing modality cases.

Aforementioned methods address the missing modality problem and achieve good generalization during
testing. However, except for some intermediate and self-distillation methods, most assume the complete
dataset is available for training (means teacher can access full-modality samples during training), with
missing modalities encountered only during testing. Therefore, most distillation methods are unsuitable for
handling incomplete training datasets.

4.1.3 Graph Learning Based Methods

Graph-learning based methods leverage relationships between nodes and edges in graph-structured data
for representation learning and prediction. We categorize approaches for addressing the missing modality
problem into two main types: graph fusion and graph neural network (GNN) methods.

Graph Fusion Methods integrate multimodal data using a graph structure (figure 13), making them adapt-
able to various networks. For example, Angelou et al. (2019) proposed a method mapping each modality
to a common space using graph techniques to preserve distances and internal structures. Chen & Zhang
(2020) introduced HGMF, which builds complex relational networks using hyper edges that dynamically
connect available modalities. Zhao et al. (2022) developed Modality-Adaptive Feature Interaction for Brain
Tumor Segmentation, adjusting feature interactions across modalities based on binary existence codes. More
recently, Yang et al. (2023a) proposed a graph attention based Fusion Block to adaptively fuse multimodal
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Figure 14: Illustration of graph neural network (GNN) based methods. We set modality 2 as the missing
modalities. (a) Each modality first passes through DNN or builds its graph, and then they are uniformly
processed using GNNs. (b) This method first complete the graph from missing-modality samples via ap-
proaches like FeatProp (Malitesta et al., 2024), then process it by GNNs.

features, using attention-based message passing to share information between modalities. These fusion
methods can be flexibly inserted into any network for integrating multiple modalities.

Graph Neural Network Methods directly encode multimodal information into a graph structure, with GNNs
used to learn and fuse this information. Early approaches (Wang et al., 2015) employed Laplacian graphs to
connect complete and incomplete samples. Individual GNN methods (figure 14a), such as DESAlign (Wang
et al., 2024b), extract features using neural networks or GNNs and fuse them for prediction. Unified GNN
methods ( figure 14b) first complete the graph and then use GNNs for prediction, such as in Zhang et
al.’s M3Care (Zhang et al., 2022), which uses adaptive weights to integrate information from similar pa-
tients. Lian et al. (2023) proposed the Graph Completion Network, which reconstructs missing modalities
by mapping features back to the input space. In recommendation systems, FeatPropMalitesta et al. (2024)
propagates known multimodal features to infer missing ones, while MUSE (Wu et al., 2024b) represents
patient-modality relationships as bipartite graphs and learns unified patient representations. In knowledge
graphs, Chen et al. (2023b) introduced Entity-Level Modality Alignment to dynamically assign lower weights
to missing/uncertain modalities, reducing the risk of misguidance in learning. Some work (Liu et al., 2020)
addresses the missing-sensor (missing-modality) problem in topology-aware IoT systems by introducing a
graph-based feature reconstruction module that uses neural message passing to recover features from avail-
able sensors. Some people Chen et al. (2023a) proposes a multi-graph convolutional framework for human
activity recognition that explicitly handles asynchronous and incomplete IMU, magnetometer, and physio-
logical signals, addressing missing-modality challenges in heterogeneous multi-sensor environments.

The methods above can leverage the graph structure to better capture relationships both within/between
modalities and samples. However, these methods tend to have lower efficiency, scalability, and higher devel-
opment complexity compared to other kind of approaches.

4.1.4 Multimodal Large Language Models (LLM)

The impressive transformative power of LLMs, like ChatGPT (Bubeck et al., 2023), can be explained by
their impressive generalization capabilities across many tasks. However, our understanding of the world
depends not only on language, but also on other data modalities, like vision and audio. This has led
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researchers to explore MLLMs, designed to handle diverse user inputs across modalities, including cases
with missing modalities, leveraging the flexibility of Transformers. Their architectures are similar to that
shown in figure 10. Due to the idiosyncrasies of MLLMs, we distinguish them from normal transformer-based
joint representation learning methods in section 4.1.1 and introduce them below. In some current MLLM
architectures, LLMs act as feature processors, integrating feature tokens from different modality-specific
encoders and passing the output to task-/modality-specific decoders. This enables LLM to not only capture
rich inter-modal dependencies, but also naturally carry the ability to handle any number of modalities, that
is, the ability to solve the missing modality problem.

Most MLLMs employ transformer-based modality encoders, such as CLIP, ImageBind (Girdhar et al., 2023),
and LanguageBind (Zhu et al., 2023), which encode multimodal inputs into a unified representation space.
Examples include BLIP-2 (Li et al., 2023b), which bridges the modality gap using a lightweight Querying
Transformer, and LLaVA (Liu et al., 2024a), which enhances visual-language understanding with GPT-4-
generated instruction data (Bubeck et al., 2023). These models are optimized for tasks like Visual Question
Answering, Dialogue, and Captioning. Recent advancements extend output generation to multiple modal-
ities, such as images. AnyGPT (Zhan et al., 2024) and NExT-GPT (Wu et al., 2023b) unify modalities
like text, speech, and images using discrete representations and multimodal projection adaptors, enabling
seamless multimodal interaction. CoDi (Tang et al., 2024) introduces Composable Multimodal Condition-
ing, allowing arbitrary modality generation through weighted feature summation. There are also some other
methods that discard the modality encoders and use linear transformation directly, such as Fuyu (Bavishi
et al., 2023) and OtterHD (Li et al., 2023a). Although MLLMs can flexibly handle any number of modalities,
they have many disadvantages, such as the inconsistent multi-modal positional encoding, training difficulty,
and high GPU resource requirements. Additionally, no specific MLLM benchmarks on missing modality
problems have been proposed.

4.2 Model Combinations

Model combinations aim to use selected models for downstream tasks. These methods can be categorized into
ensemble, dedicated training, and discrete scheduler methods. Ensemble methods combine predictions from
multiple selected models through different types of aggregation methods, such as voting, weighted averaging,
and similar approaches to improve the accuracy and stability. Dedicated training methods allocate different
sub-tasks (e.g., different missing modality cases) to specialized individual models, focusing on specific sub-
tasks or sub-datasets. In the discrete scheduler methods, users can use natural language instructions to enable
the LLMs to autonomously select the appropriate model based on types of modalities and downstream tasks.
We provide more details about these methods below.

4.2.1 Ensemble Methods

As detailed in the next paragraphs, ensemble learning methods allow flexibility in supporting different
numbers of expert models to combine their predictions, as shown in figure 15. Multimodal Model Ensemble
Methods: Early work (Wagner et al., 2011) in sentiment analysis employed ensemble learning to handle
missing modalities, averaging predictions from uni-modal models. With deep learning advancements, the
Ensemble-based Missing Modality Reconstruction network (Zeng et al., 2022) was introduced, leveraging
weighted judgments from multiple full-modality models when generated missing modality features exhibit
semantic inconsistencies. This type of multimodal model ensemble method, depicted in figure 15a, integrates
various full-modality models to aid decision-making.

Unimodal Model Ensemble Methods: The general architecture of this method is shown in figure 15b, where
each modality is processed by a uni-modal model, and only the available modalities contribute to decision-
making. In multimodal medical image diagnosis, early studies found uniformly weighted methods performed
better than weighted averaging and voting approaches (Yuan et al., 2012). In multimodal object detection,
Chen et al. (2022) proposed a probabilistic ensemble method. This method does not require training and
can flexibly handle missing modalities through probabilistic marginalization, demonstrating high efficiency
in experiments. Li et al. (2023c) recently proposed Uni-Modal Ensemble with Missing Modality Adapta-
tion, training models per modality and performing late-fusion training. Other approaches (Miech et al.,
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Figure 15: Two general architectures for ensemble methods. (a) The multimodal model ensemble methods
contain n three-modal DNNs and produce final predictions based on the outputs of all n DNNs. (b) Each
modality is processed by a unimodal DNN in unimodal model ensemble methods, where final predictions are
produced by aggregating the outputs of all accessible unimodal DNNs.
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Figure 16: General idea of dedicated training methods. Assuming that modality 2 is missing, dedicated
methods select the sample-suited model from DNN models library for training and testing. In the figure,
the three modalities can form a total of seven models with different modality combinations. For easy
understanding, we use colored circles in purple rectangles to represent the modalities that the model can
handle. In order to adapt to the missing modality 2 (light green circles), dedicated methods usually select
the DNN model (purple rectangle) that can handle modality 1 (light orange circles) and modality 3 (light
blue circles) for training and testing.

2018) calculate feature-based weights to fuse modalities, where weights reflect feature importance for final
predictions.

Hybird Methods: Dynamic Multimodal Fusion (DynMM) (Xue & Marculescu, 2023) uses gating mecha-
nisms to select uni/multi-modal models dynamically. Recently, Cha et al. (2024) proposed Proximity-based
Modality Ensemble (PME) to use a cross-attention mechanism with an attention bias to integrate box pre-
dictions from different modalities. PME can adaptively combine box features from uni-/multi-model models
and reduce noise in multi-modal decoding.

4.2.2 Dedicated Training Methods

Dedicated training methods assign different tasks to specialized models. We show the general idea of those
methods in figure 16. KDNet (Hu et al., 2020) was the first dedicated method proposed to handle different
combinations of missing modalities. It treats uni-modality specific models as student models, learning
multimodal knowledge from the features and logits of a multimodal teacher model. Those trained uni-
modals can be used for different missing modality cases. Following KDNet, ACNet (Wang et al., 2021) also
utilizes this distillation method but introduces adversarial co-training, further improving the performance.
Lee et al. (2023b) proposed missing-modality-aware prompts to address missing modality problems based
on the prompt learning by using input- and attention- level prompts for each kind of missing modality case.
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Figure 17: General procedure of discrete scheduler methods. The user types text instructions to make an
LLM call and schedule the selected downstream task modules to process data samples and return results to
the user. As long as there are sufficiently diverse downstream task modules, it is possible to handle the same
downstream tasks with different numbers of modalities.

This method only needed 1% of the model parameters to be fine-tuned for downstream tasks. Similarly,
some researchers (Reza et al., 2023) introduce different adapter layers for each missing modality case.

4.2.3 Discrete Scheduler Methods

In discrete scheduler methods (figure 17), LLMs act as controllers, determining the execution order of differ-
ent discrete steps broken down from the major task/instruction. While the LLM does not directly process
multimodal data, it interprets language instructions and orchestrates task execution across uni- and multi-
modal modules. This structured yet flexible approach is particularly effective for outputs requiring sequential
tasks, enabling the system to handle any number of modalities and naturally addressing missing modality
problems. For example, Visual ChatGPT (Wu et al., 2023a) integrates multiple foundation models with
ChatGPT to enable interaction through text or images, allowing users to pose complex visual questions,
provide editing instructions, and receive feedback within a multi-step collaboration framework. Hugging-
GPT (Shen et al., 2024) is an LLM-driven agent that manages and coordinates various AI models from
Hugging Face. It leverages LLMs for task planning, model selection, and summarization to address complex
multimodal tasks. ViperGPT (Surís et al., 2023) combines visual and language tasks into modular sub-
programs, generating and executing Python code for complex visual queries without additional training to
achieve effective outputs. There are other similar discrete scheduler approaches, such as MM-REACT (Yang
et al., 2023b) and LLaVA-Plus (Liu et al., 2023c).

Some aforementioned dedicated and ensemble methods can flexibly handle the missing modality problem
without additional training, but most of them require more model storage space, which is not feasible for
many resource-constrained devices. For instance, DynMM requires storing various uni- and multi-modality
models. As the number of modalities increases, the required number of models also rises. Also, unimodal
model ensemble methods struggle to adequately model the complex inter-modality relationships to make
final predictions. Although the some dedicated fine-tuning methods do not require too much time and
consumption of resources such as GPU, it is still difficult to compare with full parameter training. In
addition, discrete scheduler methods can solve a variety of tasks when there are sufficient types of downstream
modules, but they usually require LLMs to respond quickly and understand human instructions accurately
in real world scenarios.

5 Methodology Discussion

In the above section 3 and section 4, we divide the existing MLMM methods into four types from the aspects
of data processing and strategy design: modality imputation, representation-focused, architecture-focused,
and model combinations. We also further subdivide these four types into twelve categories, exploring a
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Table 1: Comparison of deep multimodal learning with missing modality methods from four types and two
aspects.

Aspect Type Method Pros and Cons

Data
Processing

Modality
Imputation

Modality
Composition

Pros: Simple and effective for data augmentation.
Cons: Unsuitable for pixel-level tasks (Composition);
Modality number ↑, generative model number
or training complexity ↑.

Modality
Generation

Representation
Focused

Coordinated-Representation Pros: Flexible for novel modalities with better generalization.
Cons: Hard to balance constraints and handle
dataset imbalance.

Representation Composition
Representation Generation

Strategy
Design

Architecture
Focused

Attention-based Pros: Attention methods scale well;
Distillation and graph learning are effective.
Cons: Attention methods often demand large computation &
datasets; Distillation and graph learning struggle
with incomplete datasets and training complexity.

Distillation-based
Graph Learning-based

Multimodal Large
Language Model

Model
Combinations

Ensemble Pros: Effective for specific tasks.
Cons: Grows complex with more modalities;
Suffers from modality imbalance;
Demands significant storage space.

Dedicated
Discrete

Scheduler

fine-grained methodology taxonomy proposed by us. Table 1 summarizes the overall pros and cons of these
methods. Generative and distillation methods are the most common approaches; they are easy to implement
and deliver strong performance. With the rise of Transformers, Transformers methods have become more
popular due to their larger receptive fields and parallelism. However, indirect-to-task generation methods
and most distillation methods (except for some intermediate (Zhang et al., 2023b) and self-distillation meth-
ods (Wang et al., 2023a; Shi et al., 2024)) are currently unable to handle incomplete training datasets (means
cannot access missing modality data during training). Below we provide a concise analysis of these twelve
methods from two aspects and four types.

5.1 Data Processing Aspect

(1) Modality Imputation: Modality composition methods operate directly on the input modality data
level to address missing modality problems by combining existing data samples or filling missing data.
However, they are typically not good at pixel-level downstream tasks and heavily rely on available modalities.
On the other hand, modality generation methods employ generative models to synthesize missing modalities,
mitigating the performance degradation caused by missing data. But these methods are often limited by the
availability and number of full-modality samples and the increased training complexity due to the additional
modalities. They also require extra storage for generative models.

(2) Representation Focused: Coordinated-representation methods allow novel modalities to be intro-
duced by simply adding corresponding branches. However, as the number of constraints and modalities
increases, balancing them becomes challenging. Correlation-driven methods often fail to handle missing
modality samples in the test environment, as they are typically designed for pre-training with incomplete
datasets. Similar to modality composition methods, representation composition methods attempt to recover
missing modality representations by combining available-modality representations. Since representations
typically carry more generalized information than modality data, these methods tend to yield better results.
Representation generation methods further improve this process by generating representations based on re-
lationships between modalities, allowing reconstruction of missing modality representations. Many studies
have confirmed the effectiveness of this approach in handling missing modalities. However, if the dataset
contains missing modality samples, indirect-to-task representation generation methods that aim to recover
missing modality representations through reconstruction of modality data are not feasible. When the dataset
has severely imbalanced modality combinations, generative methods may also fail, becoming overly reliant
on existing modalities.
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5.2 Strategy Design Aspect

(1) Architecture Focused: Some methods focus on designing model training or inference architecture
to alleviate the performance degradation caused by missing modalities. Attention-based methods are valued
by researchers because they can effectively capture the relationships between various modalities, are scalable
in terms of dataset size, and are highly parallelizable. Single attention mechanisms used for modality fusion
have the advantage of being plug-and-play. The drawbacks of transformer-based methods in this category are
also relatively obvious: training multimodal transformers from scratch requires excessive training time and
many GPU resources. Also, those attention-based methods generally require larger datasets due to their
high model capacity and reliance on token-level interactions. While this enables stronger representation
learning in large-scale settings, it also limits their applicability in data-scarce domains such as medical
imaging. This trade-off highlights the need for data-efficient attention mechanisms or pretraining strategies
in missing-modality scenarios. Recently popular PEL methods can effectively mitigate this drawback,
but the generalization performance of this method is still not as well as full-parameter training or tuning.
Although MLLMs can handle an arbitrary number of modalities with flexibility, they are constrained by
training complexity and require substantial computational resources.

Distillation-based methods are relatively easy to implement, with student models learning how to reconstruct
missing modality representations and inter-modal relationships from teacher models. Since the teacher model
typically receives full-modality samples as input, it can simulate any missing modality cases during training,
ensuring strong performance. However, most distillation-based methods are limited to the requirement of
complete datasets and are inapplicable to datasets with inherent missing modalities. To our knowledge, only
one intermediate distillation method (Zhang et al., 2023b) has attempted to input mismatched samples of
the same class into the teacher and some self-distillation methods (Wang et al., 2023a; Shi et al., 2024) use
representations of available modality branches for distillation purposes.

Graph learning-based methods capture intra- and inter-modal relationships more effectively, but as the
number of modalities increases, the development complexity and inefficiency of these methods become more
pronounced. They are also currently unsuitable for large-scale datasets.

(2) Model Combinations: These methods select models for prediction. Ensemble and dedicated train-
ing methods can be affected by imbalances in modality combinations within the dataset. As the number of
modalities grows, the complexity and models to be trained also increase, especially for dedicated methods.
Discrete scheduler methods requires an LLM to coordinate, but if callable modules are insufficient, down-
stream tasks may not be completed. Additionally, inference speed is limited by LLMs and modules. Model
combinations methods also require significant model storage.

5.3 Recovery and Non-Recovery Methods & Some Statistics

Table 2: Another common taxonomy of recovery and non-recovery methods in multimodal learning is based
on three stages: early, intermediate, and late stage, as seen in the conventional taxonomy. In this context,
recovery and non-recovery methods refer to how missing modalities are handled at each stage.

Methods Early Intermediate Late Hybrid

Recovery Modality Composition (Yang et al., 2024)
Modality Generation (Wang et al., 2024c)

Representation Composition (Wang et al., 2023b)
Representation Generation (Woo et al., 2023)
Distillation-based (Shen & Gao, 2019)
Graph Learning-based (Malitesta et al., 2024)

Representation Generation (Ma et al., 2021c)
Distillation-based (Li et al., 2022c)
Coordinated-Representation (Ma et al., 2021b)

Distillation-based (Sikdar et al., 2023)

Non-Recovery Dedicated (Wang et al., 2021)
Discrete Scheduler (Wu et al., 2023a)

Representation Composition (Delgado-Escano et al., 2021)
Attention-based (Ge et al., 2023)
Graph Learning-based (Zhao et al., 2022)
Multimodal Large Language Model (Wu et al., 2023b)

Coordinated-Representation (Liang et al., 2019)
Distillation-based (Shi et al., 2024)
Ensemble (Chen et al., 2022)

Not Applicable

We have further classified MLMMs using the taxonomy in Table 1 to facilitate researchers to better dis-
tinguish MLMMs. This classification is based on the three-stage (early, intermediate, and late) classic
multimodal learning taxonomy. Table 2 leverages this classic taxonomy of MLMMs and specifies whether
they recover missing modalities or not. We also list reference papers for different methods. In our analysis
of 315 papers, we found that 75.5% of the works focus on recovering missing modality information, while
only 24.5% explore inference without modality recovery. Among the recovery methods, early-stage and
intermediate-stage modality recovery methods account for 20.3% and 45.8%, respectively, with late-stage
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Figure 18: The annual statistics are based on our taxonomy of four methods: Modality Imputation,
Representation-Focused, Architecture-Focused, and Model Combinations.

and multi-stage recovery methods accounting for 4.7%, each. For non-recovery methods, early, intermediate,
and late-stage modality fusion methods represent 4.2%, 14.1%, and 6.3%, respectively. We were not able to
find any non-recovery methods that combine multiple stages. We can observe that methods on recovering
missing modality features in the intermediate stage account for the largest proportion. We think this is
because recovering features, as opposed to the raw data, can avoid much noise and bias while providing more
modality-specific/shared information. Additionally, compared to later-stage features, intermediate-stage
features tend to be more enriched.

5.4 Technical Evolution Discussion

The development of MLMM methods has closely followed broader trends in machine learning and deep learn-
ing, with distinct methodological phases reflected in the taxonomy and publication statistics (2014–2025).
Based on the papers we collected, we count the papers for each year according to the four major categories
in our taxonomy mentioned above, and plotted them using a stacked bar chart (shown in figure 18).

Early research was dominated by data-driven heuristics and ensemble-style solutions, where missing modal-
ities were addressed by retrieving similar samples from the dataset or by training separate unimodal models
and combining them through ensemble strategies. This period corresponds to the initial emergence of Modal-
ity Imputation and Model Combinations, though the overall scale of research activity was still limited. With
the rise of deep learning frameworks (e.g., PyTorch, TensorFlow) and the success of architectures such as
ResNet, the community shifted its attention toward representation learning, leading to the rapid growth of
Representation-Focused Models. From 2017 onward, this category became the most stable and persistent
line of research, as learning aligned, shared, or generative representations enabled models to remain effective
even when certain modalities were absent. At the same time, modality-level imputation methods evolved
from simple sample-based matching to deep generative models, first through autoencoders and GANs and
later through diffusion models, greatly improving the quality and generality of imputed modalities.

A notable transition occurred after 2018, possibly driven by the popularity of attention mechanisms, deep
graph neural networks, and knowledge distillation. These techniques allowed models to dynamically adapt
to arbitrary combinations of available modalities, leading to the rise of Architecture-Focused Models—a
category that grows sharply in the statistics. These methods reframed missing modalities not merely as a
data problem but increasingly as an architectural and training-strategy challenge, enabling flexible fusion,
conditional routing, and intra/inter-modal knowledge transfer.

Most recently, the emergence of transformer-based foundation models has opened a new direction: applying
large pretrained models to missing-modality conditions by using them as feature processors, task schedulers,
or backbone architectures capable of consuming variable sets of modalities. This shift substantially expands
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the design space of multimodal systems and suggests a future where missing-modality robustness is a built-in
capability of general-purpose models rather than a specialized add-on.

Finally, although Model Combinations has historically remained a niche line of work, which we suspect is
due to the cost of storing and maintaining multiple models, recent interest in Agentic AI systems may renew
attention to this class of methods. As agents increasingly integrate multiple specialized tools, dynamic model
selection and combination strategies may become more relevant in practical missing-modality scenarios.
Together, these developments illustrate a clear technical evolution: from early heuristic data-level fixes to
representation learning, to flexible architecture design, and finally toward foundation-model–based general
multimodal intelligence. We note that applications and architectures are only weakly linked in this area,
largely because modern deep learning architectures (e.g., attention) are highly versatile and transferable
across tasks and applications. For instance, generative-adversarial-learning-based recovery methods are used
in both breast-cancer prognosis (Arya & Saha, 2021) and visible–infrared person re-identification (Li et al.,
2022d), and masked modeling strategy in human action recognition (Woo et al., 2023) closely parallel those
used in brain-tumor segmentation (Liu et al., 2023a). As a result, once an architectural idea proves effective
for handling missing modalities, it generalizes widely with minimal task-specific adaptation, which naturally
weakens the direct coupling between applications and architecture.

Limitations: Due to the variety of settings in most missing-modality works, it is difficult to compare
performances of different methods across datasets. This represents a research gap that we encourage the
community to address.

6 Applications and Datasets

The collection of multimodal datasets is often labor-intensive and costly. In certain specific application
directions, issues such as user privacy concerns, sensor malfunctions on data collection devices, and other
factors can result in datasets with missing modalities. In severe cases, up to 90% of the samples may have
missing modalities, making it challenging for conventional MLFM to achieve good performance. This has
given rise to the task of MLMM. Since the factors causing incomplete datasets usually stem from differ-
ent application directions, we introduce the following datasets based on the applications in MLMM tasks:
Affective Computing, Medical Applications, Information Retrieval, Remote Sensing, Pervasive Computing,
Robotic Vision and Sensing, and others. We categorize those datasets according to the applications and
data type in Table 3. It should be noted that for the medical field, we only show part datasets due to their
large number.

6.1 Affective Computing

Typically, the goal of affective computing is to classify the current emotional state by combining information
from multiple modalities such as textual, auditory, and RGB information. This field has garnered significant
attention due to its promising applications in various specific scenarios, including market research, health
monitoring, and advertising. In the early stages of audio-visual affective computing research, researchers
discovered that facial detection algorithm in data collection devices sometimes failed to capture faces (e.g.,
due to occlusion) or the recorded audio is too noisy to use (Cohen et al., 2004; Sebe et al., 2005), resulting
in some samples that only contained audio or image. Consequently, researchers began exploring methods to
enable affective computing models to continue functioning effectively when facing missing-modality samples.
Currently, the datasets for applying affective computing can be roughly divided into two categories. One
type of dataset (Martin et al., 2006; Livingstone & Russo, 2018; Cao et al., 2014; Stappen et al., 2021a;b;
Ringeval et al., 2013; Zheng & Lu, 2015; Zadeh et al., 2018; Busso et al., 2008; 2016; Poria et al., 2018; Yu
et al., 2020; Wöllmer et al., 2013; Morency et al., 2011) involves using video, audio, text, and biosensors to
determine human emotional states in real life or in movies. The other type (Guérin et al., 2013; Nguyen
et al., 2018; Matsui et al., 2017) involves using text and images to assess emotional states in contexts such
as comic books. Please refer to Table 3 for details.
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Table 3: Common datasets used by deep MLMM methods divided by main applications and modality types.
“Vision” includes data from visual sensors such as RGB images, Depth, Infrared, LiDAR, Radar, Event, and
Optical Flow. “Bio-Sensors” includes data from sensors like: electrophysiological, respiratory sensors and
so on. “Motion Sensors” includes data from sensors like accelerometers, gyroscopes, magnetometers, IMUs,
barometric sensors, and gait sensors. “Physiological Signals” including ECG, PPG/BVP, EDA/GSR, RESP,
EEG, EMG, EOG, skin temperature, and SpO2. Other modalities include audio, text, CT scans, MRI, and
skeleton.

Applications Modality Types Common and Typical Datasets

Affective
Computing

Vision+Audio eNTERFACE’05 (Martin et al., 2006), RAVDESS (Livingstone & Russo, 2018), CREMA-D (Cao et al., 2014)
Vision+Text eBDtheque (Guérin et al., 2013), DCM (Nguyen et al., 2018), Manga 109 (Matsui et al., 2017)

Vision+Bio-Sensors Ulm-TSST (Stappen et al., 2021a;b), RECOLA (Ringeval et al., 2013), SEED (Zheng & Lu, 2015)

Vision+Audio+Text
CMU-MOSI (Zadeh et al., 2016), CMU-MOSEI (Zadeh et al., 2018), IEMOCAP (Busso et al., 2008),
MSP-IMPROV (Busso et al., 2016), MELD (Poria et al., 2018), CH-SIMI (Yu et al., 2020),
ICT-MMMO (Wöllmer et al., 2013), YouTube (Morency et al., 2011)

Medical
Applications

MRI, CT Scans BRATS-series (Menze et al., 2014; Myronenko, 2019), ADNI (Jack Jr et al., 2008), IXI [https://brain-development.org/ixi-dataset]

Bio-Sensors StressID (Chaptoukaev et al., 2024), PhysioNet (Kemp et al., 2000), TCGA [https://portal.gdc.cancer.gov/],
BCData (Huang et al., 2020), NuClick (Koohbanani et al., 2020), LYON19 (Swiderska-Chadaj et al., 2019)

Electronic Health Record MIMIC-CXR (Johnson et al., 2019), MIMIC-IV (Johnson et al., 2023),
NCH (Lee et al., 2022), BCNB (Xu et al., 2021), ODIR (Li et al., 2021)

Information
Retrieval

Vision+Text Amazon Series Datasets (Lakkaraju et al., 2013; McAuley et al., 2015; He & McAuley, 2016; PromptCloud, 2017),
MIR-Flickr25K (Duin), NUS-WIDE (Chua et al., July 8-10, 2009)

Vision+Audio+Text MSR-VTT (Xu et al., 2016), TikTok (Lin et al., 2023)
Remote
Sensing Vision WHU-OPT-SAR (Li et al., 2022b), DFC2020 (Yokoya et al., 2020), MSAW (Shermeyer et al., 2020),

Trento (Rasti et al., 2017), Houston (Piacentini, 2023a), Berlin (Hong et al., 2021), GRSS (Debes et al., 2014)

Pervasive
Computing

Motion sensors
Opportunity (Roggen et al., 2010), RealDisp (Banos et al., 2014), DSADS (Barshan & Altun, 2010), PAMAP2 (Reiss, 2012),
Shoaib (Shoaib et al., 2014), RealWorld-HAR (Sztyler & Stuckenschmidt, 2016), w-HAR (Burzer et al., 2025), Epilepsy (Villar et al., 2016),
EMG Physical Action (Theodoridis, 2011), ERing (Wilhelm et al., 2015), and GENEActiv (Phillips et al., 2013)

Physiological Signals WESAD (Schmidt et al., 2018a), mBrain21 (Donckt, 2024), ETRI Lifelog (Oh et al., 2025)
Electroencephalogram Self RegulationSCP1 (Birbaumer et al., 1999), EEG-MMID (Schalk et al., 2004)

Robotic
Vision and

Sensing

Vision RegDB (Ye et al., 2021), SYSU-MM01 (Wu et al., 2017), UWA3DII (Rahmani et al., 2016),
Delivery (Zhang et al., 2023a), NuScenes (Caesar et al., 2020), MVSS (Ji et al., 2023)

Vision+Audio Ego4D-AR (Grauman et al., 2022), Epic-Sounds (Huh et al., 2023), Epic-Kitchens (Damen et al., 2022), Speaking Faces (John & Kawanishi, 2022)
Vision+Skeleton/Inertial Data MMG-Ego4D (Gong et al., 2023), Northwestern-UCLA (Wang et al., 2014), NTU60 (Shahroudy et al., 2016)

6.2 Medical Applications

Medical domain requires comprehensive analysis from various modalities such as medical history, physical
examination, imaging data, cell and gene data, which is exactly what multimodal learning is good at, many
researchers developed multimodal intelligent systems. The current datasets for multimodal medical domain
that contain data with missing modality problems are focused on below areas: Neuroimaging and Brain
Disorders (Menze et al., 2014; Myronenko, 2019; Young et al., 2017; Jack Jr et al., 2008; Lesjak et al., 2018),
Cardiovascular (Liu et al., 2016; Moody & Mark, 2001), Cancer Detection (Arya & Saha, 2020; Tomczak
et al., 2015; Cheerla & Gevaert, 2019; Farooq et al., 2025), Women Health Analysis (Zhang et al., 2023b; Xu
et al., 2021), Ophthalmology (Li et al., 2021; Zhang et al., 2022), Sleep Disorders (Lee et al., 2022; Marcus
et al., 2013), Clinical Predictions (Johnson et al., 2016; 2023; 2019), Biomedical Analysis (Chaptoukaev
et al., 2024; Schmidt et al., 2018b; Kemp et al., 2000), Computational Pathology Cui et al. (2022); Peng
et al. (2024); Wang et al. (2025a); Xu et al. (2025), Radiology Chen et al. (2025); Cui et al. (2022); Liang
et al. (2025), and Gene Schmauch et al. (2020) and Cell Ghahremani et al. (2022); Liu et al. (2025b); Palma
et al. (2024); Tu et al. (2022) Representation learning. We have categorized some commonly used and
representative datasets from list above by modality type, as shown in Table 3.

6.3 Information Retrieval

Information retrieval is a technology that automatically retrieves relevant content or data based on queries,
historical behavior, preferences, and attribute data. It has received widespread attention due to its success
on various platforms such as search engines and social media. It improves user satisfaction and informa-
tion access experience through algorithmic analysis and prediction of content that users may find relevant.
Multimodal learning makes modern retrieval systems possible because it can effectively process and analyze
multiple types of information, including text, images, audio, etc. Due to user privacy concerns and data
sparsity issues, some researchers have begun exploring MLMM approaches in retrieval systems. Many of
these studies leverage datasets (Lakkaraju et al., 2013; McAuley et al., 2015; He & McAuley, 2016; Prompt-
Cloud, 2017; Duin; Chua et al., July 8-10, 2009; Xu et al., 2016; Lin et al., 2023) from websites such as
Amazon and TikTok for their research. We list those datasets based on modality type in Table 3.
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6.4 Remote Sensing

By leveraging multimodal learning, we can integrate various types of visual data, such as Synthetic Aperture
Radar data and multi-/hyper-spectral data. As a result, various datasets have emerged (Yokoya et al., 2020;
Shermeyer et al., 2020; Rasti et al., 2017; Piacentini, 2023a; Hong et al., 2021; Debes et al., 2014). Those
datasets enable the assessment and analysis of different environmental conditions, resources, and disasters on
earth from satellites or aircraft. Such capabilities can significantly aid in environmental protection, resource
management, and disaster response. In practice, remote sensing tasks, such as multimodal land cover
classification tasks, optical modalities may be unavailable due to cloud cover or sensor damage. Therefore,
it is also necessary to address the missing modality problem for remote sensing problems.

6.5 Pervasive Computing

The pervasive computing community has also developed a wide range of multimodal sensing datasets that
capture the complexity of real-world mobile, wearable, and IoT environments. They can be meaningfully
organized by task category and reflect the dominant research problems across pervasive and mobile comput-
ing. (1) Human Activity Recognition. A broad class of datasets focuses on fine-grained activity recognition,
gesture understanding, and daily-living behavior modeling. Representative collections include Opportu-
nity (Roggen et al., 2010), RealDisp (Banos et al., 2014), DSADS (Barshan & Altun, 2010), PAMAP2 (Reiss,
2012), Shoaib (Shoaib et al., 2014), RealWorld-HAR (Sztyler & Stuckenschmidt, 2016), w-HAR (Burzer
et al., 2025), ERing (Wilhelm et al., 2015), and EMG Physical Action (Theodoridis, 2011). These datasets
capture heterogeneous, body-mounted signals—accelerometry, gyroscope, magnetometer, EMG—collected
in naturalistic environments that inherently involve sensor dropout, misalignment, and variable sampling.
(2) Physiological Monitoring. Many datasets target long-term physiological monitoring. Examples include
WESAD (Schmidt et al., 2018a),Epilepsy (Villar et al., 2016), and combining biosignals such as ECG, EDA,
BVP, RESP, or skin temperature, with motion sensors or contextual smartphone streams. Their free-living
collection protocol results in multimodal recordings with non-wear intervals, irregular sampling, and missing
physiological channels. (3) Cognitive State Inference. Datasets for cognitive-state modeling, mental workload
analysis, and motor imagery—such as Self RegulationSCP1 (Birbaumer et al., 1999) and EEG-MMID (Schalk
et al., 2004)—contain high-dimensional EEG signals. EEG’s susceptibility to noise, channel corruption, and
abrupt signal loss naturally produces structural missingness at both temporal and spatial (channel) levels.
Taken together, these task-driven dataset categories illustrate that pervasive computing data are inherently
noisy, asynchronous, and incomplete, with many recordings containing long gaps, irregular sampling, and
sensor-level failures. As a result, they serve not only as benchmarks for multimodal recognition, context
understanding, and mobile health monitoring, but also as natural testbeds for evaluating MLMM methods
under real-world structural missingness. Their modality heterogeneity, device-specific characteristics, and
episodic sensor dropout further make them valuable for assessing robustness, cross-device generalization,
and lightweight recovery strategies necessary for deployment on resource-constrained edge platforms. The
classification of above dataset on modalities can be found in Table 3.

6.6 Robotic Vision and Sensing

Robotic vision is the field that enables robots to perceive and understand their environment through visual
sensors by acquiring and processing image data. This includes tasks such as object and facial recognition,
environment modeling, navigation, and behavior understanding, allowing robots to autonomously perform
complex operations and interact with humans. Typically, the modality combination formula in robotic
vision tasks can be expressed as RGB+X, where X can include, but are not limited to, LiDAR, radar, in-
frared sensors, depth sensors and auditory sensors. Both RGB and other sensor data can be missing for
various reasons. Below, we introduce five common tasks in robotic vision concerning the missing modality
problems. (1) Multimodal Segmentation: This task aims to input multimodal data and use segmentation
masks to locate objects of interest. In the context of missing modalities, this task is common in datasets
for autonomous vehicles, where sensors might fail due to damage or adverse weather conditions. Typi-
cal data combinations include RGB+(Depth/Optical Flow/LiDAR/Radar/Infrared/Event data) (Takumi
et al., 2017; Liu et al., 2023b; Caesar et al., 2020; Zhang et al., 2023a). Other datasets focus on indoor
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scene segmentation (Silberman et al., 2012; Ha et al., 2017) (RGB, Depth, Thermal) and material segmen-
tation (Liang et al., 2022) (RGB, Angle of Linear Polarization, Degree of Linear Polarization, Near-Infrared
images). (2) Multimodal Detection: Similar to multimodal segmentation, multimodal detection aims to
locate objects of interest using bounding boxes. Commonly used multimodal detection combinations in the
context of missing modalities include: RGB with Depth (Silberman et al., 2012; Lai et al., 2011) and RGB
with Thermal (Hwang et al., 2015; kaggle, 2020). (3) Multimodal Activity Recognition: This task can input
data from the aforementioned visual sensors and also use audio cues to recognize human activities. Common
datasets (Grauman et al., 2022; Huh et al., 2023; Damen et al., 2022; Gong et al., 2023; Wang et al., 2014;
Shahroudy et al., 2016) for this task are combinations of RGB with Audio, Depth, Thermal, Inertial and
skeleton data. (4) Multimodal Person Re-Identification: This task aims to use depth and thermal (Ye et al.,
2021; Wu et al., 2017) information to robustly identify individuals under varying lighting conditions, such
as at night. (5) Multimodal Face Anti-Spoofing: This task utilizes multiple sensors (such as RGB, infrared,
and depth cameras) to detect and prevent spoofing in facial recognition systems (John & Kawanishi, 2022;
Zhang et al., 2020; Liu et al., 2021a). Its purpose is to enhance the system’s ability to identify fake faces
(such as photos, videos, masks, etc.) by comprehensively analyzing different modalities, thereby increasing
the security and reliability of facial recognition systems.

Other Applications: There are many other areas where MLMM methods are being explored. For
example, conventional audio-visual classification (Vielzeuf et al., 2018); multimodal large language models
in visual-dialogue (Bubeck et al., 2023); audio-visual question answering (Park et al., 2024); captioning (Liu
et al., 2023c); hand pose estimation using depth images and heat distributions (Tompson et al., 2014;
Choi et al., 2017); knowledge graph completion utilizing multimodal data with missing modalities (Liu
et al., 2019); multimodal time series prediction, such as stock prediction (Luo et al., 2024) and air quality
forecasting (Zheng et al., 2015); multimodal gesture generation on how to create natural animations (Liu
et al., 2022); multimodal analysis of single-cell data (Mimitou et al., 2021) in biology.

Discussion: Current MLMM research primarily focuses on the areas of affective computing, medical
applications, remote sensing, information retrieval, pervasive computing and robotic vision and sensing.
Among these, a significant portion of research is dedicated to addressing the missing modality problem
in RGB, text, and audio-based sentiment analysis, MRI segmentation and clinical prediction, and multi-
sensor segmentation for autonomous vehicles. In contrast, research efforts in MLMM for streaming data and
scientific fields are relatively limited. In addition, the majority of the publicly available datasets mentioned
above are complete in terms of modalities, and naturally occurring datasets with missing modalities are rare.
As a result, these tasks are often evaluated by considering all possible combinations of missing modalities
based on the existing types of modalities in the dataset, and then performing training and testing on the
performance of the missing modalities, supplemented by different missing modality rates. Perhaps more
future work could try to emulate Pervasive Computing by collecting multimodal datasets with real-world
modal data from different models, including those with real sensor damage or different sampling rates of
time-series information, for model validation. In the works we reviewed, 38% controlled for varying degrees
of missing modality rates and tested accordingly, while the remaining 62% used random modality missing
rates for training and testing. When categorizing missing modality rates into mild (<30%), moderate (30%-
70%), and severe (>70%) levels, the proportions are 72.6%, 82.2%, and 69.9%, respectively. It is worth
noting that a single study may perform validation across multiple missing modality rate levels. Additionally,
we found that 36.4% of the works trained on incomplete training datasets (cannot access missing modality
data during training), while 63.6% actually focused on testing with missing modalities. We can see that
there is still small number of research on incomplete training datasets, so it is important to emphasise the
need for more research to this field.

Beyond the above observations, we also note several underexplored yet crucial research gaps. First, current
benchmarks rarely model realistic missingness patterns such as systematic or asynchronous sensor failures,
despite their prevalence in pervasive and wearable computing. For example, in wearable activity recogni-
tion (Nweke et al., 2018), IMUs and physiological sensors frequently sample asynchronously or drop entire
segments, producing structured missingness that cannot be captured by random masking. Second, the se-
mantic importance of different modalities is typically assumed to be uniform, and there is no principled
framework for measuring modality contribution or uncertainty under missing conditions. Third, evalua-
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tion protocols remain highly inconsistent across studies, with varying definitions of missing rates, train–test
configurations, and dataset preprocessing. For example, SMIL (Ma et al., 2021c) considers 90% of the mul-
timodal samples in the training set with missing modalities, but DrFuse (Yao et al., 2024) only considers
the case of random missing modalities and does not consider the performance at different missing modal-
ity rates. Fourth, most existing models struggle to generalize across domains, devices, or spatiotemporal
distributions, highlighting the need for scalable and transferable foundations for MLMM. Finally, there is a
lack of rigorous real-world case-study evaluations and systematic testing on out-of-distribution multimodal
datasets, both of which are essential for assessing robustness under practical deployment conditions. Ad-
dressing these gaps will be critical for developing MLMM systems that can reliably operate in real-world
multimodal environments.

7 Open Issues and Future Research Directions

7.1 Accurate Missing Modality/Representation Data Generation

Some researchers (Ma et al., 2021c) have shown that recovering, reconstructing, or generating missing modal-
ities or their intermediate representations can improve model robustness when encountering incomplete mul-
timodal inputs. However, the generated content often contains artifacts or hallucinations, stemming either
from the generative models themselves or from imperfections and biases in their training data. Beyond im-
proving generative fidelity, a key future direction is to better understand informational complementarity and
redundancy across modalities: not all modalities contribute equally to downstream tasks, and some provide
overlapping signals that can be safely inferred, while others contain unique information that is difficult to
reconstruct without introducing bias. Therefore, exploring principled ways to generate accurate, unbiased,
and task-relevant missing modalities—while leveraging modality complementarity and avoiding over-reliance
on redundant cues—will be an important avenue for future research.

7.2 Recovery or Non-Recovery Methods ?

In MLMM, “to recover or not to recover the missing modality”, that is the question. According to our
observations, most current approaches to handling MLMM can be broadly categorized into two types: one
focusing on recovering the missing modal information so that the multimodal model can continue function-
ing (Wang et al., 2023a; Ma et al., 2021c), and the other attempting to make predictions using only the data
modalities available (Hu et al., 2020; Zhang et al., 2024). However, some studies (Yao et al., 2024) have
shown that the recovered modality information might be ignored or dominated by the existing modality
information due to the imbalance missing rates of different modalities in the training set, leading the model
to still rely on the available modalities when making predictions. Moreover, Lin et al. (2024) have found
that in situations where crucial modality information is missing, the model might be unduly influenced by
less important existing modality information, resulting in incorrect outcomes. In such cases, attempting
to recover missing modality information can potentially alleviate this problem. Consequently, determining
under what circumstances recovery or non-recovery methods are more beneficial for model predictions, as
well as how to measure whether the recovered modality information is not dominated by other modality
information or is unbiased, remains a significant challenge. Addressing these issues is essential for advancing
the effectiveness and reliability of deep multimodal learning with missing modality methods.

7.3 Benchmarking and Evaluations for Missing Modality Problems

Benchmarking and fair evaluation play crucial roles in guiding the field. Many works are trained/tested
under different missing modality settings, which makes it difficult for researchers to find works with the
same settings for comparison. Also, the recent rise of large pre-trained models, such as GPT-4, has given
researchers hope for achieving Artificial General Intelligence. Consequently, more large models (Liu et al.,
2024a) are integrating visual, auditory, and other modal information to realize the vision of Multimodal
Large Language Models. It is important to note that recent multimodal models (especially transformer-
based models) are typically trained on significantly larger and more diverse datasets than earlier approaches.
Early studies on missing modality learning often relied on constrained, domain-specific datasets (e.g., medical
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imaging dataset) to validate model architectures and theoretical assumptions. In contrast, recent works
leverage large-scale multimodal pretraining, sometimes involving billions of image-text or audio-visual pairs
collected from the web. This expansion in data scale not only improves model generalization but also
changes the nature of the learning problem, thus some recent models can implicitly infer missing information
from learned priors rather than explicit modality alignment. Therefore, when comparing results across
methods, it is crucial to account for these disparities in dataset scale, diversity, and accessibility, as they
directly affect both performance and reproducibility. Although some research has been done based on those
models, detailed analysis and benchmarks are urgently needed to evaluate the performance of MLLMs on
missing modality problems. We call on the community to build a work similar to MultiBench (Liang et al.,
2021), covering common datasets mentioned in section 6 and settings of missing modality problems, to help
researchers conduct more systematic research.

7.4 Method Efficiency

Current MLMM methods often overlook the need for more lightweight and efficient methods. For instance,
some model combinations methods (Hu et al., 2020; Xue & Marculescu, 2023) require training an independent
model for each modality combination. Similarly, methods (Chen et al., 2024a; Zhang et al., 2023c) that aim
to recover missing modality information typically involve using a distinct model for each kind of missing
information or a large unified model to generate all modalities. Although these approaches generally perform
well, they are often too heavy. In the real world, many multimodal models need to be deployed on resource-
constrained devices, such as space or disaster-response robots. These devices cannot accommodate high-
performance GPUs and are prone to sensor damage, which can be difficult/costly to repair. Therefore, there
is an urgent need to explore efficient and lightweight solutions for MLMM that can operate effectively under
these constraints.

7.5 Multimodal Streaming/Temporal Data with Missing Modality

Currently, only a small portion of research focuses on handling missing modalities in multimodal streaming
or temporal data. An example is sentiment analysis (Lin & Hu, 2023). Long sequences of multimodal
data—such as RGB+X video streams and multimodal time-series signals—are common in real-world settings
and are essential for tasks like anomaly detection and video tracking, especially in robotic systems and
pervasive computing. In such scenarios, missing modalities often occur asynchronously, creating not only
spatial information gaps but also temporal misalignment between surviving modalities. This misalignment
makes recovery, fusion, and prediction more challenging, as models must infer missing information while
maintaining consistent temporal dependencies. Therefore, MLMM needs to address both missing-modality
problems and temporal alignment issues in streaming data to advance this field further.

7.6 Multimodal Reinforcement Learning with Missing Modality

Multimodal reinforcement learning leverages information from different sensory modalities, enabling agents
to learn effective strategies in environments. This approach has wide applications in areas such as robotic
grasping, drone control, and driving decisions. However, these agent-based tasks often face practical chal-
lenges, as real-world scenarios frequently have sensor failures or restricted access to certain modality data,
compromising the robustness of the algorithms. Currently, only a limited number of papers (Vasco et al.,
2021; Lee et al., 2021; Awan et al., 2022) aim to address the problem of missing data or modalities in rein-
forcement learning. Therefore, we hope the community can focus more on the practically significant missing
modality problem in reinforcement learning.

7.7 Multimodal AI with Missing Modality for Natural Science

In scientific fields such as drug prediction (Deng et al., 2020) and materials science (Muroga et al., 2023),
multimodal learning plays a key role by integrating diverse data types like molecular structures, genomic
sequences, and spectral images. This integration can enhance predictive accuracy and uncover new insights.
However, implementing multimodal learning in these domains is challenging due to data access restrictions,
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high acquisition costs, and the incompatibility of heterogeneous data. These issues often result in missing
modalities, hindering the potential of multimodal models. Despite the critical need, there has been limited
research (He et al., 2024) on MLMM in scientific applications. Addressing this gap is essential for advancing
AI-driven discoveries, requiring new methods to handle incomplete multimodal datasets and create robust
models capable of learning despite missing data.

7.8 Handling Practical Missing Modality Problems in Real-World

A promising yet still insufficiently explored direction for MLMM lies in real world scenarios—including IoT
infrastructures, wearables, smart homes, mobile sensing, and distributed environmental sensor networks.
Although several studies in pervasive computing have begun to address missing-modality challenges in these
settings, current efforts remain fragmented and lack holistic evaluation. These environments constitute one
of the most consequential real-world deployment contexts for multimodal models, where missingness is not
occasional or synthetic but structural and persistent due to heterogeneous devices operating under con-
straints such as limited battery life, bandwidth restrictions, hardware degradation, asynchronous sampling,
and intermittent connectivity. As a result, multimodal streams often exhibit long gaps, irregular inter-
vals, and complete sensor dropout—conditions rarely captured by existing benchmarks. Empirical findings
from mobile and wearable sensing further highlight the gap: human activity recognition systems frequently
encounter inconsistent sampling, device failures, and user-dependent variability (Nweke et al., 2018); wrist-
worn sensing studies report prolonged non-wear periods and dropout of inertial or physiological channels (Van
Der Donckt et al., 2024); and systems integrating IMUs, magnetometers, and physiological sensors exhibit
structural missingness induced by asynchronous fusion (Chen et al., 2023a). While these studies provide
valuable insights, MLMM still lacks general frameworks capable of handling long-term partial observability,
heterogeneous devices, asynchronous and irregular multimodal streams, and multi-agent inconsistencies in a
unified manner. More systematic evaluations and standardized benchmarks are urgently needed. A comple-
mentary future direction involves developing resource-aware MLMM robustness strategies. Although prior
work has explored lightweight methods such as signal augmentation and cross-modality distillation (Jeon
et al., 2021), and energy-efficient imputation pipelines tailored for mobile health applications (Hussein et al.,
2024b), these techniques remain application-specific and do not yet form a generalizable toolkit. Likewise,
generative approaches such as SensorGAN (Hussein & Bhat, 2024) show promise for reconstructing missing
sensor channels, but broader assessments of their scalability, latency, and reliability in real-world environ-
ments are still lacking. Overall, handling practical missing modality problems in real world presents a critical
frontier for MLMM research. Despite early progress, the field still needs more comprehensive evaluations,
standardized benchmarks, and general-purpose robustness principles. Ultimately, enabling multimodal AI
systems that remain reliable under persistent sensor failures and dynamically evolving, heterogeneous en-
vironments will require unified methodologies and architectures explicitly designed for real-world sensing
constraints.

8 Conclusion

In this survey, we present the first comprehensive survey of Deep Multimodal Learning with Missing Modality.
We begin with a brief introduction to the motivation of the missing modality problem and the real-world
reasons that underscore its significance. Following this, we summarize the current advances based on our
fine-grained taxonomy and review the applications and relevant datasets. Finally, we discuss the existing
challenges and potential future directions in this field. Although more and more researchers are involved
in studying the problem of missing modality, we are also concerned about some urgent issues that need to
be addressed, such as a unified benchmark for testing and the need for a wider range of applications With
our comprehensive and detailed approach, we hope that this survey will inspire more researchers to explore
missing modality problems.

Limitations: Because our survey aims to cover deep multimodal learning with missing modalities across
as many domains as possible from 2012 to 2025, our taxonomy focuses on the practical machine learning
perspective rather than analysing methods in a theoretical way. Moreover, although we separately review
how large models address missing modalities, the rapid development of foundation model ecosystems suggests
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that this taxonomy may require further refinement as new architectures, training paradigms, and modality
agnostic interfaces continue to emerge.

In addition, method efficiency remains an underexplored yet increasingly critical challenge. Currently, most
existing MLMM approaches rely on computationally heavy architectures, expensive cross modal alignment
modules, or complex imputation pipelines. Their scalability to edge devices, resource constrained deploy-
ments, and long horizon streaming scenarios is still limited. Future research should systematically examine
efficiency trade offs, including latency, memory footprint, modality specific bottlenecks, and asymmetry
between training and inference, to enable practical and deployable MLMM systems.

Additionally, current benchmarks rarely capture realistic missingness patterns such as systematic, asyn-
chronous, intermittent, or catastrophic sensor failures. Existing studies also tend to assume uniform modality
importance and lack principled frameworks for quantifying modality contribution, uncertainty, or redundancy
under missing conditions. Evaluation protocols remain inconsistent across works, hindering fair compari-
son. Beyond this, most methods still struggle to generalize across domains, devices, and spatiotemporal
distributions.

Finally, while MLMM research is most active in robotic vision and sensing, medical applications, affec-
tive computing, remote sensing, and pervasive computing, its application to real-world sensing systems and
natural science domains such as IoT infrastructures, wearables, smart homes, mobile sensing, distributed
environmental sensor network, climate modeling, earth observation, molecular biology, and materials dis-
covery remains sparse. These fields feature rich, heterogeneous, and often severely incomplete modalities,
for example missing experimental measurements or partially observed molecular conformations. Extending
MLMM research to these areas will require domain aware missingness models, physics and biology informed
constraints, and better theoretical understanding.

Addressing these limitations, along with developing stronger theoretical frameworks, more realistic bench-
marks, efficiency aware architectures, and broader cross domain applicability, will help guide the design of
more robust, transferable, and scientifically grounded future MLMM research.
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