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Abstract
Point clouds from real-world scenarios inevitably contain complex
noise, significantly impairing the accuracy of downstream tasks. To
tackle this challenge, cascading encoder-decoder architecture has
become a conventional technical route to iterative denoise. How-
ever, circularly feeding the output of denoiser as its input again
involves the re-extraction of underlying surface, leading to unstable
denoising process and over-smoothed geometric details. To address
these issues, we propose a novel denoising paradigm dubbed PD-
Refiner that employs a single encoder to model the underlying
surface. Then, we leverage several lightweight hierarchical Under-
lying Surface Inheritance Refiners (USIRs) to inherit and strengthen
it, thereby avoiding the re-extraction from the intermediate point
cloud. Furthermore, we design adaptive edge-aware supervision to
improve the edge awareness of the USIRs, allowing for the adjust-
ment of the denoising preferences from global structure to local
details. The results demonstrate that our method not only achieves
state-of-the-art performance in terms of denoising stability and
efficacy, but also enhances edge clarity and point cloud uniformity.
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1 Introduction
As a fundamental representation of 3D geometry, point cloud can
be acquired through various methods, including LiDAR [18, 24, 59],
millimeter wave radar [36, 42, 44, 51], and synthetic aperture radar
[37, 62, 63]. It plays a pivotal role in the realm of 3D vision, finding
applications in diverse areas, such as object detection [7, 48, 49],
classification [6, 16, 20], segmentation [22, 66, 68], and surface re-
construction [32, 33, 47]. It can also integrate with other modalities
[15, 25, 60, 64, 70] and apply across various domains, including
autonomous driving [4, 18] and urban modeling [12, 35, 54]. Nev-
ertheless, owing to sensor limitations and environmental factors,
collected point clouds often contain intricate noise, which will sig-
nificantly impacts downstream tasks’ accuracy. Consequently, the
development of point cloud denoising algorithms to mitigate noise
is a critical research area.
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Current methods [5, 26, 28, 40] typically perform denoising us-
ing single or cascaded structurally identical denoisers in both the
training or testing phases. As illustrated in Fig. 1(a), single-step
denoiser like GPDNet [40] employs a pair of encoder and decoder
for denoising. On the one hand, the encoder’s role is to learn the
relationship between each point and its neighbors in a noisy point
cloud, thereby extracting the underlying surface representations.
On the other hand, the decoder aims to regress the position displace-
ment vector based on its representation to update point position.
To further remove residual noise, iterative denoising methods (e.g.,
Score [28], PSR [2], IPFN [5]), as in Fig. 1(b), involve iterating single-
step methods during testing or training phases. The intermediate
point cloud with residual noise from the previous denoiser will
serve as the input to the next denoiser for further denoising.

Although previous methods remove point cloud noise to some
extent, there are certain limitations in these methods, obstructing
the further improvements of denoising capabilities. Firstly, re-
extracting representations from intermediate point clouds
may destabilize the denoising process. In the high noise and
low density point clouds, it is challenging to accurately estimate the
underlying surfaces with a single denoiser, resulting in inevitable
residual noise and edge over-smoothness. Subsequent iterations
intensify these issues, as the re-extracted underlying surfaces lead
to points converging towards a biased surface, ultimately causing
an unstable denoising process and loss of geometric detail. Sec-
ondly, existing methods typically lack accurate and adaptive
supervision that adjusts the intensity of edge awareness ac-
cording to the denoising stages. In the initial denoising process,
it is common for denoisers to prioritize non-edge regions due to
their simpler geometry and lower noise sensitivity, while edge
regions are challenging to restore with limited prior knowledge.
Then, noise reduction in non-edge areas makes edge regions more
discernible, enabling the recovery of their geometric details. How-
ever, without adaptive intensity of edge awareness, there might be
an inappropriate focus on the difficult-to-recover edge regions in
the early stages. Such undesired behaviour hampers the network’s
stability and convergence, making it less effective at accurately
preserving geometric details during the denoising process.

This paper introduces PD-Refiner, as in Fig. 1(c), to address the
aforementioned limitations of previous methods. PD-Refiner aims
to improve denoising stability by inheriting and strengthening
the underlying surface representation from the prior denoising
step, thus avoiding the re-extraction of representations from the
intermediate point cloud. Specifically, PD-Refiner uses a single en-
coder to extract representation from the original noisy point cloud.
Then, it employs hierarchical USIRs to inherit and strengthen the
point-wise representation by synchronously considering the mov-
ing trend of the point and the multi-scale neighborhood modeling.
This approach ensures that USIRs at different stages utilize a stable
and increasingly refined underlying surface estimation for updat-
ing point positions. Consequently, this stable denoising process
alleviates the denoisers’ learning burden of aligning points to the
underlying surface, which, in turn, allows more learning capacity
to be devoted to improving the quality of the point cloud, such as
enhancing uniformity and restoring edges. Additionally, to more
precisely guide the USIRs in edge restoration, we design a novel
adaptive edge-aware supervision strategy named Adaptive Shape

(a)Single-Step Denosier (GPDnet,etc)

(c)  PD-Refiner (Ours)

(b)Iterative Denosier (Score,PSR,IPFN,etc)
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Figure 1: Comparisons of PD-Refiner with previous single-
step and iterative denoising methods.

Preserving Loss (ASPL) to gradually recover geometric details. ASPL
adjusts the intensity of edge awareness within the optimization
targets of each USIR layer based on the denoising step number. It
guides the shallowUSIRs to prioritize denoising the global non-edge
point (plane) and gradually provides stronger supervision signals
to the edge points (local geometric detail) in deeper USIRs. Feature
extraction is performed only once in the entire denoising process.
Additionally, benefiting from the single-layer point convolution,
the USIR architecture is more lightweight compared to traditional
encoders, thereby requiring fewer computing resources than con-
ventional stacked encoder-decoder denoising methods. The main
contributions of this paper are:

• We propose PD-Refiner, a novel yet practical point cloud denois-
ing framework that boosts denoising stability by inheriting and
strengthening the underlying surface representation without
re-extracting it from intermediate point clouds. This methodol-
ogy ensures a more stable denoising process by maintaining a
consistent representation across denoising steps.

• We establish a stable denoising process that promotes the net-
work to focus more on restoring geometric details. To this end,
we introduce the Adaptive Shape Preserving Loss (ASPL), an
adaptive supervision strategy that precisely adjusts the edge-
awareness intensity of each USIR layer, ensuring detailed and
accurate edge restoration.

• Extensive experiments demonstrate that PD-Refiner achieves
superior performance compared with previous SOTA iterative
methods in both testing or training phases with demanding fewer
computational resources. It is noteworthy that, it also benefits
the promoting of denoising quality, including the local geometric
details and the uniformity.

2 Related Work
Deep learning driven point cloud denoising methods have demon-
strated remarkable denoising capabilities in various noise modal-
ities [8–11, 14, 21, 23, 34, 65]. The rapid progress of point cloud
analysis has led to the development of various neural network archi-
tectures and operators tailored to processing point cloud data such
as PointNet [43], DGCNN [56], PointTransformer [67], etc. Deep
learning driven point cloud denoising methods can be broadly cate-
gorized into displacement-based and generation-based approaches.
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Displacement-based methods like GPDNet [40, 41] utilizes
graph-convolutional layers [50] as encoder to elegantly addresses
the permutation invariance problem commonly encountered in
learning-based point cloud denoising methods. Noise2noise [30]
proposes to learn Signed Distance Functions (SDF) [29] through
noise-to-noise mapping and update the point position.

Iterative denoising plays a crucial role in high noise point cloud.
Conventional iterative denoising methods train single denoiser
and conduct testing phase multiple times. PathNet [57] designs
dynamic network that adjust the denoising path according to ge-
ometry and noise level of each point. RePCD [3] proposes to use
recurrent neural networks (RNNs) to model the iterative denoising
process. IPFN [5] achieves iterative denoising by stacking multiple
IterationModules during training. These methods [3, 5] directly
add the position displacement to the coordinates of the point to
denoise. There are also methods to introduce step size to control
the movement of points in iterative denoising. They model the gra-
dients of point cloud distribution to reduce noise through gradient
ascent. Score [28] introduces a gradient ascent method to map 3D
distribution to a 2D manifold and utilize Langevin sampling [1, 27]
to iteratively recover low-noise data from high-noise input. PSR
[2] introduced a gradient-based point set resampling that continu-
ously model the probability distribution density of the noisy point
cloud, and resample this distribution to obtain the denoised point
cloud. MAG [69] introduced a momentum term in the gradient up-
date process to deal with fluctuate gradient field. Although iterative
denoising has achieved a certain effect, these methods generate the
intermediate point cloud and need the re-extraction of underlying
surfaces, causing the unstable denoising process. Our method falls
into displacement-based method, but unlike the previous approach,
we model the representation of the point cloud for once, instead of
re-extracting from the output point cloud from the previous step.

Generation-based methods focus on removing high-noise
points and generating low-noise points. DMR [26] estimates the
point-wise noise level as a measure of point-wise quality. They
select the part with the highest quality and generate new points
to restore the original point count. Random screen [55] proposes
integrating points into higher-dimensional sub-patches to reduce
the number of points and denoise, then decoupling them to recover
the original number of points. SSPCN [19] suggests extracting
features from the down-sampled points for feature compensation,
alleviating the inconsistency between point features and their actual
locations. While this method has advantages in dealing with outliers,
the downsampling process results in the loss of geometric details. On
the contrary, our method could maintain more detailed geometric
information without the points sampling.

3 Methods
3.1 Preliminary
Following previous state-of-the-art methods [5, 26, 28], we start
with a clean point cloud 𝑃𝐶𝐷𝑐𝑙𝑒𝑎𝑛 ∈ R𝑀×3, which is normalized to
the unit sphere and𝑀 is the point number of the object. An additive
3D Gaussian noise 𝜉 ∼ 𝑁 (0, 𝜎) is added to the clean point cloud
to get a noisy point cloud 𝑃𝐶𝐷𝑛𝑜𝑖𝑠𝑦 ∈ R𝑀×3, where 𝑃𝐶𝐷𝑛𝑜𝑖𝑠𝑦 =

𝑃𝐶𝐷𝑐𝑙𝑒𝑎𝑛 + 𝜉 . The noise intensity is controlled by the variance 𝜎 .
To create paired training data, we randomly select a reference point

𝑥𝑟 from 𝑃𝐶𝐷𝑛𝑜𝑖𝑠𝑦 , and choose the nearest 𝑁 points, where 𝑁 is
the patch size, from 𝑃𝐶𝐷𝑛𝑜𝑖𝑠𝑦 and 𝑃𝐶𝐷𝑐𝑙𝑒𝑎𝑛 to get 𝑃𝑛 as the input
noisy point cloud and 𝑃𝑐 as the ground truth clean point cloud.

Displacement-based point cloud denoising networks commonly
utilize an encoder, to extract point-wise underlying surface repre-
sentations based on the noisy points 3D coordinates. This process
can be formulated as:

𝐹𝑛 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑃𝑛, 𝜃𝐸 ), (1)

where 𝐹𝑛 ∈ R𝑁×𝐶 is the extracted point-wise underlying surface
representation and 𝐶 is the feature dimension. The encoder is built
upon Dynamic EdgeConv layers [5, 50]. The update of point-wise
features is formulated as:

ℎ𝑠+1𝑖 = (𝑓𝜙 (ℎ𝑠𝑖 ) | |
∑︁

𝑗 :(𝑖, 𝑗 ) ∈𝜖
𝑔𝜃 (ℎ𝑠𝑖 | |ℎ

𝑠
𝑗 − ℎ

𝑠
𝑖 )), (2)

where ℎ𝑠
𝑖
and ℎ𝑠

𝑗
represent the feature of the center point and its

neighborhood points in layer 𝑠 , 𝜖 is the edges, 𝑓𝜙 (·) and 𝑔𝜃 (·) are
parameterized by MLPs, and (·| |·) denotes concatenate.

The 𝑖-th point-wise representation encodes information of the
underlying surface formed by the neighborhood of 𝑖-th points and
the relationship between 𝑖-th point and the underlying surface. A
decoder, composed of MLPs, is utilized to map the relationship in
the representation into position displacement vector, updating the
coordinates accordingly to bring the point closer to the underlying
surface. This process can be formulated as:

𝑃𝑑𝑖𝑠𝑝 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝐹𝑛, 𝜃𝐷 ), (3)

where 𝑃𝑑𝑖𝑠𝑝 ∈ R𝑁×3 is the predicted position displacement vector.
The final denoised point cloud is obtained as 𝑃𝑑 = 𝑃𝑛 + 𝑃𝑑𝑖𝑠𝑝 .
The training objective of the denoising network is to minimize the
Chamfer Distance (CD) between the denoised point cloud 𝑃𝑑 and
the clean point cloud 𝑃𝑐 .

Iterative denoising is a commonly-used process to improve de-
noising performance, particularly for high-noise point clouds. It
involves stacking multiple denoising networks formulated as:

𝐹𝑙 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑃𝑚𝑙 , 𝜃
𝐸
𝑙
)

𝑃𝑚
𝑙+1 = 𝑃

𝑚
𝑙

+ 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝐹𝑙 , 𝜃𝐷𝑙 ),
(4)

where 𝜏 is the iteration number and 0 ≤ 𝑙 < 𝜏 , 𝑃𝑚
𝑙

is the inter-
mediate point clouds, 𝑃𝑚0 = 𝑃𝑛 representing the input noisy point
cloud, and 𝑃𝑑 = 𝑃𝑚𝜏 is the output denoised point cloud. 𝐹0 = 𝐹𝑛 is
the extracted original underlying surface representation from 𝑃𝑛 .
In testing phase iterative denoising [2, 28, 69], they use the same
network where 𝜃𝑢

𝑖
= 𝜃𝑢

𝑗
, 𝑢 ∈ {𝐸, 𝐷}, 0 <= 𝑖, 𝑗 < 𝜏 . However, taking

the intermediate point cloud with different residual noise as input
of the same network increases the burden of learning point cloud
distribution. To alleviate this problem, IPFN [5] propose iterative
denoising in training phase to stage the iterative denoising process.
Nevertheless, these iterative denoising methods need re-extracting
representations from intermediate point clouds, resulting in the
unstable denoising process. To address these limitations of iterative
denoising, we introduce PD-Refiner as shown in Fig. 2, consisting of
the Underlying Surface Inheritance Refiner (USIR), Shape Variance
Weighting Network (SVWN) and adaptive edge-aware supervision
strategy named Adaptive Shape Preserving Loss (ASPL).
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Figure 2: Overview of the proposed PD-Refiner. Our PD-Refiner employs a single encoder along with a hierarchical Underlying
Surface Inheritance Refiner (USIR) to strengthen the inherited underlying surface representation, ensuring a stable and accurate
denoising process. We incorporate an edge-aware supervision strategy, called Adaptive Shape Preserving Loss (ASPL), to restore
geometric details in the denoised point cloud.
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Figure 3: Details of the USSM. The point-wise representation
and position displacement vector is synchronously consider-
ing for multi-scale modeling.

3.2 Underlying Surface Inheritance Refiner
Previous iterative denoising consists of a stack of encoder-decoder
pairs, where each pair represents a denoiser. Unlike the network
structure of previous iterativemethods, PD-Refiner employs a single
pair of encoder and decoder. We insert hierarchical USIRs between
them to inherit and strengthen the underlying surface representa-
tion while update the point position.

First, we utilize a MLPs-based Position Update Module (PUM) to
compute a positional displacement vector 𝑃𝑑𝑖𝑠𝑝

𝑙
using 𝐹𝑙 as input,

enabling point position updates formed as 𝑃𝑚
𝑙+1 = 𝑃

𝑚
𝑙
+𝑃𝑑𝑖𝑠𝑝

𝑙
, where

𝑙 signifies the layer number, and 𝐹𝑙 is the input representation of
the 𝑙-th USIR. Then, we propose the Underlying Surface Strengthen
Module (USSM), as shown in Fig. 3., that leveraging multi-scale
neighborhood modeling to strengthen the estimation of the un-
derlying surface. Benefited from the commonality of underlying
surfaces described by neighboring points, this method combines
multiple estimates and further achieves more robust and reliable
results, thereby enhancing both the overall stability and accuracy of

the denoising process. Simultaneously, the positional displacement
vector contains complementary information about point movement
trend, also offering valuable guidance for estimating the underlying
surface’s location.

The input of USSM is formed as 𝐺𝑙 = (𝑃𝑑𝑖𝑠𝑝
𝑙

| |𝐹𝑙 ), where 𝐺𝑙 ∈
R𝑁×(512+3) . Multi-scale neighborhood representation modeling is
enabled by leveraging the selective kernel operation [17, 38, 39],
specialized for dynamically selecting and aggregating convolutional
kernels of various receptive field. The local geometry structure and
noise distribution characteristics of point clouds present different
scale requirements for underlying surface modeling. USSM adap-
tively fuses multi-scale underlying surface information learned
from point moving trends and neighborhood representations to
strengthen the underlying surface representation and formulated
as 𝑂𝑙 = 𝑈𝑆𝑆𝑀 (𝐺𝑙 ) and 𝐹𝑙+1 = 𝐹𝑙 +𝑂𝑙 .

At the beginning of USSM, a MLP layer is used to adjust the
feature dimension and get 𝐺𝑎

𝑙
∈ R𝑁×512. Multi-scale feature is

extracted by Point Self-Attention (PSA) [52] layer to get multi-scale
information formulated as:

𝐻𝑎
𝑙
= {𝑃𝑆𝐴(𝐺𝑎

𝑙
, 𝑘1), ..., 𝑃𝑆𝐴(𝐺𝑎𝑙 , 𝑘𝑛)}, (5)

where 𝑘𝑜 , 1 ≤ 𝑜 ≤ 𝑛 is the receptive fields. Considering the balance
of computation and precision, we set {𝑘𝑜 }𝑛𝑜=1 = {8, 16, 32}. These
multi-scale features are added together and get the joint representa-
tion by global average pooling (GAP) through all points. Then, we
utilize a MLP layer to squeeze the feature dimension to obtain the
compressed mixed-scale feature 𝑆𝑎

𝑙
∈ R𝑁×128. The feature dimen-

sion is restored by multiple MLPs and use SoftMax to calculate the
correspondingweights of each feature at different scale.We perform
weighted summations of the multi-scale feature, and feed it into the
MLP to get𝑂𝑎

𝑙
∈ R𝑁×512. Residual connection is achieved by using

an MLPs to get the residual feature 𝑂𝑏
𝑙
∈ R𝑁×512. The multi-scale

feature and the residual feature is added as 𝑂𝑙 = 𝑂𝑎𝑙 +𝑂𝑏
𝑙
.
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Figure 4: Details of SVWN. High-weighted edge and low-
weighted plane points are marked in yellow and blue.

3.3 Shape Variance Weighting Network
Implementing ASPL requires knowing whether each point belongs
to the edge region. We design a Shape Variance Weighting Network
(SVWN), as in Fig. 4, and introduces attention-based edge point
learning strategy [58] that leveraging statistical characteristics to
extract edge weight from the clean point cloud patch 𝑃𝑐 . SVWN cal-
culates the variance of the attention-based correlation map within
the neighborhood points feature. This calculation captures the de-
gree of geometric structure change. It represents the probability
that a point belongs to the edge region.

To be specific, SVWN construct dynamic graph structures [56] ac-
cording to the feature similarity among points by KNN. MLP layers
is used for point relationship learning. We use two dynamic graph
convolution layers to encourage the network to organize the graph
semantically and expands the receptive field of local neighborhood
to better capture edge feature. The intermediate features from the
pooling layer are concatenated and subsequently passed through a
PSA layer to get the edge feature 𝐹𝐸𝑑𝑔𝑒 ∈ 𝑅𝑁×128. 𝐾𝑁𝑁 generates
the edge feature difference 𝐹𝐸𝑑𝑔𝑒

𝑑𝑖 𝑓 𝑓
between the central point and its

neighboring points. These features, 𝐹𝐸𝑑𝑔𝑒 and 𝐹𝐸𝑑𝑔𝑒
𝑑𝑖 𝑓 𝑓

, respectively

serve as the inputs for two MLPs, producing 𝐹𝑄𝑢𝑒𝑟𝑦 ∈ 𝑅𝑁×1×128

and 𝐹𝐾𝑒𝑦 ∈ 𝑅𝑁×128×32. The variance of attention-based correla-
tion map is formed as𝑤𝐸𝑑𝑔𝑒 = 𝑆𝑇𝐷 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐹𝑄𝑢𝑒𝑟𝑦 × 𝐹𝐾𝑒𝑦)). A
higher variance indicates a more pronounced change in the local
geometry structure, signifying its probability of proximity to the
edge. Since the edge of input patch does not belong to the real edge
of the object, Gaussian weights is added to retain more accurate
edge annotation. The final edge weight is formulated as:

𝑤𝐸𝐺𝑖 = 𝑤
𝐸𝑑𝑔𝑒

𝑖
∗

𝑒𝑥𝑝 (−||𝑥𝑖 − 𝑥𝑟 | |22/𝑟
2
𝑠 )∑

𝑖 𝑒𝑥𝑝 (−||𝑥𝑖 − 𝑥𝑟 | |22/𝑟
2
𝑠 )
, (6)

where 𝑟𝑠 = 𝑟/3 and 𝑟 is the patch radius. The parameters of SVWN
is updated through back propagation together with USIRs, without
additional GT geometrical loss supervision like local curvatures.

3.4 Adaptive Shape Preserving Loss
To improve PD-Refiner’s structural recovery, we propose Adaptive
Shape Preserving Loss (ASPL), which adjusts the intensity of edge
awareness within the optimization targets of each USIR layer based
on the denoising step number to guide points precisely converge
to the correct surface.

𝒘𝒕𝟏 ∗ 𝒅𝟏
GT Surface

3D Space Shift
Edge Points

Non-edge Points
Denoised Points
Same Index Point
Nearest Distance

𝒘𝒕𝟐 ∗ 𝒅𝟐

Figure 5: Illustration of adding edge weights to different loss
items. If add weights to both items𝑤𝑡1 and𝑤𝑡2, the supervi-
sion signal of the edge region might leak into the non-edge
region.

The Chamfer Distance (CD) loss is wildly used for supervised
point cloud denoising, which can be formulated as:

𝐶𝐷 (𝑃𝑑 , 𝑃𝑐 ) =
1
𝑁
(
∑︁
𝑎∈𝑃𝑑

𝑚𝑖𝑛𝑏∈𝑃𝑐 | |𝑎 − 𝑏 | |
2 +

∑︁
𝑏∈𝑃𝑐

𝑚𝑖𝑛𝑎∈𝑃𝑑 | |𝑎 − 𝑏 | |
2),

(7)
where | |𝑎 − 𝑏 | |2 represents the Euclidean distance between the two
points. Standard CD loss consists of two terms. The first term calcu-
lates the average nearest distance from each point in the denoised
point cloud 𝑃𝑑 to the clean point cloud 𝑃𝑐 , and the second term
does the same for each point in 𝑃𝑐 to 𝑃𝑑 . Within each term, every
point’s nearest distance contributes equally to the overall loss.

The edge weights extracted by SVWN can provide index-level
edge weight annotation to 𝑃𝑐 . Previous method [3] add weights to
both terms (denoised-clean and clean-denoised) of CD loss accord-
ing to point index. Considering the edge points in 𝑃𝑐 may shift to
non-edge region due to added noise and denoising process, even
though they have the same index, as shown in Fig. 5, the highweight
to the edge region may leak to the non-edge region thus providing
imprecise supervision signal of the edge region. To overcome this
limitation, we propose an improved CD loss named Clean-denoised
Shape Weighted CD formulated as:

𝐶𝐷𝑐𝑠𝑤 (𝑃𝑑 , 𝑃𝑐 ,𝑤𝐿) =
1
𝑁
(
∑︁
𝑎∈𝑃𝑑

𝑚𝑖𝑛𝑏∈𝑃𝑐 | |𝑎 − 𝑏 | |
2

+
∑︁
𝑏∈𝑃𝑐

𝑚𝑖𝑛𝑎∈𝑃𝑑 (1 +𝑤
𝐸𝐺
𝑖 ∗𝑤𝐿) ∗ | |𝑎 − 𝑏 | |2), (8)

where only the loss term of the nearest distance from clean to
denoised point cloud is added the edge weights. Since 𝑃𝑐 is not
affected by noise addition or denoising, we can provide a more
accurate supervision signal to edge region, and𝑤𝐿 is used to control
the intensity of edge awareness according to denoising stages.

To gradually increase the overall focus on the edge regions of
USIR, we set different layer weights for the aggregation of losses at
each layer. The layer weight is increasing with the number of USIR.
The final ASPL is formulated as:

L𝐴𝑆𝑃 =

𝜏∑︁
𝑙=1

𝐶𝐷𝑐𝑠𝑤 (𝑃𝑚,𝑙 , 𝑃𝑐 ,𝑤𝐿𝑙 ), (9)

where𝑤𝐿
𝑙
=
𝑒𝑥𝑝 (𝑙 )
𝑒𝑥𝑝 (𝜏 ) represents the layer weight.
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#Points 10K Points 50K Points

Noise Level 1% Noise 2% Noise 3% Noise 1% Noise 2% Noise 3% Noise

Method Venue CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

PCN [45] CGF 19 35.15 11.48 74.67 39.65 130.67 87.37 10.49 3.46 14.47 6.08 22.89 12.85
GDPNet [40] ECCV 20 37.80 13.37 80.07 44.26 134.82 91.14 19.13 10.37 50.21 37.36 97.05 79.98
DMR [26] ACMMM 20 44.82 17.22 49.82 21.15 58.92 28.46 11.62 4.69 15.66 8.00 24.32 15.28
Score [28] ICCV 21 25.21 4.63 36.86 10.74 47.08 19.42 7.16 1.50 12.88 5.66 19.28 10.41

PD-Flow [31] ECCV 22 21.26 3.81 32.46 10.10 44.47 19.99 6.51 1.64 11.73 5.81 19.14 12.10
PSR [2] TPAMI 22 23.53 3.06 33.50 7.34 40.75 12.42 6.49 0.76 9.97 2.96 13.44 5.31

Noise2Noise [30] ICML 23 10.60 2.41 29.25 10.10 42.21 18.47 3.77 1.55 10.29 4.84 16.54 9.72
IPFN [5] CVPR 23 20.56 2.18 30.43 5.55 42.41 13.76 6.05 0.59 8.03 1.82 19.71 10.12

PathNet [57] TPAMI 24 26.72 5.84 39.73 12.99 45.24 24.04 7.16 1.24 11.40 4.10 18.75 9.52

Ours𝑡𝑖𝑛𝑦 18.27 1.82 25.87 4.89 33.74 10.45 4.93 0.49 7.15 1.85 14.58 7.22
Ours 17.54 1.66 24.44 4.49 30.77 9.13 4.66 0.45 6.53 1.64 12.28 5.75

Table 1: Denoising comparison with SOTA methods in PU-Net dataset under Gaussian noise. CD is multiplied by 105 and P2M is
multiplied with 105. Data in bold and underline represent the best and second best result among all methods.

Figure 6: Visual result of point-wise P2M distance for 10K resolution with Gaussian noise of 2% of the bounding sphere radius.

4 Experiment
4.1 Dataset and Implementation Details
Dataset:We follow the training strategy of the previous methods
that selects 40 meshes from the training set of PU-Net [61] for the
network training. The training sample uses Poisson disk sampling
with a resolution of 10k, 30k, 50k to obtain the point cloud, resulting
in a total of 120 different training samples. We add Gaussian noise
of 0.5% to 2% of bounding sphere’s radius variance for each sample.
The patch size 𝑁 of the training sample pair is set to 1000. The test
set consist of 20 samples from the PU-Net test set with resolutions
of 10k and 50k and noise intensity of 1%, 2% and 3%. CD and P2M
are used to measure all method performance.

Furthermore, we conduct qualitative study on the real-world
dataset Paris-Rue-Madame [46], which comprises scans obtained

through the utilization of the Mobile Laser Scanning system L3D2.
Notably, this dataset exhibits real-world imperfections introduced
by the inherit limitations of the scanning technology, making it an
ideal benchmark for assessing the algorithm’s robustness in the
face of such artifacts. Next, we consider the Kinect v1 and Kinect
v2 datasets [53], consisting of 71 and 72 real-world scans acquired
using Microsoft Kinect v1 and Kinect v2 cameras.

Implementation details: We use the network structure Py-
Torch implementation of IPFN [5] and set the IterationModule
number to 1 as our baseline. The proposed PD-Refiner is trained
and tested on NVIDIA 3090 GPUs using PyTorch 1.9.0 with CUDA
11.1. We train the network for 100 epochs, with the Adam [13]
optimizer. We used the cosine learning rate scheduler to smoothly
decrease the learning rate from an initial value of 1× 10−4 to a final
value of 1 × 10−7. Batch size is set to 16.
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Noisy PSR IPFN Ours

Figure 7: Visual result of the real-world RueMadame dataset, showcasing the superior point uniformity and shape preservation
ability of our method.

#Points 10K Points

Noise 1% noise 2% noise 3% noise

Type Method CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

Lap

PCN 46.16 19.40 110.82 72.18 209.81 159.22
Score 29.15 6.74 46.01 17.99 63.32 32.71
PSR 26.63 4.50 37.90 10.67 51.10 20.17
IPFN 24.25 3.28 34.66 8.68 68.60 34.60

Ours 20.62 2.66 28.96 7.94 42.48 17.93

Dis

PCN 11.77 3.07 28.70 8.71 40.28 16.74
Score 12.49 2.51 21.77 4.16 26.53 6.53
PSR 10.21 1.63 19.21 2.68 22.74 4.31
IPFN 6.76 0.91 16.60 1.88 20.29 3.21

Ours 6.13 0.75 15.34 1.50 19.49 2.56

Ani

PCN 34.32 11.29 73.93 39.40 129.52 86.54
Score 24.70 4.56 36.82 10.84 47.76 20.00
PSR 23.05 3.08 33.45 7.58 41.52 13.50
IPFN 20.25 2.24 30.59 5.89 50.31 20.14

Ours 17.41 1.76 24.70 4.80 33.43 11.28

Uni

PCN 12.05 3.37 33.78 10.18 50.44 19.95
Score 12.77 2.48 24.67 4.18 30.79 6.54
PSR 10.56 1.64 23.48 2.75 29.16 4.43
IPFN 6.78 0.91 20.38 2.03 26.90 3.53

Ours 6.12 0.76 17.11 1.52 21.65 2.62

Table 2: Denoising comparison with SOTA methods in other
noise distribution.
4.2 Comparisons of the state-of-the-art
Tab. 1. shows the evaluation metrics comparison including CD and
P2M under different noise level and point density. We run PathNet
in PU-Net for 1x, 2x, and 4x testing phase denoising, under 1%,
2%, and 3% noise. Other methods were tested with default settings.
We also offer a tiny version with 𝐶 = 256 and 𝜏 = 4. Our method
significantly outperforms competitive methods in most settings. In
particular, our method has proven to be more efficient, especially
when encountering more complex, low-density point clouds with
high noise levels, where the noise level far exceeds that encountered
during training. This robustly demonstrates that PD-Refiner ensures
a more stable denoising process and enhanced robustness.

The comparison of the visual results of the denoised point cloud
from PU-Net obtained by the SOTA methods and PD-Refiner is
shown in Fig. 6. The first two columns present the clean and noisy
point clouds, serving as benchmarks for evaluating the effective-
ness of various denoising methods. DMR shows significant loss

Method V1 V2

CD↓ P2M↓ CD↓ P2M↓

Noisy 15.36 8.21 25.21 14.60
PSR 15.18 7.77 23.25 12.74

PD-Flow 14.25 7.68 22.56 12.93
Score 14.25 6.94 23.46 12.36
IPFN 14.92 7.99 22.27 12.89
Ours 14.34 7.61 22.26 12.89

Table 3: Denoising comparison with SOTAmethods in Kinect
V1 and V2 dataset.

of geometric details and fails to remove residual noise effectively.
Score performs better in noise reduction but struggles with surface
smoothness. PD-Flow ensures a more uniform point distribution
but suffers from irregular surface undulations and misalignment.
IPFN achieves commendable noise reduction but lacks uniformity
in point cloud distribution. Compared with previous methods, PD-
Refiner excels in both residual noise elimination and preservation
of geometric details. This superiority is attributed to an innovative
underlying surface inheritance and strengthening framework, cou-
pled with an adaptive shape preserving loss. This denoising process
not only stabilizes but also improves the structural integrity and
uniformity of the point cloud distribution.

Furthermore, we also test under various noise modalities includ-
ing anisotropic Gaussian, discrete, Laplace and uniform noise. As in
Tab. 2, PD-Refiner can achieve the state-of-the-art performance in
all noise modalities and noise levels. In the real-world RueMadame
dataset, as in Fig. 7, our method achieves better preservation of
geometric details and point uniformity. The quantitative compari-
son of Kinect V1 and V2 dataset, as in Tab. 3, also demonstrate the
generalizability of PD-Refiner in real-world scenarios.

4.3 Ablation study
We conduct an ablation study to verify the effectiveness of each
component, including: 1) the influence of the number of USIRs used
in PD-Refiner; 2) the inputs and methods for strengthening the
underlying surface representation in USIR; 3) stage adaptability
and edge supervision strategies in ASPL; and 4) the computational
resource requirements across different configurations.

The influence of the number of USIR used on PD-Refiner is stud-
ied in Tab. 4.We incorporate different numbers of USIRs into the
baseline model and conduct multiple testing phase denoising. The
results of 1× testing phase denoising indicate that adding more
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Iteration 24Iteration 8 Iteration 16

24×Runs 
τ=0

3×Runs
τ=7

Figure 8: Details of SVWN. High-weighted edge and low-
weighted plane points are marked in yellow and blue.

#Points 10K Points

Noise Level 1% noise 2% noise 3% noise

Runs 𝝉 CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

1×

0 19.91 2.68 29.05 6.60 43.74 17.30
1 18.70 1.94 27.02 5.37 36.07 11.69
3 18.00 1.73 25.57 4.77 32.84 9.86
7 17.54 1.66 24.44 4.49 30.77 9.13

2× 3 17.72 1.70 24.51 4.54 30.74 9.33
7 17.53 1.64 23.92 4.34 29.77 8.89

Table 4: Study of the influence of the number of USIR used
on PD-Refiner. 𝜏 is the USIR number and we run multiple
testing phase denoising.

#Points 10K Points

Noise Level 1% noise 2% noise 3% noise

Fl Pdispl USSM CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

19.39 2.39 28.37 6.23 43.23 16.95
18.56 1.89 26.77 5.12 35.56 11.54
17.86 1.70 25.04 4.64 31.93 9.54
17.54 1.66 24.44 4.49 30.77 9.13

Table 5: Study of the inputs and methods for strengthening
underlying surface in USIR. If USSM is not used, MLP will
be used instead.
USIRs can significantly improve the denoising performance, partic-
ularly in point clouds with high noise levels. This trend suggests
that USIRs can stabilize the underlying surface modeling process
in noisy conditions. Run 2× testing phase denoising can achieve
a small accuracy improvement, but need more computational re-
sources. Notably, the 1× testing phase denoising with 𝜏 = 7 can
outperform the 2× testing phase denoising with 𝜏 = 3, even though
they undergo the same number of point position updates, as the
latter re-extracts the underlying surface using the intermediate
point cloud, while the former maintains a stable estimation of the
underlying surface. The visualization in Fig. 7 shows that frequently
re-extracting the underlying surfaces causes the points to converge
towards a biased surface.

The inputs and methods for strengthening underlying surface in
USIR is studied in Tab. 5.Without multi-scale neighborhood mod-
eling for underlying surface representation strengthening using
USSM, PD-Refiner degrades similarly to the fixed path version of
PathNet, and the precision almost drops to that of the baseline
model, demonstrating the significance of underlying surface repre-
sentation strengthening. Both 𝐹𝑙 and 𝑃

𝑑𝑖𝑠𝑝

𝑙
can promote the under-

lying surface estimation, but the effect of 𝑃𝑑𝑖𝑠𝑝
𝑙

is relatively minor
due to its limited description of the underlying surface’s location.
When combining 𝐹𝑙 and 𝑃

𝑑𝑖𝑠𝑝

𝑙
, their complementary information

provides a more effective depiction of the denoising process.

#Points 10K Points

Noise Level 1% noise 2% noise 3% noise

Loss type CD↓ P2M↓ CD↓ P2M↓ CD↓ P2M↓

L2norm 18.97 1.91 26.75 4.91 35.06 10.89
CD 18.23 1.79 25.41 4.75 31.88 9.62

CDboth−terms 17.79 1.72 24.66 4.59 31.56 9.48
CDcsw 17.73 1.69 24.59 4.56 31.33 9.42

CDcsw + Adaptive 17.54 1.66 24.44 4.49 30.77 9.13

Table 6: Study of stage adaptability and edge supervision
strategies in ASPL. We use different loss type for supervision.
𝐶𝐷𝑏𝑜𝑡ℎ−𝑡𝑒𝑟𝑚𝑠 is to add weight on both terms of CD loss.

Method PD-Flow Score PSR PathNet IPFN Ours𝑡𝑖𝑛𝑦 Ours

Param (M) 0.460 0.187 0.267 10.860 3.196 1.946 15.108
FLOPs (G) 4.508 21.281 102.284 2067.594 69.650 8.860 61.098
Time (ms) 72.2 152.7 220.6 2239.1 165.1 48.0 110.5

Table 7: Compression of number of parameters (M), FLOPs
(G) and inference time (ms).

The stage adaptability and edge supervision strategies in ASPL is
studied in Tab. 6. Compared to the standard Chamfer Distance (CD)
loss, the edge-weighted CD loss achieves better performance. This
accuracy is further improvedwhen precise guidance is applied using
the proposed clean-denoised shape-weighted CD loss. By providing
hierarchical optimization targets for refiners in each layer, our
method take the first place on denoising performance. We also use
the 𝐿2𝑛𝑜𝑟𝑚 loss proposed by IPFN and Score for training, achieving
significant improvements compared to IPFN. This indicates that
the underlying surface inheritance and strengthening paradigm is
more efficient than stacking IterationModules.

The training and testing computational resource requirements is
studied in Tab. 7. In processing 1K points patchwith single 3090 GPU,
we achieved higher efficiency. We also offer a tiny version with
𝐶 = 256 and 𝜏 = 4, which significantly improves efficiency with
minimal accuracy loss. PathNet [57] needs to denoise each point in
the point cloud independently, resulting in higher computational
resource requirements. When training with 2× 3090 GPUs, PD-
Refiner with 𝜏 = 8 requires 34.57 GiB of training memory and 0.55s
per iteration, whereas IPFN [5] with "4 it." requires 35.62 GiB and
0.52s per iteration. This results demonstrate PD-Refiner’s relatively
lower computational resource consumption.

5 Conclusion
In this paper, we propose a novel yet practical PD-Refiner for ef-
ficient point cloud denoising. Unlike previous iterative denoising
methods, which replying on re-extract representations from inter-
mediate point clouds, PD-Refiner inherits the underlying surface
representation directly and leveraging USIRs to strengthen it by
multi-scale neighborhood modeling. We also propose ASPL to pro-
vide USIRs with adaptive andmore precise edges-aware supervision.
Qualitative and quantitative results show that our method achieves
excellent performance on both synthetic and real point cloud de-
noising benchmark.

Since we have found that the underlying surface representation
inheritance and strengthening paradigm can make the denoising
process more stable, we plan to extend our model to process data
with more complex noise modalities, such as those from synthetic
aperture radar and millimeter wave radar point clouds.
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