
HEAP: HIERARCHICAL POLICIES FOR
WEB ACTIONS USING LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities in per-
forming a range of instruction following tasks in few and zero-shot settings. How-
ever, teaching LLMs to perform tasks on the web presents fundamental challenges
– combinatorially large open-world tasks and variations across web interfaces. We
tackle these challenges by leveraging LLMs to decompose web tasks into a collec-
tion of sub-tasks, each of which can be solved by a low-level, closed-loop policy.
These policies constitute a shared grammar across tasks, i.e., new web tasks can
be expressed as a composition of these policies. We propose a novel framework,
Hierarchical Policies for Web Actions using LLMs (HeaP), that learns a set of
hierarchical LLM prompts from demonstrations for planning high-level tasks and
executing them via a sequence of low-level policies. We evaluate HeaP against a
range of baselines on a suite of web tasks, including MiniWoB++, WebArena, a
mock airline CRM, as well as live website interactions, and show that it is able to
outperform prior works using orders of magnitude less data.

1 INTRODUCTION

Recent advances in instruction following large language models (LLMs) (Ouyang et al., 2022;
Touvron et al., 2023) have shown impressive zero and few-shot capabilities in solving tasks by
parsing natural language instructions and breaking them down into actionable steps (Yao et al., 2022b;
Huang et al., 2022b; Ahn et al., 2022). In this paper, we focus on the problem of teaching LLMs to
perform tasks on the web, for instance booking flights or making appointments. Assisting humans in
performing web tasks has significant implications on a variety of domains given the pervasive nature
of web and cloud-based applications in everyday life.

Prior works collect large amounts of demonstrations of web tasks to train language models (Furuta
et al., 2023; Gur et al., 2022; Humphreys et al., 2022; Liu et al., 2018; Shi et al., 2017). However,
teaching LLMs to perform tasks on the web presents fundamental challenges. (1) Combinatorially

large open-world tasks: There are countless ways to interact with the web, leading to a combinatorially
large space of tasks such as booking flights, making appointments, payments, etc. (2) Variations

across web interfaces: Web interfaces differ from one website to another, e.g. booking a flight on
JetBlue is different from booking it on United. Hence, it is intractable to cover all such variations in
tasks and interfaces in the training data, and have a single supervised model that can solve all tasks.

Our key insight is to leverage LLMs to decompose complex web tasks into a set of modular sub-tasks,
each of which can be solved by a low-level, closed-loop web policy. These policies constitute a
shared grammar across tasks, i.e., any new web task can be expressed as a composition of these
policies. For example, the task of booking a flight can be expressed as a sequence of policies for
filling source and destination airports, choosing flight dates, and filling in passenger details. Each
low-level policy is specialized for a particular sub-task, e.g. a fill text policy can work on text boxes
across web user interfaces (UIs) that either require clicking and typing text, or require typing partial
text and auto-completing from a list of options.

While manually programming these policies can be tedious, it is much easier to learn them from
humans performing varied tasks on the web. We propose a novel framework, Hierarchical Policies
for Web Actions using LLMs (HeaP), that learns a set of hierarchical LLM prompts for planning

1

high-level tasks and executing low-level policies. We first collect raw demonstrations from a human
user, auto-label them with low-level policies, and auto-generate both task and policy prompts. At
inference time, given a task objective, we hierarchically invoke an LLM to first generate a task plan
and then generate actions for each policy in the plan. HeaP enables LLMs to respond effectively to
dynamic web pages as well as generalize across tasks and interfaces from few-shot demonstrations.

Experimentally, we evaluate HeaP on a range of increasingly complex benchmarks: MiniWoB++,
WebArena, a mock airline CRM simulator and live website interactions. We show that HeaP has
significantly better task success rates and requires orders of magnitude less training (or demonstration)
examples relative to prior work (see Table 1 for summary). We will open-source the code, simulator,
and data at https://anonymized_url.

2 RELATED WORK

Language models for web tasks. Early work mapping natural language instructions into actions
(Branavan et al., 2009; Artzi & Zettlemoyer, 2013; Diaz et al., 2013) has rapidly evolved resulting in
new applications and datasets (Zhou et al., 2023; Deng et al., 2023). In language models performing
web tasks, there are broadly three classes of methods: (1) Reinforcement learning (RL) for web

navigation that train RL agents to navigate web interfaces (Humphreys et al., 2022; Li et al., 2020; Liu
et al., 2018; Pasupat et al., 2018; Shi et al., 2017; Branavan et al., 2009; Gur et al., 2021). However,
these are often sample inefficient and exploration on live websites can pose practical safety concerns.
(2) In-context learning with large language models uses a combination of instructions and in-context
examples with large language models (OpenAI, 2023a; Significant Gravitas, 2023; Wang et al., 2023;
Friedman, 2022; LangChain, 2023), with a significant portion being open-source initiatives. However,
they often rely on manually crafted prompts and heuristic strategies to tackle context lengths and task
generalization, making it challenging to build on existing findings. (3) Fine-tuning language models

for web tasks focuses on fine-tuning language models on specific web tasks and has emerged as a
predominant approach in prior works (Gur et al., 2022; Furuta et al., 2023; Yao et al., 2022a; Gur
et al., 2023; Brown et al., 2020; Gur et al., 2018; Xu et al., 2021; Mazumder & Riva, 2020). However,
training such models has limitations such as an inability to generalize from few examples of tasks
and interfaces, necessitating frequent retraining. As our method, HeaP, is compositional in how it
uses the LLM, it is inherently not task-specific and does not have these shortcomings.

Language models for decision making. Instruction following large language models have shown
impressive out-of-the-box decision making capabilities (Huang et al., 2022a; Brown et al., 2020;
Radford et al., 2019; Huang et al., 2022b). This arises from an ability to break down complex tasks
into smaller sub-tasks (Huang et al., 2022a; Zhou et al., 2021), reason about intermeditate steps (Yao
et al., 2022b; Wei et al., 2022), and recover from errors (Miao et al., 2023). As a results, LLMs in
recent times, have found applications in diverse domains like web retrieval (Liu et al., 2023; Zaheer
et al., 2022; Nakano et al., 2021; Schick et al., 2023; Nogueira & Cho, 2016), robotics (Ahn et al.,
2022; Huang et al., 2022b), and text-based games (Yao et al., 2022b; 2020; Shridhar et al., 2020).
Moreover, advances in multi-modal LLMs enable decision making from both language and image
feedback (Shaw et al., 2023; Lee et al., 2023; Burns et al., 2022). However, such decision making
capabilities remain to be explored for general purpose web tasks involving clicks, types, form filling,
etc. Our approach, HeaP, leverages the task decomposition and reasoning capabilities of LLMs to
perform a wide range of web tasks. With only a handful of examples, HeaP can generalize, showing
improved performance over prior works (Liu et al., 2018; Gur et al., 2022; Humphreys et al., 2022;
Furuta et al., 2023) that train specialized models with orders of magnitude more data.

3 PROBLEM FORMULATION

The overall goal is to learn a policy that performs a web task. The web task is represented as a context
�, that can be (a) an explicit instruction such as "Book me a flight from NYC to BOS" (b) a structured
dictionary defining the parameters of the task, or (c) a supporting set of texts such as a conversation
where the instruction is implicit. Given the current context �, the goal is to perform a web task that
achieves the task objective. We formulate this as a Contextual Markov Decision Process (CMDP),
< �,S,A, T , r >, defined below:

• Context, � 2 � is the web task objective expressed explicitly as an instruction or structured
parameters or implicitly as a conversation

2

https://anonymized_url

(a) Inference Time

�1

�2

Low-level Policies

1.FILL_TEXT(From, New York)

2.FILL_TEXT(To, Chicago)

3.CHOOSE_DATE(Depart, 5/15/23)

4.CHOOSE_DATE(Return, 5/22/23)

5.CLICK(Book Flight)

High-level Task

I would like to fly from NYC
to Chicago

I want to leave May 15 and
return the week a=er

Hello, how can I help you?

Sure, can I have your travel
dates please?

Customer

Agent

Input

(b) Train Time

Collect raw demonstra=ons

…s1 s2 s3 s4a1 a2 a3 a4

…

 FILL_TEXT(From,New York)�1

Autolabel demonstra=ons with policies

 CHOOSE_DATE(Depart,5/15/23)�2

…s1 s2 s3 s4a1 a2 a3 a4

s1 s2 s3a1 a2 a3

…

2� 2�1�
�1

FILL_TEXT
(FIELD,TEXT)

�2
CHOOSE_DATE
(FIELD,DATE)

High-level Task Prompt Low-level Policy Prompts

</>
1. FILL_TEXT(From,New York)
2. CHOOSE_DATE(Depart,5/15/23)
3. …
</>
1. CHOOSE_LIST(Guests,2)
2. CHOOSE_DATE(Return,5/22/23)

</>
CLICK 7
</>
TYPE “New
 York”
...

</>
CLICK 7
</>
CLICK 63
...

(a) Inference

(b) Prompt Generation

Figure 1: HeaP Overview: (a) Inference: High-level task planner creates a sequence of steps like filling text
or choosing dates from an input context and starting webpage. Each step is a call to a low-level web policy that
directly interacts with the webpage. (b) Prompt Generation: Dataset of raw state-action demonstrations is
transformed into task and policy base prompts by first auto-labeling with policies and then generating prompts.

• State, s 2 S is the current state of the webpage, i.e., the current DOM d serialized as text. 1

• Action, a 2 A(s) are the set of web actions that can be performed on the current webpage,
i.e. click(id), type(id,value), where id specifies an element in the webpage, and
value is a string. The action space can be quite large since a typical webpage can have
hundreds of elements, and value can be any arbitrary text.

• Transition function, T (s0|s, a) represents the change in the webpage on performing an action.
• Reward, r(s, a) is awarded for reaching a set of subgoals, e.g. cancelling a flight has subgoals

like finding the booking and then canceling it.

The goal is to learn a policy ⇡ : S ⇥ �! A that maximizes performance, i.e., the cumulative reward
J(⇡) = E⇡

hPT
t=1[r(st, at)]

i
. Instead of explicitly defining the reward function and solving the

MDP, we aim to learn this policy ⇡ from demonstrations D = {(�i, si1, ai1, si2, ai2, . . .)}Ni=1.

We leverage LLMs that are highly effective at generalizing from few-shot demonstrations without the
need for fine-tuning. To do so, we translate demonstrations D into in-context examples for an LLM
prompt P . A simple way to do this is to flatten all demonstrations D, i.e., concatenate the conversation
�, with state action trajectories, and merge them together. However, a typical demonstration may
consist of a lengthy chain of actions, with each state in the chain being the entire webpage document
object model (DOM). In terms of total tokens, N demonstrations each of T timesteps, each step
comprising of X tokens of both conversation and webpage would result in N ⇥ T ⇥X tokens. This
can quickly exhaust context space even for simple websites. We tackle this problem in our approach
by hierarchically composing prompts.

4 APPROACH

We present a framework, Hierarchical Policies for Web Actions using LLMs (HeaP), that performs a
range of web tasks from natural language conversations by hierarchically invoking a Large Language
Model (LLM). The framework consists of a hierarchy of two levels: a high-level task planner that in
turns invokes a sequence of low-level web policies.

Consider the example in Fig. 1. Given a conversation with a customer looking to book flights, and a
booking website, the task planner generates a plan, i.e, a sequence of steps to execute. Examples of
steps are either filling a text box, choosing a date, or choosing an option from a drop-down. Each
of these steps can be delegated to a corresponding web policy that interacts with the web page and

1For some tasks, the current webpage may not be sufficient to define state. In such cases, we can extend state
to a history of previous webpages and actions.

3

Algorithm 1 HeaP Inference: Compose policies to solve the task
1: Input: Context �, Current Webpage State s0, LLM, Environment T
2: ⇠ TASKPLANNER(�, s0) . Get task plan, i.e., sequence of calls to web policies
3: for (⇡i, i) 2 ⇠ do
4: WEBPOLICY(⇡i, i) . Execute web policy
5: end for
6: function TASKPLANNER(Context �, State s)
7: Ptask Load base prompt for task planner
8: ⇠ LLM(�, s,Ptask) . Predict plan given context, state
9: return Plan ⇠ = {(⇡1, 1), (⇡2, 2), . . . , (⇡N , N)}

10: end function
11: function WEBPOLICY(Policy ⇡, Instruction)
12: Ppolicy Load base prompt for web policy ⇡
13: s GETCURRENTSTATE(), a None, aprev {} . Initialize state, action, prev actions
14: while a not done do
15: a LLM(, s, aprev,Ppolicy) . Predict action given instruction, state, prev actions
16: aprev aprev [a . Append action to prev actions
17: s T (s, a) . Execute action to transition to next state
18: end while
19: end function

executes web actions like clicking and typing. For instance, the Fill_TEXT(field, text)web
policy searches for the web element corresponding to field, clicking it, typing a text and optionally
choosing from a list of autocomplete options. On the other hand, the CHOOSE_DATE(field,
date) web policy clicks on the web element, navigates a grid of dates and clicks on the correct date.

4.1 INFERENCE TIME: COMPOSE POLICIES TO SOLVE THE TASK

Algorithm 1 describes the inference time procedure. We take as input a context �, which can
be a conversation or an explicit objective, and the current webpage state s0. This is sent to a
task planner that generates a plan. The plan is a sequence of calls to low-level web policies.
Each element of the sequence is represented as a web policy type ⇡ and instruction to the policy
 , i.e., ⇠ = {(⇡1, 1), (⇡2, 2), . . . (⇡N , N)}. For example, CHOOSE_DATE(field, date)
corresponds to calls to policy ⇡ = CHOOSE_DATE with instruction = (field, date).

The web policies in plan ⇠ are invoked one by one. Each policy ⇡i predicts the next action a given its
instruction i, current state s, and previous actions aprev. Once the policy issues the special action
“DONE”, control is handed back to the outer loop and the next policy is executed. When all policies
in the plan ⇠ are done, the task planner is invoked again for the next plan. The process is terminated
when the task planner produces an empty plan.

Both the task planner and the web policies are calls to an LLM with different base prompts.
The base prompt for the task planner shows examples of {input: [overall context �,
current state s0], output: plan ⇠}. The base prompt for web policies shows ex-
amples of {input: [instruction t, current state st, previous actions a1:t�1],
output: next action at}. We additionally include chain-of-thought (CoT) reasoning Wei et al.
(2022) to both task and policy prompts that forces the LLM to generate a series of short sentences
justifying the actions it predicts. We found this to uniformly improve performance (Appendix B).

4.2 GENERATE TASK AND POLICY PROMPTS FROM DEMONSTRATIONS

To generate prompts from demonstrations, we collect demonstrations from human users performing
tasks on the browser. We design a browser plugin to record webpage DOM d and events such as
clicks and types. Each demonstration is expressed as text by converting the DOM tree into a list of
salient web elements like links, buttons, inputs. The parsed demonstration dataset is represented as
D = {(�, s1, a1, . . . , sT , aT)}.

We then autolabel each step t with a low-level policy ⇡t and instruction t to create a labeled dataset
Dlabel = {(�, s1, a1, (⇡1, 1), . . . , sT , aT , (⇡T , T))}. We leverage LLMs to autolabel demonstra-
tions and describe details in Appendix. D. Finally, we convert demonstrations to base prompts for
both high-level planner and low-level policies and list representative prompts in Appendix. G.

4

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Environments. We evaluate across 4 distinct environments, each emphasizing different components:

• MiniWoB++ (Liu et al., 2018): An extension of the OpenAI MiniWoB benchmark covering a
range of web interaction environments like form filling, search, choose dates, etc. We evaluate
across 45 distinct tasks that don’t rely on visual reasoning, and average over 50 seeds per task.

• WebArena (Zhou et al., 2023): A recent community benchmark offering complex web tasks
across multiple domains. Compared to MiniWoB++, WebArena websites are highly realistic with
tasks mirroring those that humans routinely perform on the internet. We evaluate on a set of 125
examples sampled from 12 distinct intents from 2 domains, Gitlab and OpenStreetMaps.

• Airline CRM: A new CRM simulator that we developed, modeled after customer service work-
flows of popular airline websites. Compared to MiniWoB++, Airline CRM offers longer-horizon
tasks tied to a mock database, capturing typical CRM activities more effectively. We evaluate
across 5 distinct tasks each with 20 randomized scenarios. More simulator details in Appendix E.

• Live Websites: Finally, we create an environment to interact with live websites, such as popular
airlines like JetBlue, American, United. The raw browser content is considerably more complex,
being 1̃00x larger than the simulators. We evaluate generalization across UIs by performing the
same search-flight task across 3 very different website UIs and average across 10 runs per UI.

Baselines. We compare against various baselines including prior state-of-the-art (Furuta et al., 2023;
Gur et al., 2022; Humphreys et al., 2022; Liu et al., 2018) and methods Flat Zero-shot, Flat
Few-shot, HeaP Zero-shot, HeaP Few-shot. Flat Zero-shot is a single prompt con-
taining only the instructions and no in-context examples. Flat Few-shot includes both instruc-
tions and in-context examples. Both of these follow a chain-of-thought prompting style similar to
ReAct (Yao et al., 2022b). HeaP Few-shot and HeaP Zero-shot is our hierarchical prompt-
ing approach, HeaP, with and without in-context examples respectively. Detailed prompts for
the different methods can be found in Appendix G. All 4 methods use the instruction fine-tuned
text-davinci-0032 model. We found it to perform better at multi-step reasoning compared to
gpt-3.5-turbo1(Ouyang et al., 2022) while being more cost-effective than gpt-41(OpenAI,
2023b). More details on model hyper-parameters in Appendix C.2.

Metrics. We define 3 metrics: Success Rate (%suc"), Task Progress (%prog"), and Number Actions
(#act#). %suc" is either 0 or 1 based on the task being completed successfully. %prog" is between
0 and 1 indicating progress towards completing the task. #act# is the number of actions.

5.2 RESULTS AND ANALYSIS

Overall Results.
• On the MiniWob++ benchmark, HeaP Few-shot matches or outperforms priors works with

orders of magnitude fewer demonstrations (21 demos for HeaP vs 347k demos in (Furuta et al.,
2023) or 2.4M demos in (Humphreys et al., 2022)). See Table 1.

• On the WebArena benchmark (Gitlab, Maps), HeaP Few-shot achieves much better success
rates than prior works (Zhou et al., 2023; Yao et al., 2022b) that use Flat chain-of-thought
prompting. See Fig. 4.

• On airline CRM and live websites, we see a similar trend where HeaP Few-shot achieves
better success rates and task progress with lower number of actions. See Fig. 5, Fig.7.

• HeaP Few-shot achieves higher success rates by breaking down complex tasks into reusable
low-level policy calls each of which can be covered with their own in-context examples. See
Fig. 2 for an ablation and Figs. 8,9 for qualitative examples.

• Finally, we provide ablations on different model scales and CoT reasoning in Appendix B.

Comparison to prior works. In Table 1, HeaP Few-shot outperforms or matches priors works
with orders of magnitude lower demonstrations on the MiniWob++ benchmark. HeaP has an average
success rate of 0.96 using only 21 in-context examples.

2https://platform.openai.com/docs/models

5

Method Models Training Success
Size Rate

WGE (Liu et al., 2018) - 12K+ 0.77
CC-Net (SL) (Humphreys et al., 2022) ResNet 2.4M 0.33
CC-Net (SL+RL) (Humphreys et al., 2022) ResNet 2.4M 0.96
WebN-T5 (Gur et al., 2022) T5-XL 12K 0.56
WebGUM (HTML) (Furuta et al., 2023) Flan-T5-XL 347K 0.90

Flat / ReAct (Yao et al., 2022b) GPT-text-davinci-003 7 0.72
HeaP (Ours) GPT-text-davinci-003 21 0.96

Table 1: Comparison to prior works with success rates averaged across
45 MiniWoB++ tasks. HeaP achieves a higher success rate with orders of
magnitude lower samples. See Appendix B.3 for breakup over individual tasks.

HeaP outperforms all the
supervised learning base-
lines and matches the
most perfomant baseline
CC-Net (Humphreys et al.,
2022) that trains an RL
agent using 2.4 million
demonstrations. HeaP
outperforms the most re-
cent baseline, WebGUM
(Furuta et al., 2023) which
fine tunes a pre-trained in-
struction model on 347K
demonstrations. Part of the performance gain comes from in-context learning and CoT reasoning
with large-scale models similar to ReAct (Yao et al., 2022b). However, HeaP with its hierarchical
prompting improves success rates significantly over ReAct (aka Flat), by breaking down complex
tasks and covering them efficiently with more in-context examples.

Why does hierarchical prompting help?

Figure 2: HeaP vs Flat with varying in-
context examples on subset of MiniWob++.

The key benefit of hierarchical prompting is to break
down complex tasks into a set of smaller policies, each
of which can be covered by a handful of demonstrations.
In contrast, covering the entire task would require com-
binatorially many more demonstrations. Fig. 2 shows
an ablation of HeaP vs Flat with varying number of
in-context examples. Hierarchy helps at two levels: (1)
For the same number of examples ( 7), improvements
come from decomposing task instructions into granu-
lar policy instructions (2) Hierarchical decomposition
results in smaller individual policies. This allows us
to add more in-context examples (> 7) in each policy
prompt compared to what is possible with a single flat
prompt (see Sec 3) resulting in higher success rates.

HeaP does better on complex tasksComparable performance on simple tasks HeaP
Few-Shot

Flat 
Few-Shot

Figure 3: Task-wise success rates breakdown on MiniWob++ (averaged over 50 seeds per task)

We see quantitative evidence for this in Fig. 3 which shows a task-wise success rates breakdown
on MiniWob++. The gap between HeaP Few-Shot and Flat Few-Shot is much higher on
complex tasks. We characterize complex tasks as those that either require heterogeneous sets of
actions or multiple steps with changing webpages. We dive deeper into the book-flight task in Fig. 8
where HeaP Few-shot significantly outperforms baselines. HeaP task planner breaks down the
task into a set of policy calls like FILL_TEXT, CHOOSE_DATE. The policies, e.g. CHOOSE_DATE
issues a set of low-level actions like CLICK to solve sub-tasks like navigating and picking the right
date from a datepicker. This step is particularly challenging for baselines due to the variations in
navigating the datepicker. However, the CHOOSE_DATE policy in HeaP Few-shot has the ability
to cover these variations with more in-context examples, making it more robust.

6

WGE CC-Net WebN-T5 WebGUM Flat Flat HeaP HeaP
Task (SL+RL) (HTML) Zero-shot Few-shot Zero-shot Few-shot

%suc" %suc" %suc" %suc" %suc" #act# %suc" #act# %suc" #act# %suc" #act#

sim
pl

e

click-option 1.00 0.99 0.37 1.00 0.76 3.68 1.00 2.62 0.80 2.94 1.00 1.94
click-dialog-2 1.00 1.00 0.24 0.34 0.98 1.00 1.00 1.00 0.98 1.00 1.00 1.02
enter-date 0.00 1.00 0.00 1.00 1.00 3.00 1.00 2.00 0.00 4.08 1.00 2.00
login-user 0.99 1.00 0.82 1.00 0.96 3.42 1.00 3.00 1.00 3.06 1.00 3.00
grid-coordinate 1.00 1.00 0.49 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

co
m

pl
ex

copy-paste-2 - 0.63 0.00 0.00 0.54 7.66 0.56 4.00 0.48 3.84 0.96 2.04
find-word - 0.88 0.00 0.00 0.22 2.62 0.26 5.18 0.12 2.92 0.98 2.00
choose-date-medium - 0.99 0.00 0.57 0.32 2.90 0.20 2.76 0.20 9.26 1.00 3.86
click-checkboxes-large 0.68 0.71 0.22 0.98 0.00 8.40 0.20 8.40 0.00 7.00 1.00 6.20
click-checkboxes-transfer 0.64 0.99 0.63 0.99 0.40 4.80 0.40 3.90 0.54 3.20 0.94 2.84
email-inbox 0.43 1.00 0.38 0.99 0.40 7.00 0.70 4.50 0.00 3.00 0.90 5.20
simple-algebra - 0.75 0.00 0.00 0.14 8.80 0.30 6.78 0.04 4.38 0.74 2.00
login-user-popup - 1.00 0.72 0.97 0.46 6.28 0.46 3.52 0.46 5.82 1.00 4.88
search-engine 0.26 1.00 0.34 0.59 0.38 3.64 0.38 3.16 0.26 4.46 1.00 4.30
book-flight 0.00 0.87 0.00 0.48 0.00 16.00 0.10 11.10 0.00 13.52 0.90 9.14

Table 2: Task-wise performance breakup on MiniWoB++ benchmark on a subset of 15 tasks. See Appendix
B.3 for a full breakup over 45 tasks.

HeaP
Few-Shot

Flat 
Few-Shot

FILL_TEXT
flight-to “LEX"

CHOOSE_DATE
datepicker
"10/16/2016"

FILL_TEXT
flight-to “LEX"

CHOOSE_DATE
datepicker
"10/16/2016"

CHOOSE_DATE
datepicker
"10/16/2016"

CLICK Book flight

* TYPE 9 flight-
to “LEX"

* CLICK 13
datepicker

* TYPE 9 flight-to
“LEX"
* CLICK 26
Lexington, KY (LEX)

* CLICK 13 datepicker
* CLICK 31 Prev
* CLICK 128 Prev

* CLICK 13 datepicker
* CLICK 31 Prev
* CLICK 128 Prev
* CLICK 289 10/16/2016

* CLICK 400 Book
flight for $209

Ta
sk

Pl

an
W

eb
 

Po
lic

ie
s

Br
ow

se
r U

I
LL

M
 

R
ea

so
n

I have to first type "LEX"
in the field flight-to

corresponding to id 9

There is a corresponding
dropdown text in "Lexington, KY

(LEX)" in id 26
I have to click on id 26

I have to first click on a
datepicker.

I am currently in December
(12/2016).

I have to go to October (10/2016).
Since 12 > 10, I have to click on

Prev.

 I have already navigated to
the right month (October

2016). I have to click on the id
corresponding to 10/16/2016.

Since I have to book the shortest
flight, I should look at duration. The

shortest duration is 3h 21m
corresponding to id 398. I have to

click on button below
corresponding to id 400.

CLICK Search

The instruction says to
CLICK Search, so I must

issue CLICK action.
Search corresponds to id

422.

* CLICK 422
Search

Figure 7: Outputs from HeaP Few-shot on book-flight task showing hierarchical task planner actions,
low-level web policy actions, and LLM reasoning.

Method GITLAB MAPS
%suc� #act� %suc� #act�

Flat
Zero-shot

0.15± 0.04 8.62± 0.33 0.27± 0.07 7.98± 0.37

Flat
Few-shot

0.18± 0.05 7.08± 0.38 0.23± 0.06 6.08± 0.40

HeaP
Zero-shot

0.15± 0.04 8.35± 0.32 0.26± 0.08 8.29± 0.43

HeaP
Few-shot

0.35± 0.06 6.31± 0.39 0.53± 0.07 5.50± 0.33

Table 6

6 DISCUSSION

In this paper, we present a hierarchical framework HeaP for solving web tasks from few-shot demon-
strations. We evaluate against a range of baselines on a suite of web tasks, including MiniWoB++, a
mock airline CRM and live website interactions. We analyze results and characterize performance
gains from both hierarchical prompting and demonstrations.

Hierarchy breaks down Complex Tasks Our results indicate that hierarchical prompting achieves
higher success rates by breaking down complex tasks into reusable low-level policy calls (see Fig. 8).
This is evident in the performance difference between HeaP Few-shot and Flat Few-shot
(see Table 7, Fig. 5, Fig. 6), with Fig. 2 showing the role of hierarchy in both better task decomposition
and ability to pack in more examples.

Sample Efficient Generalization HeaP matches or outperforms priors works with multiple orders
of magnitude less data, i.e. 15 examples for HeaP vs 12k examples in (14) or 2.2M examples in (18))

HeaP Few-shot:
Navigates webpages and

counts until it reaches 7th link

HeaP Zero-shot:
Mistakenly clicks on the 7th link  

in the current webpage

LLM Reason: 

The instruction is to
find and click the
search link with the
index of 7. Since the
list of web ids and links
provided are in order,
the link with the index
of 7 is the link with the
id of 17.

LLM Reason: 

Looking at the browser content,
I see the following links:
Dolores, Cheree, Joye. The
makes the index of the links as
Dolores (0 + 1 = 1), Cheree (0 +
2 = 2), Joye (0 + 3 = 3). I am told
to find and click the link 7. Since
7 > 3, I have to go to the next
page. To go to the next page, I
have to click on the id
corresponding to > sign, which
corresponds to id 28.
… CLICK 17 Joye CLICK 28 > CLICK 50 > CLICK 52 Riley

Figure 8: HeaP Few-shot vs HeaP Zero-shot on a search-engine task. The instruction asks to find the
7th link, however, it is ambiguous what 7 refers to. HeaP Few-shot with a single in-context demo is able to
ground the task in the UI and reason that the 7th link lies in the 2nd webpage and navigates to the link correctly.

10

Figure 4: Evaluation on WebArena Benchmark (Gitlab, Maps). (Left) Aggregate metrics (Right) Success rate
breakdown across 12 intent buckets. Flat Few-Shot is the baseline reasoning agent from WebArena (Zhou
et al., 2023) that follows ReAct (Yao et al., 2022b) style of CoT prompting.

Task Metric Flat HeaP
Zero-shot Few-shot Zero-shot Few-shot

C
A

N
C

E
L

FL
IG

H
T %suc� 0.10 ± 0.10 1.00 ± 0.00 0.20 ± 0.10 1.00 ± 0.00

%prog� 0.15 ± 0.10 1.00 ± 0.00 0.80 ± 0.00 1.00 ± 0.00
#act� 11.20 ± 0.20 6.00 ± 0.00 11.33 ± 0.85 6.00 ± 0.00

FI
N

D
B

O
O

K
IN

G %suc� 0.00 ± 0.00 0.90 ± 0.05 1.00 ± 0.00 1.00 ± 0.00
%prog� 0.00 ± 0.00 0.90 ± 0.10 1.00 ± 0.00 1.00 ± 0.00
#act� 11.00 ± 0.00 4.10 ± 0.75 3.00 ± 0.00 3.00 ± 0.00

SE
A

R
C

H
FL

IG
H

T %suc� 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
%prog� 0.50 ± 0.04 0.60 ± 0.00 0.60 ± 0.05 1.00 ± 0.00
#act� 11.00 ± 0.00 11.00 ± 0.00 11.00 ± 0.00 5.00 ± 0.00

U
PD

A
T

E
PA

SS
E

N
G

E
R

D
E

TA
IL

S %suc� 0.00 ± 0.00 0.50 ± 0.15 0.30 ± 0.10 0.65 ± 0.15
%prog� 0.00 ± 0.00 0.90 ± 0.00 0.60 ± 0.10 0.90 ± 0.05
#act� 16.00 ± 0.00 11.10 ± 1.25 14.30 ± 0.70 11.85 ± 0.75

B
O

O
K

FL
IG

H
T %suc� 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.65 ± 0.15

%prog� 0.55 ± 0.05 0.40 ± 0.05 0.40 ± 0.05 0.82 ± 0.05
#act� 26.00 ± 0.00 26.00 ± 0.00 25.75 ± 0.25 22.25 ± 0.90

Tasks / Intent Metric Flat HeaP
Zero-shot Few-shot Zero-shot Few-shot

Check out my most recent
%suc� 0.11 ± 0.11 1.00 ± 0.00 0.22 ± 0.15 1.00 ± 0.00
#act� 11.22 ± 0.22 6.00 ± 0.00 11.33 ± 0.90 6.00 ± 0.00

How many commits did {{user}}
make to {{repo}} on {{date}}?

%suc� 0.00 ± 0.00 0.90 ± 0.10 1.00 ± 0.00 1.00 ± 0.00
#act� 11.00 ± 0.00 4.10 ± 0.78 3.00 ± 0.00 3.00 ± 0.00

Open my latest updated issue that
has keyword {{keyword}} in its

title to check if it is closed

%suc� 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
#act� 11.00 ± 0.00 11.00 ± 0.00 11.00 ± 0.00 5.00 ± 0.00

Create a new {{scope}} project
planner and add {{account list}} as

members

%suc� 0.00 ± 0.00 0.53 ± 0.13 0.27 ± 0.12 0.67 ± 0.13
#act� 16.00 ± 0.00 11.13 ± 1.23 14.33 ± 0.69 11.87 ± 0.73

2

Figure 5: (Left) Evaluation on 5 airline CRM tasks averaged over 20 randomized scenarios per task. (Right)
Simulator visualization of a book-flight task consisting of >20 steps.

On the WebArena benchmark, we observe a similar trend in Fig. 4 showing a breakdown of success
rates across 12 different intents on 2 domains. Compared to MiniWob++, this is a significantly
more challenging environment where prior work with Flat CoT prompting (Zhou et al., 2023; Yao
et al., 2022b) has very limited success rates (⇠ 18%). This limitation arises from the challenge
of understanding how to interact appropriately with web pages. HeaP provides a mechanism for
defining dedicated policies that can be taught with targeted in-context examples. For instance, a task
like searching a Gitlab issue involves filtering and sorting by specific criteria. A dedicated policy like
SEARCH_ISSUE() can handle this by filtering by keywords, sorting, and determining issue status.

How well does HeaP generalize across tasks? Table 2 along with Appendix B.3 shows metrics
across 45 tasks from MiniWoB++ (Liu et al., 2018; Shi et al., 2017) averaged over 50 seeds per task.
HeaP Few-shot obtains higher success rates with lower number of actions compared to baselines,
with the performance gap higher for complex tasks, with complex being tasks that either require a
heterogeneous set of actions or multiple steps with changing webpages. HeaP Few-shot achieves
this with only 21 examples from 6 tasks and is able to solve the remaining 39 tasks without ever
having seen them. Table 3 shows the breakup of in-context examples across different environments.

7

Similarly, Fig. 5 shows metrics on 5 longer horizon CRM tasks (each averaged over 20 scenarios)
corresponding to typical airline workflows like find & cancel bookings, update passenger details, find
& book flights. HeaP Few-shot obtains higher success and task progress with lower number of
actions compared to baselines. It achieves this with 10 in-context examples from 2 tasks (Table 3)

Environment Method Examples Tasks covered by examples

MiniWob++

Flat 7 choose-date, book-flight
HeaP 21

choose-date, book-flight
search-engine, click-tab-2
click-checkbox, email-inbox

|– TASK_PLANNER 3
|– FILL_TEXT 5
|– CHOOSE_DATE 4
|– SEARCH_LINK 3
|– SEARCH_TAB 1
|– CLICK_CHECKBOX 2
|– PROCESS_EMAIL 3

WebArena

Flat 3 count_commits, closest_location,
HeaP 15

count_commits,
search_issue, travel_time,
closest_location

|– TASK_PLANNER 3
|– FIND_COMMIT 2
|– SEARCH_ISSUE 3
|– FIND_DIRECTIONS 4
|– SEARCH_NEAREST_PLACE 4

Airline CRM

Flat 5 cancel flight
HeaP 10

cancel flight, book flight
|– TASK_PLANNER 3
|– FILL_TEXT 2
|– CHOOSE_DATE 2
|– SELECT_FLIGHT 3

LiveWeb

Flat 3 jetblue.com
HeaP 5

jetblue.com|– TASK_PLANNER 1
|– FILL_TEXT 2
|– CHOOSE_DATE 2

Table 3: In-context examples for HeaP and Flat.
Each example is a state-action pair at particular timestep.

Figure 6: Token counts for browser content before and
after compression on different environments.

How well does HeaP generalize across com-
plex webpages? Fig. 7 shows evaluation
of HeaP Few-shot and Flat Few-shot
across 10 runs each on 3 different live web-
sites with task specification coming from short
simulated conversations. What makes this task
challenging is that the browser content from
these websites have a lot of extraneous infor-
mation that make it challenging to parse the
correct fields. Fig. 6 shows the extent of com-
pression we perform to fit the browser content
into the LLM’s context space (see Appendix
F for details). For WebArena, we use the ac-
cessibility tree browser content representation
from the environment. For each run, we eval-
uate by comparing model performance against
a reference human demonstration. In Fig. 7,
HeaP Few-shot is able to generalize to mul-
tiple websites even though it has demonstration
from only one (i.e. jetblue.com). In contrast,
Flat Few-shot fails to generalize from it’s
demonstration. Again HeaP Few-shot, by hi-
erarchically decomposing the problem, is able
to use demonstrations more efficiently.

Ablations on reasoning, models, and few-shot
examples. Appendix B shows ablations on CoT
reasoning and model scales. Overall, we find
CoT to boost performance across tasks, espe-
cially multi-step tasks. For models, gpt-4 im-
proves performance across methods, but having
both hierarchical prompting and few-shot ex-
amples continue to help. gpt-3.5-turbo does better in zero-shot setting but under-performs
text-davinci-003 when given few-shot examples. Fig. 9 shows the effect of few-shot examples
qualitatively on a search-engine task. Few-shot examples help ground the task in concrete low-level
actions on the web UI, resulting in HeaP Few-shot navigating to the desired link correctly.

Error Analysis. We cluster common failure modes of HeaP: (1) Content parsing errors: Browser
content may be parsed with incorrect associations. Specifically, since we flatten the DOM structure
and add to the LLM context, this can cause incorrect text associations. (2) Error recovery: LLM
may not know how to recover from incorrect actions. For instance, HeaP clicks on a wrong link,

Tr
ai
n

Te
st

Metric Flat HeaP
Few-shot Few-shot

je
t
b
lu

e
.c

o
m %suc� 0.60± 0.05 1.00± 0.00

%prog� 0.75± 0.02 1.00± 0.00

#act� 8.00± 0.00 7.00± 0.00

u
n
it

e
d
.c

o
m %suc� 0.20± 0.04 0.50± 0.17

%prog� 0.47± 0.03 0.68± 0.11

#act� 8.00± 0.00 6.40± 0.27

a
a
.c

o
m %suc� 0.00± 0.00 0.20± 0.13

%prog� 0.40± 0.04 0.60± 0.08

#act� 6.00± 0.00 6.00± 0.00

Table 2:

Task Metric
Flat HeaP

Zero-shot Few-shot Zero-shot Few-shot

C
a
n
c
e
l

F
li

g
h
t %suc� 0.11 ± 0.11 1.00 ± 0.00 0.22 ± 0.15 1.00 ± 0.00

%prog� 0.19 ± 0.12 1.00 ± 0.00 0.81 ± 0.04 1.00 ± 0.00

#act� 11.22 ± 0.22 6.00 ± 0.00 11.33 ± 0.90 6.00 ± 0.00

F
in

d
B

o
o
k
in

g %suc� 0.00 ± 0.00 0.90 ± 0.10 1.00 ± 0.00 1.00 ± 0.00

%prog� 0.00 ± 0.00 0.90 ± 0.10 1.00 ± 0.00 1.00 ± 0.00

#act� 11.00 ± 0.00 4.10 ± 0.78 3.00 ± 0.00 3.00 ± 0.00

S
e
a
r
c
h

F
li

g
h
t %suc� 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

%prog� 0.50 ± 0.04 0.60 ± 0.00 0.62 ± 0.02 1.00 ± 0.00

#act� 11.00 ± 0.00 11.00 ± 0.00 11.00 ± 0.00 5.00 ± 0.00

U
p
d
a
t
e

P
a
ss

e
n
g
e
r

D
e
ta

il
s %suc� 0.00 ± 0.00 0.53 ± 0.13 0.27 ± 0.12 0.67 ± 0.13

%prog� 0.00 ± 0.00 0.92 ± 0.02 0.58 ± 0.08 0.90 ± 0.05

#act� 16.00 ± 0.00 11.13 ± 1.23 14.33 ± 0.69 11.87 ± 0.73

B
o
o
k

F
li

g
h
t %suc� 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.64 ± 0.15

%prog� 0.55 ± 0.07 0.38 ± 0.05 0.42 ± 0.04 0.82 ± 0.07

#act� 26.00 ± 0.00 26.00 ± 0.00 25.73 ± 0.27 22.27 ± 0.90

Tasks / Intent Metric
Flat HeaP

Zero-shot Few-shot Zero-shot Few-shot

Check out my most recent
%suc� 0.11 ± 0.11 1.00 ± 0.00 0.22 ± 0.15 1.00 ± 0.00

#act� 11.22 ± 0.22 6.00 ± 0.00 11.33 ± 0.90 6.00 ± 0.00

How many commits did

{{user}} make to {{repo}}
on {{date}}?

%suc� 0.00 ± 0.00 0.90 ± 0.10 1.00 ± 0.00 1.00 ± 0.00

#act� 11.00 ± 0.00 4.10 ± 0.78 3.00 ± 0.00 3.00 ± 0.00

Open my latest updated

issue that has keyword
{{keyword}} in its title to

check if it is closed

%suc� 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

#act� 11.00 ± 0.00 11.00 ± 0.00 11.00 ± 0.00 5.00 ± 0.00

Create a new {{scope}}
project planner and add

{{account list}} as
members

%suc� 0.00 ± 0.00 0.53 ± 0.13 0.27 ± 0.12 0.67 ± 0.13

#act� 16.00 ± 0.00 11.13 ± 1.23 14.33 ± 0.69 11.87 ± 0.73

2

Figure 7: (Left) Evaluation on 3 live airline websites averaged over 10 runs per website. (Right) Difference in
train (jetblue) v/s test (united, aa) website UIs.

8

jetblue.com
jetblue.com

FILL_TEXT
flight-to “LEX"

CHOOSE_DATE
datepicker
"10/16/2016"

FILL_TEXT
flight-to “LEX"

CHOOSE_DATE
datepicker
"10/16/2016"

CHOOSE_DATE
datepicker
"10/16/2016"

CLICK Book flight

* TYPE 9 flight-
to “LEX"

* CLICK 13
datepicker

* TYPE 9 flight-to
“LEX"
* CLICK 26
Lexington, KY (LEX)

* CLICK 13 datepicker
* CLICK 31 Prev
* CLICK 128 Prev

* CLICK 13 datepicker
* CLICK 31 Prev
* CLICK 128 Prev
* CLICK 289 10/16/2016

* CLICK 400 Book
flight for $209

Ta
sk

Pl

an
W

eb
 

Po
lic

ie
s

Br
ow

se
r U

I
LL

M
 

R
ea

so
n

I have to first type "LEX"
in the field flight-to

corresponding to id 9

There is a corresponding
dropdown text in "Lexington, KY

(LEX)" in id 26
I have to click on id 26

I have to first click on a
datepicker.

I am currently in December
(12/2016).

I have to go to October (10/2016).
Since 12 > 10, I have to click on

Prev.

 I have already navigated to
the right month (October

2016). I have to click on the id
corresponding to 10/16/2016.

Since I have to book the shortest
flight, I should look at duration. The

shortest duration is 3h 21m
corresponding to id 398. I have to

click on button below
corresponding to id 400.

CLICK Search

The instruction says to
CLICK Search, so I must

issue CLICK action.
Search corresponds to id

422.

* CLICK 422
Search

Figure 8: Outputs from HeaP Few-shot on book-flight task showing hierarchical task planner actions,
low-level web policy actions, and LLM reasoning.

HeaP Few-shot:
Navigates webpages and

counts until it reaches 7th link

HeaP Zero-shot:
Mistakenly clicks on the 7th link  

in the current webpage

LLM Reason: 

The instruction is to
find and click the
search link with the
index of 7. Since the
list of web ids and links
provided are in order,
the link with the index
of 7 is the link with the
id of 17.

LLM Reason: 

Looking at the browser content,
I see the following links:
Dolores, Cheree, Joye. The
makes the index of the links as
Dolores (0 + 1 = 1), Cheree (0 +
2 = 2), Joye (0 + 3 = 3). I am told
to find and click the link 7. Since
7 > 3, I have to go to the next
page. To go to the next page, I
have to click on the id
corresponding to > sign, which
corresponds to id 28.
… CLICK 17 Joye CLICK 28 > CLICK 50 > CLICK 52 Riley

Figure 9: HeaP Few-shot vs HeaP Zero-shot on a search-engine task. The instruction asks to find the
7th link, however, it is ambiguous what 7 refers to. HeaP Few-shot with a single in-context demo is able to
ground the task in the UI and reason that the 7th link lies in the 2nd webpage and navigates to the link correctly.

sending it to a new webpage not seen in the demonstrations. (3) Visual information gaps: Visual
elements, such as specific dropdown menus in maps environment, do not appear in the DOM. Such
tasks require multi-modal models that reason about browser images.

6 DISCUSSION AND LIMITATIONS

In this paper, we present a hierarchical framework HeaP for solving web tasks from few-shot
demonstrations. We evaluate against a range of baselines on a suite of web tasks and characterize
performance gains from both hierarchical prompting and demonstrations. Our key takeaways are:

(1) Hierarchy breaks down complex tasks Our results indicate that hierarchical prompting achieves
higher success rates by breaking down complex tasks into reusable low-level policy calls (see Fig. 9).
This is evident in the performance difference between HeaP Few-shot and Flat Few-shot
(see Figs. 3,4,5,7), with Fig. 2 showing the role of hierarchy in both better task decomposition and
ability to pack in more examples. (2) Sample efficient generalization HeaP matches or outperforms
priors works with multiple orders of magnitude less data (see Table 1). It is able to adapt to unseen
tasks with only a handful of task demonstrations seen in-context (see Table 3). (3) Effects of few-shot
prompting and reasoning Few-shot examples in the prompt are effective at grounding high-level
task instructions as actions on the web UI environment (see Fig. 9). CoT reasoning significantly
boosts performances across all methods, particularly on multi-step tasks (see Appendix B).

While HeaP shows promise, there are still limitations and open challenges: (1) Complex Webpages.
HeaP is currently unable to handle pages with visual only components since those observations
don’t get parsed from the HTML DOM. Leveraging pretrained multi-modal models offer a promising
avenue (Lee et al., 2023; Furuta et al., 2023). Moreover, parsing pages containing long tables,
databases needs advanced compression techniques such as learning dedicated saliency models (Wang
et al., 2022; Sridhar et al., 2023) to determine relevant web elements. (2) Verification and Error
Recovery. HeaP may click on a wrong link sending it to a new webpage and must learn to recover
from such errors. Learning from incorrect actions either via human feedback or self-verification
are interesting directions of future work. Action LLMs also carry potential for misuse given their
execution on open-domain environments, requiring careful verification and security solutions.

9

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Association for Computational Linguistics (TACL),
2013.

Satchuthananthavale RK Branavan, Harr Chen, Luke S Zettlemoyer, and Regina Barzilay. Reinforce-
ment learning for mapping instructions to actions. In Proceedings of the Joint Conference of the

47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP. Association for Computational Linguistics, 2009.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A Plummer.
Interactive mobile app navigation with uncertain or under-specified natural language commands.
arXiv preprint arXiv:2202.02312, 2022.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070,
2023.

Oscar Diaz, Itziar Otaduy, and Gorka Puente. User-driven automation of web form filling. In
International Conference on Web Engineering, pp. 171–185, 2013.

Friedman. Natbot: Drive a browser with gpt-3. https://github.com/nat/natbot, 2022.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint

arXiv:2305.11854, 2023.

Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate the
web. arXiv preprint arXiv:1812.09195, 2018.

Izzeddin Gur, Natasha Jaques, Yingjie Miao, Jongwook Choi, Manoj Tiwari, Honglak Lee, and
Aleksandra Faust. Environment generation for zero-shot compositional reinforcement learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery,
Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding HTML with large language
models. arXiv preprint arXiv:2210.03945, 2022.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. arXiv preprint arXiv:2307.12856, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on

Machine Learning (ICML), 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022b.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning

(ICML), 2022.

10

https://github.com/nat/natbot

LangChain. Langchain. https://python.langchain.com/en/latest/index.html,
2023.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos,
Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot
parsing as pretraining for visual language understanding. In International Conference on Machine

Learning (ICML), 2023.

Yao Li, Jie He, Xiaofei Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on

Learning Representations (ICLR), 2018.

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, Zhengxiao Du, Peng Zhang, Yuxiao Dong,
and Jie Tang. Webglm: Towards an efficient web-enhanced question answering system with human
preferences. arXiv preprint arXiv:2306.07906, 2023.

Sahisnu Mazumder and Oriana Riva. Flin: A flexible natural language interface for web navigation.
arXiv preprint arXiv:2010.12844, 2020.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. arXiv preprint arXiv:2308.00436, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. WebGPT: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Rodrigo Nogueira and Kyunghyun Cho. End-to-end goal-driven web navigation. In Advances in

Neural Information Processing Systems, volume 29, 2016.

OpenAI. ChatGPT plugins. https://openai.com/blog/chatgpt-plugins, 2023a.

OpenAI. GPT-4 technical report, 2023b.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Panupong Pasupat, Tian-Shun Jiang, Evan Zheran Liu, Kelvin Guu, and Percy Liang. Mapping natural
language commands to web elements. In Empirical Methods in Natural Language Processing

(EMNLP), 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. arXiv preprint arXiv:2306.00245, 2023.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning

(ICML), 2017.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for
everyday tasks. In Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2020.

Significant Gravitas. Auto-GPT: An autonomous gpt-4 experiment. https://github.com/
Significant-Gravitas/Auto-GPT, 2023.

11

https://python.langchain.com/en/latest/index.html
https://openai.com/blog/chatgpt-plugins
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT

Abishek Sridhar, Robert Lo, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting assists
large language model on web navigation. arXiv preprint arXiv:2305.14257, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
arXiv preprint arXiv:2308.11432, 2023.

Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and Dongfang Liu. Webformer:
The web-page transformer for structure information extraction. arXiv preprint arXiv:2202.00217,
2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint

arXiv:2201.11903, 2022.

Nancy Xu, Sam Masling, Michael Du, Giovanni Campagna, Larry Heck, James Landay, and Mon-
ica S Lam. Grounding open-domain instructions to automate web support tasks. arXiv preprint

arXiv:2103.16057, 2021.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep calm and explore:
Language models for action generation in text-based games. arXiv preprint arXiv:2010.02903,
2020.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In Advances in Neural Information

Processing Systems (NeurIPS), 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022b.

Manzil Zaheer, Kenneth Marino, Will Grathwohl, John Schultz, Wendy Shang, Sheila Babayan, Arun
Ahuja, Ishita Dasgupta, Christine Kaeser-Chen, and Rob Fergus. Learning to navigate wikipedia
by taking random walks. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Shuyan Zhou, Pengcheng Yin, and Graham Neubig. Hierarchical control of situated agents through
natural language. arXiv preprint arXiv:2109.08214, 2021.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. WebArena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

12

	
	Introduction
	Related Work
	Problem Formulation
	Approach
	Inference time: Compose policies to solve the task
	Generate task and policy prompts from demonstrations

	Experiments
	Experimental Setup-0.1em
	Results and Analysis

	Discussion and Limitations
	Appendix

	 Appendix
	Broader Impacts
	Ablations
	Effect of Chain-of-Thought Reasoning
	Model Scaling
	Task-wise Performance on MiniWoB++

	Experimental Details
	HeaP Planner Policy Code Architecture
	Hyper-parameters

	Autolabeling and Prompt Generation
	Collect and Autolabel demonstrations
	Autogenerate prompts from labeled demonstrations
	Augmenting prompts with chain-of-thought reasoning
	Autolabeling Examples

	Airline CRM Environment
	Live Websites Dataset
	Collecting Human Task Demos
	Parsing Browser Content
	Augmenting with Conversations

	Library of Prompts
	HeaP Few-shot Prompt
	Flat Few-shot Prompt
	Flat Zero-shot Prompt
	HeaP Zero-shot Prompt
	Auto-labeling Prompt
	Reasoning Prompt

