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ABSTRACT

Long-tailed distribution of semantic categories, which has been often ignored in
conventional methods, causes unsatisfactory performance in semantic segmen-
tation on tail categories. In this paper, we focus on the problem of long-tailed
semantic segmentation. Although some long-tailed recognition methods (e.g., re-
sampling/re-weighting) have been proposed in other problems, they are likely to
compromise crucial contextual information in semantic segmentation. Therefore,
these methods are hardly adaptable to the problem of long-tailed semantic seg-
mentation. To address this problem, we propose a novel method, named MEDOE,
by ensembling and grouping contextual information. Specifically, our MEDOE
is a two-sage framework comprising a multi-expert decoder (MED) and a multi-
expert output ensemble (MOE). The MED includes several “experts”, each of
which takes as input the dataset masked according to the specific categories based
on frequency distribution and generates contextual information self-adaptively for
classification. The MOE then ensembles the experts’ outputs with learnable de-
cision weights. As a model-agnostic framework, MEDOE can be flexibly and
efficiently coupled with various popular deep neural networks (e.g., Deeplabv3+,
OCRNet, and PSPNet) to improve the performance in long-tailed semantic seg-
mentation. Experimental results show that the proposed framework outperforms
the current methods on both Cityscapes and ADE20K datasets by up to 2% in
mIoU and 6% in mAcc.

1 INTRODUCTION

Semantic segmentation is defined as the task to predict the semantic category for each pixel in
an image. As a fundamental computer vision task, semantic segmentation is of great importance in
various real-world applications (e.g., clinical analysis and automatic driving). Conventional methods
follow the backbone-context module architecture, where the context module contributes significantly
and can be modified to enhance the extraction and aggregation of surrounding pixels and global
information through large-scale field convolution model or attention mechanisms (Chen et al., 2018;
He et al., 2019; Huang et al., 2019; Yuan et al., 2019; Zhao et al., 2017). Such modifications have
enabled the recent state-of-the-art methods to improve the performance in semantic segmentation on
various benchmark datasets (Caesar et al., 2018; Ding et al., 2019; Zhu et al., 2019).

Table 1: Comparison of results in terms of mIoU (%)
and mAcc (%) for head, body, and tail categories
on Cityscapes (Cordts et al., 2016) and ADE20K
(Zhou et al., 2017) for semantic segmantation using
Deeplabv3+ and ResNet-50c.

Head Body Tail
mIoU mAcc mIoU mAcc mIoU mAcc

Cityscapes 95.06 97.74 83.92 91.49 73.74 81.43
ADE20K 65.50 78.71 44.75 59.75 33.64 42.97

Despite the overall impressive perfor-
mance, the above-mentioned semantic
segmentation methods still face challenges
from the perspective of data distribution.
For example, Table 1 shows the results for
head, body, and tail categories (i.e., cate-
gories ranked from top to bottom by pixel
frequency) on benchmark datasets using
DeepLabv3+ (He et al., 2016), where pos-
itive correlations can be found between re-
sults and data distribution. In other words,
the performance declines for tail categories. This suggests the problem of long-tailed distribution in
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Figure 1: Example of semantic segmentation on Cityscapes, where tail categories (e.g., “pole” and
“wall”) are not well segmented. From left to right: street scene image, ground truth, and segmenta-
tion map using DeepLabv3+.

semantic segmentation: a few head categories dominate the majority of pixels, whereas many tail
categories correspond to significantly less pixels. Specifically, if all categories are processed in the
same pattern while a long-tailed distribution exists, head categories may excessively influence the
training and negatively impact on learning the contextual information about tail ones, leading to un-
satisfactory pixel-level classification. Solving the problem of long-tailed semantic segmentation is
critical to real-world scenarios. As shown in Figure 1, distinguishing poles from street scene images
may prevent potential accidents.

To the best of our knowledge, this paper is the first to explicitly focus on the long-tailed semantic
segmentation, and aims to provide a straightforward solution by extending the existent recognition
methods, which adopt various strategies to solve the problem of long-tailed distribution in image
classification (Buda et al., 2018; Huang et al., 2016; Gupta et al., 2019). These methods can be gen-
erally categorized into re-weighting, re-sampling, and ensembling and grouping. The re-weighting
methods increase the weights of tail categories but decrease those of head ones (Cao et al., 2019b;
Liu et al., 2019), following the assumption that images are nearly independent and identically (i.e.,
i.i.d.) distributed to address the imbalance of training set. This assumption enables the classification
accuracy for each category to depend on the frequency of the corresponding images (Cao et al.,
2019b; Cui et al., 2022). The re-sampling methods conduct under-sampling for the head categories
and over-sampling or even data augmentation for the tail ones (He & Garcia, 2009; Kim et al., 2020;
Chu et al., 2020), usually following a random sampling strategy to ensure fairness. The ensembling
and grouping methods start with training a feature extractor on the whole of an imbalanced dataset as
representation learning, then adjust the margins of classifiers using multi-expert frameworks (Xiang
et al., 2020; Zhang et al., 2021; Zhou et al., 2020) for re-balancing (Kang et al., 2019).

Nevertheless, the afore-mentioned recognition methods for long-tailed image classification can
hardly be adapted for long-tailed semantic segmentation. Specifically, the re-weighting methods
are not able to serve pixel-level classification as a pixel is usually highly correlated to the surround-
ing ones (i.e., not i.i.d.) given the contextual information in the image (Lin et al., 2017). They may
also cause a see-saw phenomenon: the accuracy for head categories is compromised whereas tail
categories are on purpose emphasized. Based on random sampling, the re-sampling methods lead
to a large number of independent pixels that undermine the contextual information of an image and
can be detrimental to semantic segmentation. The ensembling and grouping methods rely heavily
on re-balancing, where classifier re-adjusting is not well adapted for semantic segmentation due to
ignoring the difference among head, body, and tail categories in contextual information.

Motivated by the observation about the ensembling and grouping methods, we propose MEDOE, a
two-stage multi-expert decoder and output ensemble framework for long-tailed semantic segmenta-
tion. At Stage 1, the feature map extracted by a backbone trained on the whole of an imbalanced
dataset, which represents the elementary knowledge, is first passed to a multi-expert decoder (MED).
Each expert (i.e., a pair of context module and classifier head) in the MED works on the dataset
where pixels and their corresponding labels of dominant categories (i.e., body and tail categories) in
each image are masked. Together with other constraints, this expert-specific pixel-masking strategy
enables the experts to reduce the impact of head categories and irrelevant pixels and acquire the con-
textual information of body or tail categories. The following Stage 2 deploys a multi-expert output
ensemble (MOE) to ensemble the outputs of all experts from Stage 1 using decision weights. Instead
of being user-specified, these weights are learned by a decision-maker to avoid the negative impact
of the constraints. The proposed framework is model-agnostic and can be integrated with any pop-
ular semantic segmentation method, such as DeepLabv3+ (Chen et al., 2018), PSPNet (Zhao et al.,
2017), OCRNet (Yuan et al., 2019) and so on.
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To evaluate the MEDOE’s performance in long-tailed semantic segmentation, especially for tail
categories, we conduct theoretical and experimental analyses using the metrics of mean Intersection-
over-Union (mIoU) and mean pixel accuracy (mAcc). They demonstrate the effectiveness of the
proposed framework in boosting mAcc while keeping mIoU from decrease. In addition, we examine
the potentials of MED and MOE despite that the information needed by the expert-specific pixel-
masking strategy is unavailable in the inference phase of long-tailed semantic segmentation.

The key contributions of this paper can be summarized as follows:

• We conduct an empirical study to discover the problem of long-tailed distribution in semantic
segmentation and reveal its significance.

• We advocate mAcc as a more important metric to evaluate the performance for body and tail
categories in long-tailed semantic segmentation.

• We propose a model-agnostic multi-expert decoder and output ensemble framework that outper-
forms the several popular methods up to 2% in mIoU and 6% in mAcc on Cityscapes (Cordts
et al., 2016) and ADE20K (Zhou et al., 2017) datasets.

• We demonstrate the ideal information referred to Oracle improves substantially the results, with
an average gain of 5% in mIoU and 6% in mAcc on Cityscapes and 12% in mIoU and 19% in
mAcc on ADE20K datasets. The results open a very promising direction for future research.

2 RELATED WORK

Semantic Segmentation. FCN (Long et al., 2015) is regarded as the pioneer in the field because
of introducing the full convolution on the whole image and formulating the semantic segmentation
task as per-pixel classification with the basic framework of backbone-context module. Subsequently,
various advanced methods have been introduced based on FCN, they can be roughly divided into
two directions. One is to design novel backbone for more robust feature representation (Wang
et al., 2020a; Yu & Koltun, 2017). HRNet introduced a parallel backbone network to generate high-
resolution representations. The other is to enrich contextual information for each pixel (Fu et al.,
2019; He et al., 2019; Huang et al., 2019; Yuan et al., 2019). For instance, combining high-level fea-
ture and low-level feature to extract global information (Amirul Islam et al., 2017; Badrinarayanan
et al., 2017), introducing large receptive field, such as dilated or atrous convolutions (Chen et al.,
2018; Zhao et al., 2017) to gather multi-scale contextual cues and building the feature pyramids (Kir-
illov et al., 2019). However, these approaches ignore the impact of data distribution, and our work
is the first to explicitly focus on the long-tailed data distribution in semantic segmentation.

Long-tailed visual recognition. Re-balancing/Re-weighting: The most widely-used and straight-
forward solution for long-tailed distribution is re-balancing the contribution of each category in the
training phase. Re-weighting approaches (Cao et al., 2019b; Liu et al., 2019; Lin et al., 2017) adjust
the loss function or boost larger weights on tail categories. Re-balancing approaches (He & Garcia,
2009; Kim et al., 2020; Chu et al., 2020) achieve data balance based on over-sampling the low-
frequency categories, under-sampling the high-frequency categories or even data augmentation, by
generating additional samples to complement tail categories. However, whether sample-wise or loss-
wise re-balancing approaches increase the performance of minority categories while the accuracy
of majority ones is compromised. Ensembling and Grouping: Recent studies show a new trend
of overcoming the long-tailed problem by multi-expert or multi-branch strategy. BBN (Zhou et al.,
2020) adopted two-branches to focus on normal and reversed sampling. LFME (Xiang et al., 2020),
RIDE (Wang et al., 2020b) and ACE (Cai et al., 2021) trained on relatively balanced sub-groups,
which separated training data by category frequency, and ensembled together into a multi-expert ar-
chitecture. Those methods learn diverse classifiers parallel with knowledge distillation, distribution-
aware expert selection or complementary experts. Despite being suffered from re-balance tricks, the
success gained on image recognition has shown the great potential of these methods.

3 METHODS

Following the case described in Table 1, each category in semantic segmentation is tagged head,
body, or tail, according to its rank based on the corresponding pixel frequency. In particular, body
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Figure 2: The overview of the proposed framework. Stage 1, Followed by shared backbone for
representation training, the priori distribution allocate a specific masked dataset for each expert
with the priori knowledge, then a MED module combined with context module and classifier self-
adaptive generate contextual information on own dominating categories and classify pixels with Lce

and Laux. Stage 2, we generate the select label yse by priori distribution and MOE ensemble the
outputs of all experts by a learnable decision-maker with the guidance of yse.

categories refer to those ranked lower than the head but higher than the tail. Figure 2 provides an
overview about the two-stage MEDOE framework. At Stage 1, given a low-level feature map ex-
tracted by a backbone from the input image, a multi-expert decoder (MED) is employed to discover
contextual information, which has considerable importance in semantic segmentation. The MED
includes several experts, each of which is composed of a context module and a classifier head, cor-
responding to head, body, and tail categories (respectively referred to as head expert, body expert,
and tail expert). Following an expert-specific pixel-masking strategy, each expert processes a unique
dataset with the image pixels of certain categories masked, which ensures the expert to focus on its
corresponding categories and predict with higher confidence. Minimizing both Cross-Entropy (CE)
and auxiliary loss functions, the head expert updates the backbone’s parameters on the entire dataset,
whereas the others refine their own context modules, in order to constrain the effect of interfering
pixels and the distribution of masked data. At Stage 2, a multi-expert output ensemble (MOE) is
designed to aggregate the outputs from different experts for predicting the label of each pixel labels.
The weights used by MOE are from a learnable decision-maker, instead of those user-specified, so
as to avoid the negative impact of the afore-mentioned constraints.

3.1 MED: MULTI-EXPERT DECODER

The MED is designed to draw out different contextual information from the feature map extracted
by the backbone, in order to adjust the boundaries of classifiers, based on the observation that a
model’s performance in semantic segmentation tend to be superior for head categories. Specifi-
cally, the parameters of an expert are determined by its corresponding pixel-masking dataset, while
the local optima of head categories can be avoided. The conventional context modules with large-
scale receptive field convolutions, such as ASPP (Chen et al., 2018), PPM (Zhao et al., 2017) and
OCR (Yuan et al., 2019), can self-adaptively generate different contextual information from domi-
nant categories in the expert-specific pixel-masking datasets. This process can be defined as follows,

Given a training set D = {(X,Y );C}, X denotes the data and Y denotes ground truth labels,
with C categories in total. Then we realign C according to the categories frequency in pixel level,
C = {1, 2, . . . , c}, where (F (i) > F (j), if (i > j)), F (i) denotes the frequency of categories
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i. For K experts E = {E1, E2, . . . , EK}, we assign K expert-specific masked datasets for different
experts S = {S1,S2, . . . ,SK}. In this paper, we set K = 3 by default, based on the intuition of head,
body and tail categories, cb and ct denotes the first body and tail categories.

S1 = {1, 2, . . . , c} , S2 = {cb, cb+1, . . . , c} , S3 = {ct, ct+1, , . . . , c} . (1)

In this case, the body and tail categories can be exposed to their dominant experts, and we also
adopted some overlapped categories to expose fewer categories to more experts. For hard pixel seg-
mentation, the overlapping strategy allows the experts who dominate the category to integrate the
outputs of others. Followed the shared backbone fθ, experts have chance to extract contextual infor-
mation focused on “experts” own categories by MED. To reduce overfitting in minority categories,
we only adopt a small number of convolutions in context module Ψ = {ψθ1 , ψθ2 , . . . , ψθK}, and
classifier head H = {hθ1 , hθ2 , . . . , hθK}. Finally, the expert Ei outputs prediction:

zi = hθi(ψθi(fθ(x))) (2)

Diverse data distribution-aware loss function. We require each expert to perform well in their
expert-specific masked dataset. Therefore, instead of constraining the final prediction as prior ap-
proaches, we apply the diverse data distribution-aware loss function on each separately. For each
expert Ei, we use the CE loss function to guide the pixel classification on the dataset Si.

Lce (zi, y; θi) = −
∑Si

i yi log (softmax (zi)) . (3)

However, semantic segmentation trains each image end to end, and some categories were defined as
interfering categories (IC). IC set SIC

i refers to the pixels’ categories not in Si, which means SIC
i

∪Si = C.Since we expect each expert to focus on the dominating categories, inevitably, SIC
i is the

main source of confusion to Ei. We devise a novel suppression compensation measure by defining an
auxiliary loss function to suppress the IC with an L2 regularization term. In addition to avoiding the
over-confidence of confusing categories, for each expert Ei, we minimize KL-divergence between
the expert classification probability p with the reality label distribution q in ground truth y over Si

categories.

Laux (zi, y; θi) =
∑SIC

i
cj

∥∥zcji ∥∥+
∑Si

cj
pcj log

(
pcj

qcj

)
, pi = softmax(zi). (4)

Overall, the diverse data distribution-aware loss function for expert Ei is

L (zi, y; θi) = Lce (zi, y; θi) + αLaux (zi, y; θi) , (5)

where α is the hyper-parameter to balance the loss of Lce and Laux. We empirically set α = 0.2 by
default. Since these dominant categories are complementary to each other, the K experts learned at
Stage 1 are good and distinctive from each other.

Oracle case with known decision information. As mentioned, the MED, loss terms and expert-
specific pixel-masking strategy enable each expert to focus better on their dominant categories. For
the intuitive assumption of the Stage 1, our model will achieve the theoretically optimal result when
each pixel gets the prediction through the expert who dominates its category. We call this situation
the “Oracle” case, and take such a case as the theoretical upper bound of our method. Specifically,
due to the overlap strategy, when the ground truth label y of pixel x satisfied: y ∈ Sn&y /∈ Sn+1,
we choose expert En to output the final classification probability pO of instance x:

pO = softmax(hθn(ψθn(fθ(x)))) (6)

3.2 MOE: MULTI-EXPERT OUTPUT ENSEMBLE

The MOE with a learnable decision-maker is devised upon unavailable information on decisions,
and aims to ensemble the probabilities for classification. The MOE takes as input the outputs from
all experts at Stage 1, and makes a decision on label selection. For the n-th expert, if the ground
truth label y of a pixel x belongs to the expert’s dominant categories (i.e., y ∈ Sn), ideally the
expert should be selected, yse = n. We construct a feature embedding layer and a classifier to learn
this decision-maker. Specifically, we concatenate the classification probabilities p for x through
the K experts from first to k-th expert and project them to a scale by a 2D convolutional layer W1,
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followed by ReLU, and finally, apply a k-th classifier Wk
2 with a Softmax function to get selection

probabilities s between each expert in [0,1]:

s(x) = softmax(Wk
2 (ReLU(W1[p1 ⊕ p2 ⊕ · · · ⊕ pk]))). (7)

In the training phase, the decision-maker is optimized with a CE loss:

Lselect (s(x), yse) = −
∑k

i=1y
i
se log (s(x)i) . (8)

In the inference phase, instead of a simply hard decision strategy, for instance x we adopt the select
probability s as a soft decision weight W for all experts, the final classification probabilities:

pfinal =
1

k

∑k
i=1wipi , [w1 ⊕w2 ⊕ · · · ⊕wk] = W (9)

3.3 METRIC THEORETICAL ANALYSIS

Theoretical analysis between mIoU and mAcc in Semantic Segmentation. Due to the exper-
imental results on Cityscapes, in Sec 4, we were surprised to find that the mAcc made a great
improvement while the mIoU remained stable. This misalignment inspires us to explore the corre-
lation between mIoU and mAcc in long-tailed semantic segmentation because we use mIoU as the
primary evaluation metric in segmentation, but traditional long-tailed recognition adopts mAcc as
a standard metric. We refer TP , FN and FP to true positives, false negatives and false positives.
Acci and IoUi refer to pixel accuracy and Intersection-over-Union of category i can be present as,

Acci = TPi/(TPi + FNi), IoUi = TPi/(TPi + FNi + FPi). (10)

The correlation between FP and FN refers to :
∑c

i=1 FP i =
∑c

i=1 FN i. Meanwhile,
∑c

i=1 FN i

is more affected by the incorrect instances in dominant head categories than the tail categories (See
Appendix for details). Therefore, when evaluating the IoU on tail categories, the FN -related FP
will be suppressed by head categories, and make IoU remain stable. We believe that mIoU is a metric
to focus on the segmentation results of whole images, which will be affected by head categories.
Different from mIoU, the terms in mAcc formula are correlated to their own categories, which is
a more fair metric of the improvement of body and tail categories. Thus, we regarded mAcc as a
relatively important metric in our experiments. Meanwhile, consider a situation where, in pursuit
of accuracy growth, we classify all the pixels nearby the tail category instances into this category,
resulting in a substantial increase about FPi, which is harmful for segmentation. According to
Remark 1, only satisfies the precondition of no significant drop in mIoU, the mAcc increase does
not cause the harm mentioned previously and tends to better performance in tail categories.

4 EXPERIMENTS

We conducted the experiments on two challenging benchmark datasets, by integrating our MEDOE
framework into DeepLabv3+, PSPNet, OCRNet and Segformer to evaluate the effectiveness. Due
to the limited space, benchmarks & implementation details are left in the Appendix.

4.1 COMPARISON RESULTS

Cityscapes. To validate the flexibility and efficiency of our MEDOE framework, we experiment
with our method on Cityscapes. As shown in Table 2 and 4, compared with the current meth-
ods, MEDOE significantly improved mAcc without reducing mIoU and too many extra parameters.
Specifically, for ResNet-50c, ResNet-101c, HRNet-W48 and MIT-B3 (Transformer-based), there
are 3.36%, 3.46%, 1.03% and 2.88% gains in mAcc for DeepLabv3+, PSPNet, OCRNet and Seg-
Former. Especially, our method achieved more impressive results than the ordinary re-weighting
method (Focal Loss). This is because Focal Loss through the simple re-weighting method slightly
improves the accuracy of the tail categories with a significant decrease in the performance of the
head categories, which will cause an unacceptable decline in mIoU.

ADE20K. ADE20K is a challenging benchmark due to its various image scales and plenty of se-
mantic categories in reality, which cause the long-tailed distribution. In this scenario, our method
shows better performance than the current methods. The experimental results are summarized in
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Table 2: Comparison of performance and memory size (Params) on the validation set of Cityscapes
with current methods. †: Oracle results for the ideal scenario.

Methods Backbone mIoU (%) mAcc (%) Params (GBs)
DeepLabv3+ (Chen et al., 2018) ResNet-50c 80.37 86.68 24.16(1.0×)
DeepLabv3+-MEDOE ResNet-50c 80.20(−0.17) 90.04(+3.36) 34.31(1.4×)
DeepLabv3+-MEDOE† ResNet-50c 84.14(+3.77) 92.38(+5.70) 34.31(1.4×)
PSPNet (Zhao et al., 2017) ResNet-50c 78.32 85.52 18.33(1.0×)
PSPNet-MEDOE ResNet-50c 78.02(−0.30) 88.98(+3.46) 20.37(1.1×)
PSPNet-MEDOE† ResNet-50c 84.32(+4.56) 91.90(+5.34) 20.37(1.1×)
DeepLabv3+ ResNet-101c 80.67 87.58 25.02(1.0×)
DeepLabv3+-MEDOE ResNet-101c 80.23(−0.44) 91.12(+3.52) 35.03(1.4×)
DeepLabv3+-MEDOE† ResNet-101c 84.51(+3.84) 92.63(+5.05) 35.03(1.4×)
PSPNet ResNet-101c 79.76 86.56 20.11(1.0×)
PSPNet-MEDOE ResNet-101c 79.79(+0.03) 90.88(+4.32) 23.81(1.1×)
PSPNet-MEDOE† ResNet-101c 84.32(+4.56) 91.90(+5.34) 23.81(1.1×)
OCRNet (Yuan et al., 2019) HRNet-W48 80.70 88.11 23.44(1.0×)
OCRNet-MEDOE HRNet-W48 80.21(−0.49) 89.14(+1.03) 30.27(1.3×)
OCRNet-MEDOE† HRNet-W48 85.29(+4.59) 93.38(+5.27) 30.27(1.3×)
SegFormer (Xie et al., 2021) MIT-B3 81.94 88.28 30.02(1.0×)
SegFormer-MEDOE MIT-B3 81.67(−0.27) 91.16(+2.88) 38.65(1.3×)
SegFormer-MEDOE† MIT-B3 85.67(+3.73) 93.49(+5.21) 38.65(1.3×)

Table 3: Comparison of performance and memory size (Params) on the validation set of ADE20K
with with current methods. †: Oracle results for the ideal scenario.

Methods Backbone mIoU (%) mAcc (%) Params (GBs)
DeepLabv3+ (Chen et al., 2018) ResNet-50c 42.11 54.13 25.82(1.0×)
DeepLabv3+-MEDOE ResNet-50c 43.82(+1.71) 60.02(+5.89) 35.49(1.4×)
DeepLabv3+-MEDOE† ResNet-50c 53.34(+11.23) 73.97(+19.84) 35.49(1.4×)
PSPNet (Zhao et al., 2017) ResNet-50c 40.46 51.42 19.81(1.0×)
PSPNet-MEDOE ResNet-50c 41.76(+1.30) 54.27(+2.85) 23.49(1.1×)
PSPNet-MEDOE† ResNet-50c 52.00(+11.54) 71.61(+20.19) 23.49(1.1×)
DeepLabv3+ ResNet-101c 44.60 56.28 26.31(1.0×)
DeepLabv3+-MEDOE ResNet-101c 46.13(+1.42) 61.12(+4.84) 36.27(1.4×)
DeepLabv3+-MEDOE† ResNet-101c 55.18(+10.58) 76.82(+20.54) 36.27(1.4×)
PSPNet ResNet-101c 43.33 54.51 22.94(1.0×)
PSPNet-MEDOE ResNet-101c 44.31(+0.98) 59.85(+5.19) 25.69(1.1×)
PSPNet-MEDOE† ResNet-101c 53.47(+10.14) 72.86(+18.45) 25.69(1.1×)
OCRNet (Yuan et al., 2019) HRNet-W48 42.53 54.91 33.03(1.0×)
OCRNet-MEDOE HRNet-W48 43.31(+0.78) 58.96(+4.05) 37.67(1.1×)
OCRNet-MEDOE† HRNet-W48 51.99(+9.46) 74.68(+19.77) 37.67(1.1×)
SegFormer (Xie et al., 2021) MIT-B3 47.13 60.84 30.02(1.0×)
SegFormer-MEDOE MIT-B3 48.22(+1.09) 64.06(+3.22) 33.96(1.3×)
SegFormer-MEDOE† MIT-B3 56.49(+9.36) 79.41(+18.57) 33.96(1.3×)

Table 3 and 4, our method achieved 1.71%, 1.30%, 0.78% and 1.09% gains in mIoU and 5.89%,
2.85%, 4.05% and 3.22% gains in mAcc for DeepLabv3+, PSPNet, OCRNet and SegFormer. Fur-
thermore, we illustrated the qualitative results in Figure 4 on the validation set of ADE20K. We can
see our method achieved better segmentation results than baseline on these tail categories in different
scenarios, such as pillow and lamp, which shows the consistent effectiveness of our method.

Results in diverse category data subsets. As illustrated in Table 4, our method achieved impressive
mAcc gains for body and tail data subsets on Cityscapes and ADE20K. Specifically, we achieved
overall improvement on ADE20K. For further, Category-wise performance improved comparisons
between MEDOE and baseline is shown in Figure 3. MEDOE achieved both IoU and Acc im-
provements on Cityscapes and ADE20K benchmark datasets in almost all categories. Especially,
our method has significant advantages for body and tail categories data subsets, which verifies our
motivation that MED can extract effective contextual information to help pixel classify.

Oracle results. We investigated the ideal scenario to provide the exact experts’ selecting decisions in
the inference phase substitute the MOE, such that W = W∗. Reported results in this ideal scenario,
referred to as Oracle in Table 2 and 5, shown impressive improvements in mIoU and mAcc over both
current methods, with a consistent gain across all datasets. Specifically, our method gains 3%-4%
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(a) Performance improvement on Cityscapes
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Figure 3: Comparisons of each category performance on Cityscapes and ADE20K with MEDOE and
baseline. Our MEDOE gains both IoU and Acc improvements in minority categories on Cityscapes
and ADE20K, as well as avoid decreasing the majority performance.

(a) Image (b) Groud Truth (c) DeepLabv3+ (d) Ours

Figure 4: Qualitative Visualization on the validation set of ADE20K with ResNet-50c as backbone.
All the models here are trained under the same setting.

in mIoU and 5%-7% in mAcc on Cityscapes and particularly the improvements raise to 11%-13%
in mIoU and 19%-22% in mAcc on ADE20K. We believe these impressive improvements convey
several important messages. 1) It proves that our components in Stage 1 have trained a series of
robust and effective experts which focused on their dominant categories. 2) Compared to the results
of our method, they indicate that there exists a strategy building on top of MED that can largely
outperform state-of-the-art methods. This suggests that MED has significant prospects, more efforts
could be directed towards to constrain the expert decision and opening a door to promising avenues.

4.2 ABLATION STUDY

Ablation of MED. To illustrate that our MED self-adaptively extracts different contextual informa-
tion guided by diverse masked datasets, indeed, rather than attributing entirely to the modifying clas-
sifiers’ boundaries operation or simply increasing extra parameters (i.e.model-ensemble method).
We designed Multi-Classifier network (MC) with a shared backbone and context module and model-
ensemble method for a comparison experiment in the whole datasets on Cityscapes, the results are
shown in Table 5. Just modifying the classifier boundaries is not effective in the tail categories, and
even reduces the overall performance. Since the task is really difficult, the model-ensemble method
simply enhancing extra parameters (multi-backbones) can not make overall improvements. Without
our training strategies, it improves head performance but ignores the tail categories. Thus MED
helps the network better classify pixels by different contextual information.

Ablation of MOE. As we mentioned, we introduced various user-specified output ensemble meth-
ods. For each pixel instance x, (2) Softmax method get the output zi of expert Ei from 1 to k-th
and pixel category ci == j if (softmax(zi)) > β, β is set as 0.3, (3) Argmax method determine

8
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Table 4: Comparison of performance (%) on each data subsets from Cityscapes and ADE20K with
DeepLabv3+ and ResNet-50c. †: Baseline with Focal Loss, ‡: Oracle results for the ideal scenario.

Methods All Head Body Tail
mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

Cityscapes 80.37 86.68 95.26 97.74 83.42 91.49 73.01 81.43
Cityscapes† 76.23 85.00 91.18 90.97 80.55 90.33 68.79 84.56
Cityscapes-MEDOE 80.20 90.04 95.03 96.52 83.39 94.25 73.65 86.15
Cityscapes-MEDOE‡ 84.14 92.38 96.43 97.72 87.12 96.70 78.59 88.88
ADE20K 42.11 54.13 65.50 78.71 44.75 59.75 33.64 42.97
ADE20K† 37.61 55.29 60.01 74.89 41.96 61.28 30.28 46.95
ADE20K-MEDOE 43.82 60.02 66.99 77.90 46.32 63.52 35.38 52.33
ADE20K-MEDOE‡ 53.34 73.97 67.38 75.49 55.65 74.84 46.75 74.09

the outputs according to the confidence of the maximum softmax on each expert, (4) Group aver-
age method ensemble zi of Ei by grouping average weight. Comparisons between MOE with the
above-mentioned methods in Table 6. Our MOE achieved improvements overall.

Table 5: Ablation of MC network , model-ensemble method and MED (ours) with DeepLabv3+
and ResNet-50c on Cityscapes to verify the effectiveness of multi-context decoder module. Results
are reported in mIoU (%), mAcc (%) and Params (GBs)

Methods All Many Medium Few ParamsmIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc
Baseline 42.11 54.13 65.50 78.71 44.75 59.75 33.64 42.97 25.82(1.0×)
+MC 40.15 53.79 62.01 75.51 42.53 56.20 32.15 45.18 28.39(1.1×)
+Ensemble 42.50 54.46 65.59 78.62 45.00 60.31 33.87 42.95 77.98(3.0×)
+MEDOE 43.82 60.02 66.99 77.90 46.32 63.52 35.38 52.33 35.49(1.4×)

0.0 0.2 0.4 0.6 0.8 1.0

42.5

45.0
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50.0
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60.0
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Figure 5: Ablation w/ or w/o Auxiliary Loss
and the hyper-parameter α on ADE20K with
DeepLabv3+ and ResNet-50c

Aggregation mIoU mAcc
MOE 80.20 90.04
Softmax(2) 72.31 82.32
Argmax(3) 70.45 83.14
Group Avg(4) 78.87 86.49

Table 6: Ablation study on various outputs
ensemble methods with DeepLabv3+ and
ResNet-50c on Cityscapes.

Effectiveness of the auxiliary loss function. An ablation with or without an auxiliary loss function
and the hyper-parameter α on ADE20K was conducted to prove the motivation that we introduce
auxiliary loss function. The results in Figure 5 shown that in the case of using CE loss function
alone (Ours with α=0.0), our method can achieve the improvement compared to baseline, but the
improvement is limited. Meanwhile, when the hyper-parameter α=0.2 we gain the best performance.
Training without the auxiliary loss function constraint is more likely to be confused by the unavoid-
able IP and decrease the performance overall. The introduction of auxiliary loss function obtains a
more consistent and stable improvement.

5 CONCLUSION

In this paper, we investigate and identify the long-tailed distribution in semantic segmentation, and
motivated by the fact that existing methods ignore this issue and the performance declines for tail
categories. We proposed a MEDOE framework to overcome this challenging problem. The MED,
MOE module and a series of strategies (e.g., auxiliary loss function and priori distribution) are
introduced to help each expert extract different contextual information and promote the performance
in dominant categories. Our method achieved great improvements across different current methods
up to 2% gains in mIoU and 6% gains in mAcc on Cityscapes and ADE20K. Furthermore, training
a robust output ensemble decision-maker appears to be a very promising way of constraining the
inference, as demonstrated with the significantly improved results obtained by the oracle.
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A APPENDIX

A.1 BENCHMARKS & IMPLEMENTATION DETAILS

Benchmarks: Cityscapes (Cordts et al., 2016) is a dataset that focuses on semantic understanding
of urban street scenes and contains 19 semantic classes. It contains 5K annotated images with pixel-
level fine annotations and 20K coarsely annotated images. The finely annotated 5K images are split
into sets with numbers 2975, 500 and 1525 for training, validation and testing.

ADE20K (Zhou et al., 2017) is a challenging scene parsing dataset. It contains 150 categories and
diverse scenes with 1038 image-level labels. The training and validation sets consist of 20K and 2K
images, respectively.

Implementation Details. We initialize backbones with the weights pre-trained on ImageNet. For
DeepLabv3+, we using CNN-based ResNet-50c and ResNet-101c as backbones, which switch the
first 7×7 convolution layer to three 3×3 convolutions. HRNet-W48 (Wang et al., 2020a) is adopted
for OCRNet. MIT-B3 as a Transformer-based backbone is adopted for SegFormer (Xie et al., 2021),
both of which are popular in semantic segmentation. For CNN-based network, we use SDG and

poly learning rate schedule (Zhao et al., 2017) with factor
(
1− iter

totaliter

)0.9

. The initial learning

rate is set as 0.01 and weight decay is 0.0005. We adopt AdamW with 6 × 10−5 learning rate and
0.01 weight decay. We set the image crop size to 512×1024, batch size as 8 and training iterations
as 80K on Cityscapes by default. For ADE20K, the crop size of images is set as 512×512, the batch
size is set as 16 and training iterations are set as 80K if not stated otherwise. In the training phase, we
augment data samples with the standard random scale in the range of [0.5, 2.0], random horizontal
flipping, random cropping, as well as random color jittering. For inference, the input image size
of ADE20K is the same as the size during training, but for Cityscapes the input image is scaled to
1024×2048, no tricks(e.g.multi-scale with flipping) will be adopted during testing. All experiments
are implemented on the Nvidia A6000.

A.2 ADDITIONAL PROOF OF THEORETICAL ANALYSIS BETWEEN MIOU AND MACC

Before we proceed with the additional proof, we introduce some formulas for mAcc and mIoU.

mAcc =
1

C

C∑
i=1

Acci =
1

C

C∑
i=1

TPi

TPi + FNi
,

mIoU =
1

C

C∑
i=1

IoU i =
1

C

C∑
i=1

TPi

TPi + FNi + FPi
.

(11)

C∑
i=1

FP i =

C∑
i=1

FN i (12)

numi = TP i + FP i (13)

A.2.1 ADDITIONAL PROOF OF MACC IS THE BETTER TAIL-SENSITIVE METRIC

According to the prior information from experimental statistics, the proportions of pixel instances
of the head, body, and tail categories in the semantic segmentation are: 80%, 15% and 5%. We
analyzed the items in the mIoU and mAcc formulas and found that the difference between them was
the FP i. According to Eq. 12 We derive

C∑
i=1

FP i =

C∑
i=1

FN i =

Ch∑
FN i +

Cb∑
FN i +

Ct∑
FN i

≈
Ch∑

(1−Acci)× numi +

Cb∑
(1−Acci)× numi +

Ct∑
(1−Acci)× numi

= (1−mAcch)

Ch∑
numi + (1−mAccb)

Cb∑
numi + (1−mAcct)

Ct∑
numi

= (1−mAcch)× 0.8NUM + (1−mAccb)× 0.15NUM + (1−mAcct)× 0.05NUM

(14)
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where, h, b and t refer to head, body, tail categoris and NUM refers to the pixel instance number of
overall datasets.

From Eq. 14, we obtain the conclusion that due to the large instance base of the head categories, FNi

and FN-related FPi items are dominated by head categories. Therefore, the IoUi of each category i
and mIoU will be dominated by head categories because of the item FPi.

Instead of mIoU, for each category i of mAcc, the items of Acci are only related to its own category
i, and mAcc will not be dominated by the head categories. Thus mAcc is a fair and tail-sensitive
metric.

A.2.2 ADDITIONAL PROOF OF REMARK 1

To better understand the correlation between mean IoU and mean Acc in long-tailed semantic seg-
mentation and Remark 1. According to the equation Eq. 10 and the precondition from the experi-
ments. The category Acc and IoU in our method become :

ˆIoUi ≈ IoUi,

ˆAcci = (1 + p)ACCi.
(15)

And it is clear from Eq.13, We obtain the result:

ˆAcci = (1 + p)ACCi

⇒ ˆAcci =
ˆTPi

ˆTPi + ˆFNi

=
ˆTPi

TPi + FNi
= (1 + p)

TPi

TPi + FNi
= (1 + p)ACCi

⇒ ˆTPi = (1 + p)TPi

(16)

ˆIoUi ≈ IoUi ⇒ ˆIoUi =
ˆTPi

ˆTPi + ˆFNi + ˆFP i

=
ˆTPi

TPi + FNi + ˆFP i

≈ TPi

TPi + FNi + FPi
= IoUi

⇒ (1 + p)TP i × (TPi + FNi + FPi) = TP i × (TPi + FNi + ˆFP i)

⇒ (1 + p)TP i × (numi + FPi) = TP i × (numi + ˆFP i)

⇒ ∆FPi = p× (numi + FP i)
(17)

Acci =
TPi

TPi + FNi
& IoUi =

TPi

TPi + FNi + FPi
⇒ FP i =

Acci
IoUi

× numi − numi (18)

where ∆FPi is the increased false positive from baseline to our method.

To guarantee the classifier effective and segment more tail categories, it should satisfied:

∆FPi = p× (numi + FP i) ≪ numi (19)

We observe that the results in Cityscapes benchmark has achieved a high value, e.g.IoU i = 0.8 and
Acci = 0.85. According to this precondition and Eq. 18, FP i = 0.0625 ×n u mi and p are both small
value, which means ∆FPi is a minimum value and satisfied Eq. 19. This is just the reason that Acc
improved while IoU not decrease is significant for tail categories segmentation.

A.3 ADDITIONAL PROOF OF THE CORRELATION BETWEEN PERFORMANCE AND DATA
DISTRIBUTION

As shown of Figure 6, the baseline method on Cityscapes and ADE20K perform not well on certain
categories, and we can clearly see that these categories mainly fall in the tail and body data subsets.
This further demonstrates that the long-tailed data distribution limits the overall performance of the
baseline method by constraining the accuracy of certain categories.
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(b) Data distribution and performance with baseline
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Figure 6: The existence of long-tailed distribution in semantic segmentation, we set baseline as
DeepLabv3+ and ResNet-50c by default. (a) and (b) shown the data distributions on Cityscapes
and ADE20K are long-tailed, which cause the better performance on the majority categories yet
suppress the minority categories. It should be noted that we reordered the categories in Cityscapes
according to Pixel Frequency.

A.4 ABLATION WITH LONG-TAILED METHODS

Table 7: Pearson coefficients between categories frequency and accuracy, the lower value means
much weaker correlation.

Dataset ρX,Y (%)
CIFAR-100 75.9

ADE20K-pixel 36.8
Cityscapes-pixel 58.9

In this section, we first calculate the Pearson correlation coefficient to show the correlation be-
tween category accuracy and category frequency (image category frequency on CIFAR-100) in Ta-
ble 7. The weak correlation between category accuracy and pixel level frequency on Cityscapes and
ADE20K causes challenge to re-weighting in semantic segmentation, which can be demonstrated in
Table 8. We compared our work with traditional long-tailed classification methods to further explore
the contribution of our work. We adopt the re-weighting method to modify the loss function and put
larger weights on tail categories. Despite improving mAcc, the re-weighting method caused a lot
of decrease in mIoU. For re-sampling, the contextual information is corrupted resulting in segmen-
tation metrics at a very low level. In general, the current Pixel level re-balance approaches can not
work well with the long tail distribution on semantic segmentation.

Table 8: Ablation with our method and pixel level re-weighting and re-sampling, all networks adopt
ResNet-50c backbone.

Benchmarks Methods mIoU mAcc

Cityscapes

Baseline 80.37 86.68
Reweighting-FocalLoss (Lin et al., 2017) 76.23(−4.14) 85.00(−1.68)
Reweighting-LDAMLoss (Cao et al., 2019a) 77.52(−2.85) 85.15(−1.43)
Reweighting-SeesawLoss (Wang et al., 2021) 67.58(−12.79) 74.35(−12.33)
Re-sampling 66.79(−13.58) 75.21(−11.47)
Baseline+MED 80.20(−0.17) 90.04(+3.36)

ADE20K

Baseline 42.11 54.13
Reweighting-FocalLoss (Lin et al., 2017) 37.61(−4.50) 55.29(+1.16)
Reweighting-LDAMLoss (Cao et al., 2019a) 40.39(−1.72) 48.78(−5.35)
Reweighting-SeasawLoss (Wang et al., 2021) 33.87(−8.24) 40.19(−13.94)
Resampling - -
Baseline+MED 43.82(+1.71) 60.02(+5.89)
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(a) Image (b) Groud Truth (c) DeepLabv3+ (d) Ours

Figure 7: Qualitative Visualization results on the validation set of Cityscapes with ResNet-50c as
backbone. All the models here are trained under the same setting.

A.5 ANALYSIS OF THE PERFORMANCE GAP BETWEEN CITYSCAPES AND ADE20K

According to the experiments’ results of Sec4, our method has achieved impressive performance in
both mIoU and mAcc on ADE20K dataset. However, there seems to be a gap between the perfor-
mance on Cityscapes and ADE20K. We analyze the causes: 1) Compared to ADE20K, there are
fewer categories in Cityscapes and a more pronounced long-tail distribution (higher proportion of
head category instances), so it is easier to fall into local optimum when training body and tail experts,
resulting in the overfitting of these categories. Finally, it caused that the increase of FNht and FPht

on the overall datasets. FNij and FPij denote to the pixel instance which the ground truth belongs to
category i but the prediction is j. 2) The performance of baseline methods on Cityscapes is at a high
level. According to the above two reasons, our method improves the overall TP on Cityscapes, but
it will increase FNht of the head categories and FPht of the tail categories, respectively, resulting in
mIoU being at a relatively stable value.

From the macro level of image visualization, as shown in Figure 7, our method segments the sur-
rounding part of the head categories into tail categories while segmenting the tail categories. We
believe that such head accuracy decreases are acceptable and meaningful in real-world scenarios.

A.6 QUANTITATIVE VISUALIZATION COMPARISONS ON CITYSCAPES AND ADE20K

In this section, we demonstrate the better performance of MEDOE framework with quantitative vi-
sualization on Cityscapes and ADE20K shown in Figure 7 and 8. We adopt ResNet-50c as backbone
and all models trained under the same setting. In most semantic scenarios, our MEDOE method can
achieve better performance in segmenting tail categories.

A.7 ADDITIONAL EXPLANATIONS

A.7.1 CONTEXTUAL MODULE

Contextual module, as an important module in semantic segmentation, refers to the extraction
and aggregation of contextual information for pixels through a series of operations (i.e., feature
pyramids, atrous convolution, large-scale convolutional, attention mechanisms, and global pooling).
Existing contextual modules include: ASPP (Chen et al., 2018), PSP (Zhao et al., 2017), or non-
local (Wang et al., 2017).

Contextual information means the relationship between this pixel and the surrounding pixels and
global information is regarded as contextual information. The reasons why segmentation needs
contextual module. When solving semantic segmentation tasks if each pixel considers only its deep
features, such as texture and color, it will be difficult to classify into the correct category (i.e.the
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(a) Image (b) Groud Truth (c) DeepLabv3+ (d) Ours

Figure 8: Qualitative Visualization on the validation set of ADE20K with ResNet-50c as backbone.
All the models here are trained under the same setting.

deep features of leaves and green grass will be very similar). At the same time, as stated in the work,
semantic segmentation believes that each pixel is not I.I.D., but is related to the surrounding pixels.
The correlation information can better help the segmentation task (i.e.the leaves are surrounded by
branches, and the grass is likely to be surrounded by roads).

A.8 ABLATION OF DIFFERENT EXPERTS

To measure the goodness and distinctiveness, We adopt the mAcc and per-category bias in Table 9 as
the metrics to describe each expert. It seems to demonstrate that the K experts learned at Stage 1 are
good and distinctive from each other, rather than simply boosting confidence through multi-expert
training.

Furthermore, according to the well-known bias-variance decomposition (Wang et al., 2020b), per-
category bias denotes:

Error(x;h) = E
[
(h(x;D)− Y )2

]
= Bias(x;h) + Variance(x;h) + irreducible error (x), (20)
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Table 9: Ablation of each expert with the mean accuracy and per-category bias on Cityscapes with
Deeplabv3+ and ResNet-50c. The higher mean accuracy and lower bias are better.

Many Medium Few
mAcc bias mAcc bias mAcc bias

Overall 0.96 0.10 0.88 0.22 0.81 0.30
Expert 1 0.97 0.09 0.86 0.24 0.75 0.36
Expert 2 - - 0.95 0.09 0.86 0.19
Expert 3 - - - - 0.91 0.13

A.9 LONG-TAILED SEMANTIC SEGMENTATION

To the best of our knowledge, there is a contemporaneous (Cui et al., 2022) work with our paper.
Although, we almost simultaneously focus on the long-tailed distribution as an important reason for
constraining semantic segmentation performance, there are some differences between our work and
Region rebalance (Cui et al., 2022):

Perspective difference: Region rebalance was concerned about solving the problem of category re-
balance, while our work was more focused on improving the recognition of tail and body categories
and placed special emphasis on the significance of segmenting the body, and tail categories.

Methods difference: Region rebalance relieved the categories imbalance with an auxiliary region
classification branch by adjusting segmentation boundaries however motivated by the ensembling
and grouping methods, we proposed MEDOE framework to encourage different experts to learn
more balanced distribution in the feature space, and finally adjust classification boundaries. Com-
pared to Region Rebalance, the motivation of our work was completely different and provided dif-
ferent research directions.

Interpretations of mIoU and mAcc difference: Region rebalance only explain the cause of mIoU
with previous long-tailed methods. Different from Region rebalance, we take a further step and
explore the significance of mAcc in segmenting the body and tail categories.

Datasets difference: RR used COCO164 (164 categories) and ADE20K (150 categories) datasets,
both of which are massive categories datasets. We used Cityscapes (19 categories) and ADE20K
to verify both a small number of categories and massive categories scenarios. The decline in mIoU
may be partly due to the impact of the dataset, we also demonstrated the gap between Cityscapes
and ADE20K in Appendix A.5. Our method demonstrated excellent results on a large number of
categories of datasets such as ADE20K.

A.10 SIGNIFICANCE OF BODY AND TAIL CATEGORIES IN REAL-WORLD SCENARIOS

We believe in a large number of real-world scenarios, it is more important to be able to identify body
and tail categories than accurately segment the edge pixels of head categories. (i.e.In the automatic
driving scenario, we need to segment some tail categories objects that appear on the driving path,
such as “poles” or “fire hydrants”, to avoid traffic accidents. Segmenting small lesions on medical
images can help doctors detect underlying diseases). Generally, the benefits of this segmentation are
far greater than the decrease of certain head categories edges.

A.11 COMPARISON WITH TRADITIONAL MULTI-EXPERTS METHODS

We compared the differences from existing multi-expert methods, there is three main difference:

Model architecture: The pipeline of traditional multi-expert methods contain a backbone and
multi-classifiers to adjust classifier boundaries and finally ensemble the outputs. 1)We pioneered the
combination of contextual modules and classifiers to become experts and learn more balanced
distribution in the feature space, and finally adjust classification boundaries. 2)Then we provided
each expert with soft weight based on the final contextual information and classification results
through a learning mechanism to ensemble the outputs.

Training strategies: Traditional methods often focus on constraining dominating categories and
ignoring the confusing categories. Differing from them, we proposed the expert-specific pixel-
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masking strategy and diverse data distribution-aware loss function to ensure our model architecture
focuses on the confusing categories and has better performance.

Training step: Advanced multi-expert methods in long-tailed classification, such as BBN (Zhou
et al., 2020), RIDE (Wang et al., 2020b), LFME (Xiang et al., 2020). They all take multiple steps
to train, mainly including 1. training backbone, 2. training classifiers, and 3. Distillation learning
(optional). However, our method can update the backbone parameters while training the head expert,
so it is one-step training.
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