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Abstract

With the growing deployment of large language
models (LLMs) across diverse domains, concerns
regarding their safety have grown substantially.
LLM unlearning has emerged as a pivotal ap-
proach to removing harmful or unlawful con-
tent while maintaining utility. Despite increas-
ing interest, the challenges of continual unlearn-
ing, which is common in real-world scenarios,
remain underexplored. Successive unlearning
tasks often lead to intensified utility degradation.
To effectively unlearn targeted knowledge while
preserving LLM utility, it is essential to mini-
mize changes in model parameters by selectively
updating those linked to the target knowledge,
thereby ensuring other knowledge remains unaf-
fected. Building on the task vector framework,
we propose a new method named ALKN(Adaptive
Localization of Knowledge Negation), which uses
dynamic masking to sparsify training gradients
and adaptively adjusts unlearning intensity based
on inter-task relationships. Comprehensive ex-
periments across three well-established LLM un-
learning datasets demonstrate that our approach
consistently outperforms baseline methods in both
unlearning effectiveness and utility retention un-
der continual unlearning settings.1
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Figure 1. An illustrative example of the LLM continual unlearning
scenario. An LLM is integrated into a technical blog website,
where some users occasionally close their accounts and request
the deletion of their blog contents.

1. Introduction
Large Language Models (LLMs) exhibit exceptional capa-
bilities in processing general knowledge, positioning them-
selves as a promising framework on the path towards artifi-
cial general intelligence (Rozière et al., 2023; Wang et al.,
2024b; Brown et al., 2020; Zhao et al., 2023). However,
reliance on extensive web data introduces risks of memo-
rizing sensitive information, including private data, copy-
righted material, and harmful content, hindering lawful de-
ployments of LLMs (Ji et al., 2024; Wang et al., 2025a).
These factors continuously spur growing interest in research
on LLM unlearning, which aims to remove specified sensi-
tive information from LLMs while retaining their general
knowledge and capabilities, i.e., preserving model utility.
It focuses on ensuring that the model cannot reproduce or
accurately respond to target data associated with harmful
outcomes or legal issues (Liu et al., 2024a).

Although LLM unlearning has received much interest, an
important problem of LLM continual unlearning remains
underexplored. In real-world applications, unlearning re-
quests from users or regulators often arrive continuously,
requiring models to unlearn multiple pieces of data over
time. For example, we consider a website equipped with a
dedicated LLM that has been fine-tuned using user data from
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the platform, as shown in Figure 1. Periodically, users may
request to delete their accounts and have their personal data
removed, or regulators may report sensitive information in
the LLM that needs to be removed. In these cases, the LLM
needs to continuously perform unlearning tasks to ensure
compliance with the requests from users and regulators.

Maintaining model utility represents a critical challenge in
LLM unlearning, which is particularly pronounced in the
continual unlearning scenario (Shi et al., 2024b). Represen-
tative baseline approaches to LLM unlearning use gradient
ascent optimization (GA) and its variants (Han et al., 2020;
Yao et al., 2023), inherently affecting the overall utility of
the model due to the extreme modification of model parame-
ters. The issue of utility deterioration is further magnified in
the context of continual unlearning, which can be attributed
to two factors. (I) Each unlearning task contributes to a
decline in the model utility of the LLM. And such decline
accumulates progressively with an increasing number of
unlearning tasks. We refer to this phenomenon as accumu-
lative decline. (II) After completing preceding unlearning
tasks, the memory retention of the LLM regarding data
from subsequent tasks may be disrupted, making them “par-
tially forgotten” even before they are explicitly unlearned.
Employing a fixed unlearning intensity without adjustment
for these partially forgotten tasks can easily result in over-
unlearning, further exacerbating the decline in model utility,
which we refer to as cascading degradation. While accumu-
lative decline stems from the progressive loss of utility over
multiple unlearning tasks, cascading degradation arises from
the unintended over-unlearning of partially forgotten data,
amplifying the utility loss in subsequent tasks. These two
issues combined exacerbate the utility degradation problem,
making continual unlearning in LLMs a significantly more
challenging scenario compared to one-time unlearning.

In this paper, we propose ALKN (Adaptive Localization
of Knowledge Negation) to mitigate the problem of utility
degradation in LLM continual unlearning. ALKN is built on
the task vector framework, which first fine-tunes a model to
reinforce knowledge from unlearning data and then negates
the target knowledge by subtracting the parameter offsets
from the original model. (Ilharco et al., 2023). Task vec-
tors are trained with a lower-bounded loss, which inherently
reduces the risk of excessive unlearning compared to GA.
To further address the accumulative decline and cascading
degradation issues in continual unlearning, we propose three
key modules incorporated into the fine-tuning process of
task vectors. (I) Entropic soft label loss strategically adjusts
unlearning intensity via adaptive training objectives, reduc-
ing cascading degradation. (II) Dynamic gradient sparsity
facilitates selective fine-tuning of different parameter sets
for distinct tasks, minimizing accumulative decline. (III)
Adaptive parameter modulation enables parameter-specific
learning rates to further mitigate utility loss. In summary,

the proposed modules, along with the task vector method, ef-
fectively address the catastrophic utility decline commonly
observed in LLM continual unlearning by dynamically lo-
calizing model parameters and adaptively refining gradients.

We conducted comprehensive experiments to validate the
effectiveness of our proposed method. To objectively as-
sess the utility of models, we introduced Training Data
Evaluation Corpus (TRAVIS) generated using the member-
ship inference attacks (MIA) method (Shi et al., 2024a),
designed to reconstruct knowledge in pretraining data of
LLMs across a diverse range of topics. Testing on diverse
training data provides a more comprehensive assessment of
the overall utility of LLMs and also highlights precise utility
decline relative to their pre-unlearning performance (Thaker
et al., 2024). Experiments are performed across multiple
models and datasets, demonstrating that ALKN effectively
retains the general utility of the model while achieving ef-
fective unlearning of sequential tasks. After sufficient un-
learning, our method retains over 95% of its model utility,
whereas some baseline methods completely lose their utility.
We summarize our key contributions as follows:

• We consider a practical yet challenging LLM continual
unlearning setting, conducting theoretical and exper-
imental studies on the unique issues of accumulative
decline and cascading degradation in this context.

• We introduce a novel method, ALKN, which adaptively
modulates unlearning gradients to effectively minimize
the utility degradation that is particularly severe in
LLM continual unlearning scenarios.

• To rigorously evaluate unlearning methods, we con-
struct an evaluation corpus, TRAVIS, and perform
extensive experiments across multiple benchmark
datasets. The experimental results validate the effec-
tiveness and demonstrate the superiority of ALKN com-
pared to state-of-the-art baselines.

2. Problem Setup and Preliminary
In this section, we formulate the setting of continual unlearn-
ing, introduce the baseline methods GA and task vectors.
We also demonstrate the intrinsic causes and negative impact
of the cascading degradation issue.

2.1. LLM continual unlearning

LLM unlearning. This paper explores the concept of un-
learning in causal LLMs. For a model πθ, where θ de-
notes the model parameters, the probability of the (l+1)-th
token given the first l tokens of an input text x is com-
puted by the model followed by a softmax function, formal-
ized as πθ(x[l+1]|x[:l]). The objective of LLM unlearning
is to eliminate the influence of a specified target dataset,
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Du = {xi
u}i∈[nu], along with any related generative capa-

bilities, from the model (Blanco-Justicia et al., 2024). Sam-
ple xu may take the form of plain text or question-answer
pairs. Crucially, the unlearning process needs to preserve
the knowledge and utility of the model on other data.

LLM continual unlearning. In the context of LLM con-
tinual unlearning, the goal extends to managing a sequence
of unlearning tasks. Beginning with an initial LLM char-
acterized by pre-trained parameters θ0 ∈ Rd, the model is
required to sequentially unlearn datasets {Dt

u}Tt=1, where
each Dt

u = {xt,i
u }i∈[nt

u]
corresponds to the t-th unlearning

task. During the training of a specific task, the data of other
tasks is not accessible. LLM continual unlearning faces the
issue of severe degradation of the model utility on non-target
data during successive unlearning processes. To safeguard
the general utility of the model throughout this iterative
process, a retain set Dr = {xi

r}i∈[nr] can be employed to
mitigate unintended degradation of utility.

2.2. Gradient Ascent and Task Vectors

A straightforward approach to addressing the continual un-
learning of LLMs is to directly apply existing LLM un-
learning methods for each task, such as leveraging gradient
ascent-based techniques or task vector methods.

Gradient Ascent. GA is one of the most fundamental fine-
tuning-based approaches for unlearning and often serves as
a baseline or a foundational module in many existing meth-
ods (Yao et al., 2023). While the model acquires knowledge
during training through gradient descent, GA facilitates the
unlearning process by optimizing in the opposite direction.
This is achieved by minimizing the negative cross-entropy
loss of predicting the next token on the unlearning dataset:

min
θ
− 1

nu

∑
x∈Du

∑
l

− log πθ(x[l+1]|x[:l]). (1)

For simplicity, the normalization of the loss by token length
is omitted. Unlike gradient descent loss, loss of GA lacks a
lower bound, which hinders its ability to converge. Train-
ing with GA could lead to significant deviations in model
parameters from their pre-training values, which severely
degrades model utility. The NPO method is also a gradient
ascent-based approach. Compared to GA, the gradient in
NPO is scaled by a regularization term that gradually dimin-
ishes over the course of training, alleviating the problem of
over-unlearning to some extent (Zhang et al., 2024a).

Task Vectors. Introduced by Ilharco et al. (2023), the task
vector method manipulates the ability of a pre-trained model
to address downstream tasks through fine-tuning and the
arithmetic operation of model parameters. When applied to
LLM unlearning, the method enables the selective removal
of knowledge related to a specific dataset Du. Specifically, a
pre-trained model πθ is fine-tuned on the unlearning dataset

Du, resulting in a model πθft with enhanced knowledge
of Du. The difference between the fine-tuned parameters
and the original parameters, θft − θ, constitutes the task
vector for Du. By subtracting this task vector from the
original parameters θ, a modified model is obtained that has
unlearned the knowledge from Du. Additionally, a scalar λ
is introduced to control the magnitude of the task vector:

θunlearn = θ − λ(θft − θ). (2)

We theoretically analyze the convergence of the GA and task
vector method in Appendix B. In the case of logistic regres-
sion unlearning, GA maintains a gradient magnitude above
a positive constant and fails to converge. In contrast, the task
vector method is proven to converge, indicating that it is less
prone to over-unlearning and may cause less utility degra-
dation in LLMs. While the task vector method mitigates
utility loss to some extent during a single unlearning task, it
remains susceptible to accumulative decline and cascading
degradation issues in continual unlearning scenarios.

2.3. Cascading Degradation

LLM continual unlearning encounters more complex chal-
lenges than one-time unlearning, one of which is cascading
degradation, where the interaction between unlearning tasks
amplifies the utility degradation. To elaborate, the utility
decline during preceding unlearning tasks can also impair
the memory retention of the LLM regarding the data of
subsequent tasks. Besides, in real-world applications, un-
learning data is often highly homogeneous, with requests
involving similar content.As seen in Figure 1, data from dif-
ferent users may share similar structures and content. This
homogeneity intensifies the impact of preceding unlearning
tasks on subsequent tasks. Consequently, the model partially
forgets data of subsequent tasks before explicit unlearning,
yet these tasks still need to be performed. Unlearning such
partially forgotten data with the same optimization process
as preceding tasks can easily lead to over-unlearning, ampli-
fying the utility degradation. We refer to this phenomenon
as cascading degradation.

To empirically validate the causes and harm of the cascad-
ing degradation, we conducted experiments using a baseline
approach, NPO+RT on the TOFU dataset, where the LLM
model was made to sequentially unlearn five tasks. As
shown in Figure 2(a), we examined the model’s prediction
probabilities P (y|x) on the data of the t-th task before un-
learning it ( Probability After Previous Unlearning). The
results reveal a substantial decrease in these probabilities
compared to their initial values ( Probability Before Any
Unlearning), indicating that the model had already partially
forgotten the t-th task after unlearning the first t− 1 tasks.
To validate the detrimental effects of cascading degrada-
tion, we compared continual unlearning with independent
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Figure 2. The comparative experiments on the TOFU dataset us-
ing the baseline method to sequentially unlearn five disjoint sub-
datasets. (a) The unlearning of preceding tasks results in the partial
forgetting of subsequent tasks, as reflected in the reduced con-
ditional probabilities of task data predicted by the model. (b)
Under comparable unlearning performance, continual unlearning
exhibits significantly greater utility degradation than independent
unlearning due to the effects of cascading degradation.

unlearning, where the model independently unlearns the
data of each task starting from pre-trained parameters, as
shown in Figure 2(b). The utility changes in the figure
denote utility declines in one unlearning task. We ensure
that the level of unlearning (Rouge-F) achieved by indepen-
dent unlearning is similar to that of continual unlearning,
enabling a fair comparison of the changes in model util-
ity. Under equivalent conditions, continual unlearning with
cascading degradation leads to a greater and increasingly
severe decline in model utility compared to independently
unlearning each task. We also compare the performance of
joint unlearning with continual unlearning in Appendix H
to further validate the harm of cascading degradation.

To theoretically substantiate the above conclusion, we con-
sider a toy example where a logistic model π(y = 1|x, θ) =
σ(⟨x, θ⟩) performs unlearning with the GA algorithm on a
binary classification problem with inputs being x and labels
being y. Suppose there are two unlearning tasks with their

dataset being correlated. Our objective is to verify whether
the first unlearning task influences the second task.

Proposition 2.1. Consider two correlated datasets Df

and Ds, each composed of {(xi, yi)}ni=1, satisfying:
maxi ̸=j |⟨xf

j , x
s
i ⟩| < k⟨xf

i , x
s
i ⟩, and yfi = ysi , where k is a

positive constant. The logistic model starts with an initial
parameter θ0. We compare two optimization scenarios:

1. The model successively unlearns on Ds and Df , yield-
ing intermediate and final parameters: θs and θCUL.

2. Starting from θ0, the model directly unlearns on Ds,
yielding parameters θIUL.

The parameter changes in the two scenarios during unlearn-
ing on Ds satisfy:

|| △ θCUL||X⊤X > || △ θIUL||X⊤X + TC
√
n, (3)

where C is a positive constant depending on the datasets, T
is iteration steps, and n is the number of samples.

Please refer to Appendix C for the proof. Proposition 2.1
demonstrates that during the process of continual unlearning,
conducting a preceding unlearning task causes subsequent
related tasks to experience larger parameter changes in their
own unlearning. In the context of LLMs, this phenomenon
may exacerbate the decline in model utility.

3. Method
In continual unlearning for LLMs, there is severe deteriora-
tion in model utility. To effectively mitigate the utility de-
cline, the key is reducing the overall changes to the model’s
parameters under the condition of effective unlearning. Uti-
lizing the task vector method can mitigate utility decline to
some extent, but the accumulative decline and cascading
degradation issues still exist. Therefore, we further propose
three modules to alleviate these issues. Entropic soft label
loss utilizes generated labels to flexibly adjust the unlearn-
ing objective. Dynamic gradient sparsity applies a learn-
able mask to the gradients and encourages different tasks
to localize distinct model parameters. Adaptive parameter
modulation employs a lower learning rate for parameters
related to already unlearned tasks. These modules collab-
oratively address the challenges of accumulative decline
and cascading degradation by mitigating task interference
and adaptively regulating the intensity of unlearning. The
diagram of these modules is shown in Figure 3. The overall
procedure of training is in Algorithm 1.

3.1. Fine-tuning with Entropic Soft Labels

To perform the t-th unlearning task, we employ knowledge
negation from the current model πθt−1 with the task vector
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method. This process begins by initializing a model with
parameters θt−1, which is then fine-tuned on the unlearning
dataset Dt

u. The fine-tuning step yields the intermediate
model πθt

ft
, reinforcing the knowledge of the model specific

to the t-th dataset (Ilharco et al., 2023). Subsequently, the
knowledge associated with the t-th task is removed using
model weight arithmetic: θt = θt−1 − λ(θtft − θt−1).

The fine-tuning process for task vector training typically
leverages gradient descent optimization with a cross-entropy
loss, which quantifies the discrepancy between the next-
token prediction labels and the model’s output probability
distribution conditioned on preceding tokens:

LCE(θ
t
ft, x) =

∑
l

− log πθt
ft
(x[l+1]|x[:l]), (4)

where x ∈ Dt
u. In the remainder of this paper,

πθ(x[l+1]|x[:l]) is denoted as π∗
θ for simplicity.

However, employing cross-entropy loss in continual un-
learning scenarios poses the risk of over-unlearning. As
demonstrated in Section 2.3, interaction between unlearning
tasks could result in a task being partially forgotten even
before its data is explicitly unlearned. The predicted proba-
bility π∗

θt
ft

for the data of the task gets notably low. In such
cases, the cross-entropy loss, which enforces alignment be-
tween the output of the model and a one-hot label in the
token space, produces gradients as follows:

∇θt
ft
LCE ∝ −

∇θt
ft
π∗
θt

ft

π∗
θt

ft

. (5)

When π∗
θt

ft
is low, the gradient magnitude may increase, caus-

ing large parameter updates that negatively impact the utility
of the LLM. This issue is theoretically illustrated in Propo-
sition 2.1. Besides, one-hot labels in cross-entropy loss are
unnecessarily difficult objectives to optimize towards since
the goal of task vector fine-tuning is only to enhance the
knowledge of the model regarding the target data. Training
with one-hot labels forces redundant parameter adjustments
of the LLM model, leading to significant utility decline.

To mitigate this issue, we propose Entropic Soft Labels
(ESL) to preserve model utility during task vector fine-
tuning. We introduce soft labels that increase the entropy of
the target distribution in the loss. The soft label ỹ is derived
from the initial predicted probability π∗

θt−1 for a training
sample and is defined as ỹ = σ

(
s(π∗

θt−1 − 1)
)
, where σ is

the sigmoid function and s is a scaling factor that controls
the entropy of labels. By leveraging these soft labels, the
cross-entropy loss is reformulated as:

LESL(θ
t
ft, x) =

∑
l

−ỹ[l] log πθt
ft
(x[l+1]|x[:l]), (6)

where ỹ[l] represents the soft label for the next token. LESL

mitigates the cascading degradation issue by generating
adaptive optimization goals for partially forgotten data.

3.2. Dynamic Gradient Sparsity

In continual unlearning scenarios, we aim to fine-tune differ-
ent sets of model parameters for each task. This approach
helps prevent cumulative parameter divergence from their
initial values as the number of tasks increases, thereby reduc-
ing the risk of accumulative decline. Moreover, minimizing
changes to model parameters during unlearning is essential
for maintaining utility. We strive to identify parameters that
significantly influence the unlearning objective and focus on
adjusting these parameters during training. This would en-
able effective unlearning while making as few adjustments
to the model parameters as possible.

To achieve these goals, we propose to apply learnable masks
to model gradients during the fine-tuning of the model θtft
on the unlearning set Dt

u, allowing for precise and efficient
parameter adjustments. Inspired by von Oswald et al. (2021),
for the t-th task, the optimization of the model parameters
is given by:

θt,k+1
ft = θt,kft − α̂t⊙ (1mt≥η⊙∇θftLESL(θ

t,k
ft , Dt

u)), (7)

where mt ∈ Rd represents a dynamic underlying vector,
from which a binary mask is derived using the threshold
function 1mt≥η. This function outputs 1 for parameters
where the corresponding value of mt exceeds the threshold
η; otherwise it outputs 0. The threshold η is determined
by the percentile of mt and increases gradually throughout
the training process. Additionally, α̂t denotes the adaptive
learning rate, which is detailed in Section 3.3.

Mask Value Updating. The application of gradient mask-
ing is designed to achieve two purposes: (I) To encourage
different tasks to adjust distinct sets of model parameters
during unlearning, thereby reducing the overall parameter
changes. (II) To dynamically identify model parameters that
are important to the unlearning objective while also being
beneficial to utility preservation. To achieve these goals, the
underlying vector mt is dynamically learned from the data,
allowing the mask to adapt to task-specific requirements
during training. For objective (I), the current mask is en-
couraged to differ from the masks used in previous tasks.
Specifically, let M t−1 =

⋃t−1
i=1 1mi≥η represent the set of

parameters that underwent substantial adjustments in the
first t−1 tasks. The mask for the current task is encouraged
to minimize its overlap with M t−1. For objective (II), the
mask is refined to preserve model utility. The cross-entropy
loss on Dr is used as a proxy to evaluate the retained utility
of models. The underlying vector mt of the mask is opti-
mized to minimize this utility loss. The sum of these two
objectives with a scaling factor µ is given by:

min
mt
LCE(θ

t−1−λ(θt,k+1
ft −θ0), Dr)+µ1mt≥η ·M. (8)

5



Adaptive Localization of Knowledge Negation for Continual LLM Unlearning

0 
(-0.2)

0 
(-0.3)

0 
(-0.3)

1 
(0.3)

1 
(0.5)

1 
(-0.1)

0 
(-0.4)

0 
(-0.2)

1 
(0.1)

𝜃ft
𝑡

𝐷𝑢
𝑡

1
𝑦

Logit

Soft label

ℒ𝐸𝑆𝐿
gradient 𝐺𝑢

⨀

𝑚𝑡

update

(𝐺𝑟 , 𝑀)

𝐷𝑢
1 𝐷𝑢

2 … …

( ො𝛼𝑡)

update

Figure 3. The diagram illustrating the training process of the in-
termediate model πθtft

for the t-th unlearning task. The training
loss LESL is computed using entropic soft labels (Section 3.1).
Gradients Gu derived from the loss are masked using a binary
mask with an underlying vector mt, dynamically updated based
on Gu, Gr and M (Section 3.2). The masked gradients are then
employed to update the model parameters θtft with an adaptive
learning rate α̂t (Section 3.3).

By substituting into Equation 7 and differentiating this ob-
jective with respect to mt, we obtain the iterative update
rule for mt:

mt ←mt + λGu ⊙Gr − µM,

where Gu = ∇θftLESL(θ
t,k
ft , Dt

u),

Gr = ∇θt−1LCE(θ
t−1, Dr).

(9)

The derivation is detailed in Appendix D. According to
the update rule of mt, the elements will increase where
the gradient signs are consistent across both the unlearning
objective and the utility objective. And the corresponding
parameters will be selectively activated. In other words, the
proposed method selectively activates model parameters,
aligning the gradient directions of the unlearning and utility
preservation objectives. Furthermore, elements that have a
greater impact on both objectives—i.e., those with larger
gradient magnitudes—lead to faster changes in the corre-
sponding values of mt, resulting in quicker activation or
freezing of the model parameters.

The proposed method localizes distinct parameters for dif-
ferent unlearning tasks. By avoiding cumulative changes to
parameters, we alleviate the accumulative decline in utility
of the LLM. And the gradient sparsity helps preserve the
overall model utility, further mitigating the issue.

In contrast to methods that rely on static model parame-
ter masks, our proposed approach dynamically adjusts the
mask throughout the training process. This dynamic tun-
ing ensures that each model parameter is trained within
an appropriate range: parameters with minimal impact on

the unlearning objective undergo limited adjustments in the
early stages and are subsequently masked, while parameters
with significant impact receive more extensive training. This
strategy enables balanced training across the model, prevent-
ing excessive adjustments to all parameters or overly drastic
changes to a small subset. Moreover, our method leverages
the underlying vector mt to aggregate the influence of data
on the mask over time, mitigating biases that may arise from
extreme values in a single training iteration. By accumu-
lating data-driven insights, the mask adapts more robustly
to task-specific requirements, enhancing the stability and
effectiveness of the unlearning process.

3.3. Adaptive Parameter Modulation

To further mitigate the decline in model utility, we propose
adaptive parameter modulation during fine-tuning θtft. The
gradient masks obtained from our training process repre-
sent the relationship between the model parameters and
the features of each task. Consequently, during the train-
ing of the current task, we apply a reduced learning rate
to the parameters previously activated, thereby preventing
the re-unlearning of features already forgotten and allevi-
ating the cascading degradation of utility. Specifically, let
M t−1 =

⋃t−1
i=1 1mi≥η denote the model parameters that

have undergone significant adjustments in the first t − 1
tasks. We apply an adaptive learning rate to model parame-
ters while fine-tuning on the t-th task as follows:

α̂t = αlM
t−1 + αh(1−M t−1), (10)

where αl denotes a low learning rate for model parameters
that are crucial for previous tasks and αh denotes a relatively
high learning rate.

4. Experiments
We conduct extensive experiments on various datasets and
models to validate the effectiveness of the proposed method.

4.1. Experimental Settings

Datasets and models. We conduct experiments on three
datasets: TOFU, MUSE News, and WHP, each representing
scenarios relevant to real-world applications such as pri-
vacy preservation and copyright protection. To simulate a
continual unlearning setting, we divid the data designated
for unlearning into multiple disjoint subsets based on the
structure of the datasets. These subsets, either from dif-
ferent parts of the same dataset or a mix of datasets, are
treated as sequential unlearning tasks. The experimental
details for each dataset are as follows. 1) TOFU (Maini
et al., 2024) dataset consists of generated fictional author
information. We group the information of four authors
into one unlearning task, resulting in five or more contin-
ual unlearning tasks. 2) MUSE News (Shi et al., 2024b)

6



Adaptive Localization of Knowledge Negation for Continual LLM Unlearning

Algorithm 1 Continual unlearning method ALKN
Input: Sequential unlearning datasets {Dt

u}Tt=1, retain
set Dr, initial model parameters θ0, hyperparameters s
and µ, learning rates αl and αh, updating steps Tu for
each unlearning task.
Initialize the overall mask M = 0.
for t = 1 to T do

Initialize parameters θt,0ft = θt−1.
Initialize the underlying vector mt = 0.
Calculate Gr = ∇θt−1LCE(θ

t−1, Dr).
for k = 1 to Tu do

Update model parameters θt,kft with Equation 7.
Update the underlying vector mt with Equation 9
Tune η with percentiles of mt as in Appendix E.2.

end for
θt = θt−1 − λ(θtft − θt−1).
M = M ∪ 1mi≥η .

end for
Output: Final parameters θT .

comprises BBC news articles and includes four predefined
unlearning subsets that serve as continual unlearning tasks.
3) WHP (Who’s Harry Potter) (Eldan & Russinovich, 2023;
Shi et al., 2024b) involves the unlearning of original text
from the Harry Potter series. We treat the original text of
three Harry Potter books as three separate unlearning tasks.
Following recent works (Maini et al., 2024; Jia et al., 2024a),
we use Llama-2-7B and Phi-1.5 as target models.

Metrics. Unlearning algorithms require evaluation from
two perspectives: unlearning performance and model util-
ity, both measured using various metrics. Metrics for un-
learning performance include: 1) Rouge-L for unlearning
(F-Rouge) measures similarity between the text generated
by the model and the correct text (Maini et al., 2024; Shi
et al., 2024b). 2) Probability (F-Prob) evaluates the condi-
tional probability P (answer|question) of model outputs. 3)
Membership inference attack (MIA) calculates Min-K%
Prob (Shi et al., 2024a) for unlearning samples to detect
whether the post-unlearning model retains the unlearning
set. 4) Forget Quality (FQ) quantifies the difference in
prediction distributions on the forget set between the post-
unlearning model and a retrained model (Maini et al., 2024).
Metrics for model utility include: 1) R-Rouge and 2) R-
Prob are also applied to the retain set or holdout set to
evaluate the model utility. 3) T-Rouge calculates the Rouge-
L recall of completing sentences in the proposed TRAVIS
dataset. Testing on inferred training data provides a more
accurate assessment of the impact of unlearning algorithms
on the pre-existing knowledge of the model. Addition-
ally, TRAVIS is generated without thematic constraints,
resulting in a broad coverage of content, which enables a
more comprehensive evaluation of performance. 4) Model

Utility (MU) represents the harmonic mean of the above
metrics calculated across multiple retain sets in the TOFU
dataset (Maini et al., 2024), including the T-Rouge. It pro-
vides an aggregate measure of the model utility.

Baselines. Given the limited research on LLM continual
unlearning, the proposed method is primarily compared
with prominent existing unlearning approaches. These algo-
rithms are applied sequentially to unlearn the data for each
task, thereby achieving continual unlearning. Unlearning
methods include GA (Yao et al., 2023), NPO (Zhang et al.,
2024a), and Task Vectors (TV) (Ilharco et al., 2023), as in-
troduced earlier. We also include DPO (Zhang et al., 2024a),
SO-PO, and SO-NPO (Jia et al., 2024b) methods. Besides,
EUL (Chen & Yang, 2023) incorporates lightweight un-
learning layers into the model and explicitly considers sce-
narios involving multiple unlearning tasks. WAGLE (Jia
et al., 2024a) optimizes only the parameters that are cru-
cial to unlearning and retaining objectives during the un-
learning process. When applying these methods in contin-
ual unlearning scenario, the learning rate is tuned progres-
sively to mitigate catastrophic collapse as the number of
tasks increases. Retaining objectives are also leveraged
with an auxiliary retain dataset to help preserve the model
utility in addition to conducting unlearning optimization
on the target data. For example, the Retain Loss (RT) is
employed as −EDr

log πθ(x[l+1]|x[:l]), where gradient de-
scent is performed on the retain dataset to optimize the
model. Similarly, KL divergence loss (KL), defined as
EDrD(πθ(·|x)||πref(·|x)) , is used to ensure that the logits
of the model outputs on the retain dataset remain similar to
those of the initial model πref (Zhang et al., 2024a).

4.2. Experiments on Privacy-Preservation Unlearning

In the TOFU dataset, unlearning algorithms are tested with
personal information of fictitious authors, where each un-
learning task corresponds to different authors. Table 1
presents the unlearning and utility performance of various
methods across five continual tasks, showing that utility de-
clines to varying degrees as tasks increase. A Rouge score of
approximately 0.35 on the unlearning set is considered suffi-
cient for effective unlearning (Maini et al., 2024). NPO+RT
achieves reasonable unlearning performance in the first four
tasks but suffers over-unlearning in the last, with model
utility dropping below 0.2. Conversely, GA+RT struggles
with insufficient unlearning in earlier tasks, followed by
over-unlearning later. NPO, EUL, and WAGLE exhibit se-
vere under-unlearning, with F-Rouge reductions of less than
15% in the first task compared to the original model. Al-
though NPO and EUL achieve the highest utility in the third
and fourth tasks, this stems from insufficient unlearning.
GA+KL, NPO+KL, and SKU avoid over-unlearning but
suffer progressively lower utility. In contrast, our method
effectively balances unlearning and utility, achieving suf-
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Table 1. Unlearning performance (F-Rouge, FQ) and model utility (MU) on the TOFU dataset for the Phi model.

Methods Task 1 Task 2 Task 3 Task 4 Task 5
F-Rouge↓ FQ↑ MU↑ F-Rouge↓ FQ↑ MU↑ F-Rouge↓ FQ↑ MU↑ F-Rouge↓ FQ↑ MU↑ F-Rouge↓ FQ↑ MU↑

Original 0.9614 3.2e-16 0.5237 0.9723 7.4e-16 0.5237 0.9827 4.2e-15 0.5237 0.9895 7.5e-16 0.5237 0.9847 5.0e-17 0.5237
GA+RT 0.5723 7.9e-14 0.4766 0.4047 9.5e-13 0.4427 0.3524 1.3e-4 0.3494 0.3095 6.5e-5 0.2253 0.1027 9.7e-2 0.0812
GA+KL 0.3963 7.8e-4 0.3955 0.3896 1.5e-5 0.4270 0.3923 9.1e-3 0.3578 0.4311 5.2e-5 0.2898 0.3108 5.9e-4 0.2059

NPO 0.8430 1.9e-16 0.4836 0.7322 4.6e-15 0.4675 0.6091 8.5e-9 0.4651 0.4893 5.4e-9 0.4257 0.4033 8.9e-6 0.3817
NPO+RT 0.3803 9.4e-3 0.4823 0.3931 7.6e-5 0.4470 0.3747 4.8e-4 0.3814 0.3524 6.8e-3 0.3087 0.3234 7.9e-3 0.1841
NPO+KL 0.4109 6.0e-5 0.4729 0.4359 1.0e-6 0.4465 0.4018 6.3e-4 0.3957 0.3891 9.9e-6 0.3350 0.3651 8.5e-5 0.2789
DPO+RT 0.4510 8.9e-10 0.5043 0.4091 4.3e-8 0.4432 0.3983 4.6e-5 0.3602 0.3821 3.1e-4 0.3406 0.3771 3.9e-3 0.3359

TV 0.3957 4.8e-4 0.4825 0.3719 5.2e-3 0.4578 0.3573 8.9e-3 0.3866 0.3371 9.8e-3 0.3253 0.3028 4.2e-2 0.2963
SKU 0.4279 3.0e-5 0.4927 0.4055 5.8e-4 0.4100 0.3839 6.0e-4 0.3330 0.3805 6.5e-5 0.3024 0.3346 7.2e-3 0.2216
EUL 0.7885 2.4e-15 0.4839 0.5562 2.9e-12 0.4662 0.5264 7.2e-12 0.4551 0.5171 1.6e-13 0.4537 0.5058 8.0e-12 0.3938

SO-NPO 0.4525 7.3e-8 0.4935 0.4316 6.2e-6 0.4532 0.4168 9.9e-7 0.3725 0.4153 5.0e-5 0.3472 0.4002 4.1e-4 0.3001
WAGLE 0.7667 2.0e-15 0.4731 0.5031 4.8e-9 0.4669 0.4593 7.7e-6 0.4314 0.3860 2.5e-5 0.3400 0.3731 3.5e-4 0.3013

Ours w/o ESL 0.3627 3.5e-2 0.5016 0.3320 3.7e-2 0.4413 0.3067 7.3e-2 0.4170 0.2684 1.4e-1 0.3807 0.2344 5.7e-1 0.3351
Ours w/o DGS 0.3827 5.4e-3 0.5048 0.3642 1.6e-3 0.4559 0.3536 6.2e-3 0.4437 0.3297 4.0e-3 0.4296 0.3073 7.9e-1 0.3893
Ours w/o APM 0.3703 1.4e-2 0.5128 0.3464 8.2e-3 0.4784 0.3320 4.7e-2 0.4524 0.3043 7.3e-2 0.4367 0.2517 2.5e-1 0.3768

Ours 0.3703 1.4e-2 0.5128 0.3671 2.0e-3 0.4853 0.3681 2.1e-3 0.4627 0.3452 1.3e-4 0.4578 0.3314 1.1e-2 0.4534
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Figure 4. Model utility (MU) and changes of F-Rouge of five un-
learning tasks on TOFU dataset for the Llama2 model.

ficient unlearning while minimizing the decline in model
utility. Notably, it not only achieves the best performance
across all metrics on the first two tasks but also surpasses
baseline methods from the perspective of multiple tasks. Af-
ter completing all five unlearning tasks, our method exhibits
less than a 0.06 reduction in utility, effectively mitigating
the cumulative utility degradation typically observed in con-
tinual unlearning scenario. This highlights its significantly
lower impact on utility compared to other approaches.

Ablation study. We present the ablation study results in
Table 1, illustrating the impact of each module on the overall
performance of the model. When the entropic soft label
(ESL) module is removed, the model exhibits significant
cascading degradation, resulting in severe utility decline
during the unlearning of later tasks. The dynamic gradient
sparsity (DGS) module plays a critical role in identifying
model parameters that balance utility retention and effective
unlearning. Without the DGS module, the overall model
utility decreases, and the cumulative utility degradation
becomes more pronounced. Similarly, the absence of the
adaptive parameter modulation (APM) module leads to a
sustained decline in utility over the course of unlearning.

Figure 4 illustrates the unlearning results for the Llama2
model on the TOFU dataset. The persistent issue of utility
degradation is evident, as the data points of the same color
representing the performance of successive tasks are gener-
ally arranged sequentially from up to down, reflecting the
cumulative effect of unlearning tasks on model utility. For
the latter tasks, NPO+RT and GA+RT suffer a drastic de-
cline in model utility. While WAGLE exhibits poor unlearn-
ing effectiveness with low changes of F-Rouge. Notably,
the data points corresponding to our method are clustered
more tightly across the five tasks, indicating a more stable
and controlled utility decline in the continual unlearning
scenario. Furthermore, these points are positioned nearer to
the upright corner of the plot compared to other methods,
signifying a superior trade-off between effective unlearning
and maintaining model utility. By achieving a high degree
of unlearning with minimal impact on utility, our approach
demonstrates clear advantages over baseline methods.

4.3. Experiments on Copyright-Protection Unlearning

The WHP and MUSE News datasets are designed to evaluate
the unlearning of verbatim memory of news articles and
Harry Potter books by LLMs. We conducted experiments
with the Llama2 model independently on each dataset and
further explored the effects of alternating tasks between the
two datasets. Please refer to Appendix H for more results.

The results on the WHP dataset are shown in Table 2 and
Figure 7 (b). Utilizing the TRAVIS dataset provides the
evaluation of general utility wider than domain knowledge
in retain dataset. In the WHP dataset, the sequential tasks
involve unlearning data from several books in the Harry Pot-
ter series. Due to the strong interconnections between the
data across these tasks, unlearning earlier tasks inevitably
impacts subsequent tasks, leading to pronounced cascading
degradation. For baseline methods, model utility declines
largely after completing the unlearning. In contrast, our
method effectively mitigates the cascading degradation is-
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Table 2. Final model utility metrics and average unlearning perfor-
mance metrics over three tasks on the WHP dataset.

Methods Unlearning Utility
F-Rouge↓ MIA↓ R-Rouge↑ T-Rouge↑

Original 0.9821 0.5206 0.6940 0.7643
NPO+RT 0.1559 0.2607 0.0 0.0
NPO+KL 0.1620 0.2452 0.0 0.0
GA+RT 0.1855 0.2674 0.1172 0.1975
SO-NPO 0.3080 0.3892 0.4109 0.4536
WAGLE 0.2946 0.3745 0.3721 0.4594

Ours 0.1790 0.2729 0.4586 0.5617

Table 3. Rouge Score Sensitivity to Gaussian Noise in Model Pa-
rameters.

Noise Std(%) TRAVIS TOFU WHP

Original 0.7643 0.8965 0.6940
0.1% 0.7643 0.8965 0.6940
0.5% 0.7576 0.8965 0.6940
1.0% 0.7425 0.8965 0.6940
2.0% 0.7320 0.8958 0.6940

sue, demonstrating improved preservation of model utility
in continual unlearning scenarios.

4.4. Evaluation of TRAVIS Dataset Sensitivity

The TRAVIS dataset consists of a wide variety of topics,
enabling a comprehensive evaluation of the model’s overall
utility. As the dataset is generated by the LLM, it provides
an accurate baseline for evaluating the model’s original util-
ity. To investigate the sensitivity of the TRAVIS dataset
to variations in model performance, we conducted a syn-
thetic experiment by introducing a small amount of random
Gaussian noise to the model parameters to simulate destruc-
tion of model utility. We compared the Rouge scores of
the TRAVIS dataset against those of the TOFU and WHP
datasets to assess their relative sensitivity to model utility
changes. As presented in Table 3, the TRAVIS dataset is
the most sensitive to changes in model utility. Notably, the
TRAVIS Rouge score exhibits a decline when the noise stan-
dard deviation reaches 0.5%, whereas the TOFU and WHP
datasets remain largely unaffected until higher noise levels.

5. Conclusion
In this study, we explore the challenges of continual unlearn-
ing in LLMs, which is a practical and complicated setting.
Specifically, the issues of accumulative decline and cascad-
ing degradation exacerbate the utility deterioration problem
for LLM unlearning methods. To mitigate these issues,
we propose ALKN, a method that minimizes adjustments
to model parameters by identifying the model parameters

that are crucial to the knowledge representation of each
task and tuning these parameters with adaptive intensity.
The proposed method is built on the task vector framework
with three novel modules applied in the fine-tuning process,
dynamically localizing model parameters and adaptively re-
fining gradients. Besides, we construct an evaluation corpus,
TRAVIS, designed to test the overall utility of LLMs com-
prehensively. The experimental results demonstrate that the
proposed method effectively preserves the utility of LLMs
while accomplishing sufficient unlearning, outperforming
various baseline methods.
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A. Related Work
Machine unlearning studies the problem of efficiently removing specific data from machine learning models, ensuring
compliance with privacy regulations like GDPR (Cao & Yang, 2015; Wang et al., 2025c; Zhang et al., 2023; Niu et al.,
2016; Zhang et al., 2024b). Machine unlearning methods are generally categorized into exact unlearning (Ullah et al., 2021;
Brophy & Lowd, 2021) and approximate unlearning. The latter modifies the model or dataset to simulate the removal
effect without full retraining (Wu et al., 2020; Golatkar et al., 2020; 2021; Graves et al., 2021). There is a line of work that
employs Newton’s method to remove the influence of target data involving calculating second-order derivatives of model
parameters (Koh & Liang, 2017; Guo et al., 2019; Izzo et al., 2021). However, the approach is computationally prohibitive
for LLMs. In addition, precisely evaluating LLM unlearning algorithms, as is commonly done in the field of machine
unlearning, is often impractical because obtaining a fully retrained model for comparison is rarely feasible (Scholten et al.,
2024).

Among the studies on LLM unlearning, some focus on establishing evaluation metric (Wang et al., 2024a; 2025b; Yang
et al., 2025; Lynch et al., 2024; Yuan et al., 2024; Wu et al., 2024), while others emphasize the design of effective algorithms.
With trivial unlearning methods, the process often leads to excessive unlearning, where the performance of the model on
non-target data is unintentionally degraded. The primary objective of LLM unlearning is to preserve the model utility
on normal data while effectively unlearning the target information. NPO is proposed to mitigate the issue of unbounded
optimization loss of GA (Zhang et al., 2024a). Eldan & Russinovich (2023) suggest replacing sensitive keywords with
generic terms, enabling the model to produce generic predictions through reinforcement bootstrapping. The constructed
generic outputs enable unlearning by fine-tuning the LLM model on them. Ji et al. (2024) propose ULD, which reverses
the optimization direction during the training of an assistant model. SKU incorporates an object function that embeds
robustness and utility retention into task vector training (Liu et al., 2024b), offering a more efficient approach to unlearning.
WAGLE seeks to locate the specific LLM parameters that are most critical for both unlearning and retaining objectives and
fine-tuning exclusively on these parameters (Jia et al., 2024a). Several studies have also examined the impact of unlearning
techniques on various modules within transformer models (Hong et al., 2024b;a). Despite the substantial body of research on
LLM unlearning, the practical challenge of continual unlearning remains underexplored and warrants further investigation.

B. Convergence of GA and the task vector method
To compare the convergence of GA and the task vector method, we consider a standard binary classification problem
with training data {(xi, yi)}ni=1, where x ∈ Rdl and y ∈ {0, 1}. A logistic model is used to predict the probabilities
π(y = 1|x, θ) = σ(⟨x, θ⟩), where σ represents the sigmoid function (Schmidt, 2017).

B.1. Convergence of the task vector method

Theorem B.1. Using the task vector algorithm with a learning rate 0 < η < 2
L to optimize the aforementioned logistic

regression problem can guarantee convergence. Let θt denotes the parameters after the t-th iteration of optimizing. The loss
function fTV(θ

t) strictly decreases:
fTV(θ

t+1) < fTV(θ
t), t ≥ 0, (11)

and converges to its optimal value:
lim
t→∞

fTV(θ
t) = fTV(θ

∗) (12)

Proof. The fine-tuning process of the task vector method utilizes the gradient descent algorithm with the following loss
function:

fTV(θ
t) = −

∑
i

yi log σ(⟨x, θt⟩)− (1− yi) log σ(−⟨x, θt⟩). (13)

The function fTV is L-smooth. Thus the following inequality holds:

fTV(θ
t+1) ≤ fTV(θ

t) +∇fTV(θ
t)⊤(θt+1 − θt) +

L

2
||θt+1 − θt||2. (14)

Substituting θt+1 − θt = −η∇fTV(θ
t) yields:

fTV(θ
t+1) ≤ fTV(θ

t)− η

(
1− Lη

2

)
||∇fTV(θ

t)||2. (15)
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With 0 < η < 2
L , we get a strict decrease in fTV(θ

t):

fTV(θ
t+1) < fTV(θ

t) (16)

With lower bound fTV(θ) ≥ 0, the loss function converges to its optimal value:

lim
t→∞

fTV(θ
t) = fTV(θ

∗) (17)

B.2. Non-convergence of the GA method

Theorem B.2. Optimizing the aforementioned logistic regression problem using the GA algorithm will result in the norm of
the gradient remaining greater than a certain constant:

||∇θtfGA(θ
t)|| ≥

√
C, (18)

where θt denotes the parameters after the t-th iteration of optimizing and C is a positive constant only depending on the
training data {(xi, yi)}ni=1 and initial parameters θ0. And the objective function fGA(θ

t) strictly decreasing to negative
infinity:

fGA(θ
t) = fGA(θ

0)− tηC,

lim
t→∞

fGA(θ
t) = −∞.

(19)

Proof. The loss function of GA is:

fGA(θ
t) =

∑
i

yi log σ(⟨x, θt⟩) + (1− yi) log σ(−⟨x, θt⟩) (20)

The gradient with respect to the parameters θt is:

∇θtfGA(θ
t) =

∑
i

(2yi − 1)(1− πt
i)xi,

where πt
i = σ(⟨x, θ⟩) when yi = 1,

πt
i = σ(−⟨x, θ⟩) when yi = 0.

(21)

We define mt
i = (2yi − 1)(1− πt

i), γi,j = ⟨xi, xj⟩, and γi denotes (γi,1, γi,2, ..., γi,n). Besides, we define qti = ⟨mt, γi⟩.

Inspired by Zhang et al. (2024a), we use the induction method to proceed.

Case 1: t = 0. Since ||xi||2 · ||θ0||2 is a finite value, we can derive:

C1 ≤ m0
i ≤ 1 when yi = 1,

−1 ≤ m0
i ≤ −C2 when yi = 0,

(22)

where C1 and C2 are two positive constants. We assume there exists a constant C0 such that maxi ̸=j |γi,j | ≤ C0

n , and
satisfying: ∣∣∣∣∣∣

∑
i̸=j

m0
jγi,j

∣∣∣∣∣∣ ≤ γi,i|m0
i |

2
. (23)

We obtain:

q0i = ⟨m0, γi⟩ ≥
|mi|γi,i

2
> 0 when yi = 1,

q0i = ⟨m0, γi⟩ ≤ −
|mi|γi,i

2
< 0 when yi = 0.

(24)

We set C3 = min(C1, C2) and C4 =
C3γi,i

2 , then we have:

q0i = ⟨m0, γi⟩ ≥ C4 > 0 when yi = 1,

q0i = ⟨m0, γi⟩ ≤ −C4 < 0 when yi = 0.
(25)
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Then we derive m1
i :

m1
i = (2yi − 1)(1− π1

i ) = (2yi − 1)(1− σ((2yi − 1)⟨xi, θ
1⟩)). (26)

Substracting θ1 = θ0 − η∇θtfGA(θ
0) = θ0 − η

∑
i m

0
ixi, we obtain:

m1
i = (2yi − 1)

(
1− σ

(
(2yi − 1)⟨xi, θ

0⟩ − η(2yi − 1)q0i
))

. (27)

Comparing it with m0
i = (2yi − 1)(1− σ((2yi − 1)⟨xi, θ

0⟩)), we can derive:

m1
i ≥ m0

i when yi = 1

m1
i ≤ m0

i when yi = 0.
(28)

Case 2: t = K > 0. We suppose:

qti ≥ C4 > 0 when yi = 1,

qti ≤ −C4 < 0 when yi = 0,
(29)

for 0 ≤ t ≤ K. And we suppose:

mt+1
i ≥ mt

i ≥ C1 when yi = 1

mt+1
i ≤ mt

i ≤ −C2 when yi = 0,
(30)

for 0 ≤ t ≤ K − 1. With this condition, we can derive the same conclusion for qK+1
i as in Case 1:

qK+1
i ≥ C4 > 0 when yi = 1,

qK+1
i ≤ −C4 < 0 when yi = 0,

(31)

and the same conclusion for mK+1
i :

mK+1
i ≥ mK

i ≥ C1 when yi = 1

mK+1
i ≤ mK

i ≤ −C2 when yi = 0.
(32)

From above, we prove that |qti | ≥ C4 and (2yi − 1)mt+1
i > (2yi − 1)mt

i for all t ≥ 0. We can further derive that:

fGA(θ
t+1) ≤ fGA(θ

t), (33)

and

||∇θtfGA(θ
t)||X⊤X =

√
∇θtfGA(θt)⊤X⊤X∇θtfGA(θt) =

√
(qt)⊤qt ≥ C4

√
n. (34)

By incorporating the condition ||∇θtfGA(θ
t)||X⊤X ≤

√
λmax||∇θtfGA(θ

t)||2, we can obtain:

||∇θtfGA(θ
t)||2 ≥

C4
√
n√

λmax
=
√
C, (35)

where C is a positive constant only depending on the training data {(xi, yi)}ni=1 and initial parameters θ0.

Furthermore, since fGA(θ) is a concave function, it satisfies the following inequality:

fGA(θ
t+1) ≤ fGA(θ

t) +∇θtfGA(θ
t)⊤(θt+1 − θt) = fGA(θ

t)− η||∇θtfGA(θ
t)||22, (36)

then fGA(θ
t+1) ≤ fGA(θ

t)− ηC, and we can obtain:

lim
t→∞

fGA(θ
t) = lim

t→∞
fGA(θ

0)− tηC = −∞ (37)
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C. Proof of Proposition 2.1
As defined for the GA, the loss function and its gradient are given as follows:

fGA(θ) =
∑
i

yi log σ(⟨x, θ⟩) + (1− yi) log σ(−⟨x, θ⟩)

∇θfGA(θ) =
∑
i

(2yi − 1)(1− πi)xi,
(38)

where πi follows the definition in Appendix B.2, as do qi, mi and γi,j .

Independently training on Ds.

In this scenario, the model is directly trained on Ds starting from the initial parameter θ0 for T iterations with a learning
rate η, resulting in the updated parameters θIUL:

θt+1
IUL = θtIUL − η

∑
i

mt
IUL,ix

s
i ,

⟨θTIUL, x
s
i ⟩ = ⟨θ0, xs

i ⟩ − η
∑
t

qtIUL,i.
(39)

As in Appendix B.2, we can prove that:
qtIUL,i ≥ C4 > 0 when yi = 1,

qtIUL,i ≤ −C4 < 0 when yi = 0,
(40)

Continuously training on Df and Ds.

In this scenario, the model is first trained on Df starting from θ0, yielding parameters θf :

θt+1
s = θts − η

∑
i

mt
s,ix

s
i (41)

The training on Df affects the model predictions on Ds:

⟨θt+1
f , xs

i ⟩ = ⟨θtf , xs
i ⟩ − η

∑
j

mt
f,i⟨xf,j , xs,i⟩ (42)

Because maxi̸=j |⟨xf
j , x

s
i ⟩| < k⟨xf

i , x
s
i ⟩, we assume there exists a constant C0 such that maxi ̸=j |⟨xf

j , x
s
i ⟩| ≤ C0

n , and
satisfying: ∣∣∣∣∣∣

∑
i ̸=j

mt
f,i|⟨x

f
j , x

s
i ⟩|

∣∣∣∣∣∣ ≤ ⟨x
f
i , x

s
i ⟩|mt

f,i|
2

. (43)

Therefore, we can obtain:

⟨θt+1
f , xs

i ⟩ < ⟨θtf , xs
i ⟩ −

⟨xf
i , x

s
i ⟩|mt

f,i|
2

when yi = 1,

⟨θt+1
f , xs

i ⟩ > ⟨θtf , xs
i ⟩+

⟨xf
i , x

s
i ⟩|mt

f,i|
2

when yi = 0.

(44)

Thus the effect of training on Df demonstrates as:

⟨θf , xs
i ⟩ < ⟨θ0, xs

i ⟩ − C1T when yi = 1,

⟨θf , xs
i ⟩ > ⟨θ0, xs

i ⟩+ C1T when yi = 0.
(45)
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Then the model starts training on Ds with initial parameters being θf , yielding updated parameters θCUL:

θt+1
CUL = θtCUL − η

∑
i

mt
CUL,ix

s
i ,

⟨θTCUL, x
s
i ⟩ = ⟨θf , xs

i ⟩ − η
∑
t

qtCUL,i.
(46)

Since θ0CUL = θf the inequality in Equation 45, we can derive:

q0CUL,i > q0IUL,i + C2 when yi = 1,

q0CUL,i < q0IUL,i − C2 when yi = 0.
(47)

Using the induction method as in Appendix B.2, we can prove that:

qtCUL,i > qtIUL,i + C2 > 0 when yi = 1,

qtCUL,i < qtIUL,i − C2 < 0 when yi = 0.
(48)

Therefore, |
∑

t q
t
CUL,i| > |

∑
t q

t
IUL,i|+ TC2.

Finally, we derive the conclusion:

||θCUL − θf ||X⊤X = ||
∑
t

qtCUL||2 > ||
∑
t

qtCUL||2 + TC
√
n, (49)

therefore,
||θCUL − θf ||X⊤X > ||θIUL − θ0||X⊤X + TC

√
n. (50)

In this proposition, we consider a two-task scenario for simplicity. When there are multiple tasks, we can also similarly
derive such conclusions:

Corollary C.1. For multiple tasks, the conclusion of Proposition 2.1 holds. Suppose there are T preceding datasets {Dt}Tt=1

and a current dataset Ds. If one of the preceding datasets is correlated with Ds, satisfying: maxi ̸=j |⟨xj , x
s
i ⟩| < k⟨xi, x

s
i ⟩,

then the previous unlearning results in larger changes of parameters in the unlearning of Ds:

|| △ θCUL||X⊤X > || △ θIUL||X⊤X + TC
√
n. (51)

D. Derivation of Equation 9
According to the chain rule, the gradient of Equation 8 with respect to mt is given by:

−λ∇θt,k+1
ft
LCE(θ

t−1 − λ(θt,k+1
ft − θ0), Dr)∇mtθt,k+1

ft + µM∇mt1mt≥η (52)

For computational efficiency, we approximate the gradient of LCE on Dr with∇θt−1LCE(θ
t−1, Dr). And∇mtθt,k+1

ft is
derived by substituting into Equation 7:

∇mtθt,k+1
ft = −α̂t ⊙ LESL(θ

t,k
ft , Dt

u)⊙∇mt1mt≥η (53)

For simplicity, we omit α̂t and approximate ∇mt1mt≥η using straight-through estimation, which consists in taking this
derivative equal to the identity (von Oswald et al., 2021). Then we obtain the gradient of Equation 8 with respect to mt:

−λLESL(θ
t,k
ft , Dt

u)⊙∇θt−1LCE(θ
t−1, Dr) + µM (54)

The updating of mt is given by substracting the gradient:

mt ← mt + λLESL(θ
t,k
ft , Dt

u)⊙∇θt−1LCE(θ
t−1, Dr)− µM (55)
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E. Implementation details
E.1. Optimization

The Adam optimizer is employed for the training of all methods. We employ the learning rate of 3e-5 for the TOFU dataset
and 3e-6 for the MUSE News and WHP datasets. Most baselines easily suffer from the issue of over-unlearning while
conducting second or third tasks with constant learning rate. Thus, we apply learning rate tuning, decaying the learning
rate by 50% after each unlearning task. For experiments in Figure 2 and Figure 8 which require alignment of unlearning
performance, learning rates of different methods are tuned to achieve aimed unlearning performance. The hyperparameters
s and λ of our method are set as 10 and 0.8. µ is set as the deviation of the unlearning gradients Gu. mt is initialized with
zero vectors in the beginning of each training.

Weight decay ratio is set as 0.01 for all experiments. For TOFU dataset, batch size is set as 32 and models are trained for 5
epochs. For MUSE News dataset, batch size is 6 and number of epochs is 2. For WHP dataset, batch size and epoch number
are 6 and 10.

E.2. Tuning of gradient mask threshold η

The threshold η determines the proportion of model parameters that are activated. The threshold η is determined by the
percentiles of the underlying vector mt, and it increases gradually throughout the training process. Specifically, 100%
parameters are activated in the beginning of each training, while 30% parameters are activated in the end. With this approach,
parameters with smaller mt values undergo minor fine-tuning in the early stages of training, while parameters with larger
mt values receive more extensive fine-tuning over additional steps. Compared to setting a large threshold η in the beginning
of training, this method balances the training of all model parameters, preventing excessive adjustments to a small subset of
activated parameters to achieve the unlearning objective.

Calculating the percentiles of mt can be computationally expensive for models with a large number of parameters since it
involves sorting the parameters. To address this, we employ an efficient estimation method. Calculating the maximum and
minimum values of a list has a computational complexity of O(n). By identifying the top 15% largest and smallest values,
we can mitigate the influence of outliers. The estimated quantiles are then obtained through interpolation between these
extreme values after excluding outliers.

E.3. Discussions regarding parameters masking in LLMs unlearning

We argue that an efficient way to preserve the utility of LLM during the unlearning process is to minimize changes to its
parameters. In contrast to methods that directly calculate the mask using gradient magnitude, our proposed dynamic gradient
sparsity method in Section 3.2 learns the mask values from the data. And the mask is dynamically tuned along with the
training process. In this way, each model parameter receives an appropriate training range: parameters with a relatively
small impact on the training objective undergo minor adjustments in the early stages, after which they are masked, while
parameters with a larger impact are trained more extensively. This approach allows for appropriate training of the model as
a whole, avoiding large adjustments to all parameters or drastic changes to a small subset. Besides, the proposed method
leverages the underlying vector m to accumulate the influence of data on the mask, thereby avoiding biases introduced by
extreme values during a single training iteration.

E.4. Improving Memory Efficiency

Although effective, the iterative approach in Equation 9 requires storing Gr = ∇θt−1LCE(θ
t−1, Dr) during the fine-tuning

process of the t-th task. To reduce memory usage, we propose an alternative method.

To reduce memory overhead during training, Gr can be replaced with a lower-precision approximation, Ĝr. For elements
with absolute values exceeding a certain threshold, which have a significant impact on the retain set, their signs +1 or−1 are
preserved, while the remaining elements are set to 0. During the iteration of mt, calculation of Gu ⊙Gr is estimated with:

Gu ⊙ (Ĝr == 0) + a ·Gu ⊙ (Ĝr == 1)− a ·Gu ⊙ (Ĝr == −1), (56)

where a is a large positive constant. This method preserves both the signs and magnitude information of Gr while
significantly reducing memory consumption.
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F. Experimental Setup
F.1. Dataset

TOFU (Maini et al., 2024) dataset consists of information about 200 fictional authors presented in a question-answer pair
format. Specific authors’ information was designated as unlearning data, while the remaining authors’ data were retained to
assist in training and testing. Besides, there are also question-answer pairs about Real Authors and World Facts. We grouped
the information of four authors into one unlearning task, resulting in five or more continual unlearning tasks.

MUSE News (Shi et al., 2024b) comprises BBC news articles published after August 2023. This dataset includes four
predefined unlearning subsets that serve as continual unlearning tasks. Additionally, it contains a retain set that does not
overlap with the unlearning sets.

WHP (Who’s Harry Potter) (Eldan & Russinovich, 2023; Shi et al., 2024b) involves the unlearning of original data from
the Harry Potter series. In contrast, retain data consists of knowledge related to the books, which aligns with real-world
requirements for copyright protection. We treated the original texts of three Harry Potter books as three separate unlearning
tasks. To evaluate the performance of algorithms in scenarios involving unrelated continual tasks, we constructed a sequence
of continual unlearning tasks by interleaving multiple unlearning tasks from the MUSE News and WHP datasets.

F.2. Metrics

Rouge-L for unlearning (F-Rouge) measures the similarity between the text generated by the model and the correct text.
Specifically, given a question or the beginning of the unlearning text, the Rouge-L recall is computed by comparing the output
of models with the correct answer or remaining text. A lower Rouge-L value indicates better unlearning performance (Maini
et al., 2024; Shi et al., 2024b).

Probability (F-Prob) evaluates the conditional probability P (answer|question) of the model outputs in the TOFU dataset.
To ensure comparability, this probability is normalized by the length of the output text (Maini et al., 2024).

Membership inference attack (MIA) uses the state-of-the-art Min-K% Prob method for LLMs (Shi et al., 2024a) to detect
whether data in the unlearning set remains part of the training data for the post-unlearning model. A lower probability of the
unlearning set belonging to the training data reflects a more effective unlearning process.

Forget Quality (FQ) quantifies the difference in prediction distributions on the forget set between the post-unlearning
model and a retrained model (fine-tuned on retrained data without exposure to the forget data). This metric assesses the
degree to which the unlearning algorithm eliminates traces of the forget set in the model (Maini et al., 2024).

R-Rouge and R-Prob are also applied to the retain set or holdout set to evaluate the impact of the unlearning algorithm on
the overall model utility. Higher values for these metrics indicate less performance degradation.

T-Rouge calculates the Rouge-L recall of completing sentences in the proposed TRAVIS dataset. Testing on inferred
training data provides a more accurate assessment of the impact of unlearning algorithms on the pre-existing knowledge of
the model. Additionally, TRAVIS is generated without thematic constraints, resulting in a broad coverage of content, which
enables a more comprehensive evaluation of performance.

Model Utility (MU) represents the harmonic mean of the above metrics calculated across multiple retain sets in the TOFU
dataset (Maini et al., 2024), including TRAVIS dataset. It provides an aggregate measure of the model utility.

F.3. Baseline methods

GA (Yao et al., 2023) unlearns target data by optimizing in the opposite direction of gradient descent. This is achieved by
minimizing the negative cross-entropy loss of predicting the next token on the unlearning dataset:

min
θ
− 1

nu

∑
x∈Du

∑
l

− log πθ(x[l+1]|x[:l]). (57)

NPO (Zhang et al., 2024a) is also a gradient ascent-based approach. Compared to GA, the gradient in NPO is scaled by a
regularization term that gradually diminishes over the course of training, alleviating the problem of over-unlearning to some
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extent. The loss objective of NPO is:

2

β

[
log

(
1 +

( ∑
l πθ(x[l+1]|x[:l])∑
l πref(x[l+1]|x[:l])

)β
)]

(58)

Task Vectors (TV) (Ilharco et al., 2023) method manipulates the ability of a pre-trained model to address downstream tasks
through fine-tuning and the arithmetic operation of model parameters. When applied to LLM unlearning, the method enables
the selective removal of knowledge related to a specific dataset Du. Specifically, a pre-trained model πθ is fine-tuned on the
unlearning dataset Du, resulting in a model πθft with enhanced knowledge of Du. The difference between the fine-tuned
parameters and the original parameters, θft − θ, constitutes the task vector for Du. By subtracting this task vector from the
original parameters θ, a modified model is obtained that has unlearned the knowledge from Du.

DPO is a preference optimization approach. For a preference dataset, DPO encourages the model to produce one output
over the other between a pair. In the unlearning scenario, it encourages the model to produce responses yw like ”I don’t
know” instead of generating original sensitive text yl (Zhang et al., 2024a).

SKU (Liu et al., 2024b) is a method based on task vectors. In the fine-tuning process, SKU not only reinforces the target
knowledge into the model, but also eliminates knowledge of retain set from the model, incorporating a utility preservation
objective. Besides, it includes a robustness objective during the fine-tuning process.

EUL incorporates lightweight unlearning layers into the model to enable efficient unlearning. This method explicitly
considers scenarios involving multiple unlearning tasks (Chen & Yang, 2023).

SO-PO and SO-NPO introduce a second-order optimization framework for LLM unlearning, leveraging Hessian matrix
approximations to address the challenges of applying Newton’s method to LLMs (Jia et al., 2024b).

WAGLE identifies model parameters that benefit both unlearning and retaining objectives before training begins, optimizing
only these parameters during the unlearning process. This approach is utilized to minimize the impact of unlearning on
model utility (Jia et al., 2024a).

When applying these methods in continual unlearning scenarios, the learning rate is tuned progressively to mitigate
catastrophic collapse as tasks continue.

G. TRAVIS Dataset
To construct a high-quality text corpus, we adopted the methodology of Membership Inference Attack (MIA) (Yeom et al.,
2018) and applied it to two pre-trained language models, Phi-1.5 and Llama2-7b. The approach began with the generation of
5,000 sentences using the models. Subsequently, the MIA technique was employed to identify 250 candidate sentences with
the highest probabilities from the generated set (Carlini et al., 2021). After deduplication and filtering based on sentence
similarity, the candidate set was further refined. More than 150 high-quality sentences were manually selected to ensure
both diversity and authenticity in the dataset.

To enhance the variety of sentence prefixes and enable the models to process a broader range of contextual information,
we incorporated a large collection of prefix data sourced from the internet following the work of Carlini et al. (2021).
Specifically, we extracted samples from a subset of the Common Crawl dataset, cleaned the data by removing HTML tags
and JavaScript code, and performed deduplication, resulting in approximately 50MB of clean text data. From this corpus,
we randomly selected 5 to 10 context tokens and employed a Top-n sampling strategy to generate sequences based on the
model’s probability distribution. The sequences with the highest likelihood were selected, and sentence lengths were capped
at a maximum of 1024 tokens to ensure relevance and appropriate length.

The MIA methodology was applied next, using the perplexity of each sentence as a measure of training data likelihood.
Perplexity was calculated with the following formula:

P = exp

(
− 1

n

n∑
i=1

log fθ(xi | x1, . . . , xi−1)

)
, (59)

where x1, ..., xn denotes a sequence of tokens. Low perplexity indicates that the model holds high confidence in completing
the sequence.
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However, relying solely on MIA for membership inference introduces potential risks, as the model might assign higher
likelihoods to unremarkable or low-quality samples, such as repeated substrings. To address this issue, we introduced several
quality control mechanisms to ensure the integrity of the generated text. Specifically, we calculated the zlib entropy of each
sample, measured perplexity within a sliding window, and computed the ratio of perplexity before and after lowercasing the
text to assess its complexity and information density. These metrics allowed us to filter out low-quality samples and ensure
that the selected texts exhibited a high degree of linguistic fluency and semantic richness.

During the selection process, samples were ranked according to the three quality metrics, and the top 100 were chosen.
After deduplication, Sentence-BERT was used to compute cosine similarity between sentences, and those with similarity
scores above 0.7 were excluded. Cosine similarity was calculated by:

cos(v1,v2) =
v1 · v2

∥v1∥∥v2∥
, (60)

where v1,v2 denote the embeddings of two sentences. This process yielded approximately 250 diverse and high-quality
sentences. In the final manual filtering step, short, highly repetitive, or logically incoherent sentences were discarded, while
longer substrings with richer semantics and more varied content were retained. The resulting dataset contains more than 150
high-quality sentences per model, meeting our established quality standards. For dataset construction, the first 70% of each
sentence was designated as the prompt, while the remaining 30% served as the ground truth, thus creating the final training
dataset.

This dataset offers two significant advantages. First, it accurately evaluates the impact of unlearning algorithms on the original
knowledge retained by models. This aligns closely with the definition of efficiency in the context of machine unlearning.
Second, the broad thematic coverage of the dataset enables evaluations of model performance across diverse contexts,
ranging from everyday conversations to specialized topics. This diversity not only allows the dataset to comprehensively
assess the language generation capabilities of the model, but also provides insights into its generalization ability when
exposed to different background knowledge. Consequently, the dataset serves as a versatile and reliable foundation for
evaluating model performance in a wide range of scenarios.

Table 4. Parts of examples in TRAVIS dataset (Phi Model)
Phi Model

1

The Concept and Examples Recursion is a powerful programming concept that involves a function calling itself in its
definition. This allows the program to be written in a more concise and elegant way, and provides a elegant solution to
problems that would otherwise require multiple lines of code. For example: def factorial(n): if n == 0: return 1 return n *
factial( n-1 ) print( factroy( 10 ) ) # Prints: 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3628800

2 Bullying is a pervasive problem that affects many people, especially children. It can have serious long-term effects on
mental health, self-esteem, and academic performance.

3 Financial independence is a goal that many individuals aspire to achieve, but the path to attaining it can be challenging. One
of the most effective ways to build financial independence early on is through saving.

4
As the world continues to grapple with the effects of climate change, many are turning to creative solutions to help mitigate
its impact. From art installations that draw attention to environmental issues to community-based initiatives that promote
sustainability, individuals and organizations alike are stepping up to the challenge.

5 Reasons to do exercise regularly: 1.To maintain a healthy weight: Regular exercise helps to burn excess calories and prevent
weight gain.

H. More experimental results
H.1. Mixed dataset.

We argue that the higher the data relevance between unlearning tasks, the more severe the cascading degradation phenomenon.
To evaluate the performance of our method in scenarios with low data relevance in continual unlearning, we conduct
experiments mixing tasks from the MUSE News and WHP datasets. In these experiments, the model is sequentially tasked
to unlearn data from the two datasets, and the results are shown in Figure 5. After completing the first MUSE News task,
the model proceeds to unlearn the second WHP task, during which all methods exhibit a slight decline in model utility.
The decline is less severe compared to unlearning consecutive WHP tasks. Similarly, our method maintains stable model
utility when unlearning unrelated tasks sequentially. When moving to the third task—another MUSE News task—baseline
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Table 5. Parts of examples in TRAVIS dataset (Llama Model)
Llama Model

1 The city of Los Angeles also offers a wide range of public services, including healthcare, education, and transportation, all
of which are critical in maintaining a high quality of life for city residents.

2 There are a few things you can do to make sure you get the best possible experience from your interactions with the Russian
culture and people. 1. Learn as much as you Can:

3 So, if you want to use the power of positive thinking to improve your life, start small and build up gradually. Believe in
yourself and your abilities, and don’t worry about criticism as it’s an integral part of growth.

4
A New York City-based non-profit has been instrumental in fostering greater transparence in the city’s supplementary food
system. This has involved working with foodstores, restaurants, and community organizations to promote greater
understanding and access to healthier foods.

5 The global COVID-19 pandemic has significantly influenced the worldwide popularity of online platforms and digital
services.
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Figure 5. T-Rouge across seven continual unlearning tasks on the mixed dataset of MUSE News and WHP. Different background color
represents tasks from different datasets.

methods experienced significant performance degradation due to the cascading degradation effect initiated by the first task.
In contrast, our method demonstrates its robustness by effectively mitigating this phenomenon and maintaining model utility.

H.2. Experiments on the TOFU dataset

We present maximum and minimum model utility across 5 unlearning tasks in Figure 6. And the maximum F-Rouge is
shown in Table 6, illustrating the performance of the least forgotten task after unlearning. Our proposed method achieves the
lowest F-Rouge, outperforming baseline methods in terms of unlearning performance. Figure 6 compares the ability of
retaining model utility among different methods. For Max MU, the proposed method attains the highest value (0.5574),
followed by WAGLE (0.5486) and SO-NPO (0.5427). Similarly, for Min MU, the proposed method leads with a score of
0.5082, exceeding WAGLE (0.4721) and SO-NPO (0.4503), demonstrating superior retention of utility after unlearning all
tasks. These results validate the proposed approach’s ability to balance effective unlearning and high model utility.

H.3. Experiments on the MUSE News dataset

MUSE News. Figure 7 (a) illustrates the utility and unlearning results on the MUSE News dataset, which exhibits more
severe over-unlearning compared to the TOFU dataset. Specifically, for baseline methods like NPO+RT and GA+RT, the
utility drops to zero during the third or fourth unlearning task. This can be attributed to the nature of the dataset, which
requires verbatim unlearning of textual data rather than conceptual unlearning. Verbatim unlearning poses a greater challenge
and directly disrupts the generative capabilities of the models. Moreover, the initial memorization of the model regarding
the news content is relatively shallow; thus, high intensity and continuous unlearning can easily lead to excessive unlearning.
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Table 6. Max F-Rouge across five unlearning tasks on TOFU dataset for Llama2 model.

Methods NPO+RT GA+RT NPO+KL SO-NPO WAGLE Ours
Max F-Rouge↓ 0.3398 0.3167 0.4538 0.3614 0.4621 0.3067
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Figure 6. Max/Min Model Utility (MU) across five unlearning tasks on TOFU dataset for Llama2
model.

Our method, leveraging entropic soft labels, adaptively adjusts the unlearning intensity based on the prediction probabilities
of the models for each sample. It ensures complete unlearning while dynamically modulating the unlearning intensity and
selecting model parameters to avoid redundant unlearning. As a result, our approach maintains model utility effectively,
with negligible performance degradation after completing four unlearning tasks.
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Figure 7. (a) R-Rouge across four continual unlearning tasks on the MUSE News dataset. (b) T-Rouge across three continual unlearning
tasks on the WHP dataset.
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H.4. Experiments on the WHP dataset

Figure 7 (b) illustrates the T-Rouge performance of various methods across three continual unlearning tasks on the WHP
dataset. T-Rouge measures model utility on the TRAVIS dataset, which includes diverse genres, with higher values of
T-Rouge indicating better retention of general knowledge. The ”Original” baseline, shown as the dashed line, represents the
model’s performance without unlearning. Among the methods, our proposed approach demonstrates superior performance,
maintaining the highest T-Rouge scores across all three tasks, indicating minimal degradation in utility. While competing
methods like WAGLE and SO-NPO exhibit better retention than NPO+RT and GA+RT, they still show significant drops in
performance, especially as tasks progress. As shown in Table 2, our method achieves comparable unlearning performance
as other baselines. The consistently higher T-Rouge scores of the proposed method reflect its ability to balance effective
unlearning with the retention of general knowledge across diverse tasks, surpassing all baseline methods. This highlights its
efficacy in handling challenging continual unlearning scenarios.

H.5. Comparison between continual unlearning and one-time unlearning

To further validate the harmful effect of cascading degradation, we compare the model utility under continual unlearning
and one-time unlearning scenarios in Figure 8. For one-time unlearning, all the data for current and previous unlearning
tasks is jointly used for unlearning, which is only for experimental purposes and unrealistic in practical applications.

The Rouge-F in these two scenarios are aligned for a fair comparison of model utility. As shown in the figure, continual
unlearning results in a significantly more drastic decline in utility, while one-time unlearning results in a mild decrease in
utility as the number of tasks increases. This difference indicates the severe damage caused by cascading degradation in
utility.
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Figure 8. Rouge-F and model utility under two unlearning scenarios.
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