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Abstract

Detecting contradictions in text is essential in001
determining the validity of the literature and002
sources that we consume. Medical corpora are003
riddled with conflicting statements. This is due004
to the large throughput of new studies and the005
difficulty in replicating experiments, such as006
clinical trials. Detecting contradictions in this007
domain is hard since it requires clinical exper-008
tise. In this work, we present a distant supervi-009
sion approach that leverages a medical ontology010
to build a seed of potential clinical contradic-011
tions over 22 million medical abstracts. As a012
result, we automatically build a labeled training013
dataset consisting of paired clinical sentences014
that are grounded in an ontology and represent015
potential medical contradiction. The dataset is016
used to weakly-supervise state-of-the-art deep017
learning models showing significant empirical018
improvements across multiple medical contra-019
diction datasets.020

1 Introduction021

Determining whether a pair of statements is con-022

tradictory is foundational to fields including sci-023

ence, politics, and economics. Detecting that state-024

ments contradict can shed light on fundamental025

issues. For instance, mammography is an integral026

routine in modern cancer risk detection, but there is027

conflicting material about its efficacy (Boyd et al.,028

1984). Recognizing that a certain topic has op-029

posing points of view, signifies that this issue may030

deserve further investigation. Medicine is a particu-031

larly interesting domain for contradiction detection,032

as it is rapidly developing, of high impact, and033

requires an in-depth understanding of the text. Ac-034

cording to the National Library of Medicine, the035

PubMed (Canese and Weis, 2013) database aver-036

aged 900k citations for the years 2018-2021, with037

a quickly growing trajectory (med, 2022). The pub-038

lication of contradictory papers is not uncommon039

in scientific research, as it is part of the process040

of validating or refuting hypotheses and advanc- 041

ing knowledge in a field. A study on high impact 042

clinical research found that 16% of established in- 043

terventions had their outcome refuted (Ioannidis, 044

2005). Extrapolating this to PubMed, over 5 mil- 045

lion articles would disagree with a previous finding. 046

The problem of contradiction detection in text 047

has been studied in the task of natural language 048

inference (NLI). This task was developed to tackle 049

the problem of recognizing whether a pair of sen- 050

tences are contradictory, entailing, or neutral. Deep 051

learning approaches have reached impressive re- 052

sults for this task. Specifically, large models with 053

hundreds of millions of parameters such as De- 054

BERTa (He et al., 2020) and BioELECTRA (raj 055

Kanakarajan et al., 2021), are considered the state- 056

of-the-art (SOTA) for this task. However, in med- 057

ical research, defining and detecting a contradic- 058

tion is more difficult. Sometimes more context is 059

needed to detect contradiction due to the difficulty 060

of the material. Consider the example below: 061

1. “However, in the valsartan group, significant 062

improvements in left ventricular hypertro- 063

phy and microalbuminuria were observed.” 064

2. “Although a bedtime dose of doxazosin can 065

significantly lower the blood pressure, it can 066

also increase left ventricular diameter, thus 067

increasing the risk of congestive heart fail- 068

ure.” 069

Detecting that this pair contradicts requires 070

knowing that improvements in left ventricular hy- 071

pertrophy is a positive outcome, whereas an in- 072

crease [in] left ventricular diameter is negative 073

outcome with regards to heart failure. 074

To tackle natural language understanding tasks 075

using deep learning methods, large datasets are 076

required (Conneau et al., 2017). However, few 077

datasets exist to train such algorithms in the clini- 078

cal contradiction domain. Time and cost of labeling 079

complex medical corpora, could be a potential rea- 080

son for this. The MedNLI dataset (Romanov and 081
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Shivade, 2018) for instance, required the expert082

labeling of 4 clinicians over the course of 6 weeks083
1. Yet, MedNLI is fabricated since each of the clin-084

icians was given a clinical description of a patient085

and came up with a contradicting, entailing, and086

neutral sentence to pair up with that description.087

However, in this work we are interested in natu-088

rally occurring sentences in clinical literature as089

opposed to manually curated texts. Specifically, we090

focus on sentences representing clinical outcomes091

and attempt to identify whether they contradict.092

One of the approaches to overcome the lack of093

large enough data is distant supervision (Mintz094

et al., 2009). Distant supervision is used for train-095

ing machine learning models on a large corpus of096

data without manual annotation. It works by using097

existing knowledge sources (such as a database)098

to automatically label a large amount of data. The099

quality of the labels can be noisy, so the goal is to100

train models that are robust and can still learn mean-101

ingful patterns. We propose a novel methodology102

leveraging distant supervision and a clinical ontol-103

ogy - the Systematized Nomenclature of Medicine104

Clinical Terms (SNOMED-CT or SNOMED for105

short) (Stearns et al., 2001). SNOMED is devel-106

oped by a large and diverse group of medical ex-107

perts (Donnelly et al., 2006) and it contains ex-108

tensive information about clinical terms and their109

relationships. Our methodology uses knowledge110

extracted from SNOMED to classify pairs of “nat-111

urally occurring”, potentially contradictory sen-112

tences. PubMed’s database of medical abstracts113

is our source for naturally occurring sentences.114

We perform empirical evaluation over mul-115

tiple manually labeled clinical contradiction116

datasets. We fine tune SOTA deep learning mod-117

els on the aforementioned ontology-driven created118

dataset. The results demonstrate that the distant-119

supervision-based methodology we propose yields120

statistically significant improvements of the models121

for contradiction detection. The average results of122

9 different models see an improvement on our main123

evaluation set (Section 4.1.1) over previous SOTA.124

Specifically, we find that the improvement is con-125

sistent across both small models and those that are126

considered to be SOTA on NLI tasks, which is the127

closest task to that of contradiction detection.128

The contribution of our work is threefold: (1) We129

present the novel problem of contradiction analysis130

of naturally occurring sentences in clinical data. (2)131

1To access MedNLI, users must be MIMIC-III certified.

We create a clinical contradiction dataset by using 132

distant supervision over a clinical ontology, yield- 133

ing improvements of SOTA deep learning models 134

when fine-tuning on it. (3) We empirically evaluate 135

numerous manually labeled clinical contradiction 136

datasets showing improvements of SOTA models 137

when fine-tuned on the ontology-driven dataset. 138

2 Related Work 139

The field of NLI primarily focuses on textual entail- 140

ment, starting with the RTE challenges proposed 141

by Dagan et al. (2013) and Dagan et al. (2005). 142

The task involves determining if the meaning of 143

one sentence can be inferred from another. Over 144

time, new data and classification criteria have been 145

introduced, including the labeling of contradictions 146

in the third challenge (Giampiccolo et al., 2007). 147

However, the medical domain brings additional 148

challenges requiring clinical expertise. 149

Despite the complexity of medical literature and 150

the reality of contradictions in publications, there 151

is surprisingly little work in this area. Large NLI 152

corpora contain relatively easy contradiction pairs, 153

partly due to the cost of annotating complex con- 154

tradictions. The contradiction is often a negation 155

through words like ‘not’. An example from a large 156

NLI corpus, MultiNLI (Williams et al., 2017) is: 157

1. “Met my first girlfriend that way.” 158

2. “I didn’t meet my first girlfriend until later.” 159

Scientific fact-checking is a related task, where 160

a claim is verified against evidence (Wadden et al., 161

2020; Sarrouti et al., 2021). The work in this field 162

does not deal with direct contradiction detection 163

between two pairs of naturally occurring sentences 164

in medical literature, but rather a popular claim 165

which is justified by evidence coming from a medi- 166

cal source. In the case of (Kotonya and Toni, 2020) 167

the health data comes from popular sources of me- 168

dia such as the Associated Press and Reuters News, 169

as opposed to medical literature. 170

Alamri and Stevenson (2016) developed a 171

dataset labeled for contradictory research claims in 172

abstracts related to cardiovascular medicine. This 173

corpus has complex sentence-pairings and is an- 174

notated by experts in the field. There are works 175

which address contradiction of a clinical query and 176

a claim. Given a sentence and a question, Taw- 177

fik and Spruit (2018) use a combination of hand- 178

crafted features to build a classifier, whereas (Yazi 179

et al., 2021) use pure deep neural networks (DNN). 180

Unlike these approaches, we focus on classifying 181
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any given pair of medical sentences representing a182

clinical outcome. To our knowledge, no work ad-183

dresses contradiction detection between naturally184

occurring sentences in clinical literature.185

Following the distant supervision work of Mintz186

et al., Nguyen and Moschitti extended it to larger187

knowledge bases like YAGO. Since then, distantly-188

supervised relation extraction shifted into improv-189

ing performance through neural networks (Zeng190

et al., 2015; Zhang et al., 2019). We propose to191

leverage distant supervision for the task of identify-192

ing contradictions between clinical sentence-pairs193

representing clinical outcomes. This is done by194

weakly-supervising SOTA deep learning models195

during fine-tuning and using the relational knowl-196

edge of a clinical ontology. Unlike common dis-197

tant supervision approaches (Smirnova and Cudré-198

Mauroux, 2018; Purver and Battersby, 2012), we199

have unknown relation labels. Instead, we use200

the structure and attributes of a clinical ontol-201

ogy to infer whether terms contradict. In addi-202

tion, our setup provides positive and negative term-203

relationships, unlike the classic distant supervision204

models (Smirnova and Cudré-Mauroux, 2018). To205

our knowledge, we are first to use distant super-206

vision for contradiction detection in the clinical207

realm.208

3 Methods209

We aim to create a model for classifying whether210

clinical outcomes contradict. We focus on nontriv-211

ial examples requiring deep subject understanding.212

This model brings awareness to conflicting find-213

ings in medicine. Locating disagreement can elicit214

further investigations or general consciousness.215

3.1 SNOMED CT Ontology216

SNOMED is an ontology containing over 350,000217

clinical terms (Stearns et al., 2001). The termi-218

nology has information about a plethora of health219

concepts, containing useful attributes such as rela-220

tionships to other terms and interpretations. The221

structure of SNOMED allows us to group terms222

based on their relationships. We hypothesize that223

using this structure coupled with synonyms and224

antonyms, will enable us to create a corpora of con-225

tradicting and non-contradicting clinical terms. We226

use the 2022 SNOMED version in this work.227

3.1.1 SNOMED Node Attributes228

Each term in the SNOMED ontology is a node in229

a tree-like structure. A subset of these nodes have230

useful attributes which we use to determine their 231

relationships. Each of these nodes belongs to a 232

group parented by the group root. In addition, each 233

node has a simple interpretation which is a defined 234

attribute within the ontology. In Figure 1, the group 235

consists of nodes describing the group root cardiac 236

output. The green (right) node, increased cardiac 237

output, has the interpretation - increased. 238

We claim that groupings of terms with these at- 239

tributes have a logical connection. Pairing up child 240

nodes yields a combination of contradicting and 241

non-contradicting pairs of phrases. Determining 242

the relationship between a pair of SNOMED terms 243

is done partially through comparing their interpre- 244

tations. In Figure 1 the left node has the interpre- 245

tation decreased, whereas the right node has the 246

interpretation increased. We assign the pair an at- 247

tribute label (Ai,j) of contradiction. In Algorithm 248

1, Ai,j is assigned on Line 12. 249

The size of the groupings can get large. For in- 250

stance, the group root Cardiac function has 275 251

children. Since cardiac function is very general, its 252

child terms may not be related - for example the 253

terms aortic valve regurgitation due to dissection 254

and dynamic subaortic stenosis. Both terms are 255

impairments of cardiac function, but it would not 256

be fair to claim that the two are related outcomes. 257

Though these large groupings can yield many pair- 258

ings of phrases, we see why they may also be less 259

accurate. Some of this testing is in Section 5.2, 260

where we investigate the effects of group sizes. 261

Below are pairings of contradictions in various 262

medical domains that our methodology yields: 263

• suppressed urine secretion↔ polyuria 264

• elevation of SaO2↔ oxygen saturation within 265

reference range 266

• joint stable↔ chronic instability of joint 267

3.1.2 Synonyms 268

After exploiting ontological structure, we con- 269

sider linguistic elements. Although synonyms 270

and antonyms do not always indicate whether se- 271

quences of words are contradictory, they provide a 272

strong signal in our structural construction. Since 273

clinical terms are already grouped, we know that 274

all the terms in a grouping share a context, thereby 275

allowing the use of simpler indicators to determine 276

their relationship. We word-tokenize each clini- 277

cal phrase, removing the intersection of the sets 278

of tokens, leaving each with its unique tokens. A 279

detailed visualization is found in Appendix B.1. 280
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Algorithm 1 SNOMED Traversal
1: function TRAVERSE(root)
2: for n ∈ root.children do
3: if n.num childs ≤ group size
4: pairs← DET RELATION(n)
5: end if
6: end for
7: return pairs
8: end function

9: function DET RELATION(n)
10: pairs← {}
11: for ci, cj ∈ n.child pairs do
12: Ai,j ← GET ATTR LABEL(ci, cj)
13: Si,j ← GET SYN LABEL(ci, cj)
14: labeli,j ← Ai,j

15: if Si,j = contra or Ai,j = contra
16: labeli,j ← contra
17: end if
18: pairs← pairs ∪ {(labeli,j , ci, cj)}
19: end for
20: return pairs
21: end function

22: SNOMED ← TRAVERSE(root)
23: FINETUNE(Model, SNOMED)

3.1.3 Combining Attributes and Synonyms281

To optimally combine Ai,j and Si,j to form a final282

labeli,j , we build a validation set of the publicly283

available SNOMED term-pairs. Two human anno-284

tators with domain knowledge in the field labeled285

149 SNOMED phrase-pairs - 70 of which were286

contradictory and 79 as non-contradictory. More287

details can be found in Appendix A.1. We find288

that when Ai,j indicates contradiction, then it’s289

highly likely that labeli,j is a contradiction. The290

same is true for Si,j . We define the explicit logic291

in Lines 15 through 17. We reach 79% accuracy292

through using this heuristic on the human-labeled293

SNOMED term-pairs with a Cohen’s kappa coeffi-294

cient of 0.853 for inter-annotator agreement.295

3.2 Ontology-Driven Distant Supervision296

Using the relational knowledge extracted from297

SNOMED, we weakly-supervise naturally occur-298

ring sentences in PubMed to build our SNOMED299

dataset. We fine-tune on this dataset to achieve300

significant improvements over existing baselines.301

Algorithm 1 summarizes the procedure. We use302

the 2022 PubMed version in this work. We search 303

PubMed for sentences containing the phrase-pairs 304

discussed in Section 3.1, resulting in a corpus of 305

pairs of sentences. The sentence-pairs are then la- 306

beled through distant supervision as explained be- 307

low. For a given pair of SNOMED terms (p1, p2), 308

we label sentences (s1, s2) as formalized in Eq.1, 309

where label ∈ {contradiction, non-contradiction}. 310

(p1 ∈ s1) ∧ (p2 ∈ s2) ∧ ((p1, p2) ∈ label) (1) 311

The assumption in this methodology is that if 312

outcomes contradict, then the sentence pair is likely 313

also contradictory. However, this ignores the possi- 314

bility that there may be differing interventions or 315

participants. More concretely, pi may be a subset 316

of si, so there may be information loss (statistics on 317

average sizes of si are reported in Table 2). Given 318

that the ultimate purpose of the SNOMED dataset 319

is to increase the amount of training or fine-tuning 320

data of a model, we find that this introduced noise 321

is acceptable and still yields positive results. 322

Figure 1: The group with Cardiac output as its root. The
children depicted have contradicting interpretations.

3.3 Filtration 323

Naively, we pair-up any sentences satisfying Eq. 324

1, independent of whether they share context. Al- 325

though two sentences contain their respective clini- 326

cal SNOMED terms, they may be unrelated. The 327

sentence-pair below exhibits this: 328

1. “The present results suggest that the upstream 329

changes in blood flow are transmitted by the 330

velocity pulse faster than by the pressure 331

pulse in the microvasculature.” 332

2. “His chest wall was tender and his pulse slow 333

but the remainder of his physical examination 334

was normal.” 335

The bolded clinical terms are central to the meaning 336

of the sentences and are independently contradic- 337

tory. However, when placed in context they may 338

be less relevant to each other as in the example 339

above. We experiment through imposing stricter 340

criteria for filtering sentence matches - namely 341
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MeSH (Medical Subject Headings) terms criteria342

(Lipscomb, 2000) and cosine similarity criteria.343

MeSH terms categorize articles within PubMed344

and come from 2022 PubMed release. We hypothe-345

size that sentences drawn from articles with related346

MeSH terms, likely discuss the same topic. Eq.347

2 is our formulation for filtering via MeSH terms.348

MeSHi and MeSHj are the sets of MeSH terms349

for articles containing senti and sentj respectively.350

Let t be a chosen threshold.351

1A :=

{
1 if |MeSHi∪MeSHj |

min(|MeSHi|,|MeSHj |) ≥ t ,

0 otherwise
(2)352

MeSH terms are powerful, but not perfect. The353

following sentence-pair achieves a score of 0.4 per354

the inequality in Eq. 2.355

1. “In dogs challenged with endotoxin, the inhi-356

bition of nitric oxide production decreased357

cardiac index and did not improve survival.”358

2. “Intra-aortic balloon pumping increased car-359

diac index and aortic distensibility by 24%360

and 30%, respectively, and reduced myocar-361

dial oxygen demand by 31% (P < .001 for362

all alterations).”363

Despite overlap in MeSH terms, they are very dif-364

ferent - one discusses dogs and the other humans.365

The second filtration method measures the co-366

sine similarity between one-hot vectors. Topically367

related sentences should have a higher one-hot vec-368

tor cosine similarity. Let oi and oj be the respective369

one-hot vectors of senti and sentj . Vector lengths370

are equal to the number of unique words spanning371

the sentence-pair. We compute the similarities be-372

tween the vectors as shown in Eq. 3. The dog373

example above, yields a similarity score of 0.2.374

1A :=

{
1 if cosine(oi,oj) ≥ t ,

0 otherwise
(3)375

We experiment with t, ultimately choosing t =376

0.35 based on an external validation set.377

4 Empirical Evaluation378

In this section we discuss the medical corpora used379

in our evaluation of 9 different models.380

4.1 Evaluation Datasets381

4.1.1 Cardiology Dataset382

Due to the difficulty of labeling medical data, there383

are few datasets labeled for medical contradictions.384

To evaluate the SNOMED dataset quality, we tweak385

ManConCorpus (Alamri and Stevenson, 2016), a386

Table 1: Cardiology Dataset Breakdown

Split Total Contra Non-Contra

Train 1347 571 776
Dev 198 100 98
Test 227 55 172

corpus of potentially contradictory cardiovascular 387

claims. The corpus consists of question-claim pairs. 388

Each question has ‘yes’, ‘no’ claims. The claims 389

naturally occur in PubMed and the questions are 390

generated by experts. We convert ManConCorpus 391

by pairing up claims, since we are strictly interested 392

in naturally occurring sentences from PubMed. A 393

pair is labeled as contradictory if each constituent 394

claim answers the question differently. We coin 395

this dataset as Cardio (see Table 1 for details). 396

4.1.2 Hard Cardiology Dataset 397

Through our analysis, we find that models tend to 398

classify sentence-pairs as contradictory if negation 399

words appear. For example: 400

1. “Our results indicate that atorvastatin therapy 401

significantly improves BP control in hyperlipi- 402

demic hypertensive patients.” 403

2. “Administration of a statin in hypertensive pa- 404

tients in whom blood pressure is effectively re- 405

duced by concomitant antihypertensive treat- 406

ment does not have an additional blood pres- 407

sure lowering effect.” 408

We construct a version of Cardio through removing 409

negation words. As expected, this version exposes 410

some weaknesses of the models, since negation 411

words are not deemed as important. 412

4.1.3 MedNLI Datasets 413

Inspired by SNLI (Bowman et al., 2015), MedNLI 414

was created with a focus on the clinical domain 415

(Romanov and Shivade, 2018). The dataset was 416

curated over the course of six weeks, borrowing the 417

time of four doctors. MedNLI consists of sentence- 418

pairs which are grouped into triples - a contradic- 419

tory, entailing, and neutral pair. The sentences 420

are not naturally occurring in existing medical lit- 421

erature. The premise is shared across the three 422

pairs, but each have a different hypothesis, yield- 423

ing a different label. Since MedNLI deals with a 424

3-class problem, we relabel the dataset by making 425

{entailment, neutral} map to non-contradiction. 426

Our focus is to show that the SNOMED dataset, 427

which requires no expert intervention or expenses, 428

is as powerful as the curated MedNLI dataset. 429
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We find that the baseline on the relabeled version430

of MedNLI gives high results (Appendix E), so431

adding additional data makes little change. The432

largest labeled datasets containing naturally occur-433

ring sentences are at most hundreds of sentences.434

Therefore, we randomly sample 100 instances from435

MedNLI’s train-split and report results on that.436

To explore fields outside of cardiology, we cre-437

ate versions of MedNLI focused on gynecology438

(GN), endocrinology (Endo), obstetrics (OB), and439

surgery. To filter the data, we use the help of the440

same annotator introduced in Section 3.1.3. We441

sample from the train-split in the same fashion as442

explained above. Note that these datasets also have443

the same 2-class label structure as explained in444

Section 4.1.3 (see details in Appendix A.2).445

4.2 SNOMED Dataset Analysis446

Table 2 presents general statistics of the SNOMED447

dataset used for weak supervision. Specifically,448

the total number of articles in SNOMED analyzed449

and the number of sentences in PubMed contain-450

ing a term from the SNOMED ontology. We now451

analyze difference noise sources of the dataset.452

4.2.1 Phrase Matching Noise453

The proposed phrase-matching introduces noise454

when pi is not central to the meaning of si. To455

approximate this noise, we sample 100 sentences456

from the SNOMED dataset. A human annotator457

was asked to evaluate if pi contributes to the central458

message of si. We observed a 91% accuracy.459

4.2.2 SNOMED Labeling Noise460

The automatic nature of the SNOMED dataset461

labeling may also introduce noise. Similar to462

(Mintz et al., 2009), we sample 100 instances463

from the dataset and manually label the sentence-464

pairs. The annotator is told to label each sentence465

pair as containing contradictory elements or non-466

contradictory. This gold label is compared to the467

distantly-supervised label. We extract both positive468

and negative relations from our ontology, thus we469

report accuracy to indicate the effectiveness of our470

methodology. We observe 82% accuracy. This is471

higher than the noise analysis of other weakly su-472

pervised datasets (Mintz et al., 2009), likely due to473

increased amount of information in ontologies.474

4.3 Baseline Models475

Yazi et al. (2021) achieve the SOTA on the Man-476

ConCorpus, which we turn into the Cardio corpus477

Table 2: SNOMED Dataset

Sentence length:
NLTK token count 25.1
BioGPT token count 29.4
BioELECTRA token count 30.7
BERT-Base token count 36.8
Total Dataset Statistics:
SNOMED term matches in PubMed 4.99M
Number of articles 2.87M
Number of qualifying pairs in SNOMED 0.63M

as explained in Section 4.1.1. They concatenate 478

BERT embeddings for their question and claim, 479

feeding this input into a multi-layer feed forward 480

network. Our baselines do not use a siamese net- 481

work, instead we feed in our sentence-pairs as 482

input into the network. Our evaluation consists 483

of 9 baseline models and comparing their perfor- 484

mance when they are fine-tuned on the SNOMED 485

dataset versus without. The task of classifying 486

contradiction is most similar to NLI, so some of 487

these baseline models are those that top leader- 488

boards for the MNLI and MedNLI datasets - 489

namely DeBERTaV3-Base (He et al., 2021), AL- 490

BERT (Lan et al., 2019), and BioELECTRA (raj 491

Kanakarajan et al., 2021). ELECTRA (Clark et al., 492

2020) and BERT (Devlin et al., 2018) are also 493

included as they are generally high-performing 494

architectures. In addition, we are interested in 495

seeing the performance of small models. They 496

require less computing resources and may allow 497

the SNOMED dataset to have a stronger influence 498

during fine-tuning. Thus, we also include BERT- 499

Small (Turc et al., 2019), ELECTRA-Small, and 500

DeBERTaV3-Small (He et al., 2021). Finally, we 501

include BioGPT (Luo et al., 2022) for complete- 502

ness, as it has a decoder architecture and is also 503

pre-trained on biological data. Table 3 contains a 504

breakdown of the number of parameters per model. 505

All the baseline models are pre-trained on large 506

corpora. The high-level architecture of the mod- 507

els is the same, so we use the functionalities of 508

HuggingFace (Wolf et al., 2019) and the Sentence- 509

Transformer library (Reimers and Gurevych, 2019). 510

We add an uninitialized binary classification head 511

to the model body. All hyperparameters come from 512

the Sentence-Transformer library, except for train- 513

ing batch size - 8 for models above 30M parameters 514

and 16 for models under 30M parameters. 515

Each baseline is tuned with the SNOMED 516

dataset. The SNOMED dataset we create uses a 517

group size of 25, sampling 10 sentence-pairs from 518
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PubMed for every SNOMED term-pair. These519

hyperparameters are determined through ablation520

tests on the Cardio validation set.521

5 Empirical Results522

We explore the significance of the SNOMED523

dataset we create via our methodology (Section524

3) and gather insights through ablation tests.525

5.1 Main Result526

Table 3 summarizes our main findings. We com-527

pare the performance of the baseline algorithms528

when fine-tuned over the original training split of529

each dataset (marked as Base) versus tuning using530

both the novel SNOMED dataset and Base (marked531

as Ours). We measure the area under the ROC532

curve of each baseline, and verify statistical signifi-533

cance through Delong’s test (DeLong et al., 1988).534

Significant differences are marked with an asterisk535

(*). We observe that across all dataset the weak536

supervision over the SNOMED dataset reached su-537

perior results compared to fine tuning only on the538

original dataset and outperforms the SOTA model539

for contradiction detection (Yazi et al., 2021).540

Cardio is a relatively difficult dataset of poten-541

tially contradicting, naturally occurring pairs in542

PubMed. The sentences are complex and require543

a deep medical understanding. We observe that544

fine tuning on the SNOMED dataset improves the545

baselines for 8 out of 9 models we evaluate.546

The performance on Hard-Cardio drops rela-547

tively to Cardio as expected. This verifies our hy-548

pothesis that removing negations makes the prob-549

lem more difficult. Further, 8 models fine-tuned on550

SNOMED outperform their baseline counterparts.551

We observe that even on synthetically created552

common datasets, such as MedNLI sentences, our553

methodology improves over all baselines for this554

corpus. We observe a similar trend when focus-555

ing on various sub-specialties. The improvements556

are consistent across almost all models when fine-557

tuning on SNOMED. This enables us to learn of the558

scalability of our methods for clinical contradiction559

detection through different fields within healthcare.560

Analyzing our findings further, we see that there561

is a trend that smaller models are generally more562

affected by fine-tuning on SNOMED. All of the563

evaluation datasets improve over the baseline on564

every model under 30 million parameters.565

5.2 Ablation Studies 566

Below we review ablation studies to find the impact 567

of various system parameters on performance. 568

5.2.1 Group and Sentence Samples Size 569

We explain SNOMED term grouping in Section 3.1 570

and illustrate in Figure 1. Group size and pairing 571

quality may be closely related. Larger groupings 572

tend to have more terms which are less related to 573

each other as explained in Section 3.1.1. Thus, we 574

experiment with SNOMED datasets based on terms 575

belonging to groups of at most 6, 12, 25, and 50. 576

During dataset creation, we choose how many 577

sentence-pairs to sample per SNOMED pairing. In 578

Figure 2, each line with a different color/marker 579

represents a different number of samples averaged 580

across all 8 models. The ablations we perform 581

include 10, 25, and 50 samples per pairing. 582

Figure 2 shows 10 samples outperforms higher 583

sampling numbers for almost all group numbers. 584

Increased sampling results in over-saturation of 585

certain term-pairs. This may result in overfitting. 586

The best group size is 25 for small models and 587

12 for large models. These numbers strike the 588

balance of creating a large amount of SNOMED 589

phrase-pairings, while keeping their relationships 590

accurate (as discussed in Section 3.1.1). Smaller 591

models may benefit more from larger group sizes, 592

because they have a more limited base knowledge 593

than those of large models. 594

Figure 2: Small and large model performance across group
sizes and sample numbers. Reported on Cardio.

5.2.2 Filtering Based on Similarity 595

To increase the chances that sentences are related, 596

when sampling phrases from PubMed, we exper- 597

iment with keeping pairs that exhibit high MeSH 598

term or cosine similarity as explained in Section 599
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Table 3: Performance of Models tuned with SNOMED vs. Without

Algorithm (Number of Params)

Dataset Method ALBERT
Base
(11.7M)

ELECTRA
Small
(13.5M)

BERT
Small
(28.8M)

ELECTRA
Base
(109.5M)

BERT
Base
(109.5M)

Bio-
ELECTRA
(109.5M)

DeBERTa
Small
(141.9M)

DeBERTa
Base
(184.4M)

Bio—
GPT
(346.8M)

(Yazi
et al.,
2021)

Cardio Base 0.911 0.877 0.858 0.863 0.914 0.880 0.885 0.861 0.858 0.858
Ours 0.928 0.947* 0.958* 0.892 0.878 0.925 0.931* 0.942* 0.930* -

Hard- Base 0.876 0.785 0.717 0.847 0.803 0.850 0.842 0.845 0.762 0.687
Cardio Ours 0.925* 0.853* 0.794* 0.873 0.791 0.925* 0.917* 0.936* 0.871* -

MedNLI- Base 0.609 0.559 0.587 0.602 0.752 0.585 0.581 0.704 0.816 0.518
General Ours 0.817* 0.721* 0.718* 0.791* 0.816* 0.820* 0.735* 0.878* 0.850 -

MedNLI- Base 0.749 0.542 0.553 0.600 0.759 0.597 0.589 0.672 0.840 0.557
Cardio Ours 0.808 0.648* 0.692* 0.785* 0.794 0.834* 0.777* 0.864* 0.833 -

MedNLI- Base 0.492 0.533 0.600 0.525 0.575 0.558 0.592 0.625 0.583 0.508
GYN Ours 0.608 0.617 0.767 0.758 0.792 0.808 0.683 0.825 0.783 -

MedNLI- Base 0.698 0.525 0.567 0.584 0.639 0.601 0.522 0.601 0.840 0.560
Endo Ours 0.860* 0.690 0.725 0.793* 0.867* 0.860* 0.852* 0.883* 0.878 -

MedNLI- Base 0.532 0.502 0.513 0.505 0.557 0.549 0.502 0.579 0.507 0.505
OB Ours 0.616 0.542 0.581 0.667 0.625 0.702* 0.618 0.740* 0.630 -

MedNLI- Base 0.708 0.502 0.555 0.681 0.842 0.669 0.576 0.691 0.925 0.602
Surgery Ours 0.892* 0.668 0.807* 0.912* 0.903 0.925* 0.808* 0.884* 0.940 -

3.2. Figure 3 shows the relationship between the fil-600

tration methods discussed above. As a continuation601

of the ablation visualized in Figure 2, we fix the602

number of samples to be 10 and the group size to be603

25. The cosine methodology outperforms both the604

naive version (no filtering) and MeSH. Although605

MeSH terms are useful, it is possible that since they606

are tagged on an article-level, they cannot provide607

the same topic granularity as the one-hot vectors.608

Figure 3: Performance across filtration methods. Number of
samples is 10 and group size is 25. Reported on Cardio.

6 Conclusions609

Contradiction detection is central to many fields,610

but is especially important in medicine due to hu-611

man impact. With the rapid growth of the field, clin-612

ical research is exploding with findings as demon-613

strated by the growth of PubMed. Although contra-614

dictions are a subfield of NLI, there is less explo- 615

ration in the clinical domain. Often, contradictions 616

within medicine are more complex than other fields 617

due to the need of additional context and domain 618

knowledge. Labeling datasets which produce high 619

results with deep learning models are costly. 620

We introduce a novel methodology of using a 621

clinical ontology to weakly-supervise the creation 622

of a contradiction dataset with naturally occurring 623

sentences. We coin it the SNOMED dataset. The 624

empirical results suggest that fine-tuning on the 625

SNOMED dataset results in consistent improve- 626

ment across SOTA models over diverse evaluation 627

datasets spanning multiple medical specialties. We 628

show that a balance exists between term group size 629

and the number of sentences sampled from PubMed 630

per pairing. In addition, we find that we can further 631

improve results through filtering which PubMed 632

sentences we include in our dataset. 633

For future exploration we suggest investigating 634

more robust sentence filtration methods, such as 635

topic modeling or sentence embedding similarity. 636

Looking into how other clinical ontologies can be 637

paired with SNOMED may also be fruitful. 638

This methodology is limited to SNOMED terms, 639

many of which do not appear within PubMed. Due 640

to the evolving nature of knowledge bases, termi- 641

nology and information changes, potentially alter- 642

ing relations between terms. Finally, the structure 643

we extract from the clinical ontology is not ground- 644

truth, yielding noise during dataset creation. 645
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Ethical Considerations646

Whenever working within the clinical domain, eth-647

ical considerations are crucial. The data that we648

work with is all rooted in already publicly available649

corpora and PubMed. To the best of our knowledge650

the data we use does not contain any personal in-651

formation of any humans involved in clinical trials.652

There is a potential risk of over representing com-653

mon diseases and outcomes in our dataset, thereby654

not including enough data about other outcomes.655
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A Annotation 817

As mentioned in Section 3.1.3, we work with an- 818

notators with domain knowledge. The annotators 819

were used due to their expertise in the field. 820

A.1 SNOMED Term-Pairs 821

The annotators labeled 149 SNOMED term-pairs 822

as either contradictory or non-contradictory. They 823

were provided with a list of pairs, without any ad- 824

ditional information about the ontological structure 825

they came from. This was done in order to preserve 826

fairness and integrity during the labeling process. 827

The instructions were to come up with a binary 828

label for each of the pairs. 829

A.2 Filtering MedNLI 830

A human annotator also helped with coming up 831

with a list of sub-words which served as indicators 832

for particular fields of medicine. For example, the 833

sub-words vulv and gyno, are indicative of gyne- 834

cology. These word lists were used to create the 835

variations of MedNLI discussed in Section 4.1.3. 836

You can find the lists of words in the code that is 837

released with the paper. 838

B Additional Methodology Details 839

B.1 Synonym Extraction 840

Synonym extraction is a part of our methodology 841

which is explained in Section 3.1.2. Figure 4 pro- 842

vides a depiction of this for the clinical terms short- 843

ened p wave and prolonged p wave. The respective 844

unique tokens are shortened and prolonged. Since 845

the unique tokens are antonyms, the synonym label 846

for the pair is a contradiction. In Algorithm 1, the 847
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Table 4: Cardio Dataset Additional Details

Sentence length:
NLTK token count 26.7
BioGPT token count 30.6
BioELECTRA token count 31.8
BERT-Base token count 37.2

Table 5: MedNLI Additional Details

Sentence length:
NLTK token count 13.2
BioGPT token count 16.3
BioELECTRA token count 17.1
BERT-Base token count 19.1

synonym label (Si,j) is assigned on Line 13. Sim-848

ilarly, if the respective tokens are synonyms, then849

Si,j would be a non-contradiction.850

Figure 4: The terms shortened p wave and prolonged
p wave are simplified to just shortened and prolonged
after their common words are removed. The remaining
words are antonyms.

C Additional Dataset Details851

We include some additional details to the break-852

down of the evaluation datasets. In particular, re-853

garding the token lengths of the datasets. In Ta-854

ble 2 we include the sentence length breakdown855

according to various tokenizers of the SNOMED856

dataset. In the appendix we also include the break857

down of the Cardio dataset as well as the MedNLI858

dataset (Tables 4 and 5 respectively). Although859

our SNOMED dataset and Cardio dataset contain860

roughly the same number of tokens per sentence,861

the MedNLI dataset contains roughly half the num-862

ber of tokens per sentence. This may serve as an863

indicator to the decreased difficulty of MedNLI as864

well as evidence that that sentences are not natu-865

rally occurring.866

D SNOMED Dataset Examples 867

We include several randomly sampled examples 868

from the SNOMED dataset. The data is also pub- 869

licly available. 870

D.1 Contradiction Examples 871

Example: 872

Sentence 1: the plasma cck and luminal 873

content of lcrf were measured by spe- 874

cific radioimmunoassays.;bile-pancreatic 875

juice diversion significantly increased 876

pancreatic secretion plasma cck and lcrf 877

levels. 878

Sentence 2: blockade of the cck receptor 879

results in decreased pancreatic secretion 880

and atrophy. 881

Example: 882

Sentence 1: although the mutant does not 883

swim still it is able to move and perform 884

photobehavior. 885

Sentence 2: whereas the chev mutants 886

still produced both types of flagella and 887

were able to swim and swarm. 888

D.2 Non-Contradiction Examples 889

Example 890

Sentence 1: computed tomography (ct) 891

scans showed bilateral contracted kid- 892

neys with a mass projecting from the 893

lower pole of the right kidney. 894

Sentence 2: ultrasonography and com- 895

puted tomography revealed a masslike 896

expansion involving the upper pole of an 897

otherwise small right kidney. 898

Example 899

Sentence 1: hearing loss tinnitus hyper- 900

acusis and difficulty hearing in noise re- 901

main persistent and in some cases pro- 902

gressive complaints for patients. 903

Sentence 2: chief complaints were long- 904

standing localized pain and hearing diffi- 905

culty. 906
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E Full MedNLI Dataset907

For completeness, we also report results on the full908

MedNLI dataset. Results can be see in Table 6.909

Notably, there are no statistically significant results.910

Although fine-tuning with the SNOMED dataset911

yields better results in majority of the models, we912

see that results are roughly the same. Therefore,913

we hypothesize that there is over-saturation which914

occurs at this stage.915
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Table 6: Performance of Models tuned with SNOMED vs. Without

Algorithm (Number of Params)

Dataset Method ALBERT
Base
(11.7M)

ELECTRA
Small
(13.5M)

BERT
Small
(28.8M)

ELECTRA
Base
(109.5M)

BERT
Base
(109.5M)

Bio-
ELECTRA
(109.5M)

DeBERTa
Small
(141.9M)

DeBERTa
Base
(184.4M)

Bio—
GPT
(346.8M)

(Yazi
et al.,
2021)

MedNLI Base 0.946 0.934 0.936 0.962 0.951 0.973 0.968 0.977 0.962 0.934
Ours 0.951 0.934 0.933 0.962 0.952 0.973 0.966 0.971 0.961 -
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