Under review as a conference paper at ICLR 2026

MIND YOUR ENTROPY: FROM MAXIMUM ENTROPY TO
TRAJECTORY ENTROPY-CONSTRAINED RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Maximum entropy has become a mainstream off-policy reinforcement learning
(RL) framework for balancing exploitation and exploration. However, two bot-
tlenecks still limit further performance improvement: (1) non-stationary Q-value
estimation caused by jointly injecting entropy and updating its weighting parameter,
i.e., temperature; and (2) short-sighted local entropy tuning that adjusts temper-
ature only according to the current single-step entropy, without considering the
effect of cumulative entropy over time. In this paper, we extend maximum entropy
framework by proposing a trajectory entropy-constrained reinforcement learning
(TECRL) framework to address these two challenges. Within this framework, we
first separately learn two Q-functions, one associated with reward and the other
with entropy, ensuring clean and stable value targets unaffected by temperature
updates. Then, the dedicated entropy Q-function, explicitly quantifying the ex-
pected cumulative entropy, enables us to enforce a trajectory entropy constraint and
consequently control the policy’s long-term stochasticity. Building on this TECRL
framework, we develop a practical off-policy algorithm, DSAC-E, by extending
the state-of-the-art distributional soft actor-critic with three refinements (DSAC-T).
Empirical results on the OpenAl Gym benchmark demonstrate that our DSAC-E
can achieve higher returns and better stability.

1 INTRODUCTION

Balancing exploration and exploitation remains a central challenge in reinforcement learning
(RL) (Sutton & Barto, 2018; Li, 2023). To address this, off-policy methods have leveraged the
maximum entropy principle, which encourages agents to act as randomly as possible while still
optimizing for high returns (Wang et al., 2022; Haarnoja et al., 2017). By augmenting the objective
with a temperature-weighted entropy term, algorithms like Soft Actor-Critic (SAC) (Haarnoja et al.,
2018a) and its distributional variant DSAC (Duan et al., 2021; 2025) have achieved state-of-the-art
performance on continuous control benchmarks like MuJoCo, proving to be highly effective and
robust (Eysenbach & Levine, 2022).

However, a fixed temperature parameter can lead to a policy that is either excessively stochastic or
unnecessarily deterministic (Rawlik et al., 2012). This is because a single temperature value cannot
optimally balance exploration and exploitation across all phases of training; a high temperature may
hinder convergence, while a low temperature can lead to premature exploitation of a suboptimal
solution (Fox et al., 2016). To mitigate this issue, modern maximum entropy RL incorporates an
automated temperature adjustment mechanism (Haarnoja et al., 2018b). Using the policy’s current
per-step entropy as a feedback signal, this mechanism dynamically tunes the temperature throughout
training, aligning it with a predefined target. Therefore, it ensures that a desired level of stochasticity
is maintained across all situations (Hazan et al., 2019).

Despite the remarkable empirical success, maximum entropy methods still face two critical bottle-
necks that hinder further progress. (1) The first issue is non-stationary Q-value estimation, which
stems from the tight coupling of reward and entropy (Schulman et al., 2017a). Since the temperature
parameter is updated simultaneously, the injected temperature-weighted entropy term is directly
altering the Q-value targets, causing them to become non-stationary. This process can destabilize
value learning and ultimately undermine policy optimization (Lillicrap et al., 2016). We acknowledge
that the bootstrapping update mechanism of Q-values contributes significantly to the non-stationarity

Under review as a conference paper at ICLR 2026

in RL. In this context, we highlight that the coupling of reward and entropy is another crucial con-
tributing factor, and our method can effectively address and eliminate this factor. (2) Second, and
perhaps more fundamentally, while some works have explored constraining entropy (increase the
temperature if the entropy at the current step falls below a target value, and decrease it otherwise), they
all suffer from short-sighted local entropy tuning (Haarnoja et al., 2018b; Duan et al., 2021; 2025).
By regulating only the local current-step entropy, these methods neglect the long-term influence of
stochasticity over entire trajectories. More critically, why we say they are short-sighted is that they
enforce a uniform entropy target for each current state, as if every situation demands the same degree
of randomness. This one-size-fits-all assumption is overly restrictive and fails to account for the
inherent variability in the dynamics of different states. Consequently, the actor update process is
compromised, as it neglects the fact that effective exploration should take into consideration both the
underlying system dynamics and the agent’s learning progress (Tokic, 2010; Sun et al., 2022). This
fundamental disconnect ignores the varying exploration needs of different situations.

The observed two bottlenecks naturally raise a question: can we move beyond maximum entropy
by directly and cleanly controlling what really matters—the cumulative entropy of the policy? We
argue the answer is yes by introducing a trajectory entropy-constrained (TEC) RL framework. To
ensure a stable and interpretable learning process, our core innovation is to completely decouple
the reward and entropy signals by learning two separate Q-functions. This separation ensures clean
Q-value targets, and the dedicated entropy critic enables us to enforce a trajectory-level constraint on
the policy’s cumulative entropy. This design inherently breaks from traditional single-step restriction,
enabling a more principled and long-term control of policy stochasticity.

To demonstrate the practical advantages of our framework, we introduce DSAC-E, an extension of the
state-of-the-art Distributional Soft Actor-Critic with Three refinements (DSAC-T) algorithm (Duan
et al., 2025). DSAC-E integrates the strengths of DSAC-T’s distributional value estimation with our
proposed trajectory entropy constraint. By decoupling the reward and entropy Q-values and adjusting
the trajectory-level entropy budget, our DSAC-E achieves cleaner and more effective exploitation
alongside more controllable exploration. Empirical results on the OpenAl Gym continuous control
benchmark (Brockman et al., 2016) demonstrate that DSAC-E not only achieves superior final returns
but also exhibits better training stability than strong maximum entropy baselines.

Our contributions are summarized in threefold:

* We identify and analyze the impact of two bottlenecks in conventional maximum entropy
RL: (1) non-stationary Q-value estimation and (2) short-sighted local entropy tuning. These
issues motivate us to execute reward-entropy separation (RES) and trajectory-level entropy
constraint (TEC);

* To address these two identified bottlenecks, we propose the TECRL framework. Within
this framework, we first eliminate the (/) non-stationary Q-value estimation problem by
decoupling reward and entropy signals into two separate critics, while temperature is
excluded from the learning processes of both critics. Then the dedicated entropy critic
allows us to enforce a trajectory-level entropy constraint, thereby overcoming the issue of (2)
short-sighted local entropy tuning. Furthermore, we provide a rigorous theoretical analysis
demonstrating that appropriately selecting a trajectory entropy budget can yield a higher
performance bound;

* We introduce DSAC-E, a practical instantiation of our TECRL framework built on DSAC-T,
the state-of-the-art maximum entropy algorithm. Through this instantiation, we demonstrate
that our framework enables superior performance on complex continuous control tasks.

2 PRELIMINARIES

Maximum entropy RL. While standard RL seeks a policy that maximizes the expected accumu-
lated return, maximum entropy RL (Haarnoja et al., 2017) extends this by adopting an objective
function that incorporates a policy entropy term as

o= B[S0+ attietis)] M
t=0

St~ P

Under review as a conference paper at ICLR 2026

where v € (0, 1) is the discount factor, p; is the state visitation distribution, « is the temperature
coefficient, and the single-step policy entropy H is expressed as

H(ls) = E [—log m(ars¢)].)

as~7(-|se

The optimal policy can be derived through a maximum entropy variant of policy iteration, commonly
known as soft policy iteration (Wang et al., 2022). This iterative process alternates between two key
stages: (1) soft policy evaluation (PEV) and (2) soft policy improvement (PIM).

In soft PEV, provided a policy 7, for a given policy 7, we can apply the soft Bellman operator B” to
learn the soft Q-value, as shown by the soft Bellman expectation equation:

BNQ (s,)] = 1 + VEyparna@(s',a) — alogm(a’ls’)], (€)

where the definition of soft Q-value is

Q" (s,a) =Er | _y'ri+ > ~at(r(]s)))
t=0 t=1

SOZS,G():G,‘| . (4)

One might ask why we write the reward and entropy signals as two separate summation terms. The
reason is to highlight the difference in their starting indices. The reward signal is accumulated from
the current time step, with a summation index of ¢ = 0, while the policy entropy is accumulated from
the next time step, with a summation index of ¢ = 1. This difference is evident from the soft Bellman
expectation equation in Eq. (3): the first term on the right-hand side, r, does not have a corresponding
policy entropy term at the same time step. In fact, the missing current entropy H (7 (|sg)) occurs in
the subsequent soft PIM step.

In soft policy improvement (PIM), the goal is to find a new policy that outperforms the current policy.
This is achieved by directly maximizing an entropy-augmented objective, a process equivalent to:
Tnew = argmax E [Q*"(s,a) — alogn(als)]. (5)
T S~NPR AT

The convergence of soft policy iteration to the optimal maximum entropy policy is a well-established
result in the field, as shown by (Haarnoja et al., 2017).

Temperature tuning. A key advancement in the latest maximum entropy frameworks is the
automatic management of the temperature parameter . Instead of being a fixed hyperparameter, « is
treated as a learnable variable. The objective is to minimize

J(@) =Eq on [— a(logw(at|st) + Ho)}, 6)

where the default value of H, is commonly set as — dim(.A), i.e., the minus of the number of
action dimensions. This mechanism achieves a dynamic balance between exploration and exploita-
tion by maintaining the policy’s local entropy close to a predefined target entropy Hg across all
situations (Haarnoja et al., 2018a).

3 METHOD

3.1 Two BOTTLENECKS OF MAXIMUM ENTROPY RL

Previously, we briefly introduced two bottlenecks that exist in the current maximum entropy RL
framework. Now, combining with specific formulas, we will more formally and mathematically
explain their origins and their impact on policy learning.

(1) Non-stationary Q-value estimation. In each soft PEV step, as shown in Eq. (3), the target
value is calculated by

Yarger = 7(8, @) +[Q*"(s',a) + aH(w(:|s"))]. M

When the temperature « is updated at the same time, the target value distribution shifts dynamically.
This entanglement injects additional variance and bias into Q-value estimation, degrading subsequent
policy improvement steps that rely on stable value predictions.

Under review as a conference paper at ICLR 2026

Maximum Entropy RL

Trajectory Entropy-Constrained RL

Sampling Sampling
%// — \\\

Policy Evaluation

i Q=mn +Z:°=ly‘(r— alogm)

Policy IntroSpection

m Q= Zt_ —y*logm

Policy Evaluation

i Q= Z:O}/tr

¥

Policy Improvement

@ max Q + a(—logm)

¥

Temperature Updating

e e ———

Policy Improvement
@ max Q, + a(—logm + Q,)

¥
Temperature Updating

@ min a(—logm + Q. — Hyydger)

i @ min a(—logm — Hy) i

Figure 1: Comparison between standard maximum entropy RL (left) and our trajectory entropy-
constrained (TEC) RL (right). Our TECRL framework comprises four key components: a reward-
centric policy evaluation (PEV), an entropy-centric policy introspection (PIS), a policy improvement
(PIM) that retains the exact soft policy objective, and a temperature update (TUP) tuning the tempera-
ture guided by the trajectory entropy constraint.

(2) Short-sighted local entropy tuning. In each soft PIM step, as shown in Eq. (6), the existing
temperature tuning mechanism aligns every local single-step entropy to a fixed target by adjusting «
to match E[— log 7(al|s)] to some desired value. However, it would be better to adjust the trajectory
entropy to control the long-term policy stochasticity, which is defined as:

Htrd_] == ‘r~7r |:Z 7 ‘St

In summary, while the maximum-entropy framework is a powerful tool for policy learning, its
effectiveness is still hindered by the two identified bottlenecks. These limitations motivate us to
execute reward-entropy separation to ensure clean and stable value learning and rethink maximum
entropy RL from a trajectory-level entropy constraint perspective.

3 :s}. 8)

3.2 TRAJECTORY ENTROPY-CONSTRAINED REINFORCEMENT LEARNING
To address the two bottlenecks identified earlier, we propose Trajectory Entropy-Constrained Rein-

forcement Learning (TECRL). It formulates an explicit equality constraint on the trajectory-level
entropy to control the policy stochasticity, which yields the following policy optimization problem:

tmax E, [zw s01) + aH(n()]

[ZW’ H(m(-[se) } = Houdget-

t=0

©))

Under this trajectory entropy constraint, the agent is required to strategically distribute a fixed budget
of randomness across its entire trajectory. This offers a more principled way to mitigate the dilemma
of under- and over-exploration.

To practically solve the optimal policy, our TECRL integrates four alternating steps: (1) Policy
Evaluation (PEV) estimates the expected cumulative reward; (2) Policy Introspection (PIS) estimates
the expected cumulative entropy; (3) Policy Improvement (PIM) jointly leverages both critics to
formulate soft policy objective; and (4) Temperature Updating (TUP) adapts the temperature to
enforce the trajectory entropy constraint. Below we detail these four steps one by one.

Under review as a conference paper at ICLR 2026

(1) Policy Evaluation (PEV). This step learns a reward-centric critic (),- defined as

o0
Z VtTt
t=0
The PEV loss follows the standard Bellman expectation equation:

Legy = (Qr(s,a) —y,)?, where y, =7(s,a) + YEy o [Q:(s,)], (11)

This reward-centric critic explicitly excludes entropy bonuses, which ensures a clean value target
uninfluenced by policy stochasticity.

Qr(sa a) =E,

sozs,aoza] , (10)

(2) Policy Introspection (PIS). This step learns an entropy-centric critic (). For a Gaussian
policy, the entropy of the current step is straightforward to compute. Therefore, we define Q. as the
cumulative policy entropy from the next time step to infinity, which is defined as

Qc(s,a) =E, lz YVH(m(:|s¢)) | 850 = 8,00 = a‘| . (12)
t=1

Notably, it also does not contain the temperature «, so its target value is clean and explicit. The PIS
loss follows an entropy Bellman expectation equation:

Leis = (Qe(s,a) —ye)?, where y. = yH(7(-|s)) +vQc(s',d). (13)

The mathematical correspondence between Eq. (12) and Eq. (13) can be seen in the Appendix A.2,
and the convergence proof of the newly proposed PIS is presented in Appendix A.3.

We refer to this process as policy introspection because the (). value reflects the future cumulative
entropy of the current policy across different state-action pairs. In essence, it quantifies the long-term
stochasticity inherent to the policy itself.

(3) Policy Improvement (PIM). With dual critics), and @), We can formulate a policy loss as:

Lo = Qr(s,a) +a(—logm(als)+ Qe(s,a)). (14)
——
cumulative reward cumulative entropy

This PIM loss aligns with the soft policy objective shown in Eq. (1). @, represents the cumulative
reward, — log w(a|s) is the current policy entropy, and . represents the cumulative entropy starting
from the next time step. Therefore, our PIM is compliant with the maximization term in Eq. (9).

(4) Temperature Updating (TUP). Finally, the aim of TUP is tuning « to enforce the trajectory
entropy constraint, whose loss is

Lrop = —« (—logm(als) + Qe(s,a) —’Hbudget>. (15)

cumulative entropy

This mechanism extends existing temperature tuning in Eq. (6) by replacing uniform local entropy
matching with a trajectory-level entropy constraint in Eq. (9). We set Hpugeet as pHo/(1 —), The
division by (1 — =) is to keep the magnitude consistent with the local entropy tuning of the maximum
entropy. p is an entropy scaling factor that can adjust the budget value.

Summary. Our proposed TECRL framework is grounded in two primary claims: (1) TECRL
enables more stable and effective exploitation. This is because the reward-centric value function is now
decoupled from the entropy objective, allowing it to provide a more accurate and dedicated prediction
to guide policy improvement. (2) TECRL enables more strategic and controllable exploration.
By having the agent dynamically allocate its finite entropy budget where it is most needed, the
method facilitates the preservation of high-value behaviors while preventing unstable swings in policy
stochasticity. The full pseudocode is summarized in Algorithm 1.

Under review as a conference paper at ICLR 2026

Algorithm 1 Trajectory Entropy-Constrained Reinforcement Learning (TECRL)

1: Initialize policy 7y, reward critic ()., entropy critic (. 4, temperature «, replay buffer D
2: for each iteration do
3: Observe s;, sample a; ~ mg(als;), execute a, receive ry, next state s;41

4 Store (St,at,rt,8t+1) in D

5 Sample mini-batch {(s,a,r,s")} ~ D

6: Update @Q,- with Eq. (11) > (PEV) Policy Evaluation

7: Update Q. with Eq. (13) > (PIS) Policy Introspection

8: Update 7y with Eq. (14) > (PIM) Policy Improvement

9: Update o with Eq. (15) > (TUP) Temperature Updating
10: end for

3.3 THEORETICAL ANALYSIS ON PERFORMANCE BOUND

We formalize how a trajectory entropy constraint affects policy performance and demonstrate why a
properly chosen entropy budget can raise the performance upper bound. We first denote 7 as the
optimal policy under the standard maximum entropy RL setting, which maximizes the soft objective
JM&XEm(ﬂ—:oft) - RK/IaxEnt + a:()ft H:Oft’ (16)

+on Tepresent the optimal return and cumulative entropy, respectively, and

o > 0 is the optimal temperature parameter. Let Ry be the return upper bound of our TECRL
policy. We assume that the entropy budget Hpugger is chosen to be within the feasible range of entropy
values encountered during the MaxEnt optimization process. Specifically, it is neither smaller than
the minimal achievable entropy nor larger than the maximal entropy] . obtained by the optimal
maximum-entropy policy 7} . Therefore, with the same temperature o, we have the following

inequality

where Ry, g, and H

soft
*

soft>

JIMaxEnt (’n—:oft) > R:PEC + CV:Oft ngdget' a7

By rearranging this inequality, the return upper bound of our TECRL can be bounded from above as
Ripe < IMaxknt(Tion) — Qsofe Hbudget

= RKAaxEnt + a;koft (H:Oft - Hbudget)-

This inequality explicitly shows that the advantage performance bound A = Rjgc — Ryjaxgnt 15

bounded by a quantity proportional to the entropy gap HJ ; — Hpudger- This analysis demonstrates that

soft

appropriately selecting Hpudger can potentially lead to a higher performance bound for our TECRL.

(13)

4 EXPERIMENTS

4.1 MAIN EXPERIMENT

Benchmark. We evaluate performance on a suite of standard continuous control tasks from the
OpenAl Gym interface (Brockman et al., 2016). Specifically, we choose 8 Mujoco tasks: Humanoid-
v3, Ant-v3, Hopper-v3, Walker2d-v3, Swimmer-v3, HalfCheetah-v3, InvertedDoublePendulum-v2
(abbreviated as InvertedDP-v2) and Reacher-v2. Details are provided in Appendix B.

Baselines. We consider 7 well-known model-free algorithms, including trust region policy opti-
mization (TRPO) (Schulman et al., 2015), proximal policy optimization (PPO) (Schulman et al.,
2017b), deep deterministic policy gradient (DDPG) (Lillicrap et al., 2016), twin delayed deep de-
terministic policy gradient (TD3) (Fujimoto et al., 2018), soft actor-critic (SAC) (Haarnoja et al.,
2018a), Distributional SAC (DSAC) (Duan et al., 2021) and its latest version DSAC-T (Duan et al.,
2025). See Appendix D for detailed hyperparameters.

Our method. Our proposed DSAC-E algorithm is built on the DSAC-T, inheriting all of its
hyperparameters. For the newly introduced hyperparameter p, we set its value to 20 for the Humanoid-
v3 and Walker2d-v3 tasks, and to 1 for all other tasks. The reason for setting larger p values for these
two tasks is that they are relatively high-dimensional and that the robots are particularly prone to
falling over due to overly random actions. Recall that the base single-step entropy budget H is a
negative value, so a larger p means a smaller budget pH, /(1 —) allocated for entropy tuning in
trajectory level.

Under review as a conference paper at ICLR 2026

06 09 06 09
Millon iterations. Millon iterations Millon iterations.

(c) Hopper-v3 (d) Walker2d-v3

(e) Swimmer-v3 (f) Halfcheetah-v3 (g) InvertedDP-v2 (h) Reacher-v2

Legend: [osAcE M osac-T [osac N sac [o3 [DpPG TrRPO [PPO

Figure 2: Training curves on benchmarks. The solid lines correspond to mean and shaded regions
correspond to the 95% confidence interval over five runs.

Table 1: Average final return. Computed as the mean of the highest return values observed in the
final 10% of iteration steps per run. %+ corresponds to standard deviation over 5 runs.

Algorithm | Humanoid-v3 Ant-v3 Hopper-v3 Walker2d-v3
DSAC-E | 12542+280 8640L57 3901+385 7780+137
w/ entro DSAC-T | 108294243 7086261 3660£533 64241147
Off PY | psac 90744286 6862453 2135+434 5413+865
SAC 93361696 64274805 24834943 6201+£264
w/o entro TD3 5632+436 61844487 3569+455 5238+336
PY | bDPG 52924663 45494789 26444659 4096168
on | w/ entro TRPO 965+£555 6203£579 3474+400 5503£593
PY | ppO 6869+1563 6157+185 2647+482 48324638
\ | | 15.82% 21.93% 6.58% 21.11%
Algorithm | Swimmer-v3 Halfcheetah-v3 InvertedDP-v2 ~ Reacher-v2
DSAC-E | 149.3£0.3 17904100 9360+0 -2.9+0.1
w/ entro DSAC-T | 137.6+6.4 17025157 936010 -3.14£0.2
Off PY | psac 83.94+35.6 165424514 9359+1 -4.3+1.9
SAC 140.4£14.3 16573+224 9360+0 -3.1+0.2
/o entr TD3 134.0+5.4 8633+4041 9347415 -3.440.2
WO entiopy | pppG | 145.64+4.3 1397042083 9183+10 45+1.3
On | w/ entro TRPO 70.4+38.1 478514968 6260+2066 -5.04+0.6
PY 1 pPO 130.3+2.0 5790+2201 935742 -4.440.2
\ | | 2.54% 5.16% 0% 6.45%

* Bolded and red = best, blue = second-best. {} means the improvement of the best over the second-best.

Evaluation protocol. The total training step for all experiments is set at 1.5 million, with the results
of all experiments averaged over 5 random seeds. For each seed, the metric is derived by averaging
the highest return values observed during the final 10% of iteration steps in each run, with evaluations

Under review as a conference paper at ICLR 2026

conducted every 15,000 iterations. Each assessment result is the average of ten episodes. The results
from the 5 seeds are then aggregated to calculate the mean and standard deviation.

Main results. Figure 2 and Table 1 display all the learning curves and numerical performance
results , respectively. Our comprehensive findings reveal that across all evaluated 8 tasks, the DSAC-E
algorithm consistently matched or surpassed the performance of all competing benchmark algorithms,
establishing new state-of-the-art results. Notably, it achieved less oscillation and substantial per-
formance improvements on the Humanoid-v3, Ant-v3, Walker2d-v3, and Hopper-v3 tasks, with
improvements of 15.82%, 21.93%, 21.11% and 6.6% over the second-best.

4.2 ABLATION STUDY

We conduct ablation studies on the Humanoid-v3 task to evaluate the contribution of each component.

Reward-entropy separation (RES) and trajectory Entropy Constraint (TEC). We perform a
step-wise ablation, considering four algorithms: (1) Our full DSAC-E. (2) DSAC-E w/o TEC, which
replaces our trajectory entropy constraint with existing local entropy tuning. (3) DSAC-E w/o TEC
and RES, which is close to DSAC-T but with a p value of 20. (4) original DSAC-T, which can be
understood as having a p of 1. As shown in Figure 3 and Table 2, the performance of the algorithms
progressively declines as more components are removed. This result confirms the effectiveness of
both our RES and TEC modules. Next we will provide a more systematic analysis of the p.

12000 » A # MJ,\/’M\AI\/ I osAceE | | DSAC-E wio TEC
10000 ‘./\N\ y W I osaceEwoTeC &RES [l DsAc-T
; o Table 2: Results of ablation on TEC and RES.
) 1000 \(V\ JW Algorithm TAR
W DSAC-E (full) 12542 + 280
DSAC-E w/o TEC 11786 £+ 374
% os 09 12 & DSAC-E w/o TEC & RES 11455 4404
DSAC-T 10829 + 243

Figure 3: Ablation on the TEC and RES.

Impact of p controlling trajectory entropy budget. We further investigate the effect of varying
the trajectory entropy budget. Specifically, we apply different p values for both DSAC-T and our
DSAC-E. As shown in Figure 4 and Table 3, the performance gain of DSAC-T (Figure 4a) is not
significant with the adjustment of p. Its performance varies only slightly and all results cluster closely
together. In contrast, our DSAC-E (Figure 4b) consistently outperforms DSAC-T across all settings,
and its performance shows a clearer, more structured dependence on p.

For both DSAC-T and our DSAC-E, performance first improves and then degrades as p increases,
which aligns with our theoretical analysis: a properly chosen entropy budget can lift the performance
bound, whereas an excessively large p (corresponding to an overly small entropy budget) reduces
exploration and leads to a performance drop. Overall, our DSAC-E achieves higher performance and
exhibits a more interpretable sensitivity to p, making it easier to tune for high returns.

Table 3: Performance of DSAC-T and our DSAC-E under different p values.

Algorithm p=1 p=10 p=20 p=30

DSAC-T 10829 £243 11079 £457 11455 +404 11182 + 705
DSAC-E (ours) 11382 +447 12118 £505 12542 + 280 11747 £+ 365

Under review as a conference paper at ICLR 2026

12000 12000

10000 10000

8000

@
3
S
s

6000

Average return
Average return
>
2
8
s

4000 4000

2000 2000

0
0.0 0.3 0.6 0.9 1.2 15
Million iterations Million iterations

(a) DSAC-T (b) DSAC-E (ours)

Leger: [N o= NN o-v0 NN o-2 [p-%

Figure 4: Ablation on the sensitivity to the trajectory entropy budget.

4.3 EVIDENCE FOR THE MOTIVATION

Our motivation rests on solving two "bottlenecks": (1) Non-stationary Q-value and (2) Short-sighted
local tuning. We provide specific visualizations to support that these two bottlenecks do exist and
impair the learning process, as shown in the Appendix F.

4.4 SUPPLEMENTARY RESULTS AND MORE BASELINES
We add 4 more tasks from diverse domains to strength the experimental evaluation of our method:

* Dog-walk and Dog-run: Two most challenging locomotion tasks in DMC.
e Pusher: A robotic manipulation task.

* Carracing: A visual-input driving task.

The detailed introduction of these environments and results is shown in the Appendix G. We also
compare a new baseline S2AC (Messaoud et al., 2024), which is a recently proposed maximum
entropy RL algorithm, and the results are also included.

4.5 GUIDANCE ON THE SELECTION OF THE HYPERPARAMETER p

Our method introduces a hyperparameter to adjust Hpugge. One may be concerned that this hyper-
parameter might be difficult to tune. Our claim is that "Setting the default value to 1 is perfectly
acceptable, and thanks to our RES, the performance is generally better than or comparable to the
standard MaxEnt RL. Slightly increasing p has a high chance of improving performance, especially
for complex, high-dimensional tasks that are prone to failure due to overly random actions." The
detailed analysis and results are shown in Appendix H.

4.6 TIME-EFFICIENCY OF TRAINING AND INFERENCE

For the sake of training efficiency, we employ three tasks spanning low, medium, and high dimensions
(Hopper, Walker, and Humanoid) to compare two algorithms: DSAC-T and our proposed DSAC-E.
All experiments are conducted on a single NVIDIA RTX 3090 Ti GPU paired with an AMD Ryzen
Threadripper 3960X 24-Core Processor, using the Jax 0.4.28 programming framework. Detailed
numerical results are presented in the Appendix I.

Regarding inference time-efficiency, our DSAC-E trains a same-size MLP policy as DSAC-T, so the
inference time should be identical in principle.

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Exploration remains a central challenge in RL, and prior studies have proposed various strategies
to inject and regulate stochasticity into the policy (Amin et al., 2021). Broadly, existing approaches
can be grouped into two main categories: action-noise-based and maximum-entropy-based explo-
ration (Hao et al., 2023). While other alternatives, such as curiosity-driven (Sun et al., 2022) or
uncertainty-based (An et al., 2021) exploration, have been explored, they remain less commonly
adopted in standard model-free RL algorithms.

Action-noise based exploration. A line of methods in off-policy RL encourages exploration by
directly perturbing the agent’s actions with a noise process. For instance, DDPG first (Lillicrap et al.,
2016) employs Ornstein—Uhlenbeck noise to facilitate temporally correlated exploration, and the TD3
family (Fujimoto et al., 2018; 2023; Seo et al., 2025) turn to simply apply Gaussian noise to each
action dimension to effectively maintain randomness during training. Although these approaches
are intuitive and easy to implement, they suffer from two key drawbacks. First, the noise is added
externally and is entirely separate from the policy’s learning objective. The policy itself is unaware of
this exploration mechanism, making it a blind, ad hoc process (Plappert et al., 2018; Li et al., 2021).
Second, it creates a fundamental inconsistency between training and evaluation. A policy trained
with exploratory noise is different from the final policy used for deployment, which can lead to a
policy-value mismatch and hinder convergence to a truly optimal solution (Hollenstein et al., 2022;
Sikchi et al., 2022). Overall, although action-noise based exploration is straightforward to implement
and can yield good performance, its largely heuristic nature diminishes its reliability.

Maximum-entropy based exploration. A more principled framework for exploration is provided
by maximum-entropy RL (Haarnoja et al., 2017). By augmenting the standard RL objective with
an entropy term, methods such as SAC (Haarnoja et al., 2018a) optimize for both expected return
and policy entropy, thereby encouraging diverse behaviors (Nachum et al., 2017). While the latest
extensions of SAC further incorporate distributional critics to improve performance (Duanetal., 2021;
2025), they share the same tuning principle of maintaining the policy’s single-step entropy at a fixed
target. Recent work has explored the use of generative models, such as diffusion models, as policy
functions (Yang et al., 2023a; Zhu et al., 2023). While it’s difficult to accurately compute the entropy
of this class of functions (Yang et al., 2023b), these methods still try to follow the standard maximum-
entropy principle and entropy tuning mechanism for exploration, for example, by approximating the
policy entropy via GMM fitting or alternatively optimizing the lower bound (Wang et al., 2024; 2025;
Ding et al., 2024; Celik et al., 2025). Their entropy tuning mechanism remains inherently uniform
across all situations and does not explicitly account for long-term policy stochasticity and the inherent
need for adaptive exploration. Our TECRL also employs entropy to monitor policy’s stochasticity.
However, we shift the focus from local entropy tuning to trajectory entropy constraint, highlighting a
new perspective on managing policy’s long-term stochasticity. We believe this work provides a new
avenue for better resolving the exploitation-exploration dilemma, leading to higher performance.

6 CONCLUSION

In this paper, we revisit the standard maximum entropy RL framework and introduce the trajectory
entropy-constrained reinforcement learning (TECRL) framework. Our work addresses two key
limitations: (1) non-stationary Q-value estimation and (2) short-sighted local entropy tuning. By
separating the reward and entropy Q-functions and applying the trajectory entropy constraint, our
framework ensures stable value targets and effective control of long-term policy stochasticity. Building
on this, we develop a practical algorithm, DSAC-E, which extends the state-of-the-art DSAC-T
baseline. Empirical results on the OpenAl Gym benchmark show that DSAC-E achieves superior
returns and greater stability, validating the effectiveness of our TECRL framework.

Moving forward, we plan to validate the applicability of our TECRL framework to real-world robotics
and large language models (LLMs). This integration will allow agents to benefit from TECRL’s
superior long-term stochasticity management, leading to more effective and robust behaviors. We
believe this work offers a promising paradigm for addressing the exploration-exploitation trade-off
and paving the way for more powerful and robust RL agents.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke Van Hoof, and Doina Precup. A survey of
exploration methods in reinforcement learning. arXiv preprint arXiv:2109.00157, 2021.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified g-ensemble. Advances in neural information processing
systems, 34:7436-7447, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. arXiv
preprint arXiv:2502.02316, 2025.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. Advances
in Neural Information Processing Systems, 37:53945-53968, 2024.

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. /[EEE
transactions on neural networks and learning systems, 33(11):6584—6598, 2021.

Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, Shengbo Eben Li, Chang Liu, Ya-Qin
Zhang, Bo Cheng, and Keqiang Li. Distributional soft actor-critic with three refinements. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 2025.

Benjamin Eysenbach and Sergey Levine. Maximum entropy 1l (provably) solves some robust rl
problems. In International Conference on Learning Representations, 2022.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
pp. 202-211, 2016.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning
(ICML 2018), pp. 1587-1596, Stockholmsmissan, Stockholm Sweden, 2018. PMLR.

Scott Fujimoto, Wei-Di Chang, Edward Smith, Shixiang Shane Gu, Doina Precup, and David Meger.
For sale: State-action representation learning for deep reinforcement learning. Advances in neural
information processing systems, 36:61573-61624, 2023.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352—-1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning (ICML 2018), pp. 1861-1870, Stockholmsmaéssan,
Stockholm Sweden, 2018a. PMLR.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and
Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent domain.
IEEE Transactions on Neural Networks and Learning Systems, 35(7):8762-8782, 2023.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681-2691. PMLR, 2019.

11

Under review as a conference paper at ICLR 2026

Jakob Hollenstein, Sayantan Auddy, Matteo Saveriano, Erwan Renaudo, and Justus Piater. Action
noise in off-policy deep reinforcement learning: Impact on exploration and performance. arXiv
preprint arXiv:2206.03787, 2022.

Min Li, Tianyi Huang, and William Zhu. Adaptive exploration policy for exploration—exploitation
tradeoff in continuous action control optimization. International Journal of Machine Learning and
Cybernetics, 12(12):3491-3501, 2021.

Shengbo Eben Li. Reinforcement Learning for Sequential Decision and Optimal Control. Springer
Verlag, Singapore, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, 2016.

Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay
Chawla. S2ac: Energy-based reinforcement learning with stein soft actor critic. arXiv preprint
arXiv:2405.00987, 2024.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. In 30th Advances in Neural Information Processing
Systems (NeurIPS 2017), pp. 2775-2785, Long Beach, CA, USA, 2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. Proceedings of Robotics: Science and Systems VIII,
2012.

John Schulman, Sergey Levine, Pieter Abbeel, Michael 1. Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
(ICML 2015), pp. 1889-1897, Lille, France, 2015.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft g-learning.
arXiv preprint arXiv:1704.06440, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter
Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. arXiv
preprint arXiv:2505.22642, 2025.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference on Robot Learning, pp. 1622-1633. PMLR, 2022.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting in
value-based deep-rl: Optimistic curiosity-based exploration and conservative exploitation via linear
reward shaping. Advances in neural information processing systems, 35:37719-37734, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Michel Tokic. Adaptive e-greedy exploration in reinforcement learning based on value differences.
In Annual conference on artificial intelligence, pp. 203-210. Springer, 2010.

Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and Qiguang
Miao. Deep reinforcement learning: A survey. IEEE Transactions on Neural Networks and
Learning Systems, 35(4):5064-5078, 2022.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
Advances in Neural Information Processing Systems, 37:54183-54204, 2024.

12

Under review as a conference paper at ICLR 2026

Yinuo Wang, Mining Tan, Wenjun Zou, Haotian Lin, Xujie Song, Wenxuan Wang, Tong Liu, Likun
Wang, Guojian Zhan, Tianze Zhu, et al. Enhanced dacer algorithm with high diffusion efficiency.
arXiv preprint arXiv:2505.23426, 2025.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM computing surveys, 56(4):1-39, 2023a.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. arXiv preprint arXiv:2305.13122, 2023b.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting
Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey. arXiv preprint
arXiv:2311.01223, 2023.

13

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS

A.1 USEFUL LEMMAS

Lemma 1 (Convergence of y-Contraction Mappings). Let (X, d) be a complete metric space, and
let B: X — X be a y-contraction mapping with 0 < ~y < 1. This means that for all z,y € X,

where d is the metric on X. According to Banach’s fixed-point theorem, B has a unique fixed point
x* € X, such that B(x*) = z*. Furthermore, for any initial point xo € X, the iterative sequence
{x,,} defined by x,,11 = B(x,,) converges to x*. The convergence rate is geometric, and we have
the inequality

d(xp,x*) <" -d(xg,z*), Vn>0. (20)

This result not only guarantees the existence and uniqueness of the fixed point but also provides
a precise rate at which the sequence approaches x*, demonstrating the efficiency of contraction
mappings in finding fixed points.

A.2 ENTROPY BELLMAN EXPECTATION EQUATION IN POLICY INTROSPECTION (PIS)

Here, we build the correspondence between the definition of (). in Eq. (12) and the entropy Bellman
expectation equation in Eq. (13).

Q. represents the cumulative policy entropy starting from the next time step, expressed as:

Qc(s,a) =E, lz Y H(T(|s¢)) | s0 = 8,00 = a] . @1
t=1

Our proposed entropy Bellman expectation equation in Eq. (13) states
Qe(s,a) = yH(m(-[s)) + 7 Qc(s', a'). (22)
Substitute the definition of (). into the RHS of Eq. (13), we have:
RHS = yH(r(|s") + 7 Qc(s,a)

= YH(m(-|s1)) + 7DV H(w(s141))

t=1

= TT(*|S1 3 t+1 T [St+1
= H(x(:|))+;7 H(m(-[s41)) o3

= YH(r([s1) + Y H(r(|s0))
="' H(n(-|s1) = LHS.

Thus, we have proven that the definition of (). is the solution of the entropy Bellman expectation
equation.

A.3 CONVERGENCE OF POLICY INTROSPECTION (PIS)

We prove the convergence of PIS by showing that the entropy Bellman operator 5., defined as
BeQc(s,a) =7[Qc(s",a') — alogm(d'|s")], (24)

is a y-contraction mapping.

14

Under review as a conference paper at ICLR 2026

We analyze the infinity norm of 5.. For any two functions Q. 1(s,a) and Q. 2(s, a), we have:

1Be[Qe.1(5,)] = Be[Qe2(s, a)] oo = [7[Qe 1 (s, a") — alog m(d’s")]
= 7[Qe2(s",) — alogm(a’|s")] o
< [VQen(s',d') = ¥Qe2(s", @)l
=MQea(s' ') = Qea(s',0')|so-

(25)

Since v € (0, 1), it follows that 3, is a y-contraction mapping. By applying Lemma 1, we know that
B, has a unique fixed point. This fixed point can be obtained by iteratively applying B, starting from
an arbitrary initial Q. inir. That is, as the iteration number k increases, the sequence of updated Q
functions converges to a fixed point, i.e., the desired Q..

B ENVIRONMENTAL INTRODUCTION

MuJoCo: This is a high-performance physics simulation platform widely adopted for robotic
reinforcement learning research. The environment features efficient physics computation, accurate
dynamic system modeling, and comprehensive support for articulated robots, making it an ideal
benchmark for RL algorithm development.

In this paper, we concentrate on eight tasks: Humanoid-v3, Ant-v3, HalfCheetah-v3, Walker2d-
v3, InvertedDoublePendulum-v3 (InvertedDP-v2), Hopper-v3, Reacher-v2, and Swimmer-v3, as
illustrated in Figure 5. The InvertedDP-v3 task entails maintaining the balance of a double pendulum
in an inverted state. In contrast, the objective of the other tasks is to maximize the forward velocity
while avoiding falling. All these tasks are realized through the OpenAl Gym interface (Brockman
et al., 2016).

(2

Figure 5: Benchmarks. (a) Humanoid-v3: (s x a) € R376 x R!7. (b) Ant-v3: (s x a) € R!1! x RS,
(c) HalfCheetah-v3: (s x a) € R'7 x RS, (d) Walker2d-v3: (s x a) € R'7 x RS. (e) Hopper-
v3: (s x a) € R x R3. (f) InvertedDoublePendulum-v2: (s x a) € RS x R!. (g) Reacher-v2:
(s x a) € R x R2. (h) Swimmer-v3: (s x a) € R® x R2.

15

Under review as a conference paper at ICLR 2026

C VISUALIZATIONS

To demonstrate the effectiveness of DSAC-E in solving complex, high-dimensional locomotion tasks,
we provide visualizations of policy control process on three of the most challenging benchmarks
in the Humanoid task as shown in the following Figure 6. These tasks require precise coordination
across many degrees of freedom and long-horizon reasoning.

The visualization showcase that DSAC-E not only achieves successfully running but also learns
robust posture and behaviors, highlighting its strong capabilities in difficult control scenarios.

(a) DSAC-E step 70 (b) step 72 (c) step 74 (d) step 76 (e) step 78

(k) SAC step 70 (1) step 72 (m) step 74 (n) step 76 (o) step 78

Figure 6: Visualizations of control processes on Humanoid-v3 task.

16

Under review as a conference paper at ICLR 2026

D REPRODUCIBILITY STATEMENT

TABLE 4
DETAILED HYPERPARAMETERS.

Hyperparameters Value
Shared

Optimizer Adam (8; = 0.9, 52 = 0.999)

Actor learning rate le—4

Critic learning rate le—4

Discount factor (v) 0.99

Policy update interval 2

Target smoothing coefficient (1) 0.005

Reward scale 0.1

Number of iterations 1.5 x 108
Maximum-entropy framework

Learning rate of temperature o 3x 1074

Base expected entropy (H) H = —dim(A)
Deterministic policy

Exploration noise e ~ N(0,0.1%)
Off-policy

Sample batch size 20

Replay batch size 256

Replay buffer warm size 1 x 10*

Replay buffer size 1 x 10°
On-policy

Sample batch size 2000

Replay batch size 2000

GAE factor 0.95
DSAC-T

Variance clipping constant ¢ 3

Stabilizing constant € and €, 0.1
DSAC-E (ours)

p 20 for Humanoid and Walker2d, otherwise 1

E LLM USAGE DISCLOSURE

We used ChatGPT to polish grammar and improve text clarity. We reviewed all LLM-generated
suggestions and are fully responsible for the final content of this paper.

17

Under review as a conference paper at ICLR 2026

F EVIDENCE FOR MOTIVATION

1.8
15 16
1.4
1.0
2 T 12
S @
le] (e
05 1.0
0.8
0.0 0.6
—— DSACT —— DSACE(ours) 0.4 —— DSACT —— DSACE(ours)
-0.5
0.0 03 0.6 0.9 12 15 0.0 03 0.6 0.9 12 15
Million iterations Million iterations
Figure 7: Evidence for non-stationary Q-value.
0.5 0
.. . DSACT 144 ° s - DSACT
0.4 te. DSACE(ours) AP R . - DSACE(ours)
oV ° : .
I n 124
50.3 s
g g1
502 S gl
= £
2 3
901 61
& o 4
0.04 2
0.8 1.0 1.2 1.4 1.0 1.1 1.2 1.3 1.4
Height of Walker2d Height of Humanoid

Figure 8: Evidence for short-sighted local tuning.

G SUPPLEMENTARY RESULTS AND MORE BASELINES

DMC-dog Pusher Carracing
walk & run manipulation visual input
(s x a) € R?33 x R38 (s xa) € RB x R? (s x a) € R96%96x3 » R3

Figure 9: Snapshots of the additional tasks.

18

Under review as a conference paper at ICLR 2026

972
973
974 Pusher Carracing

o manipulation visual input
976
977
978
979
980
981
982
983
984

985 00 03 06 0.9 12 15 00 0.1 02 03 04 05
986 Million iterations Million iterations

987
988
989 Figure 10: Results on the pusher and carracing tasks.
990
991
992

993 DMC DMC

4
- Dog-walk Dog-run
995 w00

996

997

998 200
999

1000
1001
1002 50 2
1003 —— DSACT —— DSACE(ours) —— DSACT —— DSACE(ours)

Average return
Average return

leaend: I nsacr N psac-T HEEEE nsac BN sac BB T3 BN pppG TrRPo I PPO

175
150
125

100

Average return

75

Average return

50

1004 0.0 03 0.6 0.9 1.2 15 0.0 0.3 0.6 0.9 1.2 15
1005 Million iterations Million iterations

:gg: Figure 11: Results on the dmc dog-walk and dog-run tasks.
1008
1009
1010
1011
1012
1013 4000
1014 3500
1015 3000
1016
1017
1018
1019 1000

1000

1020 500
—— S2AC —— DSACE(ours) —— S2AC —— DSACE(ours)
1021 0 0

1022 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Million iterations Million iterations
1023

1024
1025

Hopper Walker2d
8000
7000
6000
5000
4000

3000

Average return
- N N
o o o
o o o
(=} o (=}
Average return

2000

Figure 12: Comparison with S2AC.

19

Under review as a conference paper at ICLR 2026

H GUIDANCE ON THE SELECTION OF THE HYPERPARAMETER p

Pusher Humanoid

L

N
3

!
o
&

Average return
Average return

I
@
8

-35
[-1 2000

0.0 0.3 0.6 0.9 1.2 15 0.0 03 0.6 0.9 12 15
Million iterations Million iterations
Logene: [N o= NN o-o NN o-20 p=30

Figure 13: Ablation on the impact of p values.

Average policy entropy Humanoid

=)

12000

L
o
]

10000

‘\\
> 200 \’r
3 \ 3 8000
5 -300 \ e
3 \\M 8 6000
o o
o -400 Ed
4000
-500
—— rho=1 — rho=20
-600 — rho=10 rho=30 2000
0.0 03 0.6 0.9 12 15 o
Million iterations 0.0 03 06 0.9 12 15
Million iterations
Logend: [N o-' NN o-vo NN o-20 | p=30

Figure 14: Visualization of the policy entropy controlled by p values.

I TIME-EFFICIENCY OF TRAINING AND INFERENCE

Algorithm Humanoid (376,17) Ant (111,8) Walker2d (17,6)

DSAC-T 2h09m (129) 1h47m (107) 1h29m (89)
DSAC-E 2h23m (143) 2h02m (122) 1h44m (104)
Percentage 110.8% 114.0% 116.9 %

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) DSAC-E step 70

(f) DSAC-E step 80

(k) DSAC-T step 70

(p) DSAC-T step 80

(b) step 72 (c) step 74 (d) step 76

Hind leg

(g) step 82 (h) step 84 (i) step 86

(1) step 72 (m) step 74 (n) step 76

(q) step 82 (r) step 84 (s) step 86

Figure 15: Visualizations of control processes on Ant task.

21

Front leg

(e) step 78

(j) step 88

(o) step 78

(t) step 88

Under review as a conference paper at ICLR 2026

(a) DSAC-E step 1 (b) step 7 (c) step 13 (d) step 19 (e) step 24

(f) DSAC-T step 1 (g) step 7 (h) step 13 (i) step 19 (j) step 24

Figure 16: Visualizations of control processes on Reacher task.

(a) DSAC-E step 1 (b) step 3 (c)step 5 (d) step 7 (e) step 9

(f) DSAC-T step 1 (g) step 3 (h) step 5 (i) step 7 () step 9

Figure 17: Visualizations of control processes on IDP task.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Multi-Goal Evaluation During Training

)

=100

o /1))
)

Step=6000

Step=7000 Step=8000 Step=9000 Step=10000

Figure 18: Visualizations of control processes on Multi-goal task.

23

	Introduction
	Preliminaries
	Method
	Two Bottlenecks of Maximum Entropy RL
	Trajectory Entropy-Constrained Reinforcement Learning
	Theoretical Analysis on Performance Bound

	Experiments
	Main Experiment
	Ablation Study
	Evidence for the motivation
	Supplementary results and more baselines
	Guidance on the selection of the hyperparameter
	Time-efficiency of training and inference

	Related Work
	Conclusion
	Theoretical Analysis
	Useful Lemmas
	Entropy Bellman Expectation equation in Policy Introspection (PIS)
	Convergence of Policy Introspection (PIS)

	Environmental Introduction
	Visualizations
	Reproducibility Statement
	LLM Usage Disclosure
	Evidence for motivation
	Supplementary results and more baselines
	Guidance on the selection of the hyperparameter
	Time-efficiency of training and inference

