

000 001 002 003 004 005 MIND YOUR ENTROPY: FROM MAXIMUM ENTROPY TO 006 TRAJECTORY ENTROPY-CONSTRAINED RL 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Maximum entropy has become a mainstream off-policy reinforcement learning
029 (RL) framework for balancing exploitation and exploration. However, two bot-
030 tlenecks still limit further performance improvement: (1) *non-stationary Q-value*
031 *estimation* caused by jointly injecting entropy and updating its weighting parameter,
032 i.e., temperature; and (2) *short-sighted local entropy tuning* that adjusts temper-
033 ature only according to the current single-step entropy, without considering the
034 effect of cumulative entropy over time. In this paper, we *extend* maximum entropy
035 framework by proposing a trajectory entropy-constrained reinforcement learning
036 (TECRL) framework to address these two challenges. Within this framework, we
037 first separately learn two Q-functions, one associated with reward and the other
038 with entropy, ensuring clean and stable value targets unaffected by temperature
039 updates. Then, the dedicated entropy Q-function, explicitly quantifying the ex-
040 pected cumulative entropy, enables us to enforce a trajectory entropy constraint and
041 consequently control the policy’s long-term stochasticity. Building on this TECRL
042 framework, we develop a practical off-policy algorithm, DSAC-E, by extending
043 the state-of-the-art distributional soft actor-critic with three refinements (DSAC-T).
044 Empirical results on the OpenAI Gym benchmark demonstrate that our DSAC-E
045 can achieve higher returns and better stability.
046

1 INTRODUCTION

047 Balancing exploration and exploitation remains a central challenge in reinforcement learning
048 (RL) (Sutton & Barto, 2018; Li, 2023). To address this, off-policy methods have leveraged the
049 maximum entropy principle, which encourages agents to act as randomly as possible while still
050 optimizing for high returns (Wang et al., 2022; Haarnoja et al., 2017). By augmenting the objective
051 with a temperature-weighted entropy term, algorithms like Soft Actor-Critic (SAC) (Haarnoja et al.,
052 2018a) and its distributional variant DSAC (Duan et al., 2021; 2025) have achieved state-of-the-art
053 performance on continuous control benchmarks like MuJoCo, proving to be highly effective and
054 robust (Eysenbach & Levine, 2022).

055 However, a fixed temperature parameter can lead to a policy that is either excessively stochastic or
056 unnecessarily deterministic (Rawlik et al., 2012). This is because a single temperature value cannot
057 optimally balance exploration and exploitation across all phases of training; a high temperature may
058 hinder convergence, while a low temperature can lead to premature exploitation of a suboptimal
059 solution (Fox et al., 2016). To mitigate this issue, modern maximum entropy RL incorporates an
060 automated temperature adjustment mechanism (Haarnoja et al., 2018b). Using the policy’s current
061 per-step entropy as a feedback signal, this mechanism dynamically tunes the temperature throughout
062 training, aligning it with a predefined target. Therefore, it ensures that a desired level of stochasticity
063 is maintained across all situations (Hazan et al., 2019).

064 Despite the remarkable empirical success, maximum entropy methods still face two critical bottle-
065 necks that hinder further progress. (1) The first issue is *non-stationary Q-value estimation*, which
066 stems from the tight coupling of reward and entropy (Schulman et al., 2017a). Since the temperature
067 parameter is updated simultaneously, the injected temperature-weighted entropy term is directly
068 altering the Q-value targets, causing them to become non-stationary. This process can destabilize
069 value learning and ultimately undermine policy optimization (Lillicrap et al., 2016). **We acknowledge**
070 **that the bootstrapping update mechanism of Q-values contributes significantly to the non-stationarity**

054 in RL. In this context, we highlight that the coupling of reward and entropy is another crucial con-
 055 tributing factor, and our method can effectively address and eliminate this factor. (2) Second, and
 056 perhaps more fundamentally, while some works have explored constraining entropy (increase the
 057 temperature if the entropy at the current step falls below a target value, and decrease it otherwise), they
 058 all suffer from *short-sighted local entropy tuning* (Haarnoja et al., 2018b; Duan et al., 2021; 2025).
 059 By regulating only the local current-step entropy, these methods neglect the long-term influence of
 060 stochasticity over entire trajectories. More critically, why we say they are short-sighted is that they
 061 enforce a uniform entropy target for each current state, as if every situation demands the same degree
 062 of randomness. This one-size-fits-all assumption is overly restrictive and fails to account for the
 063 inherent variability in the dynamics of different states. Consequently, the actor update process is
 064 compromised, as it neglects the fact that effective exploration should take into consideration both the
 065 underlying system dynamics and the agent’s learning progress (Tokic, 2010; Sun et al., 2022). This
 066 fundamental disconnect ignores the varying exploration needs of different situations.
 067

068 The observed two bottlenecks naturally raise a question: *can we move beyond maximum entropy*
 069 *by directly and cleanly controlling what really matters—the cumulative entropy of the policy?* We
 070 argue the answer is yes by introducing a trajectory entropy-constrained (TEC) RL framework. To
 071 ensure a stable and interpretable learning process, our core innovation is to completely decouple
 072 the reward and entropy signals by learning two separate Q-functions. This separation ensures clean
 073 Q-value targets, and the dedicated entropy critic enables us to enforce a trajectory-level constraint on
 074 the policy’s cumulative entropy. This design inherently breaks from traditional single-step restriction,
 075 enabling a more principled and long-term control of policy stochasticity.
 076

077 To demonstrate the practical advantages of our framework, we introduce DSAC-E, an extension of the
 078 state-of-the-art Distributional Soft Actor-Critic with Three refinements (DSAC-T) algorithm (Duan
 079 et al., 2025). DSAC-E integrates the strengths of DSAC-T’s distributional value estimation with our
 080 proposed trajectory entropy constraint. By decoupling the reward and entropy Q-values and adjusting
 081 the trajectory-level entropy budget, our DSAC-E achieves cleaner and more effective exploitation
 082 alongside more controllable exploration. Empirical results on the OpenAI Gym continuous control
 083 benchmark (Brockman et al., 2016) demonstrate that DSAC-E not only achieves superior final returns
 084 but also exhibits better training stability than strong maximum entropy baselines.
 085

086 Our contributions are summarized in threefold:
 087

- 088 • We identify and analyze the impact of two bottlenecks in conventional maximum entropy
 089 RL: (1) *non-stationary Q-value estimation* and (2) *short-sighted local entropy tuning*. These
 090 issues motivate us to execute reward-entropy separation (RES) and trajectory-level entropy
 091 constraint (TEC);
 092
- 093 • To address these two identified bottlenecks, we propose the TECRL framework. Within
 094 this framework, we first eliminate the (1) *non-stationary Q-value estimation* problem by
 095 decoupling reward and entropy signals into two separate critics, while temperature is
 096 excluded from the learning processes of both critics. Then the dedicated entropy critic
 097 allows us to enforce a trajectory-level entropy constraint, thereby overcoming the issue of (2)
 098 *short-sighted local entropy tuning*. Furthermore, we provide a rigorous theoretical analysis
 099 demonstrating that appropriately selecting a trajectory entropy budget can yield a higher
 100 performance bound;
 101
- 102 • We introduce DSAC-E, a practical instantiation of our TECRL framework built on DSAC-T,
 103 the state-of-the-art maximum entropy algorithm. Through this instantiation, we demonstrate
 104 that our framework enables superior performance on complex continuous control tasks.
 105

106 2 PRELIMINARIES

107 **Maximum entropy RL.** While standard RL seeks a policy that maximizes the expected accumulated
 108 return, maximum entropy RL (Haarnoja et al., 2017) extends this by adopting an objective
 109 function that incorporates a policy entropy term as

$$110 J_{\pi} = \mathbb{E}_{s_t \sim \rho_{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t [r_t + \alpha \mathcal{H}(\pi(\cdot | s_t))] \right], \quad (1)$$

108 where $\gamma \in (0, 1)$ is the discount factor, ρ_t is the state visitation distribution, α is the temperature
 109 coefficient, and the single-step policy entropy \mathcal{H} is expressed as
 110

$$111 \quad \mathcal{H}(\pi(\cdot|s_t)) = \mathbb{E}_{a_t \sim \pi(\cdot|s_t)} [-\log \pi(a_t|s_t)]. \quad (2)$$

113 The optimal policy can be derived through a maximum entropy variant of policy iteration, commonly
 114 known as soft policy iteration (Wang et al., 2022). This iterative process alternates between two key
 115 stages: (1) soft policy evaluation (PEV) and (2) soft policy improvement (PIM).

116 In soft PEV, provided a policy π , for a given policy π , we can apply the soft Bellman operator \mathcal{B}^π to
 117 learn the soft Q-value, as shown by the soft Bellman expectation equation:

$$118 \quad \mathcal{B}^{\text{soft}}[Q^{\text{soft}}(s, a)] = r + \gamma \mathbb{E}_{s' \sim p, a' \sim \pi}[Q^{\text{soft}}(s', a') - \alpha \log \pi(a'|s')], \quad (3)$$

120 where the definition of soft Q-value is

$$121 \quad Q^{\text{soft}}(s, a) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r_t + \sum_{t=1}^{\infty} \gamma^t \alpha \mathcal{H}(\pi(\cdot|s_t)) \middle| s_0 = s, a_0 = a \right]. \quad (4)$$

124 One might ask why we write the reward and entropy signals as two separate summation terms. The
 125 reason is to highlight the difference in their starting indices. The reward signal is accumulated from
 126 the current time step, with a summation index of $t = 0$, while the policy entropy is accumulated from
 127 the next time step, with a summation index of $t = 1$. This difference is evident from the soft Bellman
 128 expectation equation in Eq. (3): the first term on the right-hand side, r , does not have a corresponding
 129 policy entropy term at the same time step. In fact, the missing current entropy $\mathcal{H}(\pi(\cdot|s_0))$ occurs in
 130 the subsequent soft PIM step.

131 In soft policy improvement (PIM), the goal is to find a new policy that outperforms the current policy.
 132 This is achieved by directly maximizing an entropy-augmented objective, a process equivalent to:

$$134 \quad \pi_{\text{new}} = \arg \max_{\pi} \mathbb{E}_{s \sim \rho_\pi, a \sim \pi} [Q^{\text{soft}}(s, a) - \alpha \log \pi(a|s)]. \quad (5)$$

136 The convergence of soft policy iteration to the optimal maximum entropy policy is a well-established
 137 result in the field, as shown by (Haarnoja et al., 2017).

138 **Temperature tuning.** A key advancement in the latest maximum entropy frameworks is the
 139 automatic management of the temperature parameter α . Instead of being a fixed hyperparameter, α is
 140 treated as a learnable variable. The objective is to minimize

$$142 \quad J(\alpha) = \mathbb{E}_{a_t \sim \pi} [-\alpha(\log \pi(a_t|s_t) + \mathcal{H}_0)], \quad (6)$$

143 where the default value of \mathcal{H}_0 is commonly set as $-\dim(\mathcal{A})$, i.e., the minus of the number of
 144 action dimensions. This mechanism achieves a dynamic balance between exploration and exploitation
 145 by maintaining the policy's local entropy close to a predefined target entropy \mathcal{H}_0 across all
 146 situations (Haarnoja et al., 2018a).

148 3 METHOD

150 3.1 TWO BOTTLENECKS OF MAXIMUM ENTROPY RL

152 Previously, we briefly introduced two bottlenecks that exist in the current maximum entropy RL
 153 framework. Now, combining with specific formulas, we will more formally and mathematically
 154 explain their origins and their impact on policy learning.

156 **(1) Non-stationary Q-value estimation.** In each soft PEV step, as shown in Eq. (3), the target
 157 value is calculated by

$$158 \quad y_{\text{target}} = r(s, a) + \gamma [Q^{\text{soft}}(s', a') + \alpha \mathcal{H}(\pi(\cdot|s'))]. \quad (7)$$

160 When the temperature α is updated at the same time, the target value distribution shifts dynamically.
 161 This entanglement injects additional variance and bias into Q-value estimation, degrading subsequent
 162 policy improvement steps that rely on stable value predictions.

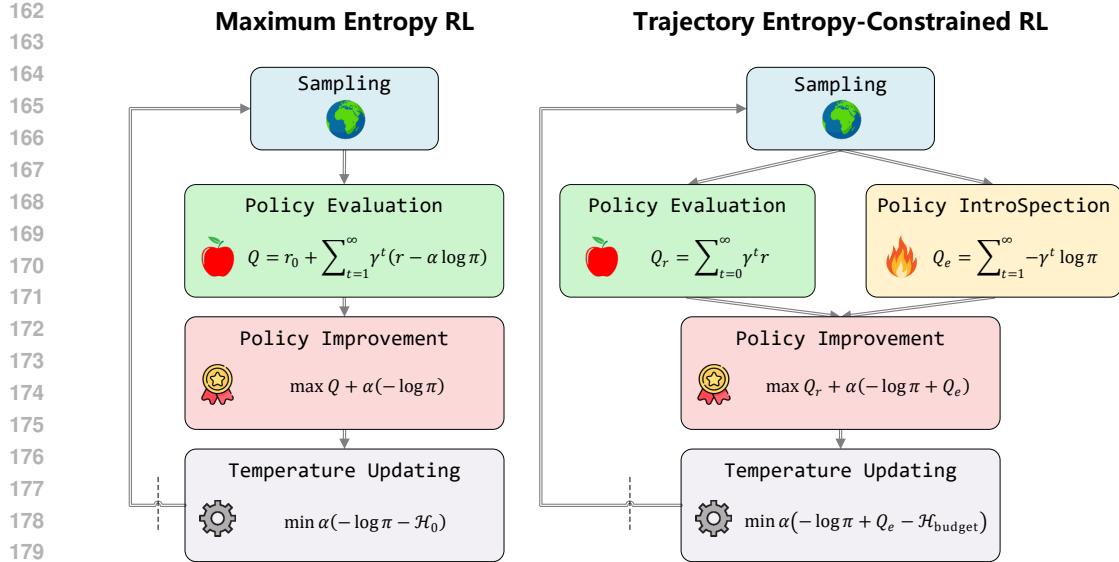


Figure 1: **Comparison** between standard maximum entropy RL (**left**) and our trajectory entropy-constrained (TECRL) (**right**). Our TECRL framework comprises four key components: a reward-centric policy evaluation (PEV), an entropy-centric policy introspection (PIS), a policy improvement (PIM) that retains the exact soft policy objective, and a temperature update (TUP) tuning the temperature guided by the trajectory entropy constraint.

(2) Short-sighted local entropy tuning. In each soft PIM step, as shown in Eq. (6), the existing temperature tuning mechanism aligns every local single-step entropy to a fixed target by adjusting α to match $\mathbb{E}[-\log \pi(a|s)]$ to some desired value. However, it would be better to adjust the trajectory entropy to control the long-term policy stochasticity, which is defined as:

$$\mathcal{H}_{\text{traj}}(s) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_t)) \mid s_0 = s \right]. \quad (8)$$

In summary, while the maximum-entropy framework is a powerful tool for policy learning, its effectiveness is still hindered by the two identified bottlenecks. These limitations motivate us to execute reward-entropy separation to ensure clean and stable value learning and rethink maximum entropy RL from a trajectory-level entropy constraint perspective.

3.2 TRAJECTORY ENTROPY-CONSTRAINED REINFORCEMENT LEARNING

To address the two bottlenecks identified earlier, we propose Trajectory Entropy-Constrained Reinforcement Learning (TECRL). It formulates an explicit equality constraint on the trajectory-level entropy to control the policy stochasticity, which yields the following policy optimization problem:

$$\begin{aligned} \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t [r(s_t, a_t) + \alpha \mathcal{H}(\pi(\cdot|s_t))] \right] \\ \text{s.t. } \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_t)) \right] = \mathcal{H}_{\text{budget}}. \end{aligned} \quad (9)$$

Under this trajectory entropy constraint, the agent is required to strategically distribute a fixed budget of randomness across its entire trajectory. This offers a more principled way to mitigate the dilemma of under- and over-exploration.

To practically solve the optimal policy, our TECRL integrates four alternating steps: (1) Policy Evaluation (PEV) estimates the expected cumulative reward; (2) Policy Introspection (PIS) estimates the expected cumulative entropy; (3) Policy Improvement (PIM) jointly leverages both critics to formulate soft policy objective; and (4) Temperature Updating (TUP) adapts the temperature to enforce the trajectory entropy constraint. Below we detail these four steps one by one.

216 **(1) Policy Evaluation (PEV).** This step learns a reward-centric critic Q_r defined as
 217

$$218 \quad 219 \quad 220 \quad Q_r(s, a) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, a_0 = a \right], \quad (10)$$

221 The PEV loss follows the standard Bellman expectation equation:
 222

$$223 \quad \mathcal{L}_{\text{PEV}} = (Q_r(s, a) - y_r)^2, \quad \text{where } y_r = r(s, a) + \gamma \mathbb{E}_{s', a'}[Q_r(s', a')], \quad (11)$$

224 This reward-centric critic explicitly excludes entropy bonuses, which ensures a clean value target
 225 uninfluenced by policy stochasticity.
 226

227 **(2) Policy Introspection (PIS).** This step learns an entropy-centric critic Q_e . For a Gaussian
 228 policy, the entropy of the current step is straightforward to compute. Therefore, we define Q_e as the
 229 cumulative policy entropy from the next time step to infinity, which is defined as
 230

$$231 \quad 232 \quad 233 \quad Q_e(s, a) = \mathbb{E}_\pi \left[\sum_{t=1}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_t)) \mid s_0 = s, a_0 = a \right]. \quad (12)$$

234 Notably, it also does not contain the temperature α , so its target value is clean and explicit. The PIS
 235 loss follows an entropy Bellman expectation equation:
 236

$$237 \quad \mathcal{L}_{\text{PIS}} = (Q_e(s, a) - y_e)^2, \quad \text{where } y_e = \gamma \mathcal{H}(\pi(\cdot|s')) + \gamma Q_e(s', a'). \quad (13)$$

238 The mathematical correspondence between Eq. (12) and Eq. (13) can be seen in the Appendix A.2,
 239 and the convergence proof of the newly proposed PIS is presented in Appendix A.3.
 240

241 We refer to this process as policy introspection because the Q_e value reflects the future cumulative
 242 entropy of the current policy across different state-action pairs. In essence, it quantifies the long-term
 243 stochasticity inherent to the policy itself.
 244

245 **(3) Policy Improvement (PIM).** With dual critics Q_r and Q_e , We can formulate a policy loss as:
 246

$$247 \quad \mathcal{L}_{\text{PIM}} = \underbrace{Q_r(s, a)}_{\text{cumulative reward}} + \alpha \underbrace{(-\log \pi(a|s) + Q_e(s, a))}_{\text{cumulative entropy}}. \quad (14)$$

249 This PIM loss aligns with the soft policy objective shown in Eq. (1). Q_r represents the cumulative
 250 reward, $-\log \pi(a|s)$ is the current policy entropy, and Q_e represents the cumulative entropy starting
 251 from the next time step. Therefore, our PIM is compliant with the maximization term in Eq. (9).
 252

253 **(4) Temperature Updating (TUP).** Finally, the aim of TUP is tuning α to enforce the trajectory
 254 entropy constraint, whose loss is
 255

$$256 \quad 257 \quad 258 \quad \mathcal{L}_{\text{TUP}} = -\alpha \left(\underbrace{-\log \pi(a|s) + Q_e(s, a)}_{\text{cumulative entropy}} - \mathcal{H}_{\text{budget}} \right). \quad (15)$$

259 This mechanism extends existing temperature tuning in Eq. (6) by replacing uniform local entropy
 260 matching with a trajectory-level entropy constraint in Eq. (9). We set $\mathcal{H}_{\text{budget}}$ as $\rho H_0 / (1 - \gamma)$, The
 261 division by $(1 - \gamma)$ is to keep the magnitude consistent with the local entropy tuning of the maximum
 262 entropy. ρ is an entropy scaling factor that can adjust the budget value.
 263

264 **Summary.** Our proposed TECRL framework is grounded in two primary claims: (1) TECRL
 265 enables *more stable and effective exploitation*. This is because the reward-centric value function is now
 266 decoupled from the entropy objective, allowing it to provide a more accurate and dedicated prediction
 267 to guide policy improvement. (2) TECRL enables *more strategic and controllable exploration*.
 268 By having the agent dynamically allocate its finite entropy budget where it is most needed, the
 269 method facilitates the preservation of high-value behaviors while preventing unstable swings in policy
 stochasticity. The full pseudocode is summarized in Algorithm 1.

270 **Algorithm 1** Trajectory Entropy-Constrained Reinforcement Learning (TECRL)

271 1: **Initialize** policy π_θ , reward critic $Q_{r,\psi}$, entropy critic $Q_{e,\phi}$, temperature α , replay buffer \mathcal{D}
272 2: **for** each iteration **do**
273 3: Observe s_t , sample $a_t \sim \pi_\theta(a|s_t)$, execute a_t , receive r_t , next state s_{t+1}
274 4: Store (s_t, a_t, r_t, s_{t+1}) in \mathcal{D}
275 5: Sample mini-batch $\{(s, a, r, s')\} \sim \mathcal{D}$
276 6: Update Q_r with Eq. (11) ▷ (PEV) Policy Evaluation
277 7: Update Q_e with Eq. (13) ▷ (PIS) Policy Introspection
278 8: Update π_θ with Eq. (14) ▷ (PIM) Policy Improvement
279 9: Update α with Eq. (15) ▷ (TUP) Temperature Updating
280 10: **end for**

281
282 3.3 THEORETICAL ANALYSIS ON PERFORMANCE BOUND
283

284 We formalize how a trajectory entropy constraint affects policy performance and demonstrate why a
285 properly chosen entropy budget can raise the performance upper bound. We first denote π_{soft}^* as the
286 optimal policy under the standard maximum entropy RL setting, which maximizes the soft objective

$$J_{\text{MaxEnt}}(\pi_{\text{soft}}^*) = R_{\text{MaxEnt}}^* + \alpha_{\text{soft}}^* \mathcal{H}_{\text{soft}}^*, \quad (16)$$

287 where R_{MaxEnt}^* and $\mathcal{H}_{\text{soft}}^*$ represent the optimal return and cumulative entropy, respectively, and
288 $\alpha_{\text{soft}}^* > 0$ is the optimal temperature parameter. Let R_{TEC}^* be the return upper bound of our TECRL
289 policy. We assume that the entropy budget $\mathcal{H}_{\text{budget}}$ is chosen to be within the feasible range of entropy
290 values encountered during the MaxEnt optimization process. Specifically, it is neither smaller than
291 the minimal achievable entropy nor larger than the maximal entropy $\mathcal{H}_{\text{soft}}^*$ obtained by the optimal
292 maximum-entropy policy π_{soft}^* . Therefore, with the same temperature α_{soft}^* , we have the following
293 inequality

$$J_{\text{MaxEnt}}(\pi_{\text{soft}}^*) \geq R_{\text{TEC}}^* + \alpha_{\text{soft}}^* \mathcal{H}_{\text{budget}}. \quad (17)$$

294 By rearranging this inequality, the return upper bound of our TECRL can be bounded from above as

$$\begin{aligned} 295 R_{\text{TEC}}^* &\leq J_{\text{MaxEnt}}(\pi_{\text{soft}}^*) - \alpha_{\text{soft}}^* \mathcal{H}_{\text{budget}} \\ 296 &= R_{\text{MaxEnt}}^* + \alpha_{\text{soft}}^* (\mathcal{H}_{\text{soft}}^* - \mathcal{H}_{\text{budget}}). \end{aligned} \quad (18)$$

297 This inequality explicitly shows that the advantage performance bound $\Delta = R_{\text{TEC}}^* - R_{\text{MaxEnt}}^*$ is
298 bounded by a quantity proportional to the entropy gap $\mathcal{H}_{\text{soft}}^* - \mathcal{H}_{\text{budget}}$. This analysis demonstrates that
299 appropriately selecting $\mathcal{H}_{\text{budget}}$ can potentially lead to a higher performance bound for our TECRL.

300 4 EXPERIMENTS

301 4.1 MAIN EXPERIMENT

302 **Benchmark.** We evaluate performance on a suite of standard continuous control tasks from the
303 OpenAI Gym interface (Brockman et al., 2016). Specifically, we choose 8 Mujoco tasks: Humanoid-
304 v3, Ant-v3, Hopper-v3, Walker2d-v3, Swimmer-v3, HalfCheetah-v3, InvertedDoublePendulum-v2
305 (abbreviated as InvertedDP-v2) and Reacher-v2. Details are provided in Appendix B.

306 **Baselines.** We consider 7 well-known model-free algorithms, including trust region policy optimi-
307 zation (TRPO) (Schulman et al., 2015), proximal policy optimization (PPO) (Schulman et al.,
308 2017b), deep deterministic policy gradient (DDPG) (Lillicrap et al., 2016), twin delayed deep de-
309 terministic policy gradient (TD3) (Fujimoto et al., 2018), soft actor-critic (SAC) (Haarnoja et al.,
310 2018a), Distributional SAC (DSAC) (Duan et al., 2021) and its latest version DSAC-T (Duan et al.,
311 2025). See Appendix D for detailed hyperparameters.

312 **Our method.** Our proposed DSAC-E algorithm is built on the DSAC-T, inheriting all of its
313 hyperparameters. For the newly introduced hyperparameter ρ , we set its value to 20 for the Humanoid-
314 v3 and Walker2d-v3 tasks, and to 1 for all other tasks. The reason for setting larger ρ values for these
315 two tasks is that they are relatively high-dimensional and that the robots are particularly prone to
316 falling over due to overly random actions. Recall that the base single-step entropy budget \mathcal{H}_0 is a
317 negative value, so a larger ρ means a smaller budget $\rho\mathcal{H}_0/(1 - \gamma)$ allocated for entropy tuning in
318 trajectory level.

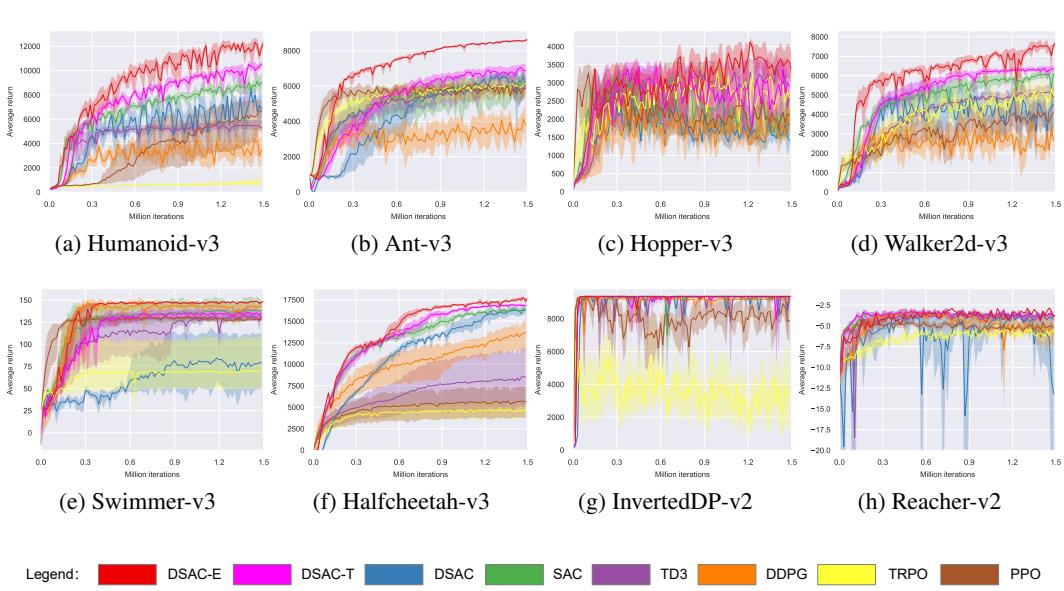


Figure 2: **Training curves on benchmarks.** The solid lines correspond to mean and shaded regions correspond to the 95% confidence interval over five runs.

Table 1: **Average final return.** Computed as the mean of the highest return values observed in the final 10% of iteration steps per run. \pm corresponds to standard deviation over 5 runs.

Algorithm		Humanoid-v3	Ant-v3	Hopper-v3	Walker2d-v3		
Off	w/ entropy	DSAC-E	12542\pm280	8640\pm57	3901\pm385	7780\pm137	
		DSAC-T	10829 \pm 243	7086 \pm 261	3660 \pm 533	6424 \pm 147	
		DSAC	9074 \pm 286	6862 \pm 53	2135 \pm 434	5413 \pm 865	
		SAC	9336 \pm 696	6427 \pm 805	2483 \pm 943	6201 \pm 264	
	w/o entropy	TD3	5632 \pm 436	6184 \pm 487	3569 \pm 455	5238 \pm 336	
		DDPG	5292 \pm 663	4549 \pm 789	2644 \pm 659	4096 \pm 68	
	On	w/ entropy	TRPO	965 \pm 555	6203 \pm 579	3474 \pm 400	
		PPO	6869 \pm 1563	6157 \pm 185	2647 \pm 482	4832 \pm 638	
		↑	15.82%	21.93%	6.58%	21.11%	
Algorithm		Swimmer-v3	Halfcheetah-v3	InvertedDP-v2	Reacher-v2		
Off	w/ entropy	DSAC-E	149.3\pm0.3	17904\pm100	9360\pm0	-2.9\pm0.1	
		DSAC-T	137.6 \pm 6.4	17025 \pm 157	9360\pm0	-3.1 \pm 0.2	
		DSAC	83.9 \pm 35.6	16542 \pm 514	9359 \pm 1	-4.3 \pm 1.9	
		SAC	140.4 \pm 14.3	16573 \pm 224	9360\pm0	-3.1 \pm 0.2	
	w/o entropy	TD3	134.0 \pm 5.4	8633 \pm 4041	9347 \pm 15	-3.4 \pm 0.2	
		DDPG	145.6 \pm 4.3	13970 \pm 2083	9183 \pm 10	-4.5 \pm 1.3	
	On	w/ entropy	TRPO	70.4 \pm 38.1	4785 \pm 968	6260 \pm 2066	
		PPO	130.3 \pm 2.0	5790 \pm 2201	9357 \pm 2	-5.0 \pm 0.6	
		↑	2.54%	5.16%	0%	6.45%	

* **Bolded** and red = best, blue = second-best. \uparrow means the improvement of the best over the second-best.

Evaluation protocol. The total training step for all experiments is set at 1.5 million, with the results of all experiments averaged over 5 random seeds. For each seed, the metric is derived by averaging the highest return values observed during the final 10% of iteration steps in each run, with evaluations

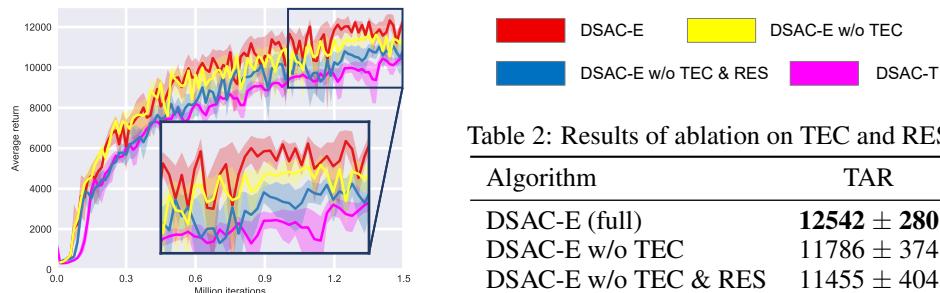
378 conducted every 15,000 iterations. Each assessment result is the average of ten episodes. The results
 379 from the 5 seeds are then aggregated to calculate the mean and standard deviation.
 380

381 **Main results.** Figure 2 and Table 1 display all the learning curves and numerical performance
 382 results, respectively. Our comprehensive findings reveal that across all evaluated 8 tasks, the DSAC-E
 383 algorithm consistently matched or surpassed the performance of all competing benchmark algorithms,
 384 establishing new state-of-the-art results. Notably, it achieved less oscillation and substantial per-
 385 formance improvements on the Humanoid-v3, Ant-v3, Walker2d-v3, and Hopper-v3 tasks, with
 386 improvements of 15.82%, 21.93%, 21.11% and 6.6% over the second-best.
 387

388 4.2 ABLATION STUDY

390 We conduct ablation studies on the Humanoid-v3 task to evaluate the contribution of each component.
 391

392 **Reward-entropy separation (RES) and trajectory Entropy Constraint (TEC).** We perform a
 393 step-wise ablation, considering four algorithms: (1) Our full DSAC-E. (2) DSAC-E w/o TEC, which
 394 replaces our trajectory entropy constraint with existing local entropy tuning. (3) DSAC-E w/o TEC
 395 and RES, which is close to DSAC-T but with a ρ value of 20. (4) original DSAC-T, which can be
 396 understood as having a ρ of 1. As shown in Figure 3 and Table 2, the performance of the algorithms
 397 progressively declines as more components are removed. This result confirms the effectiveness of
 398 both our RES and TEC modules. Next we will provide a more systematic analysis of the ρ .
 399



410 Figure 3: Ablation on the TEC and RES.
 411

412 Table 2: Results of ablation on TEC and RES.

Algorithm	TAR
DSAC-E (full)	12542 \pm 280
DSAC-E w/o TEC	11786 \pm 374
DSAC-E w/o TEC & RES	11455 \pm 404
DSAC-T	10829 \pm 243

413 **Impact of ρ controlling trajectory entropy budget.** We further investigate the effect of varying
 414 the trajectory entropy budget. Specifically, we apply different ρ values for both DSAC-T and our
 415 DSAC-E. As shown in Figure 4 and Table 3, the performance gain of DSAC-T (Figure 4a) is not
 416 significant with the adjustment of ρ . Its performance varies only slightly and all results cluster closely
 417 together. In contrast, our DSAC-E (Figure 4b) consistently outperforms DSAC-T across all settings,
 418 and its performance shows a clearer, more structured dependence on ρ .
 419

420 For both DSAC-T and our DSAC-E, performance first improves and then degrades as ρ increases,
 421 which aligns with our theoretical analysis: a properly chosen entropy budget can lift the performance
 422 bound, whereas an excessively large ρ (corresponding to an overly small entropy budget) reduces
 423 exploration and leads to a performance drop. Overall, our DSAC-E achieves higher performance and
 424 exhibits a more interpretable sensitivity to ρ , making it easier to tune for high returns.
 425

426 Table 3: Performance of DSAC-T and our DSAC-E under different ρ values.
 427

Algorithm	$\rho = 1$	$\rho = 10$	$\rho = 20$	$\rho = 30$
DSAC-T	10829 \pm 243	11079 \pm 457	11455 \pm 404	11182 \pm 705
DSAC-E (ours)	11382 \pm 447	12118 \pm 505	12542 \pm 280	11747 \pm 365

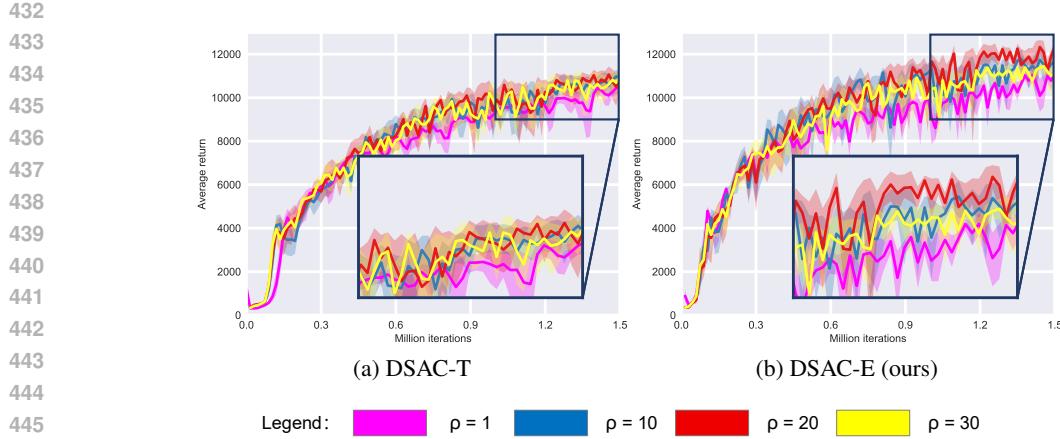


Figure 4: Ablation on the sensitivity to the trajectory entropy budget.

4.3 EVIDENCE FOR THE MOTIVATION

Our motivation rests on solving two "bottlenecks": (1) Non-stationary Q-value and (2) Short-sighted local tuning. We provide specific visualizations to support that these two bottlenecks do exist and impair the learning process, as shown in the Appendix F.

4.4 SUPPLEMENTARY RESULTS AND MORE BASELINES

We add 4 more tasks from diverse domains to strength the experimental evaluation of our method:

- **Dog-walk and Dog-run:** Two most challenging locomotion tasks in DMC.
- **Pusher:** A robotic manipulation task.
- **Carracing:** A visual-input driving task.

The detailed introduction of these environments and results is shown in the Appendix G. We also compare a new baseline S²AC (Messaoud et al., 2024), which is a recently proposed maximum entropy RL algorithm, and the results are also included.

4.5 GUIDANCE ON THE SELECTION OF THE HYPERPARAMETER ρ

Our method introduces a hyperparameter to adjust $\mathcal{H}_{\text{budget}}$. One may be concerned that this hyperparameter might be difficult to tune. Our claim is that "*Setting the default value to 1 is perfectly acceptable, and thanks to our RES, the performance is generally better than or comparable to the standard MaxEnt RL. Slightly increasing ρ has a high chance of improving performance, especially for complex, high-dimensional tasks that are prone to failure due to overly random actions.*" The detailed analysis and results are shown in Appendix H.

4.6 TIME-EFFICIENCY OF TRAINING AND INFERENCE

For the sake of training efficiency, we employ three tasks spanning low, medium, and high dimensions (Hopper, Walker, and Humanoid) to compare two algorithms: DSAC-T and our proposed DSAC-E. All experiments are conducted on a single NVIDIA RTX 3090 Ti GPU paired with an AMD Ryzen Threadripper 3960X 24-Core Processor, using the Jax 0.4.28 programming framework. Detailed numerical results are presented in the Appendix I.

Regarding inference time-efficiency, our DSAC-E trains a same-size MLP policy as DSAC-T, so the inference time should be identical in principle.

486 5 RELATED WORK

488 Exploration remains a central challenge in RL, and prior studies have proposed various strategies
 489 to inject and regulate stochasticity into the policy (Amin et al., 2021). Broadly, existing approaches
 490 can be grouped into two main categories: action-noise-based and maximum-entropy-based explo-
 491 ration (Hao et al., 2023). While other alternatives, such as curiosity-driven (Sun et al., 2022) or
 492 uncertainty-based (An et al., 2021) exploration, have been explored, they remain less commonly
 493 adopted in standard model-free RL algorithms.

495 **Action-noise based exploration.** A line of methods in off-policy RL encourages exploration by
 496 directly perturbing the agent’s actions with a noise process. For instance, DDPG first (Lillicrap et al.,
 497 2016) employs Ornstein–Uhlenbeck noise to facilitate temporally correlated exploration, and the TD3
 498 family (Fujimoto et al., 2018; 2023; Seo et al., 2025) turn to simply apply Gaussian noise to each
 499 action dimension to effectively maintain randomness during training. Although these approaches
 500 are intuitive and easy to implement, they suffer from two key drawbacks. First, the noise is added
 501 externally and is entirely separate from the policy’s learning objective. The policy itself is unaware of
 502 this exploration mechanism, making it a blind, ad hoc process (Plappert et al., 2018; Li et al., 2021).
 503 Second, it creates a fundamental inconsistency between training and evaluation. A policy trained
 504 with exploratory noise is different from the final policy used for deployment, which can lead to a
 505 policy-value mismatch and hinder convergence to a truly optimal solution (Hollenstein et al., 2022;
 506 Sikchi et al., 2022). Overall, although action-noise based exploration is straightforward to implement
 507 and can yield good performance, its largely heuristic nature diminishes its reliability.

508 **Maximum-entropy based exploration.** A more principled framework for exploration is provided
 509 by maximum-entropy RL (Haarnoja et al., 2017). By augmenting the standard RL objective with
 510 an entropy term, methods such as SAC (Haarnoja et al., 2018a) optimize for both expected return
 511 and policy entropy, thereby encouraging diverse behaviors (Nachum et al., 2017). While the latest
 512 extensions of SAC further incorporate distributional critics to improve performance (Duan et al., 2021;
 513 2025), they share the same tuning principle of maintaining the policy’s single-step entropy at a fixed
 514 target. Recent work has explored the use of generative models, such as diffusion models, as policy
 515 functions (Yang et al., 2023a; Zhu et al., 2023). While it’s difficult to accurately compute the entropy
 516 of this class of functions (Yang et al., 2023b), these methods still try to follow the standard maximum-
 517 entropy principle and entropy tuning mechanism for exploration, for example, by approximating the
 518 policy entropy via GMM fitting or alternatively optimizing the lower bound (Wang et al., 2024; 2025;
 519 Ding et al., 2024; Celik et al., 2025). Their entropy tuning mechanism remains inherently uniform
 520 across all situations and does not explicitly account for long-term policy stochasticity and the inherent
 521 need for adaptive exploration. Our TECRL also employs entropy to monitor policy’s stochasticity.
 522 However, we shift the focus from local entropy tuning to *trajectory entropy constraint*, highlighting a
 523 new perspective on managing policy’s long-term stochasticity. We believe this work provides a new
 524 avenue for better resolving the exploitation-exploration dilemma, leading to higher performance.

525 6 CONCLUSION

528 In this paper, we revisit the standard maximum entropy RL framework and introduce the trajectory
 529 entropy-constrained reinforcement learning (TECRL) framework. Our work addresses two key
 530 limitations: (1) non-stationary Q-value estimation and (2) short-sighted local entropy tuning. By
 531 separating the reward and entropy Q-functions and applying the trajectory entropy constraint, our
 532 framework ensures stable value targets and effective control of long-term policy stochasticity. Building
 533 on this, we develop a practical algorithm, DSAC-E, which extends the state-of-the-art DSAC-T
 534 baseline. Empirical results on the OpenAI Gym benchmark show that DSAC-E achieves superior
 535 returns and greater stability, validating the effectiveness of our TECRL framework.

536 Moving forward, we plan to validate the applicability of our TECRL framework to real-world robotics
 537 and large language models (LLMs). This integration will allow agents to benefit from TECRL’s
 538 superior long-term stochasticity management, leading to more effective and robust behaviors. We
 539 believe this work offers a promising paradigm for addressing the exploration-exploitation trade-off
 and paving the way for more powerful and robust RL agents.

540 REFERENCES
541

- 542 Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke Van Hoof, and Doina Precup. A survey of
543 exploration methods in reinforcement learning. *arXiv preprint arXiv:2109.00157*, 2021.
- 544 Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
545 reinforcement learning with diversified q-ensemble. *Advances in neural information processing*
546 *systems*, 34:7436–7447, 2021.
- 547 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
548 Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.
- 549 Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
550 and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. *arXiv*
551 *preprint arXiv:2502.02316*, 2025.
- 552 Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
553 Diffusion-based reinforcement learning via q-weighted variational policy optimization. *Advances*
554 *in Neural Information Processing Systems*, 37:53945–53968, 2024.
- 555 Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
556 soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. *IEEE*
557 *transactions on neural networks and learning systems*, 33(11):6584–6598, 2021.
- 558 Jingliang Duan, Wenzuan Wang, Liming Xiao, Jiaxin Gao, Shengbo Eben Li, Chang Liu, Ya-Qin
559 Zhang, Bo Cheng, and Keqiang Li. Distributional soft actor-critic with three refinements. *IEEE*
560 *Transactions on Pattern Analysis and Machine Intelligence*, 2025.
- 561 Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
562 problems. In *International Conference on Learning Representations*, 2022.
- 563 Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
564 updates. In *Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence*,
565 pp. 202–211, 2016.
- 566 Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
567 actor-critic methods. In *Proceedings of the 35th International Conference on Machine Learning*
568 (*ICML 2018*), pp. 1587–1596, Stockholm, Sweden, 2018. PMLR.
- 569 Scott Fujimoto, Wei-Di Chang, Edward Smith, Shixiang Shane Gu, Doina Precup, and David Meger.
570 For sale: State-action representation learning for deep reinforcement learning. *Advances in neural*
571 *information processing systems*, 36:61573–61624, 2023.
- 572 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
573 deep energy-based policies. In *International conference on machine learning*, pp. 1352–1361.
574 PMLR, 2017.
- 575 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
576 maximum entropy deep reinforcement learning with a stochastic actor. In *Proceedings of the 35th*
577 *International Conference on Machine Learning (ICML 2018)*, pp. 1861–1870, Stockholm, Sweden, 2018a. PMLR.
- 578 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
579 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
580 applications. *arXiv preprint arXiv:1812.05905*, 2018b.
- 581 Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and
582 Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent domain.
583 *IEEE Transactions on Neural Networks and Learning Systems*, 35(7):8762–8782, 2023.
- 584 Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
585 exploration. In *International Conference on Machine Learning*, pp. 2681–2691. PMLR, 2019.

- 594 Jakob Hollenstein, Sayantan Audy, Matteo Saveriano, Erwan Renaudo, and Justus Piater. Action
 595 noise in off-policy deep reinforcement learning: Impact on exploration and performance. *arXiv*
 596 *preprint arXiv:2206.03787*, 2022.
- 597
- 598 Min Li, Tianyi Huang, and William Zhu. Adaptive exploration policy for exploration–exploitation
 599 tradeoff in continuous action control optimization. *International Journal of Machine Learning and*
 600 *Cybernetics*, 12(12):3491–3501, 2021.
- 601 Shengbo Eben Li. *Reinforcement Learning for Sequential Decision and Optimal Control*. Springer
 602 Verlag, Singapore, 2023.
- 603
- 604 Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 605 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In *4th*
 606 *International Conference on Learning Representations (ICLR 2016)*, San Juan, Puerto Rico, 2016.
- 607 Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay
 608 Chawla. S2ac: Energy-based reinforcement learning with stein soft actor critic. *arXiv preprint*
 609 *arXiv:2405.00987*, 2024.
- 610 Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
 611 value and policy based reinforcement learning. In *30th Advances in Neural Information Processing*
 612 *Systems (NeurIPS 2017)*, pp. 2775–2785, Long Beach, CA, USA, 2017.
- 613
- 614 Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
 615 Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
 616 In *International Conference on Learning Representations*, 2018.
- 617 Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
 618 forcement learning by approximate inference. *Proceedings of Robotics: Science and Systems VIII*,
 619 2012.
- 620
- 621 John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
 622 policy optimization. In *Proceedings of the 32nd International Conference on Machine Learning*,
 623 *(ICML 2015)*, pp. 1889–1897, Lille, France, 2015.
- 624
- 625 John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-learning.
 626 *arXiv preprint arXiv:1704.06440*, 2017a.
- 627
- 628 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 629 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017b.
- 630
- 631 Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter
 632 Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. *arXiv*
 633 *preprint arXiv:2505.22642*, 2025.
- 634
- 635 Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
 636 *Conference on Robot Learning*, pp. 1622–1633. PMLR, 2022.
- 637
- 638 Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting in
 639 value-based deep-rl: Optimistic curiosity-based exploration and conservative exploitation via linear
 640 reward shaping. *Advances in neural information processing systems*, 35:37719–37734, 2022.
- 641
- 642 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
- 643
- 644 Michel Tokic. Adaptive ε -greedy exploration in reinforcement learning based on value differences.
 645 In *Annual conference on artificial intelligence*, pp. 203–210. Springer, 2010.
- 646
- 647 Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and Qiguang
 648 Miao. Deep reinforcement learning: A survey. *IEEE Transactions on Neural Networks and*
 649 *Learning Systems*, 35(4):5064–5078, 2022.
- 650
- 651 Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
 652 Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
 653 *Advances in Neural Information Processing Systems*, 37:54183–54204, 2024.

648 Yinuo Wang, Mining Tan, Wenjun Zou, Haotian Lin, Xujie Song, Wenxuan Wang, Tong Liu, Likun
649 Wang, Guojian Zhan, Tianze Zhu, et al. Enhanced dacer algorithm with high diffusion efficiency.
650 *arXiv preprint arXiv:2505.23426*, 2025.

651
652 Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
653 Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
654 applications. *ACM computing surveys*, 56(4):1–39, 2023a.

655 Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
656 Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
657 reinforcement learning. *arXiv preprint arXiv:2305.13122*, 2023b.

658
659 Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting
660 Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey. *arXiv preprint*
661 *arXiv:2311.01223*, 2023.

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A THEORETICAL ANALYSIS
703704 A.1 USEFUL LEMMAS
705706 **Lemma 1** (Convergence of γ -Contraction Mappings). *Let (X, d) be a complete metric space, and
707 let $\mathcal{B} : X \rightarrow X$ be a γ -contraction mapping with $0 < \gamma < 1$. This means that for all $x, y \in X$,*

708
$$d(\mathcal{B}(x), \mathcal{B}(y)) \leq \gamma \cdot d(x, y), \quad (19)$$

709

710 *where d is the metric on X . According to Banach's fixed-point theorem, \mathcal{B} has a unique fixed point
711 $x^* \in X$, such that $\mathcal{B}(x^*) = x^*$. Furthermore, for any initial point $x_0 \in X$, the iterative sequence
712 $\{x_n\}$ defined by $x_{n+1} = \mathcal{B}(x_n)$ converges to x^* . The convergence rate is geometric, and we have
713 the inequality*

714
$$d(x_n, x^*) \leq \gamma^n \cdot d(x_0, x^*), \quad \forall n \geq 0. \quad (20)$$

715

716 *This result not only guarantees the existence and uniqueness of the fixed point but also provides
717 a precise rate at which the sequence approaches x^* , demonstrating the efficiency of contraction
718 mappings in finding fixed points.*719 A.2 ENTROPY BELLMAN EXPECTATION EQUATION IN POLICY INTROSPECTION (PIS)
720721 Here, we build the correspondence between the definition of Q_e in Eq. (12) and the entropy Bellman
722 expectation equation in Eq. (13).723 Q_e represents the cumulative policy entropy starting from the next time step, expressed as:
724

725
$$Q_e(s, a) = \mathbb{E}_\pi \left[\sum_{t=1}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_t)) \mid s_0 = s, a_0 = a \right]. \quad (21)$$

726

727 Our proposed entropy Bellman expectation equation in Eq. (13) states
728

729
$$Q_e(s, a) = \gamma \mathcal{H}(\pi(\cdot|s')) + \gamma Q_e(s', a'). \quad (22)$$

730

731 Substitute the definition of Q_e into the RHS of Eq. (13), we have:
732

733
$$\begin{aligned} RHS &= \gamma \mathcal{H}(\pi(\cdot|s')) + \gamma Q_e(s', a') \\ 734 &= \gamma \mathcal{H}(\pi(\cdot|s_1)) + \gamma \sum_{t=1}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_{t+1})) \\ 735 &= \gamma \mathcal{H}(\pi(\cdot|s_1)) + \sum_{t=1}^{\infty} \gamma^{t+1} \mathcal{H}(\pi(\cdot|s_{t+1})) \\ 736 &= \gamma \mathcal{H}(\pi(\cdot|s_1)) + \sum_{t=2}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_t)) \\ 737 &= \sum_{t=1}^{\infty} \gamma^t \mathcal{H}(\pi(\cdot|s_t)) = LHS. \end{aligned} \quad (23)$$

738

739 Thus, we have proven that the definition of Q_e is the solution of the entropy Bellman expectation
740 equation.
741750 A.3 CONVERGENCE OF POLICY INTROSPECTION (PIS)
751752 We prove the convergence of PIS by showing that the entropy Bellman operator \mathcal{B}_e , defined as
753

754
$$\mathcal{B}_e Q_e(s, a) = \gamma [Q_e(s', a') - \alpha \log \pi(a'|s')], \quad (24)$$

755

is a γ -contraction mapping.

756 We analyze the infinity norm of \mathcal{B}_e . For any two functions $Q_{e,1}(s, a)$ and $Q_{e,2}(s, a)$, we have:
 757

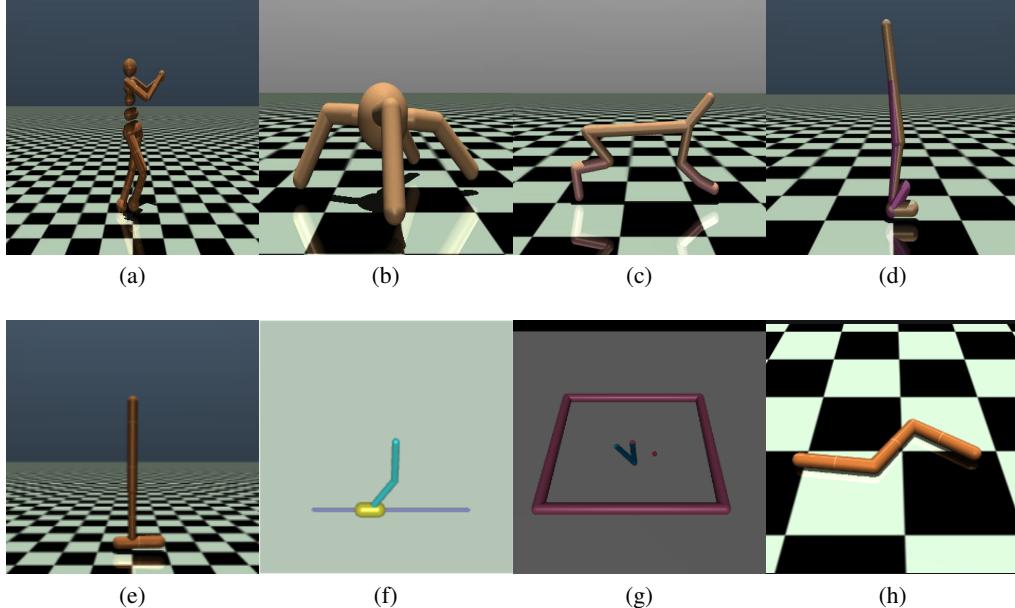
$$\begin{aligned}
 758 \|\mathcal{B}_e[Q_{e,1}(s, a)] - \mathcal{B}_e[Q_{e,2}(s, a)]\|_\infty &= \|\gamma[Q_{e,1}(s', a') - \alpha \log \pi(a'|s')] \\
 759 &\quad - \gamma[Q_{e,2}(s', a') - \alpha \log \pi(a'|s')]\|_\infty \\
 760 &\leq \|\gamma Q_{e,1}(s', a') - \gamma Q_{e,2}(s', a')\|_\infty \\
 761 &= \gamma \|Q_{e,1}(s', a') - Q_{e,2}(s', a')\|_\infty.
 762 \end{aligned} \tag{25}
 763$$

764 Since $\gamma \in (0, 1)$, it follows that \mathcal{B}_e is a γ -contraction mapping. By applying Lemma 1, we know that
 765 \mathcal{B}_e has a unique fixed point. This fixed point can be obtained by iteratively applying \mathcal{B}_e starting from
 766 an arbitrary initial $Q_{e,\text{init}}$. That is, as the iteration number k increases, the sequence of updated Q
 767 functions converges to a fixed point, i.e., the desired Q_e .
 768

769 B ENVIRONMENTAL INTRODUCTION

770 **MuJoCo:** This is a high-performance physics simulation platform widely adopted for robotic
 771 reinforcement learning research. The environment features efficient physics computation, accurate
 772 dynamic system modeling, and comprehensive support for articulated robots, making it an ideal
 773 benchmark for RL algorithm development.
 774

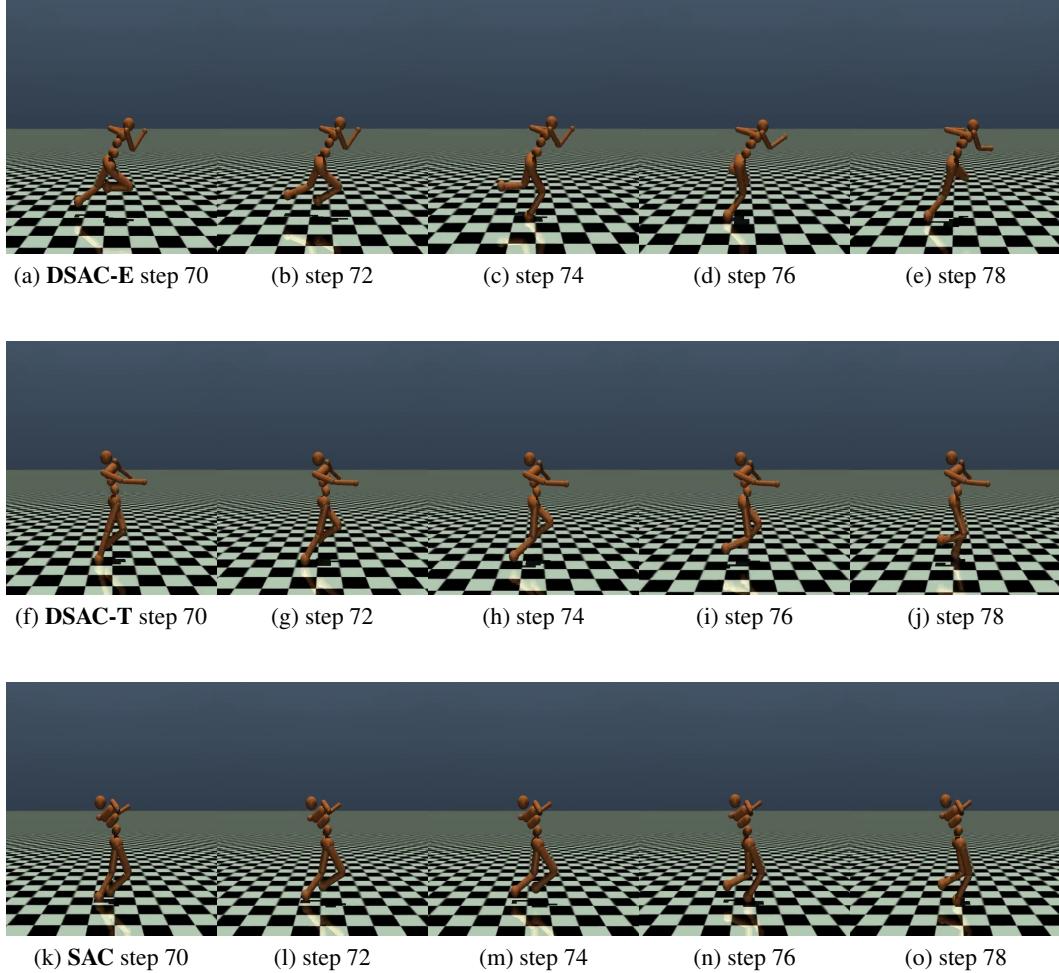
775 In this paper, we concentrate on eight tasks: Humanoid-v3, Ant-v3, HalfCheetah-v3, Walker2d-
 776 v3, InvertedDoublePendulum-v3 (InvertedDP-v2), Hopper-v3, Reacher-v2, and Swimmer-v3, as
 777 illustrated in Figure 5. The InvertedDP-v3 task entails maintaining the balance of a double pendulum
 778 in an inverted state. In contrast, the objective of the other tasks is to maximize the forward velocity
 779 while avoiding falling. All these tasks are realized through the OpenAI Gym interface (Brockman
 780 et al., 2016).
 781



802 Figure 5: Benchmarks. (a) Humanoid-v3: $(s \times a) \in \mathbb{R}^{376} \times \mathbb{R}^{17}$. (b) Ant-v3: $(s \times a) \in \mathbb{R}^{111} \times \mathbb{R}^8$.
 803 (c) HalfCheetah-v3: $(s \times a) \in \mathbb{R}^{17} \times \mathbb{R}^6$. (d) Walker2d-v3: $(s \times a) \in \mathbb{R}^{17} \times \mathbb{R}^6$. (e) Hopper-
 804 v3: $(s \times a) \in \mathbb{R}^{11} \times \mathbb{R}^3$. (f) InvertedDoublePendulum-v2: $(s \times a) \in \mathbb{R}^6 \times \mathbb{R}^1$. (g) Reacher-v2:
 805 $(s \times a) \in \mathbb{R}^{11} \times \mathbb{R}^2$. (h) Swimmer-v3: $(s \times a) \in \mathbb{R}^8 \times \mathbb{R}^2$.
 806
 807
 808
 809

810
811

C VISUALIZATIONS

812
813
814
815
To demonstrate the effectiveness of DSAC-E in solving complex, high-dimensional locomotion tasks,
we provide visualizations of policy control process on three of the most challenging benchmarks
in the Humanoid task as shown in the following Figure 6. These tasks require precise coordination
across many degrees of freedom and long-horizon reasoning.816
817
818
The visualization showcase that DSAC-E not only achieves successfully running but also learns
robust posture and behaviors, highlighting its strong capabilities in difficult control scenarios.851
852
853
854
855
856
857
858
859
860
861
862
863
Figure 6: Visualizations of control processes on Humanoid-v3 task.

864 D REPRODUCIBILITY STATEMENT
865866 TABLE 4
867 DETAILED HYPERPARAMETERS.
868

869 Hyperparameters	870 Value
<i>Shared</i>	
871 Optimizer	872 Adam ($\beta_1 = 0.9, \beta_2 = 0.999$)
873 Actor learning rate	874 1e-4
875 Critic learning rate	876 1e-4
877 Discount factor (γ)	878 0.99
879 Policy update interval	880 2
881 Target smoothing coefficient (τ)	882 0.005
883 Reward scale	884 0.1
885 Number of iterations	886 1.5×10^6
<i>Maximum-entropy framework</i>	
887 Learning rate of temperature α	888 3×10^{-4}
889 Base expected entropy ($\bar{\mathcal{H}}$)	890 $\bar{\mathcal{H}} = -\dim(\mathcal{A})$
<i>Deterministic policy</i>	
891 Exploration noise	892 $\epsilon \sim \mathcal{N}(0, 0.1^2)$
<i>Off-policy</i>	
893 Sample batch size	894 20
895 Replay batch size	896 256
897 Replay buffer warm size	898 1×10^4
899 Replay buffer size	900 1×10^6
<i>On-policy</i>	
901 Sample batch size	902 2000
903 Replay batch size	904 2000
905 GAE factor	906 0.95
<i>DSAC-T</i>	
907 Variance clipping constant ζ	908 3
909 Stabilizing constant ϵ and ϵ_ω	910 0.1
<i>DSAC-E (ours)</i>	
911 ρ	912 20 for Humanoid and Walker2d, otherwise 1

898 E LLM USAGE DISCLOSURE
899900 We used ChatGPT to polish grammar and improve text clarity. We reviewed all LLM-generated
901 suggestions and are fully responsible for the final content of this paper.
902903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

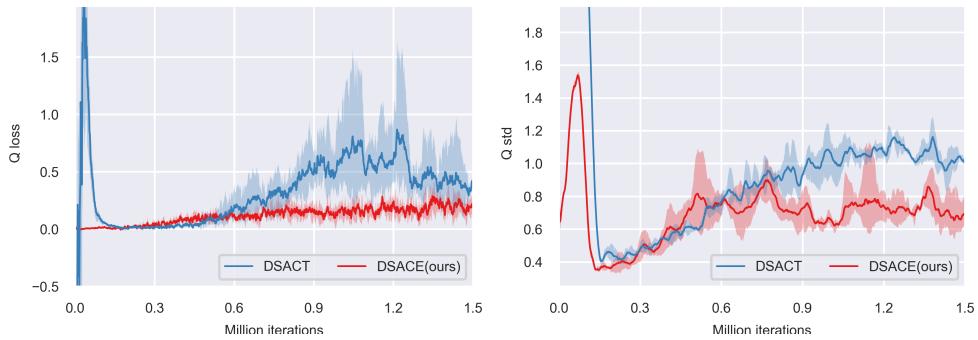
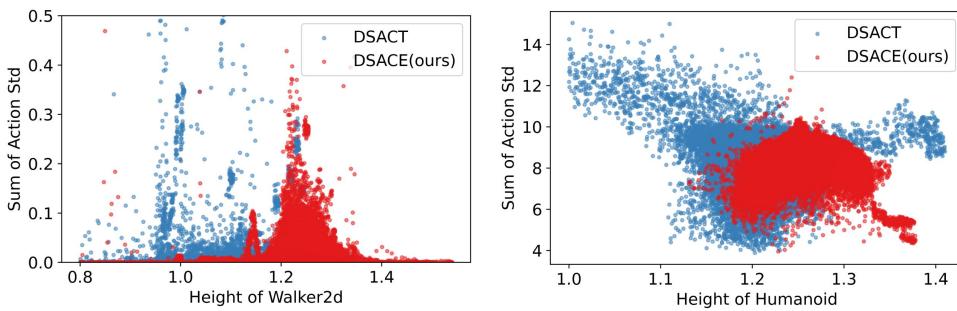
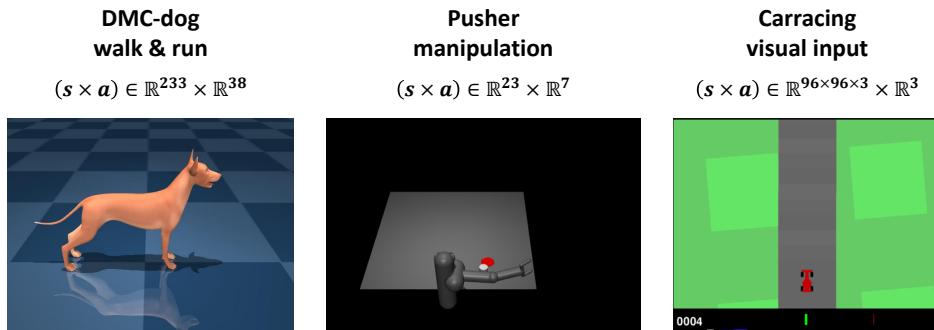
918 F EVIDENCE FOR MOTIVATION
919931
932 Figure 7: Evidence for non-stationary Q-value.
933945 Figure 8: Evidence for short-sighted local tuning.
946
947948 G SUPPLEMENTARY RESULTS AND MORE BASELINES
949950
951 Figure 9: Snapshots of the additional tasks.
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971



Figure 10: Results on the pusher and carracing tasks.

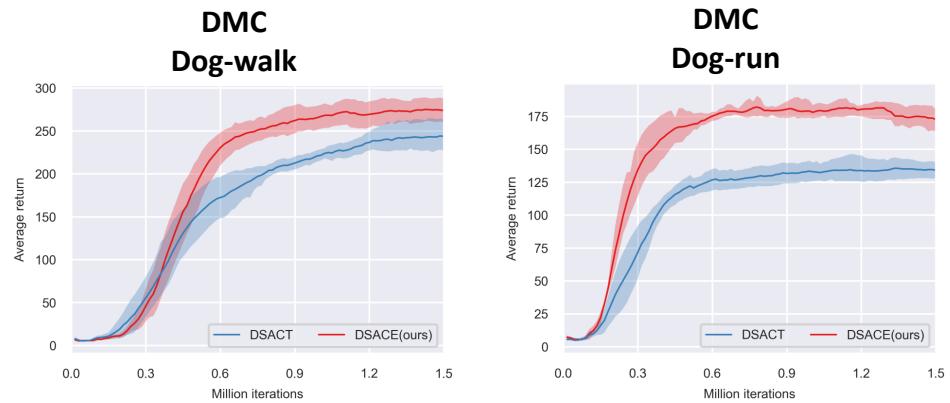
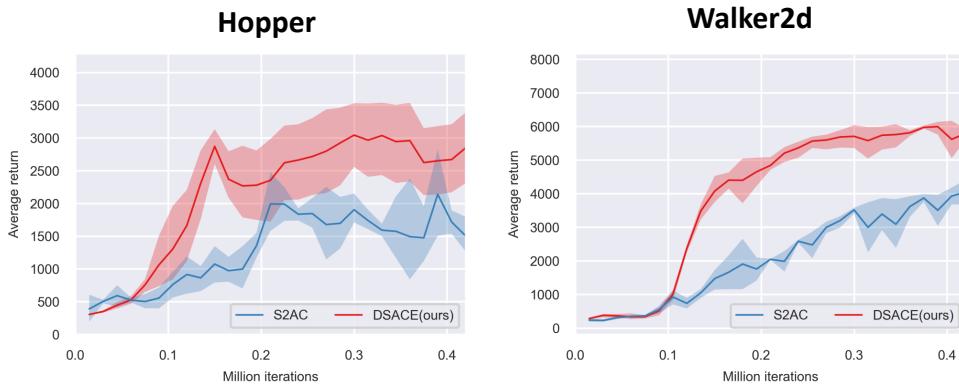
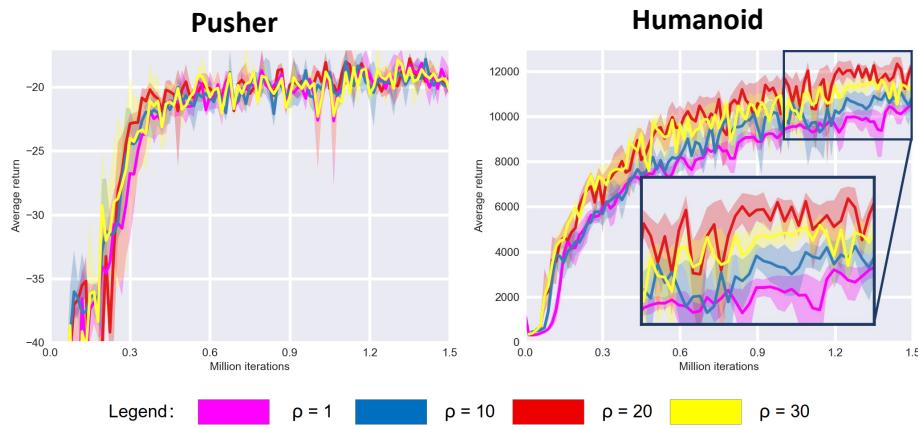
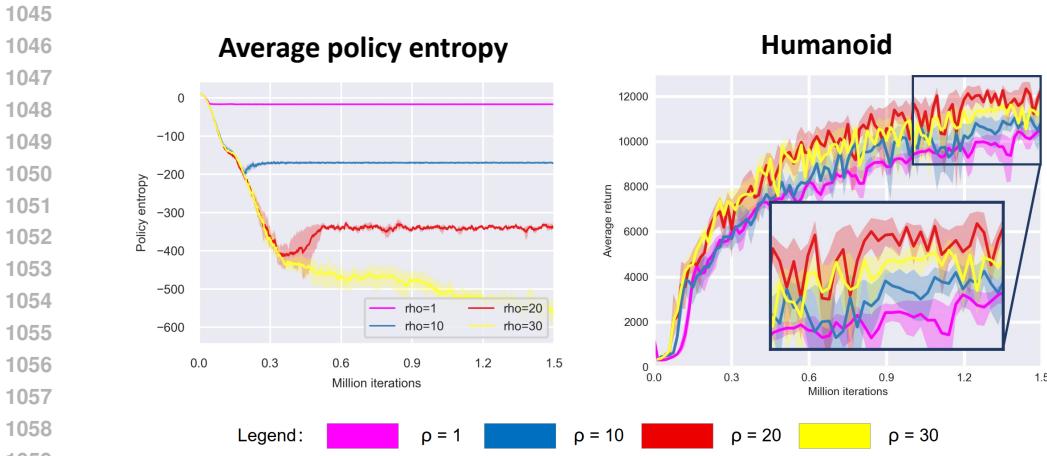


Figure 11: Results on the dmc dog-walk and dog-run tasks.

Figure 12: Comparison with S²AC.

1026
1027
1028
1029 **H GUIDANCE ON THE SELECTION OF THE HYPERPARAMETER ρ**
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045Figure 13: Ablation on the impact of ρ values.Figure 14: Visualization of the policy entropy controlled by ρ values.1062 **I TIME-EFFICIENCY OF TRAINING AND INFERENCE**
1063
1064
1065
1066
1067
1068
1069

Algorithm	Humanoid (376,17)	Ant (111,8)	Walker2d (17,6)
DSAC-T	2h09m (129)	1h47m (107)	1h29m (89)
DSAC-E	2h23m (143)	2h02m (122)	1h44m (104)
Percentage	110.8%	114.0%	116.9%

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

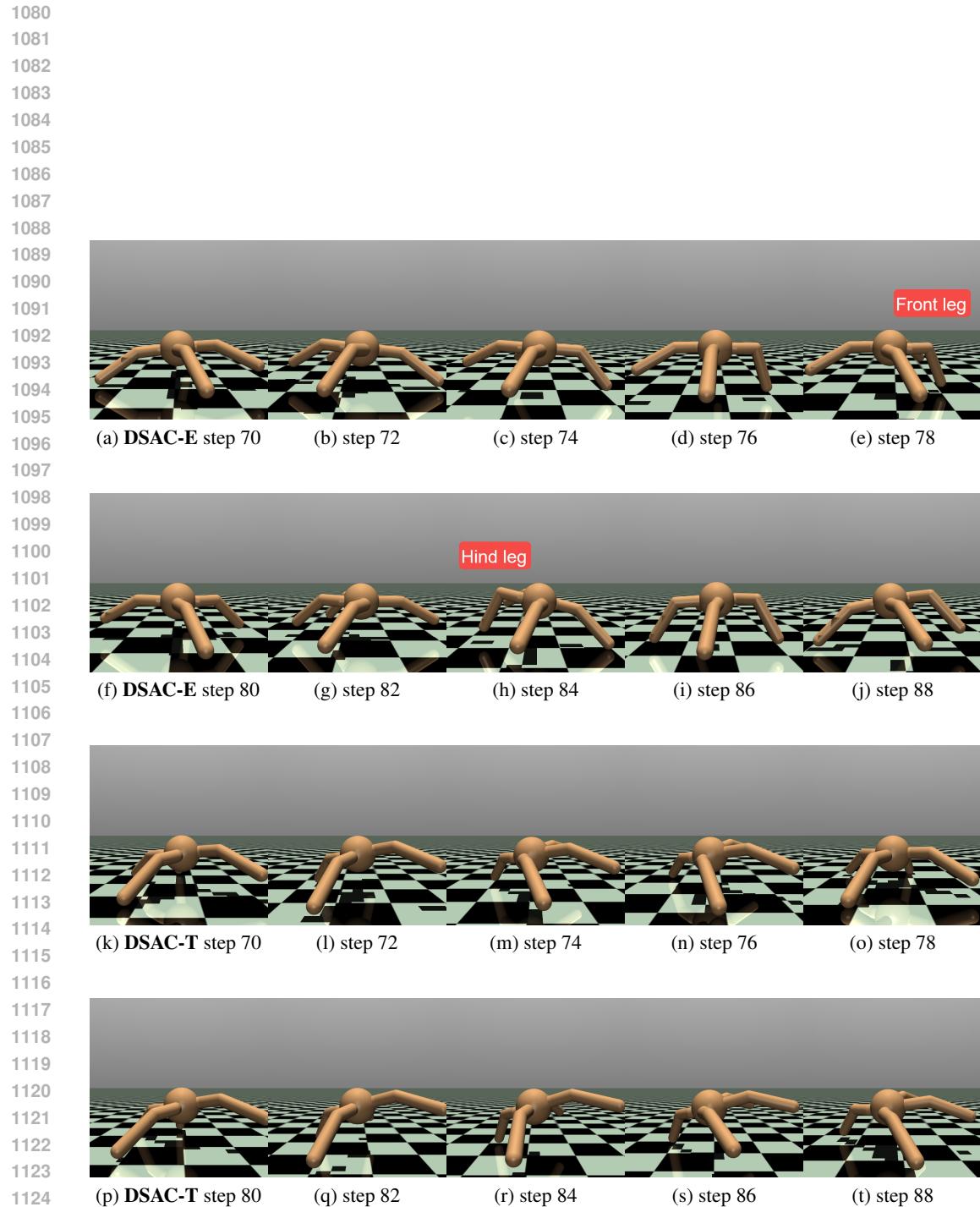


Figure 15: Visualizations of control processes on Ant task.

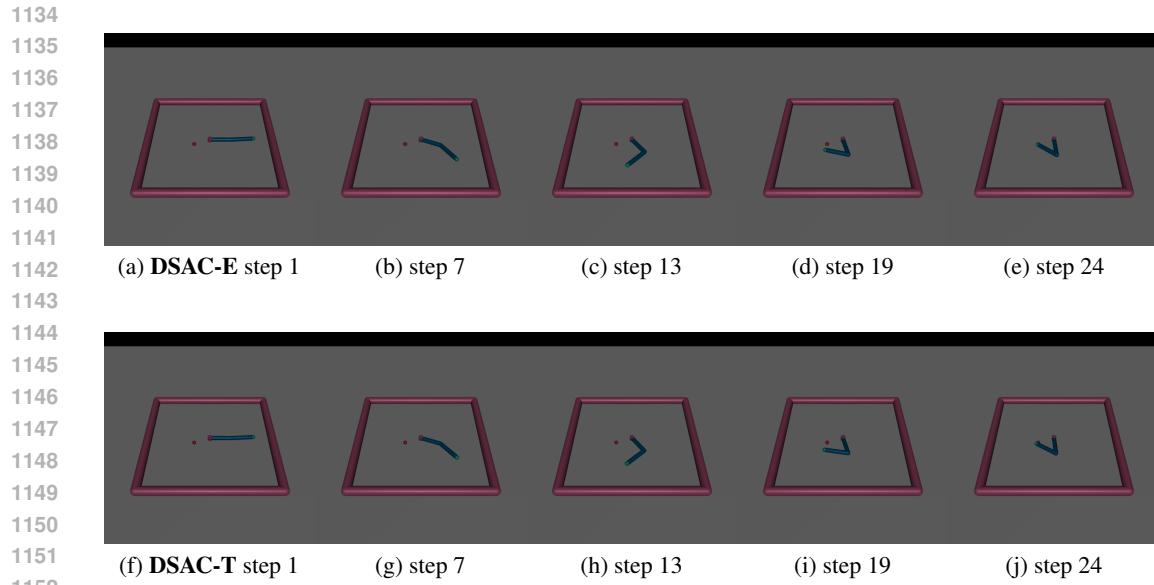


Figure 16: Visualizations of control processes on Reacher task.

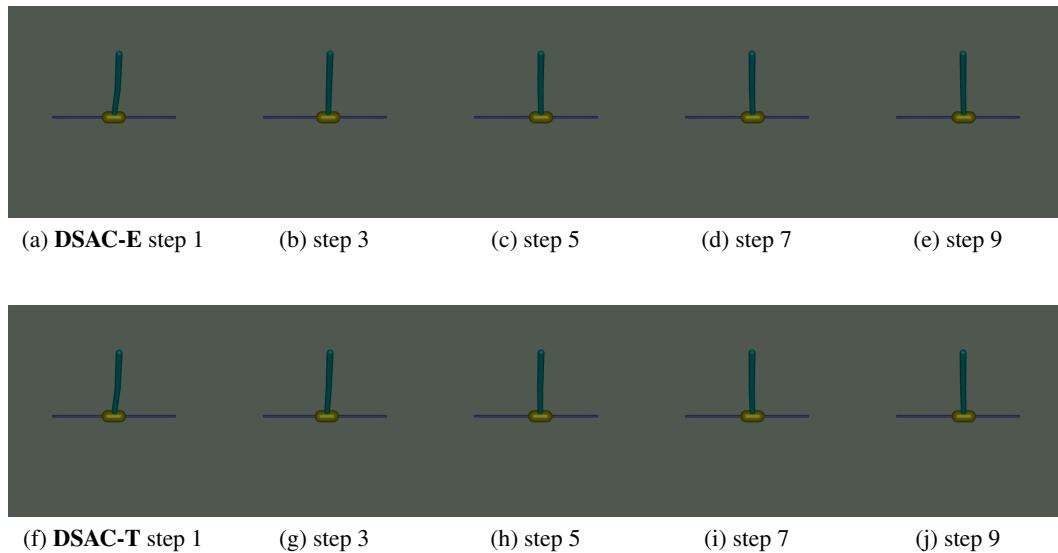
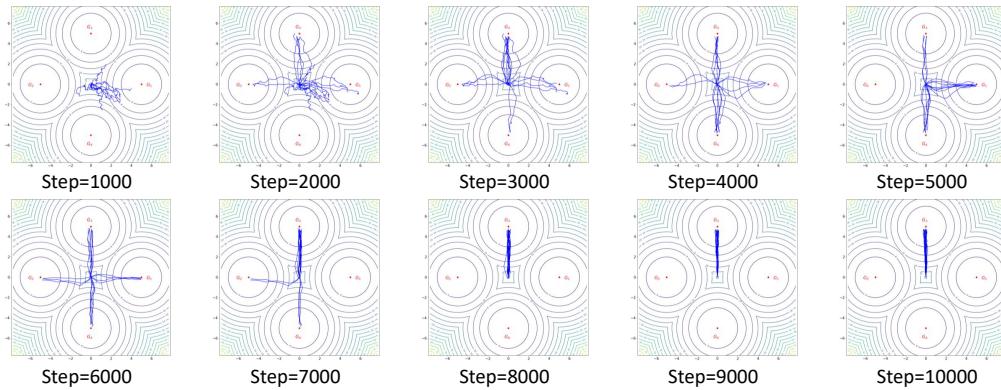


Figure 17: Visualizations of control processes on IDP task.

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208 **Multi-Goal Evaluation During Training**
 1209
 1210
 1211
 1212
 1213
 1214



1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222 **Figure 18: Visualizations of control processes on Multi-goal task.**
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241