
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIND YOUR ENTROPY: FROM MAXIMUM ENTROPY TO
TRAJECTORY ENTROPY-CONSTRAINED RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Maximum entropy has become a mainstream off-policy reinforcement learning
(RL) framework for balancing exploitation and exploration. However, two bot-
tlenecks still limit further performance improvement: (1) non-stationary Q-value
estimation caused by jointly injecting entropy and updating its weighting parameter,
i.e., temperature; and (2) short-sighted local entropy tuning that adjusts temperature
only according to the current single-step entropy, without considering the effect
of cumulative entropy over time. In this paper, we extends maximum entropy
framework by proposing a trajectory entropy-constrained reinforcement learning
(TECRL) framework to address these two challenges. Within this framework, we
first separately learn two Q-functions, one associated with reward and the other
with entropy, ensuring clean and stable value targets unaffected by temperature
updates. Then, the dedicated entropy Q-function, explicitly quantifying the ex-
pected cumulative entropy, enables us to enforce a trajectory entropy constraint and
consequently control the policy’s long-term stochasticity. Building on this TECRL
framework, we develop a practical off-policy algorithm, DSAC-E, by extending
the state-of-the-art distributional soft actor-critic with three refinements (DSAC-T).
Empirical results on the OpenAI Gym benchmark demonstrate that our DSAC-E
can achieve higher returns and better stability.

1 INTRODUCTION

Balancing exploration and exploitation remains a central challenge in reinforcement learning
(RL) (Sutton & Barto, 2018; Li, 2023). To address this, off-policy methods have leveraged the
maximum entropy principle, which encourages agents to act as randomly as possible while still
optimizing for high returns (Wang et al., 2022; Haarnoja et al., 2017). By augmenting the objective
with a temperature-weighted entropy term, algorithms like Soft Actor-Critic (SAC) (Haarnoja et al.,
2018a) and its distributional variant DSAC (Duan et al., 2021; 2025) have achieved state-of-the-art
performance on continuous control benchmarks like MuJoCo, proving to be highly effective and
robust (Eysenbach & Levine, 2022).

However, a fixed temperature parameter can lead to a policy that is either excessively stochastic or
unnecessarily deterministic (Rawlik et al., 2012). This is because a single temperature value cannot
optimally balance exploration and exploitation across all phases of training; a high temperature may
hinder convergence, while a low temperature can lead to premature exploitation of a suboptimal
solution (Fox et al., 2016). To mitigate this issue, modern maximum entropy RL incorporates an
automated temperature adjustment mechanism (Haarnoja et al., 2018b). Using the policy’s current
per-step entropy as a feedback signal, this mechanism dynamically tunes the temperature throughout
training, aligning it with a predefined target. Therefore, it ensures that a desired level of stochasticity
is maintained across all situations (Hazan et al., 2019).

Despite the remarkable empirical success, maximum entropy methods still face two critical bottle-
necks that hinder further progress. (1) The first issue is non-stationary Q-value estimation, which
stems from the tight coupling of reward and entropy (Schulman et al., 2017a). Since the temperature
parameter is updated simultaneously, the injected temperature-weighted entropy term is directly
altering the Q-value targets, causing them to become non-stationary. This process can destabilize
value learning and ultimately undermine policy optimization (Lillicrap et al., 2016). (2) Second,
and perhaps more fundamentally, while some works have explored constraining entropy, they all

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

suffer from short-sighted local entropy tuning (Haarnoja et al., 2018b; Duan et al., 2021; 2025).
By regulating only the local current-step entropy, these methods neglect the long-term influence of
stochasticity over entire trajectories. More critically, they enforce a uniform entropy target across all
states, as if every situation demands the same degree of randomness. This one-size-fits-all assumption
is overly restrictive; it fails to acknowledge that effective exploration should adapt to the underly-
ing dynamics and the agent’s learning progress (Tokic, 2010; Sun et al., 2022). This fundamental
disconnect ignores the varying exploration needs of different situations.

The observed two bottlenecks naturally raise a question: can we move beyond maximum entropy
by directly and cleanly controlling what really matters—the cumulative entropy of the policy? We
argue the answer is yes by introducing a trajectory entropy-constrained (TEC) RL framework. To
ensure a stable and interpretable learning process, our core innovation is to completely decouple
the reward and entropy signals by learning two separate Q-functions. This separation ensures clean
Q-value targets, and the dedicated entropy critic enables us to enforce a trajectory-level constraint on
the policy’s cumulative entropy. This design inherently breaks from traditional single-step restriction,
enabling a more principled and long-term control of policy stochasticity.

To demonstrate the practical advantages of our framework, we introduce DSAC-E, an extension of the
state-of-the-art Distributional Soft Actor-Critic with Three refinements (DSAC-T) algorithm (Duan
et al., 2025). DSAC-E integrates the strengths of DSAC-T’s distributional value estimation with our
proposed trajectory entropy constraint. By decoupling the reward and entropy Q-values and adjusting
the trajectory-level entropy budget, our DSAC-E achieves cleaner and more effective exploitation
alongside more controllable exploration. Empirical results on the OpenAI Gym continuous control
benchmark (Brockman et al., 2016) demonstrate that DSAC-E not only achieves superior final returns
but also exhibits better training stability than strong maximum entropy baselines.

Our contributions are summarized in threefold:

• We identify and analyze the impact of two bottlenecks in conventional maximum entropy
RL: (1) non-stationary Q-value estimation and (2) short-sighted local entropy tuning.
These issues motivate us to execute reward-entropy separation and trajectory-level entropy
constraint;

• To address these two identified bottlenecks, we propose the TECRL framework. Within
this framework, we first eliminate the (1) non-stationary Q-value estimation problem by
decoupling reward and entropy signals into two separate critics, while temperature is
excluded from the learning processes of both critics. Then the dedicated entropy critic
allows us to enforce a trajectory-level entropy constraint, thereby overcoming the issue of (2)
short-sighted local entropy tuning. Furthermore, we provide a rigorous theoretical analysis
demonstrating that appropriately selecting a trajectory entropy budget can yield a higher
performance bound;

• We introduce DSAC-E, a practical instantiation of our TECRL framework built on DSAC-T,
the state-of-the-art maximum entropy algorithm. Through this instantiation, we demonstrate
that our framework enables superior performance on complex continuous control tasks.

2 PRELIMINARIES

Maximum entropy RL. While standard RL seeks a policy that maximizes the expected accumu-
lated return, maximum entropy RL (Haarnoja et al., 2017) extends this by adopting an objective
function that incorporates a policy entropy term as

Jπ = E
st∼ρπ

[∞∑
t=0

γt[rt + αH(π(·|st))]
]
, (1)

where γ ∈ (0, 1) is the discount factor, ρt is the state visitation distribution, α is the temperature
coefficient, and the single-step policy entropy H is expressed as

H(π(·|st)) = E
at∼π(·|st)

[
− log π(at|st)

]
. (2)

The optimal policy can be derived through a maximum entropy variant of policy iteration, commonly
known as soft policy iteration (Wang et al., 2022). This iterative process alternates between two key
stages: (1) soft policy evaluation (PEV) and (2) soft policy improvement (PIM).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In soft PEV, provided a policy π, for a given policy π, we can apply the soft Bellman operator Bπ to
learn the soft Q-value, as shown by the soft Bellman expectation equation:

Bsoft[Qsoft(s, a)] = r + γEs′∼p,a′∼π[Qsoft(s′, a′)− α log π(a′|s′)
]
, (3)

where the definition of soft Q-value is

Qsoft(s, a) = Eπ

[∞∑
t=0

γtrt +

∞∑
t=1

γtαH(π(·|st))
∣∣∣∣ s0 = s, a0 = a

]
. (4)

One might ask why we write the reward and entropy signals as two separate summation terms. The
reason is to highlight the difference in their starting indices. The reward signal is accumulated from
the current time step, with a summation index of t = 0, while the policy entropy is accumulated from
the next time step, with a summation index of t = 1. This difference is evident from the soft Bellman
expectation equation in Eq. (3): the first term on the right-hand side, r, does not have a corresponding
policy entropy term at the same time step. In fact, the missing current entropy H(π(·|s0)) occurs in
the subsequent soft PIM step.

In soft policy improvement (PIM), the goal is to find a new policy that outperforms the current policy.
This is achieved by directly maximizing an entropy-augmented objective, a process equivalent to:

πnew = argmax
π

E
s∼ρπ,a∼π

[
Qsoft(s, a)− α log π(a|s)

]
. (5)

The convergence of soft policy iteration to the optimal maximum entropy policy is a well-established
result in the field, as shown by (Haarnoja et al., 2017).

Temperature tuning. A key advancement in the latest maximum entropy frameworks is the
automatic management of the temperature parameter α. Instead of being a fixed hyperparameter, α is
treated as a learnable variable. The objective is to minimize

J(α) = Eat∼π
[
− α

(
log π(at|st) +H0

)]
, (6)

where the default value of H0 is commonly set as −dim(A), i.e., the minus of the number of
action dimensions. This mechanism achieves a dynamic balance between exploration and exploita-
tion by maintaining the policy’s local entropy close to a predefined target entropy H0 across all
situations (Haarnoja et al., 2018a).

3 METHOD

3.1 TWO BOTTLENECKS OF MAXIMUM ENTROPY RL

Previously, we briefly introduced two bottlenecks that exist in the current maximum entropy RL
framework. Now, combining with specific formulas, we will more formally and mathematically
explain their origins and their impact on policy learning.

(1) Non-stationary Q-value estimation. In each soft PEV step, as shown in Eq. (3), the target
value is calculated by

ytarget = r(s, a) + γ[Qsoft(s′, a′) + αH(π(·|s′))]. (7)
When the temperature α is updated at the same time, the target value distribution shifts dynamically.
This entanglement injects additional variance and bias into Q-value estimation, degrading subsequent
policy improvement steps that rely on stable value predictions.

(2) Short-sighted local entropy tuning. In each soft PIM step, as shown in Eq. (6), the existing
temperature tuning mechanism aligns every local single-step entropy to a fixed target by adjusting α
to match E[− log π(a|s)] to some desired value. However, it would be better to adjust the trajectory
entropy to control the long-term policy stochasticity, which is defined as:

Htraj(s) = Eτ∼π
[∞∑
t=0

γtH(π(·|st))
∣∣∣∣ s0 = s

]
. (8)

In summary, while the maximum-entropy framework is a powerful tool for policy learning, its
effectiveness is still hindered by the two identified bottlenecks. These limitations motivate us to
execute reward-entropy separation to ensure clean and stable value learning and rethink maximum
entropy RL from a trajectory-level entropy constraint perspective.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Policy Improvement

max 𝑄𝑟 + 𝛼 − log 𝜋 + 𝑄𝑒

Temperature Updating

min 𝛼 − log𝜋 + 𝑄𝑒 −
𝜌ℋ0

1 − 𝛾

Policy IntroSpection

𝑄𝑒 = −𝛾𝑡 log 𝜋
∞

𝑡=1

Sampling

Policy Evaluation

𝑄𝑟 = 𝛾𝑡𝑟
∞

𝑡=0

Policy Improvement

max 𝑄 + 𝛼 − log 𝜋

Temperature Updating

min 𝛼 − log 𝜋 − ℋ0

Sampling

Policy Evaluation

𝑄 = 𝑟0 + 𝛾𝑡 𝑟 − 𝛼 log 𝜋
∞

𝑡=1

Maximum Entropy RL Trajectory Entropy-Constrained RL

Figure 1: Comparison between standard maximum entropy RL (left) and our trajectory entropy-
constrained (TEC) RL (right). Our TECRL framework comprises four key components: a reward-
centric policy evaluation (PEV), an entropy-centric policy introspection (PIS), a policy improvement
(PIM) that retains the exact soft policy objective, and a temperature update (TUP) tuning the tempera-
ture guided by the trajectory entropy constraint.

3.2 TRAJECTORY ENTROPY-CONSTRAINED REINFORCEMENT LEARNING

To address the two bottlenecks identified earlier, we propose Trajectory Entropy-Constrained Rein-
forcement Learning (TECRL). It formulates an explicit equality constraint on the trajectory-level
entropy to control the policy stochasticity, which yields the following policy optimization problem:

max
π

Eπ
[∞∑
t=0

γt[r(st, at) + αH(π(·|st))
]

s.t. Eπ
[∞∑
t=0

γtH(π(·|st))
]
= Hbudget.

(9)

Under this trajectory entropy constraint, the agent is required to strategically distribute a fixed budget
of randomness across its entire trajectory. This offers a more principled way to mitigate the dilemma
of under- and over-exploration.

To practically solve the optimal policy, our TECRL integrates four alternating steps: (1) Policy
Evaluation (PEV) estimates the expected cumulative reward; (2) Policy Introspection (PIS) estimates
the expected cumulative entropy; (3) Policy Improvement (PIM) jointly leverages both critics to
formulate soft policy objective; and (4) Temperature Updating (TUP) adapts the temperature to
enforce the trajectory entropy constraint. Below we detail these four steps one by one.

(1) Policy Evaluation (PEV). This step learns a reward-centric critic Qr defined as

Qr(s, a) = Eπ

[∞∑
t=0

γtrt

∣∣∣∣ s0 = s, a0 = a

]
, (10)

The PEV loss follows the standard Bellman expectation equation:

LPEV = (Qr(s, a)− yr)
2, where yr = r(s, a) + γ Es′,a′ [Qr(s

′, a′)], (11)

This reward-centric critic explicitly excludes entropy bonuses, which ensures a clean value target
uninfluenced by policy stochasticity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Trajectory Entropy-Constrained Reinforcement Learning (TECRL)

1: Initialize policy πθ, reward critic Qr,ψ , entropy critic Qe,ϕ, temperature α, replay buffer D
2: for each iteration do
3: Observe st, sample at ∼ πθ(a|st), execute at, receive rt, next state st+1

4: Store (st, at, rt, st+1) in D
5: Sample mini-batch {(s, a, r, s′)} ∼ D
6: Update Qr with Eq. (11) ▷ (PEV) Policy Evaluation
7: Update Qe with Eq. (13) ▷ (PIS) Policy Introspection
8: Update πθ with Eq. (14) ▷ (PIM) Policy Improvement
9: Update α with Eq. (15) ▷ (TUP) Temperature Updating

10: end for

(2) Policy Introspection (PIS). This step learns an entropy-centric critic Qe. For a Gaussian
policy, the entropy of the current step is straightforward to compute. Therefore, we define Qe as the
cumulative policy entropy from the next time step to infinity, which is defined as

Qe(s, a) = Eπ

[∞∑
t=1

γtH(π(·|st))
∣∣∣∣ s0 = s, a0 = a

]
. (12)

Notably, it also does not contain the temperature α, so its target value is clean and explicit. The PIS
loss follows an entropy Bellman expectation equation:

LPIS = (Qe(s, a)− ye)
2, where ye = γH(π(·|s′)) + γ Qe(s

′, a′). (13)

The mathematical correspondence between Eq. (12) and Eq. (13) can be seen in the Appendix A.2,
and the convergence proof of the newly proposed PIS is presented in Appendix A.3.

We refer to this process as policy introspection because the Qe value reflects the future cumulative
entropy of the current policy across different state-action pairs. In essence, it quantifies the long-term
stochasticity inherent to the policy itself.

(3) Policy Improvement (PIM). With dual critics Qr and Qe, We can formulate a policy loss as:

LPIM = Qr(s, a)︸ ︷︷ ︸
cumulative reward

+ α (− log π(a|s) +Qe(s, a))︸ ︷︷ ︸
cumulative entropy

. (14)

This PIM loss aligns with the soft policy objective shown in Eq. (1). Qr represents the cumulative
reward, − log π(a|s) is the current policy entropy, and Qe represents the cumulative entropy starting
from the next time step. Therefore, our PIM is compliant with the maximization term in Eq. (9).

(4) Temperature Updating (TUP). Finally, the aim of TUP is tuning α to enforce the trajectory
entropy constraint, whose loss is

LTUP = −α

(
− log π(a|s) +Qe(s, a)︸ ︷︷ ︸

cumulative entropy

−Hbudget

)
. (15)

This mechanism extends existing temperature tuning in Eq. (6) by replacing uniform local entropy
matching with a trajectory-level entropy constraint in Eq. (9). We set Hbudget as ρH0/(1− γ), The
division by (1− γ) is to keep the magnitude consistent with the local entropy tuning of the maximum
entropy. ρ is an entropy scaling factor that can adjust the budget value.

Summary. Our proposed TECRL framework is grounded in two primary claims: (1) TECRL
enables more stable and effective exploitation. This is because the reward-centric value function is now
decoupled from the entropy objective, allowing it to provide a more accurate and dedicated prediction
to guide policy improvement. (2) TECRL enables more strategic and controllable exploration.
By having the agent dynamically allocate its finite entropy budget where it is most needed, the
method facilitates the preservation of high-value behaviors while preventing unstable swings in policy
stochasticity. The full pseudocode is summarized in Algorithm 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 THEORETICAL ANALYSIS ON PERFORMANCE BOUND

We formalize how a trajectory entropy constraint affects policy performance and demonstrate why a
properly chosen entropy budget can raise the performance upper bound. We first denote π∗

soft as the
optimal policy under the standard maximum entropy RL setting, which maximizes the soft objective

JMaxEnt(π
∗
soft) = R∗

MaxEnt + α∗
soft H∗

soft, (16)
where R∗

MaxEnt and H∗
soft represent the optimal return and cumulative entropy, respectively, and

α∗
soft > 0 is the optimal temperature parameter.

Let RTEC be the return of our TECRL policy. We assume that the entropy budget Hbudget is chosen to
be within the feasible range of entropy values encountered during the MaxEnt optimization process.
Specifically, it is neither smaller than the minimal achievable entropy nor larger than the maximal
entropy H∗

soft obtained by the optimal maximum-entropy policy π∗
soft. Therefore, with the same

temperature α∗
soft, we have the following inequality

JMaxEnt(π
∗
soft) ≥ RTEC + α∗

soft H∗
budget. (17)

By rearranging this inequality, the return of our TECRL can be bounded from above as
RTEC ≤ JMaxEnt(π

∗
soft)− α∗

soft Hbudget

= R∗
MaxEnt + α∗

soft (H∗
soft −Hbudget).

(18)

This inequality explicitly shows that our achievable return is bounded by a quantity proportional to
the entropy gap H∗

soft −Hbudget. This analysis demonstrates that appropriately selecting a trajectory
entropy budget can lead to a higher performance bound.

4 EXPERIMENTS

4.1 MAIN EXPERIMENT

Benchmark. We evaluate performance on a suite of standard continuous control tasks from the
OpenAI Gym interface (Brockman et al., 2016). Specifically, we choose 8 Mujoco tasks: Humanoid-
v3, Ant-v3, Hopper-v3, Walker2d-v3, Swimmer-v3, HalfCheetah-v3, InvertedDoublePendulum-v2
(abbreviated as InvertedDP-v2) and Reacher-v2. Details are provided in Appendix B.

Baselines. We consider 7 well-known model-free algorithms, including trust region policy opti-
mization (TRPO) (Schulman et al., 2015), proximal policy optimization (PPO) (Schulman et al.,
2017b), deep deterministic policy gradient (DDPG) (Lillicrap et al., 2016), twin delayed deep de-
terministic policy gradient (TD3) (Fujimoto et al., 2018), soft actor-critic (SAC) (Haarnoja et al.,
2018a), Distributional SAC (DSAC) (Duan et al., 2021) and its latest version DSAC-T (Duan et al.,
2025). See Appendix D for detailed hyperparameters.

Our method. Our proposed DSAC-E algorithm is built on the DSAC-T, inheriting all of its
hyperparameters. For the newly introduced hyperparameter ρ, we set its value to 20 for the Humanoid-
v3 and Walker2d-v3 tasks, and to 1 for all other tasks. The reason for setting larger ρ values for these
two tasks is that they are relatively high-dimensional and that the robots are particularly prone to
falling over due to overly random actions. Recall that the base single-step entropy budget H0 is a
negative value, so a larger ρ means a smaller budget ρH0/(1− γ).

Evaluation protocol. The total training step for all experiments is set at 1.5 million, with the results
of all experiments averaged over 5 random seeds. For each seed, the metric is derived by averaging
the highest return values observed during the final 10% of iteration steps in each run, with evaluations
conducted every 15,000 iterations. Each assessment result is the average of ten episodes. The results
from the 5 seeds are then aggregated to calculate the mean and standard deviation.

Main results. Figure 2 and Table 1 display all the learning curves and numerical performance
results , respectively. Our comprehensive findings reveal that across all evaluated 8 tasks, the DSAC-E
algorithm consistently matched or surpassed the performance of all competing benchmark algorithms,
establishing new state-of-the-art results. Notably, it achieved less oscillation and substantial per-
formance improvements on the Humanoid-v3, Ant-v3, Walker2d-v3, and Hopper-v3 tasks, with
improvements of 15.82%, 21.93%, 21.11% and 6.6% over the second-best.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

re
tu

rn

(a) Humanoid-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

Av
er

ag
e

re
tu

rn

(b) Ant-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

re
tu

rn

(c) Hopper-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

1000

2000

3000

4000

5000

6000

7000

8000

Av
er

ag
e

re
tu

rn

(d) Walker2d-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

25

50

75

100

125

150

Av
er

ag
e

re
tu

rn

(e) Swimmer-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2500

5000

7500

10000

12500

15000

17500

Av
er

ag
e

re
tu

rn

(f) Halfcheetah-v3

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

Av
er

ag
e

re
tu

rn

(g) InvertedDP-v2

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Av
er

ag
e

re
tu

rn

(h) Reacher-v2

Legend： DSAC-E DSAC-T DSAC SAC TD3 DDPG TRPO PPO

Figure 2: Training curves on benchmarks. The solid lines correspond to mean and shaded regions
correspond to the 95% confidence interval over five runs.

Table 1: Average final return. Computed as the mean of the highest return values observed in the
final 10% of iteration steps per run. ± corresponds to standard deviation over 5 runs.

Algorithm Humanoid-v3 Ant-v3 Hopper-v3 Walker2d-v3

Off
w/ entropy

DSAC-E 12542±280 8640±57 3901±385 7780±137
DSAC-T 10829±243 7086±261 3660±533 6424±147
DSAC 9074±286 6862±53 2135±434 5413±865
SAC 9336±696 6427±805 2483±943 6201±264

w/o entropy TD3 5632±436 6184±487 3569±455 5238±336
DDPG 5292±663 4549±789 2644±659 4096±68

On w/ entropy TRPO 965±555 6203±579 3474±400 5503±593
PPO 6869±1563 6157±185 2647±482 4832±638

⇑ 15.82% 21.93% 6.58% 21.11%

Algorithm Swimmer-v3 Halfcheetah-v3 InvertedDP-v2 Reacher-v2

Off
w/ entropy

DSAC-E 149.3±0.3 17904±100 9360±0 -2.9±0.1
DSAC-T 137.6±6.4 17025±157 9360±0 -3.1±0.2
DSAC 83.9±35.6 16542±514 9359±1 -4.3±1.9
SAC 140.4±14.3 16573±224 9360±0 -3.1±0.2

w/o entropy TD3 134.0±5.4 8633±4041 9347±15 -3.4±0.2
DDPG 145.6±4.3 13970±2083 9183±10 -4.5±1.3

On w/ entropy TRPO 70.4±38.1 4785±968 6260±2066 -5.0±0.6
PPO 130.3±2.0 5790±2201 9357±2 -4.4±0.2

⇑ 2.54% 5.16% 0% 6.45%

* Bolded and red = best, blue = second-best. ⇑ means the improvement of the best over the second-best.

4.2 ABLATION STUDY

We conduct ablation studies on the Humanoid-v3 task to evaluate the contribution of each component.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Reward-entropy separation (RES) and trajectory Entropy Constraint (TEC). We perform a
step-wise ablation, considering four algorithms: (1) Our full DSAC-E. (2) DSAC-E w/o TEC, which
replaces our trajectory entropy constraint with existing local entropy tuning. (3) DSAC-E w/o TEC
and RES, which is close to DSAC-T but with a ρ value of 20. (4) original DSAC-T, which can be
understood as having a ρ of 1. As shown in Figure 3 and Table 2, the performance of the algorithms
progressively declines as more components are removed. This result confirms the effectiveness of
both our RES and TEC modules. Next we will provide a more systematic analysis of the ρ.

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

re
tu

rn

Figure 3: Ablation on the TEC and RES.

DSAC-TDSAC-E w/o TEC & RES

DSAC-E DSAC-E w/o TEC

Table 2: Results of ablation on TEC and RES.

Algorithm TAR

DSAC-E (full) 12542 ± 280
DSAC-E w/o TEC 11786 ± 374
DSAC-E w/o TEC & RES 11455 ± 404
DSAC-T 10829 ± 243

Impact of ρ controlling trajectory entropy budget. We further investigate the effect of varying
the trajectory entropy budget. Specifically, we apply different ρ values for both DSAC-T and our
DSAC-E. As shown in Figure 4 and Table 3, the performance gain of DSAC-T (Figure 4a) is not
significant with the adjustment of ρ. Its performance varies only slightly and all results cluster closely
together. In contrast, our DSAC-E (Figure 4b) consistently outperforms DSAC-T across all settings,
and its performance shows a clearer, more structured dependence on ρ.

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

re
tu

rn

(a) DSAC-T

0.0 0.3 0.6 0.9 1.2 1.5
Million iterations

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

re
tu

rn

(b) DSAC-E (ours)

Legend： ρ = 1 ρ = 10 ρ = 20 ρ = 30

Figure 4: Ablation on the sensitivity to the trajectory entropy budget.

For both DSAC-T and our DSAC-E, performance first improves and then degrades as ρ increases,
which aligns with our theoretical analysis: a properly chosen entropy budget can lift the performance
bound, whereas an excessively large ρ (corresponding to an overly small entropy budget) reduces
exploration and leads to a performance drop. Overall, our DSAC-E achieves higher performance and
exhibits a more interpretable sensitivity to ρ, making it easier to tune for high returns.

Table 3: Performance of DSAC-T and our DSAC-E under different ρ values.

Algorithm ρ = 1 ρ = 10 ρ = 20 ρ = 30

DSAC-T 10829 ± 243 11079 ± 457 11455 ± 404 11182 ± 705
DSAC-E (ours) 11382 ± 447 12118 ± 505 12542 ± 280 11747 ± 365

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 RELATED WORK

Exploration remains a central challenge in RL, and prior studies have proposed various strategies
to inject and regulate stochasticity into the policy (Amin et al., 2021). Broadly, existing approaches
can be grouped into two main categories: action-noise-based and maximum-entropy-based explo-
ration (Hao et al., 2023). While other alternatives, such as curiosity-driven (Sun et al., 2022) or
uncertainty-based (An et al., 2021) exploration, have been explored, they remain less commonly
adopted in standard model-free RL algorithms.

Action-noise based exploration. A line of methods in off-policy RL encourages exploration by
directly perturbing the agent’s actions with a noise process. For instance, DDPG first (Lillicrap et al.,
2016) employs Ornstein–Uhlenbeck noise to facilitate temporally correlated exploration, and the TD3
family (Fujimoto et al., 2018; 2023; Seo et al., 2025) turn to simply apply Gaussian noise to each
action dimension to effectively maintain randomness during training. Although these approaches
are intuitive and easy to implement, they suffer from two key drawbacks. First, the noise is added
externally and is entirely separate from the policy’s learning objective. The policy itself is unaware of
this exploration mechanism, making it a blind, ad hoc process (Plappert et al., 2018; Li et al., 2021).
Second, it creates a fundamental inconsistency between training and evaluation. A policy trained
with exploratory noise is different from the final policy used for deployment, which can lead to a
policy-value mismatch and hinder convergence to a truly optimal solution (Hollenstein et al., 2022;
Sikchi et al., 2022). Overall, although action-noise based exploration is straightforward to implement
and can yield good performance, its largely heuristic nature diminishes its reliability.

Maximum-entropy based exploration. A more principled framework for exploration is provided
by maximum-entropy RL (Haarnoja et al., 2017). By augmenting the standard RL objective with
an entropy term, methods such as SAC (Haarnoja et al., 2018a) optimize for both expected return
and policy entropy, thereby encouraging diverse behaviors (Nachum et al., 2017). While the latest
extensions of SAC further incorporate distributional critics to improve performance (Duan et al., 2021;
2025), they share the same tuning principle of maintaining the policy’s single-step entropy at a fixed
target. Recent work has explored the use of generative models, such as diffusion models, as policy
functions (Yang et al., 2023a; Zhu et al., 2023). While it’s difficult to accurately compute the entropy
of this class of functions (Yang et al., 2023b), these methods still try to follow the standard maximum-
entropy principle and entropy tuning mechanism for exploration, for example, by approximating the
policy entropy via GMM fitting or alternatively optimizing the lower bound (Wang et al., 2024; 2025;
Ding et al., 2024; Celik et al., 2025). Their entropy tuning mechanism remains inherently uniform
across all situations and does not explicitly account for long-term policy stochasticity and the inherent
need for adaptive exploration. Our TECRL also employs entropy to monitor policy’s stochasticity.
However, we shift the focus from local entropy tuning to trajectory entropy constraint, highlighting a
new perspective on managing policy’s long-term stochasticity. We believe this work provides a new
avenue for better resolving the exploitation-exploration dilemma, leading to higher performance.

6 CONCLUSION

In this paper, we revisit the standard maximum entropy RL framework and introduce the trajectory
entropy-constrained reinforcement learning (TECRL) framework. Our work addresses two key
limitations: (1) non-stationary Q-value estimation and (2) short-sighted local entropy tuning. By
separating the reward and entropy Q-functions and applying the trajectory entropy constraint, our
framework ensures stable value targets and effective control of long-term policy stochasticity. Building
on this, we develop a practical algorithm, DSAC-E, which extends the state-of-the-art DSAC-T
baseline. Empirical results on the OpenAI Gym benchmark show that DSAC-E achieves superior
returns and greater stability, validating the effectiveness of our TECRL framework.

Moving forward, we plan to validate the applicability of our TECRL framework to real-world robotics
and large language models (LLMs). This integration will allow agents to benefit from TECRL’s
superior long-term stochasticity management, leading to more effective and robust behaviors. We
believe this work offers a promising paradigm for addressing the exploration-exploitation trade-off
and paving the way for more powerful and robust RL agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke Van Hoof, and Doina Precup. A survey of
exploration methods in reinforcement learning. arXiv preprint arXiv:2109.00157, 2021.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. arXiv
preprint arXiv:2502.02316, 2025.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. Advances
in Neural Information Processing Systems, 37:53945–53968, 2024.

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. IEEE
transactions on neural networks and learning systems, 33(11):6584–6598, 2021.

Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, Shengbo Eben Li, Chang Liu, Ya-Qin
Zhang, Bo Cheng, and Keqiang Li. Distributional soft actor-critic with three refinements. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2025.

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. In International Conference on Learning Representations, 2022.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
pp. 202–211, 2016.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning
(ICML 2018), pp. 1587–1596, Stockholmsmässan, Stockholm Sweden, 2018. PMLR.

Scott Fujimoto, Wei-Di Chang, Edward Smith, Shixiang Shane Gu, Doina Precup, and David Meger.
For sale: State-action representation learning for deep reinforcement learning. Advances in neural
information processing systems, 36:61573–61624, 2023.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning (ICML 2018), pp. 1861–1870, Stockholmsmässan,
Stockholm Sweden, 2018a. PMLR.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and
Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent domain.
IEEE Transactions on Neural Networks and Learning Systems, 35(7):8762–8782, 2023.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jakob Hollenstein, Sayantan Auddy, Matteo Saveriano, Erwan Renaudo, and Justus Piater. Action
noise in off-policy deep reinforcement learning: Impact on exploration and performance. arXiv
preprint arXiv:2206.03787, 2022.

Min Li, Tianyi Huang, and William Zhu. Adaptive exploration policy for exploration–exploitation
tradeoff in continuous action control optimization. International Journal of Machine Learning and
Cybernetics, 12(12):3491–3501, 2021.

Shengbo Eben Li. Reinforcement Learning for Sequential Decision and Optimal Control. Springer
Verlag, Singapore, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, 2016.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. In 30th Advances in Neural Information Processing
Systems (NeurIPS 2017), pp. 2775–2785, Long Beach, CA, USA, 2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. Proceedings of Robotics: Science and Systems VIII,
2012.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
(ICML 2015), pp. 1889–1897, Lille, France, 2015.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-learning.
arXiv preprint arXiv:1704.06440, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng Yin, and Pieter
Abbeel. Fasttd3: Simple, fast, and capable reinforcement learning for humanoid control. arXiv
preprint arXiv:2505.22642, 2025.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In
Conference on Robot Learning, pp. 1622–1633. PMLR, 2022.

Hao Sun, Lei Han, Rui Yang, Xiaoteng Ma, Jian Guo, and Bolei Zhou. Exploit reward shifting in
value-based deep-rl: Optimistic curiosity-based exploration and conservative exploitation via linear
reward shaping. Advances in neural information processing systems, 35:37719–37734, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Michel Tokic. Adaptive ε-greedy exploration in reinforcement learning based on value differences.
In Annual conference on artificial intelligence, pp. 203–210. Springer, 2010.

Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and Qiguang
Miao. Deep reinforcement learning: A survey. IEEE Transactions on Neural Networks and
Learning Systems, 35(4):5064–5078, 2022.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
Advances in Neural Information Processing Systems, 37:54183–54204, 2024.

Yinuo Wang, Mining Tan, Wenjun Zou, Haotian Lin, Xujie Song, Wenxuan Wang, Tong Liu, Likun
Wang, Guojian Zhan, Tianze Zhu, et al. Enhanced dacer algorithm with high diffusion efficiency.
arXiv preprint arXiv:2505.23426, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM computing surveys, 56(4):1–39, 2023a.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. arXiv preprint arXiv:2305.13122, 2023b.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting
Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey. arXiv preprint
arXiv:2311.01223, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS

A.1 USEFUL LEMMAS

Lemma 1 (Convergence of γ-Contraction Mappings). Let (X, d) be a complete metric space, and
let B : X → X be a γ-contraction mapping with 0 < γ < 1. This means that for all x, y ∈ X ,

d(B(x),B(y)) ≤ γ · d(x, y), (19)

where d is the metric on X . According to Banach’s fixed-point theorem, B has a unique fixed point
x∗ ∈ X , such that B(x∗) = x∗. Furthermore, for any initial point x0 ∈ X , the iterative sequence
{xn} defined by xn+1 = B(xn) converges to x∗. The convergence rate is geometric, and we have
the inequality

d(xn, x
∗) ≤ γn · d(x0, x

∗), ∀n ≥ 0. (20)

This result not only guarantees the existence and uniqueness of the fixed point but also provides
a precise rate at which the sequence approaches x∗, demonstrating the efficiency of contraction
mappings in finding fixed points.

A.2 ENTROPY BELLMAN EXPECTATION EQUATION IN POLICY INTROSPECTION (PIS)

Here, we build the correspondence between the definition of Qe in Eq. (12) and the entropy Bellman
expectation equation in Eq. (13).

Qe represents the cumulative policy entropy starting from the next time step, expressed as:

Qe(s, a) = Eπ

[∞∑
t=1

γtH(π(·|st))
∣∣∣∣ s0 = s, a0 = a

]
. (21)

Our proposed entropy Bellman expectation equation in Eq. (13) states

Qe(s, a) = γH(π(·|s′)) + γ Qe(s
′, a′). (22)

Substitute the definition of Qe into the RHS of Eq. (13), we have:

RHS = γH(π(·|s′)) + γ Qe(s
′, a′)

= γH(π(·|s1)) + γ

∞∑
t=1

γtH(π(·|st+1))

= γH(π(·|s1)) +
∞∑
t=1

γt+1H(π(·|st+1))

= γH(π(·|s1)) +
∞∑
t=2

γtH(π(·|st))

=

∞∑
t=1

γtH(π(·|st)) = LHS.

(23)

Thus, we have proven that the definition of Qe is the solution of the entropy Bellman expectation
equation.

A.3 CONVERGENCE OF POLICY INTROSPECTION (PIS)

We prove the convergence of PIS by showing that the entropy Bellman operator Be, defined as

BeQe(s, a) = γ[Qe(s
′, a′)− α log π(a′|s′)

]
, (24)

is a γ-contraction mapping.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We analyze the infinity norm of Be. For any two functions Qe,1(s, a) and Qe,2(s, a), we have:

∥Be[Qe,1(s, a)]− Be[Qe,2(s, a)]∥∞ = ∥γ[Qe,1(s
′, a′)− α log π(a′|s′)

]
− γ[Qe,2(s

′, a′)− α log π(a′|s′)
]
∥∞

≤ ∥γQe,1(s
′, a′)− γQe,2(s

′, a′)∥∞
= γ∥Qe,1(s

′, a′)−Qe,2(s
′, a′)∥∞.

(25)

Since γ ∈ (0, 1), it follows that Be is a γ-contraction mapping. By applying Lemma 1, we know that
Be has a unique fixed point. This fixed point can be obtained by iteratively applying Be starting from
an arbitrary initial Qe,init. That is, as the iteration number k increases, the sequence of updated Q
functions converges to a fixed point, i.e., the desired Qe.

B ENVIRONMENTAL INTRODUCTION

MuJoCo: This is a high-performance physics simulation platform widely adopted for robotic
reinforcement learning research. The environment features efficient physics computation, accurate
dynamic system modeling, and comprehensive support for articulated robots, making it an ideal
benchmark for RL algorithm development.

In this paper, we concentrate on eight tasks: Humanoid-v3, Ant-v3, HalfCheetah-v3, Walker2d-
v3, InvertedDoublePendulum-v3 (InvertedDP-v2), Hopper-v3, Reacher-v2, and Swimmer-v3, as
illustrated in Figure 5. The InvertedDP-v3 task entails maintaining the balance of a double pendulum
in an inverted state. In contrast, the objective of the other tasks is to maximize the forward velocity
while avoiding falling. All these tasks are realized through the OpenAI Gym interface (Brockman
et al., 2016).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Benchmarks. (a) Humanoid-v3: (s× a) ∈ R376 × R17. (b) Ant-v3: (s× a) ∈ R111 × R8.
(c) HalfCheetah-v3: (s × a) ∈ R17 × R6. (d) Walker2d-v3: (s × a) ∈ R17 × R6. (e) Hopper-
v3: (s × a) ∈ R11 × R3. (f) InvertedDoublePendulum-v2: (s × a) ∈ R6 × R1. (g) Reacher-v2:
(s× a) ∈ R11 × R2. (h) Swimmer-v3: (s× a) ∈ R8 × R2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C VISUALIZATIONS

To demonstrate the effectiveness of DSAC-E in solving complex, high-dimensional locomotion tasks,
we provide visualizations of policy control process on three of the most challenging benchmarks
in the Humanoid task as shown in the following Figure 6. These tasks require precise coordination
across many degrees of freedom and long-horizon reasoning.

The visualization showcase that DSAC-E not only achieves successfully running but also learns
robust posture and behaviors, highlighting its strong capabilities in difficult control scenarios.

(a) DSAC-E step 70 (b) step 72 (c) step 74 (d) step 76 (e) step 78

(f) DSAC-T step 70 (g) step 72 (h) step 74 (i) step 76 (j) step 78

(k) SAC step 70 (l) step 72 (m) step 74 (n) step 76 (o) step 78

Figure 6: Visualizations of control processes on Humanoid-v3 task.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D REPRODUCIBILITY STATEMENT

TABLE 4
DETAILED HYPERPARAMETERS.

Hyperparameters Value
Shared

Optimizer Adam (β1 = 0.9, β2 = 0.999)
Actor learning rate 1e−4
Critic learning rate 1e−4
Discount factor (γ) 0.99
Policy update interval 2
Target smoothing coefficient (τ) 0.005
Reward scale 0.1
Number of iterations 1.5× 106

Maximum-entropy framework
Learning rate of temperature α 3× 10−4

Base expected entropy (H) H = −dim(A)
Deterministic policy

Exploration noise ϵ ∼ N (0, 0.12)
Off-policy

Sample batch size 20
Replay batch size 256
Replay buffer warm size 1× 104

Replay buffer size 1× 106

On-policy
Sample batch size 2000
Replay batch size 2000
GAE factor 0.95

DSAC-T
Variance clipping constant ζ 3
Stabilizing constant ϵ and ϵω 0.1

DSAC-E (ours)
ρ 20 for Humanoid and Walker2d, otherwise 1

Time efficiency. The CPU used for the experiment is the AMD Ryzen Threadripper 3960X 24-Core
Processor, and the GPU is NVIDIA GeForce RTX 3090Ti. Taking Humanoid-v3 as an example, the
time taken to train 1.5 million iterations using the JAX framework around is 2 hours.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E LLM USAGE DISCLOSURE

We used ChatGPT to polish grammar and improve text clarity. We reviewed all LLM-generated
suggestions and are fully responsible for the final content of this paper.

17

	Introduction
	Preliminaries
	Method
	Two Bottlenecks of Maximum Entropy RL
	Trajectory Entropy-Constrained Reinforcement Learning
	Theoretical Analysis on Performance Bound

	Experiments
	Main Experiment
	Ablation Study

	Related Work
	Conclusion
	Theoretical Analysis
	Useful Lemmas
	Entropy Bellman Expectation equation in Policy Introspection (PIS)
	Convergence of Policy Introspection (PIS)

	Environmental Introduction
	Visualizations
	Reproducibility Statement
	LLM Usage Disclosure

