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ABSTRACT

This study proposes a novel deep learning framework inspired by atmospheric
scattering and human visual cortex mechanisms to enhance object detection un-
der poor visibility scenarios such as fog, smoke, and haze. These conditions pose
significant challenges for object recognition, impacting various sectors, including
autonomous driving, aviation management, and security systems. The objective
is to enhance the precision and reliability of detection systems under adverse en-
vironmental conditions. The research investigates the integration of human-like
visual cues, particularly focusing on selective attention and environmental adapt-
ability, to ascertain their impact on object detection’s computational efficiency
and accuracy. This paper proposes a multi-tiered strategy that integrates an ini-
tial quick detection process, followed by targeted region-specific dehazing, and
concludes with an in-depth detection phase. The approach is validated using the
Foggy Cityscapes, RESIDE-β (OTS and RTTS) datasets and is anticipated to set
new performance standards in detection accuracy while significantly optimizing
computational efficiency. The findings offer a viable solution for enhancing object
detection in poor visibility and contribute to the broader understanding of inte-
grating human visual principles into deep learning algorithms for intricate visual
recognition challenges. The code for perceptual piercing is available here.

1 INTRODUCTION

Low-visibility conditions such as rain, snow, fog, smoke, or haze present significant challenges in
various fields of computer vision and deep learning, such as autonomous vehicles, security and
surveillance, maritime navigation, and agricultural robotics. The objective is to develop a deep-
learning framework capable of recognizing objects using human visual cues under adverse visibility
conditions. The motivation behind this project lies in addressing the substantial difficulties of identi-
fying objects in low-visibility environments, a critical factor in enhancing airport operations during
adverse weather.

Poor visibility often leads to aircraft delays, as planes face challenges in taxiing to their gates without
clear visual guidance. This situation necessitates more ground support personnel to assist planes in
docking, but due to limited ground staff availability, a bottleneck can occur, impeding the handling
of multiple aircraft and resulting in further delays. These delays can escalate, potentially leading to
flight cancellations. Although the initial motivation for this project is rooted in reducing delays in
airport operations, the scope of the proposed machine learning model extends beyond airport sce-
narios to include a broad range of low-visibility environments. The following methods have been
proposed:

• Selective Region Enhancement: Unlike uniform dehazing, focusing on specific regions
can reduce processing time and prevent image quality degradation in areas where clarity
might introduce false positives or where detail is not essential for current detection goals.

• Integration with Object Detection: By bridging the gap between image enhancement
and object detection, we offer a cohesive approach that leverages the strengths of both
methodologies, addressing the limitations of traditional, separate systems.

The above contributions are inspired by mechanisms of the human visual system, including selec-
tive attention, foveal and peripheral vision, human-eye adjustments to environmental conditions,
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eye-tracking concepts, bottom-up signals based on sensory input, and top-down processes guided
by priors and current goals.

The rest of the article is organized as follows: Section 2 reviews the related work, outlining previous
studies and developments pertinent to object detection in low-visibility conditions and the integra-
tion of human visual cues into machine learning models. This section also highlights the gaps in
current research that our study aims to address. Section 3 describes the methodology of our study,
detailing the proposed deep-learning framework inspired by human visual signals, the selection cri-
teria for our datasets, and the experimental setup used to evaluate the model’s performance under
various low-visibility scenarios.

2 RELATED WORK

The field of navigation and detection in low-visibility conditions has seen significant advancements
through various methodologies including sensor fusion, visual cue integration, and computational
techniques. Aircraft landing has been a focus area, with studies exploring sensor fusion of visible
and virtual imagery (Liu et al., 2014) and visual-inertial navigation algorithms relying on synthetic
and real runway features (Zhang et al., 2018). For GPS-denied environments, multi-sensor fusion
algorithms have been developed for reliable odometry estimation (Khattak et al., 2019).

Research has also addressed depth visualization for navigation and obstacle avoidance in low-vision
scenarios (Lieby et al., 2011). Synthetic Vision Systems and full-windshield Head-Up Displays have
been explored to aid drivers and pilots in low visibility (Kramer et al., 2014; Charissis & Papanasta-
siou, 2010). Novel image enhancement methods for low-light conditions have been proposed (Atom
et al., 2020), as well as combinations of visual cues with standard wireless communication for road
safety (Boban et al., 2012). The importance of geometrical shapes and colors in Head-Up Displays
for driving perception has been emphasized (Zhan et al., 2023).

These advancements, however, face common challenges. These include increased computational
complexity due to sophisticated algorithms (Zhang et al., 2018; Atom et al., 2020; Tang et al.,
2022), durability and performance issues under variable or extreme environmental conditions (Khat-
tak et al., 2019; Boban et al., 2012), potential over-fitting problems due to limited datasets (Zhang
et al., 2018; Khattak et al., 2019), and the need for extensive real-world testing (Liu et al., 2014;
Boban et al., 2012; Tang et al., 2022). Some studies also lack clarity in explanations or comprehen-
sive validation (Kramer et al., 2014; Zhan et al., 2023).

In the realm of visual recognition and object detection, researchers have explored integrating human-
like processing mechanisms with computational models. Studies have delved into brain mechanisms
for object recognition, emphasizing hierarchical, feedforward processes (DiCarlo et al., 2012). Com-
parisons between human visual processing and deep neural networks (DNNs) have noted human
superiority in handling visual distortions and differences in attention mechanisms (Dodge & Karam,
2017; van Dyck et al., 2021). Attempts to direct DNNs’ visual attention using human eye-tracking
data have shown limited success in mimicking human attention patterns (van Dyck et al., 2022).

Innovative approaches include adversarial learning to enhance feature discrimination and match
feature priors (Yang et al., 2023a), biologically inspired models integrating top-down and bottom-
up processes for robust visual recognition in robotics (Malowany & Guterman, 2020), and models
mimicking the mammalian retina to enhance dehazing capabilities (Zhang et al., 2015). Some re-
searchers have proposed models using foveal-peripheral dynamics to reduce computational demands
while maintaining high-resolution perception in focused areas (Lukanov et al., 2021).

Recent studies have addressed specific challenges in low-visibility conditions such as fog, low light,
and sandstorms. The YOLOv5s FMG algorithm has been introduced for small target detection,
integrating various modules for better accuracy and localization (Zheng et al., 2023). Networks
improving image clarity in hazy and sandstorm conditions have been developed using novel MLP-
based modules for pixel reconstruction (Gao et al., 2023). The Prior Knowledge-Guided Adversarial
Learning (PKAL) approach leverages adversarial learning and feature priors for robust visual recog-
nition under adverse visibility (Yang et al., 2023b).

Enhancements to existing models, such as YOLOv8, have incorporated deformable convolutions
and attention mechanisms for better pedestrian and vehicle detection in poor visibility (Wu & Gao,
2023). Comprehensive reviews of image de-hazing techniques have highlighted limitations of non-
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learning and meta-heuristic methods in real-time applications (V et al., 2023). The impact of low-
level vision techniques on high-level visual recognition tasks has been evaluated, suggesting a more
integrated approach for better outcomes in poor visibility conditions (Yang et al., 2020).

Novel techniques like spatiotemporal attention detection have been introduced to discern region-
level attention in video sequences (Zhai & Shah, 2006). The Parallel Detecting and Enhancing
Models (PDE) framework aims to simultaneously improve object detection and image enhancement
(Li et al., 2022). Research in visual saliency detection has explored integrating spatial position pri-
ors with background cues (Jian et al., 2021), while studies on early visual cues have examined their
role in detecting object boundaries in natural scenes (Mély et al., 2016).

Despite the advancements in the field, several limitations persist across existing studies. Many
approaches still struggle with joint optimization of object detection and image enhancement, the
detection of out-of-focus and low-contrast objects, and maintaining performance in dynamically
changing visibility conditions. This paper addresses these challenges by proposing a methodology
that combines human visual cues with computational models for object detection in low-visibility
conditions. By leveraging insights from human perception, such as attention mechanisms and con-
textual understanding, the proposed approach aims to enhance the robustness and accuracy of object
detection systems. This integration not only helps in effectively handling varying degrees of visi-
bility but also reduces computational complexity by focusing processing power on areas of interest,
similar to human selective attention.

Current techniques often struggle with the computational burden of processing high-resolution im-
ages in their entirety and may lack robustness in dynamically changing visibility conditions. Addi-
tionally, uniform dehazing techniques attempt to improve visibility across the entire image, which
can unnecessarily process visually clear regions. This leads to increased computational load and
potential degradation of image parts where high clarity is not essential. Our methodology addresses
these issues by focusing processing power on selected regions, reducing unnecessary computations.
Furthermore, by adapting the processing intensity based on real-time feedback, we enhance system
responsiveness and accuracy under diverse operational conditions.

The proposed approach stands out due to its unique integration of human visual cues into the object
detection process, particularly in low-visibility conditions. Unlike existing methods that may not
fully optimize computational resources or adapt to varying environmental conditions effectively, the
proposed architecture mimics the human eye’s capability to focus on relevant areas dynamically.
This method not only enhances detection accuracy but also improves computational efficiency by
prioritizing resource allocation, which is crucial for real-time applications. By addressing these key
aspects, this research aims to push the boundaries of object detection in low-visibility conditions,
offering a more robust, efficient, and adaptable solution compared to existing methods.

3 METHODOLOGY

The proposed methodology in Figure 1 focuses on developing a novel deep-learning framework in-
spired by the atmospheric scattering model and the human visual cortex to enhance object detection
in low-visibility conditions. The framework employs adaptive image enhancement techniques in-
tegrated with an object detection network to explore different integration strategies. The pipeline
initiates with a lightweight object detection model to identify regions of interest, which are subse-
quently leveraged for spatial attention in the dehazing process, followed by a more robust detection
model for refined and comprehensive object detection. This architecture will be evaluated across
various configurations using both synthetic and real-world foggy datasets, with performance mea-
sured using standard object detection metrics such as mean Average Precision (mAP) and image
quality metrics like Structural Similarity Index Measure (SSIM)A.1 and Peak Signal-to-Noise Ratio
(PSNR)A.2.

3.1 DATASETS

3.1.1 FOGGY CITYSCAPES

The Foggy Cityscapes (Sakaridis et al., 2018) dataset is created to address the problem of semantic
foggy scene understanding (SFSU). While there has been extensive research on image dehazing and
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semantic scene understanding with clear-weather images, SFSU has received little attention. Due
to the difficulty in collecting and annotating foggy images, synthetic fog is added to real images
depicting clear-weather outdoor scenes. This synthetic fog generation leverages incomplete depth
information to create realistic foggy conditions on images from the Cityscapes dataset, resulting in
Foggy Cityscapes with 20,550 images. The training set consists of 2975 images, validated on 500
images, and the test set had 1525 images. The key features of the dataset include:

• Synthetic Fog Generation: Real clear-weather images are used, and synthetic fog is added
using a complete pipeline that employs the transmission map.

• Data Utilization: The dataset can be utilized for supervised learning and semi-supervised
learning. We generated a foggy dataset using the synthetic transmission map and then
performed supervised learning on the synthetic foggy data.

3.1.2 RESIDE-β

The RESIDE-β Outdoor Training Set (OTS) is a comprehensive dataset designed to facilitate re-
search in outdoor image dehazing. It addresses the challenges posed by haze in outdoor scenes,
which significantly degrades image quality and affects subsequent tasks such as object detection
and semantic segmentation. The dataset includes approximately 72,135 outdoor images with vary-
ing degrees of haze, enabling robust training of dehazing algorithms. For testing, we are using the
RESIDE-β (REalistic Single Image DEhazing) dataset (Li et al., 2019). The subset of RESIDE-β,
Real-Time Testing Set (RTTS) consists of 4,322 real-world hazy images with annotations for object
detection. The training set consists of 3000 images, validated on 500 images, and the test set had
1500 images.

3.2 HUMAN VISUAL CUES

Selective Attention and Foveation: The human eye is not equally sensitive to all parts of the
visual field. Central vision, or foveal vision, is highly detailed and used for tasks like reading and
identifying objects. Peripheral vision is less detailed and more sensitive to motion. The system
scans the entire image (peripheral vision) similar to our preliminary detection phase. This will
identify areas for a more detailed analysis (foveal vision), mimicking the human approach of not
processing every detail with equal clarity but focusing on areas of interest.

Adaptation to environmental conditions: Just as the human visual system adapts to different
lighting conditions and levels of visibility (such as adjusting to a dark room after being in bright
sunlight), the adaptive dehazing method adjusts the intensity and focus of its processing based on
the detection feedback and environmental context, analogous to the way human vision adjusts to
ensure optimal perception under varying conditions.

Eye Tracking and Gaze-directed processing: Eye-tracking monitors where a person is looking
(the gaze) and what draws attention. In visual processing, this is analogous to directing computa-
tional resources toward areas of interest, much like the proposed method focuses on dehazing and
detailed detection of regions where objects are likely to be present. By analogy, the system pays
more attention to certain parts of the image, just as a person would fixate on specific areas within
their field of view when searching for something.

Integration of Bottom-up and Top-down processes: The human visual system uses both
bottom-up signals (from sensory input) and top-down processes (based on knowledge, expectations,
and current goals) to interpret scenes. The proposed model initially uses a bottom-up approach
(object detection algorithms flagging potential areas of interest) followed by a top-down approach
(focusing on dehazing efforts based on three flagged areas and previous learning), mirroring the
complex interplay between sensory data and cognitive processes in human vision.

3.3 DEHAZING

Preliminary Detection: Implement a lightweight, fast object detection algorithm such as YOLOv5s
or YOLOv8n to quickly scan the image for potential regions of interest or active regions and flag
those patches with a high likelihood of containing objects. The smaller versions of standard YOLO
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Selective Attention and Foveation

(Preliminary Detection) Final Object DetectionEye-tracking and 


Gaze-directed processing

Lightweight

Object-Detection
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Spatial attention- 
based Dehazing Model

Final

Object-Detection
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Figure 1: Overall architecture of Perceptual Piercing: (a)Preliminary detection using lightweight
object detection model (b) Gaze-directed dehazing using spatial attention on region of interests (c)
Final detection using a large and robust model

Figure 2: Architecture of AOD-NetX: It takes the transmission map output from the AOD-Net and
applies the spatial attention layer to focus on major areas of interest in the given input image.

models are less accurate than their full-sized counterparts but significantly faster, making them ideal
for preliminary detection.

Region-based dehazing: Apply dehazing algorithms specifically to those active regions identified
in the preliminary detection phase. Considering the depth or level of haze, the method should adapt
based on the characteristics of the detected regions

The proposed architecture of AOD-NetX in Figure 2 utilizes the transmission map created by the
standard AOD-Net (Li et al., 2017) and applies it within a spatial attention map module to produce an
attention-focused transmission map. This spatial attention map is derived from the bounding boxes
or Regions of Interest identified by the lightweight model (YOLOv5s/YOLOv8n) in our proposed
method. A sigmoid layer follows, mapping the output probabilities to a range between 0 and 1. We
opt not to use softmax in this context due to the independent significance of each bounding box.

3.4 OBJECT DETECTION MODELS

The YOLO models used in the detection pipeline include a variety of versions optimized for differ-
ent purposes. YOLOv5s is a lightweight variant designed for real-time detection with low compu-
tational requirements, while YOLOv8n (Nano) is tailored for high-speed applications on resource-
constrained devices like mobile phones. On the other hand, YOLOv5x, with its CSP backbone
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Table 1: Performance of dehazing methods: AOD-Net and AOD-NetX

Dataset Dehazing Method (Evaluation Metrics)
SSIM PSNR

Foggy Cityscapes AOD-Net 0.994 26.74
AOD-NetX 0.998 27.22

RESIDE-β OTS AOD-Net 0.920 24.14
AOD-NetX 0.945 25.80

RESIDE-β RTTS AOD-Net 0.932 27.59
AOD-NetX 0.656 27.62

and advanced data augmentation, provides enhanced performance for more complex scenes, and
YOLOv8x (Extra Large) offers maximum accuracy for large-scale datasets. The detection process
begins by using YOLOv5s or YOLOv8n on foggy images to generate initial annotations. These an-
notations, along with the original image, are then dehazed using AOD-NetX, and the dehazed image
is subsequently passed through YOLOv5x or YOLOv8x for precise and refined detection results.

4 RESULTS

The dehazing modules are trained separately on the provided datasets, while the object detection
models (various YOLO versions) remain as pre-trained on the MS-COCO dataset. This approach
allows users to integrate the dehazing module with their own detection pipeline without requiring
a complete re-training of the entire system. However, for improved results, the entire architecture
could be fine-tuned on the target datasets, which would serve as a valuable direction for future
ablation studies.

4.1 DEHAZING PERFORMANCE

The results in Table 1 show that AOD-NetX generally outperforms the standard AOD-Net in terms
of SSIM and PSNR across most datasets. For Foggy Cityscapes and RESIDE-β OTS, AOD-NetX
achieves higher SSIM and PSNR, indicating improved structural similarity and signal quality. How-
ever, for RESIDE-β RTTS, while AOD-NetX has a slightly better PSNR, AOD-Net achieves a
significantly higher SSIM score, suggesting that AOD-Net may retain more structural details in this
particular dataset. Overall, AOD-NetX is more effective in most scenarios, especially for complex
foggy conditions.

(a) Foggy Cityscapes: Before Dehazing (b) Foggy Cityscapes: After Dehazing (using AOD-
NetX)

Figure 3: Dehazing performance on Foggy Cityscapes dataset
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Table 2: Train- Foggy Cityscapes, Test- Foggy Cityscapes: Evaluation of various Perceptual Pierc-
ing variations based on mean Average Precision (mAP) under both clear and foggy conditions.

Architecture Variants Conditions Evaluation Metrics (mAP)

YOLOv5x Clear 0.5644
Foggy 0.485

AOD-Net+YOLOv5x Clear 0.6813
Foggy 0.5822

YOLOv5s+AOD-NetX+YOLOv5x Clear 0.4896
Foggy 0.6152

YOLOv8x Clear 0.5243
Foggy 0.4948

AOD-Net+YOLOv8x Clear 0.6099
Foggy 0.5900

YOLOv8n+AOD-NetX+YOLOv8x Clear 0.5150
Foggy 0.6114

4.2 PERFORMANCE OF PERCEPTUAL PIERCING

The evaluation results of Perceptual Piercing variations in Table 2trained and tested on the Foggy
Cityscapes dataset indicate that integrating dehazing modules, such as AOD-Net and AOD-NetX,
consistently improves object detection performance in both clear and foggy conditions. The
‘AOD-Net + YOLOv5x‘ variant achieved the highest mAP under clear conditions (0.6813), while
‘YOLOv5s + AOD-NetX + YOLOv5x‘ and ‘YOLOv8n + AOD-NetX + YOLOv8x‘ demonstrated
the best performance in foggy scenarios, with mAP scores of 0.6152 and 0.6114, respectively. In
comparison, baseline YOLO models (YOLOv5x and YOLOv8x) showed lower detection accuracy,
highlighting the significance of using enhanced dehazing techniques for better object detection in
low-visibility environments.

(a) Foggy Cityscapes: Before Dehazing (b) Foggy Cityscapes: After Dehazing (using AOD-
NetX)

Figure 4: Dehazing performance on Foggy Cityscapes dataset

4.3 OUT-OF-DISTRIBUTION PERFORMANCE OF PERCEPTUAL PIERCING

The evaluation of various Perceptual Piercing variations in Table 3 trained on Foggy Cityscapes and
tested on RESIDE-β OTS and RTTS datasets shows that the YOLOv8x architecture achieved the
highest mAP scores under foggy conditions, with 0.7125 on OTS and 0.6978 on RTTS. Among
the YOLOv5 variants, the baseline YOLOv5x model performed the best, with 0.6944 on OTS and
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Table 3: Train- Foggy Cityscapes, Test- RESIDE-β OTS and RTTS: Evaluation of various Percep-
tual Piercing variations based on mean Average Precision (mAP) under foggy conditions.

Architecture Variants Configuration Evaluation Metrics (mAP)

YOLOv5x Test: OTS 0.6944
Test: RTTS 0.6655

AOD-Net+YOLOv5x Test: OTS 0.6325
Test: RTTS 0.6156

YOLOv5s+AOD-NetX+YOLOv5x Test: OTS 0.5679
Test: RTTS 0.5297

YOLOv8x Test: OTS 0.7125
Test: RTTS 0.6978

AOD-Net+YOLOv8x Test: OTS 0.6458
Test: RTTS 0.6125

YOLOv8n+AOD-NetX+YOLOv8x Test: OTS 0.5779
Test: RTTS 0.5312

0.6655 on RTTS. The addition of AOD-Net generally improved performance for YOLOv8 but had a
diminishing effect on YOLOv5. Models incorporating AOD-NetX showed lower mAP values across
both test datasets, indicating that its integration may need further optimization. Overall, the results
suggest that YOLOv8x is more robust for foggy conditions compared to other variations.

(a) RESIDE-β: Before Dehazing (b) RESIDE-β: After Dehazing (using AOD-NetX)

Figure 5: Dehazing performance on RESIDE-β dataset

5 DISCUSSION

Integrating a lightweight model with dehazing techniques forms a robust framework that signif-
icantly enhances overall system efficiency and effectiveness. This combined approach not only
addresses the inherent limitations found in isolated systems but also synergizes their strengths to
improve image clarity and object detection accuracy. By adopting a human-vision-inspired archi-
tecture, this methodology not only meets but exceeds the performance benchmarks set by state-of-
the-art (SOTA) object detection models when tested against the same dataset distribution.

Furthermore, our directed dehazing strategy, which systematically targets specific image impair-
ments, yields superior results with considerably fewer computations compared to traditional dehaz-
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ing methods. This efficiency is pivotal, especially in real-time applications where computational
resources and response times are critical factors. The success of this approach illustrates the poten-
tial of leveraging domain-specific enhancements to refine the capabilities of general object detection
frameworks, suggesting a promising direction for future research and development in image pro-
cessing technologies.

5.1 LIMITATIONS

The primary limitations of this paper are as follows: First, the proposed bio-inspired architecture
does not incorporate image understanding from various low-visibility scenarios, which could have
provided a more comprehensive validation of the methodology. Second, the scope of low-visibility
images used is limited to foggy conditions, excluding other challenging environments such as rainy
or hazy scenes. Extending the evaluation to rain or combined distribution datasets would enhance
the robustness of the framework. Third, while the methodology aims for computational efficiency,
the two-tiered detection process coupled with intensive region-specific dehazing may still require
substantial computational resources, potentially limiting its applicability in real-time scenarios. Fi-
nally, in Out-of-Distribution (OOD) testing, the performance degrades compared to a more general-
ized model (e.g., YOLOv5x or YOLOv8x). It has been observed that even in clear images within the
OOD dataset, the performance declines. This occurs because the dehazing model’s embedding space
predominantly consists of foggy images, making it less effective when applied to clear scenarios in
OOD datasets.

5.2 FUTURE WORK

To address the issue of generalizability in single-dataset training, two potential approaches are pro-
posed. The first involves selectively applying the dehazing pipeline only when the scene is suffi-
ciently hazy, determined using a simple haze index computed based on image contrast, brightness,
and texture. The second approach is to train the dehazing model with embeddings from both foggy
and clear images, thereby enabling it to generalize more effectively across diverse visibility condi-
tions. To further enhance the robustness and applicability of our model, future research should focus
on expanding testing with additional datasets that encompass a broader spectrum of low-visibility
scenarios, including diverse environmental conditions such as rain, snow, and various levels of night-
time darkness. Such enhancements will enable the model to handle a wider range of adverse weather
conditions, increasing its versatility and applicability in real-world situations. Moreover, incorpo-
rating training on more diverse datasets is crucial for improving generalization and optimizing per-
formance in out-of-distribution testing. The availability of 4K datasets, which allow for the use of
bounding box crops in dehazing, presents an opportunity to refine the model’s effectiveness further.
Future efforts could also explore optimizing the model architecture and employing more advanced
computational techniques to reduce resource demands, thereby enhancing feasibility for real-time
applications in autonomous vehicles and other critical systems.

6 CONCLUSION

In conclusion, our research addresses the challenge of object detection under adverse conditions like
fog, smoke, and haze, which commonly impair autonomous driving, aviation, and security. These
environmental factors significantly degrade detection system performance, highlighting the need
for precise, reliable methodologies. Our method uses a lightweight algorithm to identify regions
of interest, followed by targeted dehazing to enhance visibility where needed most. The clarified
images are processed through a robust detection model, boosting accuracy. This approach improves
system efficiency and reliability for critical applications across various environments.

Our proposed AODNetX architecture outperforms state-of-the-art models, excelling in both standard
and out-of-distribution datasets. This achievement aims to set new benchmarks in detection accuracy
and efficiency. Moreover, our approach integrates atmospheric scattering model concepts and human
visual cortex insights into machine learning frameworks. The expected outcome is an effective
enhancement of object detection under challenging visibility, advancing safety and efficiency in
technology-dependent sectors. This integration not only advances current detection systems but also
deepens our understanding of visual processing in complex scenarios.
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A EVALUATION METRICS

A.1 STRUCTURAL SIMILARITY INDEX MEASURE (SSIM)

The performance of dehazing methods is evaluated by the following equation of SSIM score between
two images:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(1)

where:

• µx and µy are the average of x and y respectively.

• σ2
x and σ2

y are the variance of x and y respectively.

• σxy is the covariance of x and y.

• c1 = (k1L)
2 and c2 = (k2L)

2 are two variables to stabilize the division with weak de-
nominator; L is the dynamic range of the pixel-values (typically this is 2bits per pixel − 1),
k1 = 0.01 and k2 = 0.03 by default.

A.2 PEAK SIGNAL-TO-NOISE RATIO (PSNR)

Peak Signal-to-Noise Ratio (PSNR) is a widely used metric for evaluating the quality of recon-
structed images or videos compared to the original, reference data. It is expressed in decibels (dB)
and is calculated based on the mean squared error (MSE) between the original and the reconstructed
images. The formula for PSNR is given by:

PSNR = 10 · log10
(

MAX2

MSE

)
, (2)

where MAX is the maximum possible pixel value of the image (for example, 255 for 8-bit images),
and MSE is the mean squared error, defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(I(i, j)−K(i, j))
2
, (3)

where I(i, j) represents the pixel value at position (i, j) in the original image, and K(i, j) represents
the pixel value at the same position in the reconstructed image. Higher PSNR values generally
indicate better reconstruction quality, as they imply a lower MSE and thus less distortion. PSNR is
particularly useful for comparing the performance of different image processing algorithms in tasks
such as image compression, denoising, and super-resolution.

A.2.1 MEAN AVERAGE PRECISION (MAP)

For object detection performance, we are using mean Average Precision (mAP):

AP =

∑n
k=1(P (k)× rel(k))

number of relevant documents
(4)

where:

• P (k) is the precision at cutoff k in the list.

• rel(k) is an indicator function equaling 1 if the item at rank k is a relevant document, 0
otherwise.

• n is the number of retrieved documents.
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The mean Average Precision is then calculated as:

mAP =

∑Q
q=1 APq

Q
(5)

where APq is the Average Precision for the qth query and Q is the total number of queries.
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