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ABSTRACT

Knowledge distillation (KD), transferring knowledge from a cumbersome teacher
model to a lightweight student model, has been investigated to design efficient
neural architectures with high accuracy with a few parameters. However, there
is a very limited understanding of why and when KD works well. This paper re-
veals KD’s intriguing behaviors, which we believe useful in a better understanding
of KD. We first investigate the role of the temperature scaling hyperparameter in
KD. It is theoretically shown that the KD loss focuses on the logit vector matching
rather than the label matching between the teacher and the student as the temper-
ature grows up. We also find that KD with a sufficiently large temperature out-
performs any other recently modified KD methods from extensive experiments.
Based on this observation, we conjecture that the logit vector matching is more
important than the label matching. To verify this conjecture, we test an extreme
logit learning model, where the KD is implemented with Mean Squared Error
(MSE) between the student’s logit and the teacher’s logit. The KD with MSE
consistently shows the best accuracy for various environments. We analyze the
different learning behavior of KD with respect to the temperature using a new
data uncertainty estimator, coined as Top Logit Difference (TLD). We then study
the KD performances for various data sizes. When there are a few data or a few
labels, very interestingly, the incapacious teacher with a shallow depth structure
facilitates better generalization than teachers having wider and deeper structures.

1 INTRODUCTION

Despite the considerable success of the deep neural networks in various tasks such as image classi-
fication and natural language processing, there have been increasing demands of building resource-
efficient deep neural networks (e.g., fewer parameters) without sacrificing accuracy. Recent progress
in this direction has involved in designing efficient neural architecture families (Howard et al., 2017;
Tan & Le, 2019; Howard et al., 2019), sparsely training a network (Frankle & Carbin, 2018; Mostafa
& Wang, 2019), quantizing the weight parameters (Banner et al., 2018; Zhao et al., 2019), and dis-
tilling knowledge from a well-learned network into another network (Hinton et al., 2015; Zhou et al.,
2019).

The last of these, knowledge distillation (KD), is one of the most potent model compression tech-
niques by transferring knowledge from a cumbersome model to a single small model (Hinton et al.,
2015). KD utilizes the “soft” probabilities of a large “teacher” network instead of the “hard” targets
(i.e., one-hot vectors) to train a smaller “student” network. Some studies have attempted to distill the
hidden feature vector of the teacher network in addition to the soft probabilities so that the teacher
can transfer rich information (Romero et al., 2014; Zagoruyko & Komodakis, 2016a; Srinivas &
Fleuret, 2018; Kim et al., 2018; Heo et al., 2019b;a). KD method can be leveraged to reduce the
generalization errors in teacher models (i.e., self-distillation; SD) (Zhang et al., 2019; Park et al.,
2019) as well as model compression. In the generative models, a generator can be compressed by
distilling the latent feature from a cumbersome generator (Aguinaldo et al., 2019).

Despite the increasing demands of KD, much is still a lack of understanding about why and when
KD should work. In particular, Tian et al. (2019) argue that even original KD (Hinton et al., 2015)
can outperform various other KD methods that distill the hidden feature vector (Table 1). To un-
cover several mysteries of KD, this paper attempts to shed light upon the behavior of neural net-
works trained with KD while the amount of distilled knowledge changes. Our contributions are
summarized as follows:
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Table 1: Test accuracy of various KD methods on CIFAR-100. ‘WRN’ indicates a family of
Wide-ResNet. All student models share the same teacher model as WRN-28-4. SKD (Standard KD)
and FKD (Full KD) represent the KD method (Hinton et al., 2015) with different hyperparameter
values (α, τ ) used in Eq. (1) - (0.1, 5) and (1.0, 20), respectively. MSE represents the KD with L2
regression loss between logits; see Appendix A for citations of other methods. Others are results
reported in Heo et al. (2019a). Baseline indicates the model trained without teacher model.

Student Baseline SKD FitNets AT Jacobian FT AB Overhaul FKD MSE
WRN-16-2 72.68 73.53 73.70 73.44 73.29 74.09 73.98 75.59 75.76 (↑) 75.54
WRN-16-4 77.28 78.31 78.15 77.93 77.82 78.28 78.64 78.20 78.84 79.03 (↑)
WRN-28-2 75.12 76.57 76.06 76.20 76.30 76.59 76.81 76.71 77.28 (↑) 77.28 (↑)

• We conduct vast experiments considering the combination of teacher and student and two
hyperparameters in the KD loss referring to Koratana et al. (2019). We observe that KD
loss utilizing only the teacher’s calibrated softmax output (Guo et al., 2017a) brings better
performance than other KD settings (Table 1).

• We demonstrate that the original KD with high-temperature (i.e., a hyperparameter for
calibration of neural networks) without ground-truth labels acts as the L2 regression of the
logit (i.e., the input of softmax function) and shows almost the best results for many cases.

• Based on the second contribution, we test the L2 regression loss (i.e., Mean Squared Error;
MSE) between the student’s logit and the teacher’s logit. Perhaps surprisingly, KD with the
MSE loss outperforms other KD algorithms (Table 1).

• We propose a novel estimator of data uncertainty, referred to as Top Logit Difference
(TLD), based on the difference between the largest and the ground truth element in logit.
TLD provides intuition regarding how knowledge transfer differs between students distilled
from the softmax output with and without calibration (Guo et al., 2017a).

• We show that the benefit of KD depends on the data size. When a model is trained on
a small portion of the full training data set, KD surpasses the vanilla SGD training. In
terms of the teacher size, simple teachers, having fewer parameters than the student (i.e.,
knowledge expansion; KE (Xie et al., 2020)), show better accuracies than more massive
teachers. These findings are the same in OOD prediction tasks.

1.1 PRELIMINARY: KNOWLEDGE DISTILLATION

We provide a mathematical description of KD before introducing our study. Let us denote the

softened probability vector in a network f as pf (x; τ) = ez
f
k
/τ∑

j e
z
f
j
/τ

where x is an input, τ is a

temperature scaling hyperparameter (Guo et al., 2017a), and zfk is the value of a logit vector at
index k. Then, the typical loss L for the student network is a linear combination of the cross entropy
(CE) loss LCE and the KD loss LKD:

L = (1− α)LCE(ps(x; 1), q(x)) + αLKD(ps(x; τ), pt(x; τ)),

where LKD(ps(x; τ), pt(x; τ)) = τ2
∑
j

ptj(x; τ) log
ptj(x; τ)

psj(x; τ)

(1)

where s indicates the student network, t indicates the teacher network, q(x) is a one-hot label vector
of sample x, and α is a hyperparameter of the linear combination. Standard choices are α = 0.1
and τ ∈ {3, 4, 5}.

1.2 EXPERIMENTAL SETUP

In this paper, we use an experimental setup similar to the Heo et al. (2019a), Cho & Hariharan
(2019), and Zhou et al. (2019): image classification on CIFAR-10, CIFAR-100, and ImageNet with
a family of ResNet (RN) (He et al., 2016a) as well as that of Wide-ResNet (WRN) (Zagoruyko &
Komodakis, 2016b) and machine translation on WMT14 En-De with the autoregressive transformer
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Figure 1: Grip maps of accuracies according to the change of α and τ on CIFAR-100 when
(teacher, student) = (WRN-28-4, WRN-16-2). It presents the grid maps of (a) training top1 ac-
curacies and (b) test top1 accuracies. LKD with τ = ∞ is implemented with the hand-crafted
gradient (Eq. (3)). Detailed values are in subsection B.3.

(AT) and the non-auto regressive transformer (NAT). We use a standard PyTorch SGD optimizer
with momentum 0.9 and weight decay and apply standard data augmentation. Other than those
mentioned, the training settings covered in the original papers (Heo et al., 2019a; Cho & Hariharan,
2019; Zhou et al., 2019) are used.

2 TEMPERATURE SCALING HYPERPARAMETER τ OF LkD

In this section, we conduct vast experiments and systematically break down the effects of tem-
perature scaling hyperparameter τ in LKD based on theoretical and empirical results. We further
demonstrate that LKD with infinite τ can be understood as the biased L2 regression.

We empirically observe that a generalization error of a student model becomes as less as that of
the teacher when α for LKD and τ in LKD increase. As Figure 1 depicts, there are consistent
tendencies that the higher the α and τ , the less over-fitting problem (i.e., less difference between
training accuracy and test accuracy) (Figure 1) under the condition that τ is greater than 1. We find
this consistency in various pairs of teachers and students (refer to the Appendix).

An intriguing effect of the hyperparameter τ in LKD is that the student model attempts to imitate
the logit distribution of the teacher model as τ goes to∞, while the learning depends more on the
classification outcomes of the teacher and the student as τ goes to 0. Here, we extend the gradient
analysis of logit in Hinton et al. (2015) a little further. Consider the gradient of L in Eq. (1) w.r.t.
logit zsk on each training instance:

∂L
∂zsk

= (1− α)∂LCE
∂zsk

+ α
∂LKD
∂zsk

= (1− α)(psk(x; 1)− qk(x)) + ατ(psk(x; τ)− ptk(x; τ)) (2)

where qk(x) is 1 if k is ground-truth class of sample x, otherwise 0. The following theorem charac-
terizes the tendency of the student models as τ changes.

Theorem 1 Let K be the number of classes in the dataset, and 1[·] be the indicator function, which
is 1 when the statement inside the bracket is true and 0 otherwise. Then,

lim
τ→∞

∂LKD
∂zsk

=
1

K2

K∑
j=1

(
(zsk − zsj )− (ztk − ztj)

)
(3)

lim
τ→0

1

τ

∂LKD
∂zsk

= 1[argmaxj zsj=k]
− 1[argmaxj ztj=k]

(4)

Theorem 1 can explain the consistent tendency as follows: in the course of regularizing the LKD
with sufficiently large τ , the student model attempts to imitate the logit distribution of a teacher
model. Specifically, the larger the τ , the more the LKD makes the element-wise difference of the
student’s logit vector similar to that of the teacher (i.e., logit vector matching). On the other hand,
when τ is close to 0, the gradient of LKD does not consider the logit distributions but just identify
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if the student and the teacher share the same output (i.e., label matching), which transfers limited
information. Besides, there is a scaling issue when τ goes to 0. As decreasing τ , LKD increasingly
loses its qualities and eventually becomes less involved in the learning. One can easily fix the scaling
issue by multiplying 1/τ to LKD for τ ≤ 1. The details are in Appendix B.

LKD with infinite τ can be understood as the biased L2 regression as follows:

lim
τ→∞

∇zsLKD =
1

K

(
zs − zt

)
+ b · 1 (5)

where b is − 1
K2

∑K
j=1

(
zsj − ztj

)
and 1 is a vector whose elements are equal to one.

Table 2: Top1 test accuracies on CIFAR-100. WRN-28-4
is used as a teacher for LKD and MSE when α=1.0 in L.

Student LCE
LKD MSE

τ=1 τ=3 τ=5 τ=20 τ=∞
WRN-16-2 72.68 72.90 74.24 74.88 75.76 75.51 75.54
WRN-16-4 77.28 76.93 78.76 78.65 78.84 78.61 79.03
WRN-28-2 75.12 74.88 76.47 76.60 77.28 76.86 77.28
WRN-28-4 78.88 78.01 78.84 79.36 79.72 79.61 79.79
WRN-40-6 79.11 79.69 79.94 79.87 79.82 79.80 80.25

As derived in Eq. (5), the gradient w.r.t.
logit zs can be seen as the biased value
of (zs − zt). Because the softmax out-
put is the same even if all elements of
logit increase equally, LKD with τ =
∞ may be replaced with L2 regression
(MSE). On the other side, L2 regres-
sion enables the student to learn the
teacher’s energy function as well with-
out loss of logit summation (Grathwohl
et al., 2019) while LKD with τ =∞ does not. Grathwohl et al. (2019) showed that logit summation
could be utilized as an energy function for training an energy-based model. From this perspective,
MSE loss may transfer additional knowledge about the teacher’s energy of each instance. Yet, in the
experiment, no significant changes occur through this difference. As Table 2 shows, the larger τ , the
higher test accuracy and MSE loss has similar performance with LKD with τ = 20 or∞.

3 TLD AND TRAINING ACCURACY

LKD with sufficiently large τ leads to better optima while training accuracy decreases (Figure 1). In
this section, we seek to answer this question. To investigate this phenomenon, we propose a novel
uncertainty estimator of each training instances as follows:

• Top logit difference (TLD): It is defined as zsk∗ − zskt , where k∗ indicates the index of the
true label and kt = argmaxk:k 6=k∗ z

s
k denotes the largest elements in logit zs except k∗.

The greater TLD, the more confidently and correctly predicted.

Recent studies (Tang et al., 2020; Yuan et al., 2020) demonstrated that the values except for a few
high values in logit does not provide any information such as similarity information between cate-
gories in the course of distillation. In this respect, we consider the difference between the largest
logit value and the ground-truth value as an estimator.

Table 3: Pearson correlation coefficients (PCC)
between entropy and TLD for each training in-
stances. All models are trained with LCE on
CIFAR-100. The bold indicates p-value < 0.05.

Model WRN-28-4 WRN-16-4 WRN-28-2 WRN-16-2

PCC −0.3567 −0.4590 −0.4982 −0.6950

TLD contains not only the ground truth-related
information but also the confidence of the
teacher’s prediction. Positive TLD implies the
model predicts it correctly, while negative TLD
is in the opposite. In addition, we empiri-
cally observe that the probability density func-
tion (pdf) of TLD seems to be bell-shaped (Fig-
ure 2), while the distribution of entropy on the
model’s softmax outputs, regardless of the cal-
ibration, is positively skewed towards 0. As Table 3 shows, though lower entropy generally means
higher TLD, TLD and entropy are not perfectly aligned on the same side. In particular, the correla-
tion gradually weakens as the model size (i.e., the number of parameters) increases.

To unravel the reason why training accuracy changes when LKD with large τ applies, we visualize
the pdf from the histogram of the TLD over the entire training data in various pairs of teacher and
student (Figure 2): (1) the teacher has more parameters than the student (KD), (2) the teacher and the
student share the same architecture (self-distillation; SD), and (3) the teacher has fewer parameters
than the student (knowledge expansion; KE) (Xie et al., 2020). One striking difference among KD,
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(a) KD: WRN-28-4 to WRN-16-2
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(b) SD: WRN-16-2 to WRN-16-2
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(c) KE: WRN-16-2 to WRN-28-4

Figure 2: Pdf of TLD. All students are trained with α = 1.0 and all teachers do with LCE . WRN-
16-2 student models share other training recipes such as learning rate, batch size, and weight decay.
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Figure 3: Comparison of pdf of TLD between WRN-16-2 models trained with LCE and with MSE
(teacher: WRN-28-4). (a) and (b) has 4 different pdfs of TLD whose data belongs to different
quantiles of teacher’s pdf of TLD.

SD, and KE is that the TLD distribution of the student trained with SD or KE practically catches
up that of the teacher (Figure 2b and 2c; τ = 20,∞ and MSE) while KD can not (Figure 2a). In
theory, LKD is minimized at the same solution regardless of the temperature, when the student has
sufficient capacity to learn the exact logit of the teacher. Therefore, the TLD distributions are close
to the teacher’s TLD in SD and KE, where the student has a bigger structure than the teacher.

The student of KD, in contrast, does not have sufficient capacity to learn the teacher. Thus, the
student’s TLD pdfs seem quite variant from that of the teacher. Moreover, the TLD pdf of τ = 1
is also very different from others. With τ = 1, as derived in Eq. (4), the student seems to learn
the teacher’s predicted label more than the teacher’s logit, whereas the student strives to match the
teacher’s logit distribution as τ gradually increases from Eq. (3).

To investigate the substantial differences at the example level, we further analyze the pdf of TLD of
models trained with LCE and with LKD on four different bundles of data in consideration of the
teacher’s TLD values. For example, if the quantile is 0.1-0.8, then the training dataset is constructed
with the data whose TLD values of the teacher model range from 10% and 80%. In Figure 3a and 3b,
each color indicates different bundle of data whose data is in a particular quantile scope of teacher’s
TLD values. As Figure 3a and 3b show, both the models trained with LCE and with LKD follow the
same relative order with the teacher to capture the TLD distribution. However, the student trained
with LKD seems to consider the TLD order more than that of LCE as each quantile is more clearly
separated. This result confirms that LKD forces a student to learn even the teacher’s degree of data
uncertainty at the instance level.

We also check the performance according to the different bundles of distilled data (Table 4). Since
the neural networks have enough capacity to learn the training data, all the training accuracies are
very high. Our results also show that the KD training accuracy is slightly lower than the correspond-
ing CE result as KD tries to learn the logit as well. To understand data difficulty more clearly, we
test the accuracy of the undistilled data that is not utilized for the training. Notably, both learning
methods make more errors as the undistilled data set consists of smaller TLD values, verifying that
TLD indicates difficulty. Perhaps interestingly, our results indicate that the test accuracy does not
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Table 4: Top1 test accuracies of WRN-16-2 models trained withLCE and with MSE (teacher: WRN-
28-4) on CIFAR-100. We evaluate the accuracies of distilled training data, undistilled training data,
and test data. Sampling is based on the quantile of pdf of TLD from WRN-28-4 trained with LCE .

type Distilled training data Undistilled training data Test data

quantile 0.0-0.7 0.1-0.8 0.2-0.9 0.3-1.0 0.0-0.7 0.1-0.8 0.2-0.9 0.3-1.0 0.0-0.7 0.1-0.8 0.2-0.9 0.3-1.0

CE 99.72 99.84 99.93 99.88 79.92 71.62 63.51 53.21 68.85 68.51 68.83 68.86
KD 92.11 94.10 95.70 96.54 87.51 77.83 69.34 60.03 73.85 73.65 73.88 73.04

Table 5: Comparison of top1 accuracies on various data sets with different pairs of teacher and
student models. ‘CE’ indicates the model trained with LCE . All teacher models are trained with
the dataset whose (δ, ζ) is equal to (1.0, 1.0). We report the best result over 3 individual runs with
different initializations.

data set type teacher student δ = 1.0, ζ = 0.1 δ = 0.1, ζ = 1.0

CE τ=1.0 τ=3.0 τ=5.0 τ=20.0 τ =∞ MSE CE τ=1.0 τ=3.0 τ=5.0 τ=20.0 τ =∞ MSE

CIFAR-100

KD WRN-28-4
WRN-16-4 43.29

44.62 53.70 56.77 60.15 60.21 61.01
9.05

8.96 9.19 9.42 10.96 12.19 11.53
SD WRN-16-4 44.01 54.44 59.27 64.72 64.72 67.10 9.17 9.38 10.04 15.30 24.71 27.43
KE WRN-16-2 51.63 61.91 64.12 67.22 65.41 67.03 10.38 18.53 26.84 43.74 42.49 44.63
KD WRN-28-4

WRN-28-2 40.58
42.28 48.25 51.60 54.93 56.08 56.51

8.92
9.02 9.21 9.15 9.69 10.54 9.93

SD WRN-28-2 42.47 52.44 53.45 59.69 59.86 60.47 9.09 9.39 9.50 14.37 16.51 16.43
KE WRN-16-2 44.69 57.62 59.15 63.38 63.45 64.27 9.18 11.05 14.72 32.36 31.39 31.38

data set type teacher student δ = 1.0, ζ = 0.1 δ = 0.2, ζ = 1.0

CE τ=1.0 τ=3.0 τ=5.0 τ=20.0 τ =∞ MSE CE τ=1.0 τ=3.0 τ=5.0 τ=20.0 τ =∞ MSE

CIFAR-10

KD WRN-28-4
WRN-16-4 80.41

81.26 84.11 84.24 86.30 85.99 86.24
19.88

19.84 19.97 21.01 24.72 29.95 29.23
SD WRN-16-4 80.94 84.63 85.30 88.15 88.15 88.41 19.87 21.50 29.09 37.25 50.91 51.39
KE WRN-16-2 80.60 85.35 86.71 88.46 89.03 89.20 19.88 27.65 38.08 57.65 65.62 65.28

KD WRN-28-4
WRN-28-2 79.86

79.65 80.22 81.88 84.28 80.72 83.63
19.89

19.80 19.82 19.93 20.40 21.45 20.37
SD WRN-28-2 80.23 81.14 83.46 84.65 84.67 84.75 19.72 19.80 21.49 25.29 33.03 36.41
KE WRN-16-2 80.79 84.05 85.13 87.10 87.47 87.01 19.87 22.83 30.55 45.46 56.16 54.03

depend on the different bundles, while KD is much better than CE. The correlation between the test
accuracy and the training data difficulty is a promising topic for further research.

4 KD AND DATA SIZE

In this section, we study how the use of data size (i.e., the number of data) affects the generalization
of a student model. Here, for data usage, the data is sampled in consideration of the balance between
classes: (1) class-balanced sampling: the number of data for each class in the entire training is
equally reduced to check if KD is robust to the amount of training data and (2) class-imbalanced
sampling: some classes from the entire training are excluded to check if the model trained with
KD can predict out-of-distribution (OOD) data correctly. Class-imbalanced sampling is similar to
the experiment of Hinton et al. (2015). They addressed the student’s ability to learn indirect class-
information that exists in teacher learning, but do not exist in student learning using the MNIST
dataset. They distilled 9 classes out of 10 classes, but it has not been dealt with the extremely
class-imbalanced case. Here, we attempt to investigate the result of an extreme case.

To this aim, we handle the amount of training data with hyperparameters δ and ζ, where δ is the
ratio of the number of classes sampled to the total number of classes and ζ is the ratio of the number
of data sampled for actual training to the total number of the training dataset. For instance, when a δ
is 0.1 on CIFAR-100, the training dataset is reconstructed to have only ten classes, and when a ζ is
0.1 on CIFAR-100, the training dataset is reconstructed to have only 50 samples for each class out
of 500 samples. If both δ and ζ are equal to 1.0, the entire training dataset is used to train a model.

LKD and MSE Table 5 shows the performance of student models according to the change of
teacher model and LKD on a few data or a few labels. Here, we observe the consistent tendency
mentioned in section 2 that the larger τ , the higher the test accuracy, and MSE achieves similar
performance with τ = 20 or∞. Based on this discovery, we set the hyperparameters α and τ to 1.0
and 20.0, respectively, in the following experiments.

Class-balanced sampling (δ=1.0 columns of Table 6) We observe that, when a few training data
is applied (ζ � 1.0 & δ=1.0), the model trained with LKD performs significantly better than the
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Table 6: Comparison of top1 accuracies on various data sets with different pairs of teacher and
student models. ’CE’ indicates the models trained with LCE . All teacher models are trained with
the dataset whose (δ, ζ) is equal to (1.0, 1.0). We report the best result over 3 individual runs with
different initializations.

data set type teacher student ζ, δ = 1.0
δ = 1.0 ζ = 1.0

ζ=0.1 ζ=0.2 ζ=0.3 ζ=0.4 ζ=0.5 δ=0.1 δ=0.2 δ=0.3 δ=0.4 δ=0.5

CIFAR-100

CE None

WRN-16-4

76.89 43.29 57.56 63.94 66.83 69.81 9.05 17.39 25.50 32.69 40.85
KD WRN-28-4 78.84 60.15 68.52 71.68 73.63 75.54 10.96 24.02 32.17 40.76 49.02
SD WRN-16-4 77.15 64.72 72.81 74.31 75.38 76.39 15.30 30.51 39.61 46.33 52.07
KE WRN-16-2 73.61 67.22 72.30 73.23 74.00 73.79 43.74 61.67 67.14 71.90 73.05
CE None

WRN-28-2

74.83 40.58 55.76 61.37 65.45 67.74 8.92 17.35 25.28 32.72 40.45
KD WRN-28-4 77.36 54.93 65.14 68.84 71.14 72.63 9.69 19.44 27.61 35.91 44.13
SD WRN-28-2 76.13 59.69 68.38 71.48 73.20 74.41 14.37 34.65 45.66 52.73 58.96
KE WRN-16-2 73.97 63.38 70.49 72.01 72.91 73.55 32.36 53.48 61.05 66.07 68.25

CIFAR-10

CE None

WRN-16-4

94.70 80.41 87.16 89.53 91.03 92.30 10.00 19.88 29.61 38.88 47.40
KD WRN-28-4 95.55 86.30 90.95 92.51 93.71 94.17 10.00 24.72 37.05 49.92 61.50
SD WRN-16-4 94.84 88.15 92.38 93.50 94.16 94.30 13.17 37.25 59.24 71.41 76.49
KE WRN-16-2 94.24 88.46 92.31 93.34 93.77 94.05 23.96 57.65 76.53 81.33 88.14
CE None

WRN-28-2

94.47 79.86 86.91 89.51 90.93 91.87 10.00 19.89 29.55 38.93 47.34
KD WRN-28-4 95.13 84.28 89.67 91.91 93.05 93.61 10.00 20.40 31.34 42.76 53.86
SD WRN-28-2 94.70 84.65 89.95 91.85 92.87 93.88 10.00 25.29 38.32 52.76 63.01
KE WRN-16-2 94.04 86.90 91.92 92.95 93.44 93.56 12.97 45.46 60.98 70.75 79.75

data set type teacher student ζ, δ = 1.0 ζ=0.02 ζ=0.04 ζ=0.06 ζ=0.08 ζ=0.1 δ=0.1 δ=0.2 δ=0.3 δ=0.4 δ=0.5

ImageNet

CE None

RN-50

76.15 17.48 32.24 41.53 47.41 53.25 8.26 16.67 24.82 32.57 40.38
KD RN-152 77.52 30.11 51.02 59.54 64.25 67.02 37.15 53.80 61.12 65.63 68.59
SD RN-50 76.34 32.73 53.30 61.68 65.59 68.13 48.78 61.58 66.21 68.90 70.42
KE RN-34 73.19 34.92 55.78 62.82 65.96 67.60 55.82 64.28 67.41 69.63 70.77

Table 7: Comparison of BLEU scores on WMT14 En-De with different pairs of teacher and student
models. In this task, since the data has no clear categories like image data, we only conduct an
experiment with hyperparameter ζ. We use the same settings in Zhou et al. (2019).

type teacher student ζ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

KD
AT-base

NAT-base 9.74 11.82 12.78 13.89 15.34 15.69 16.38 16.58 16.85 18.53
SD AT-base 19.62 21.53 22.66 22.93 25.11 25.99 26.67 26.74 27.00 27.10
KE AT-big 19.97 22.43 23.18 23.76 25.86 26.86 27.35 27.26 27.83 27.91

model trained with LCE . In addition, even among the distillation, an equal or simple teacher model
facilitates student’s generalization significantly better than a more in-depth and broader teacher
model. In contrast, it has completely opposite results when the data used to train the teacher is
entirely distilled to train a student (ζ & δ=1.0). Especially, in CIFAR-10 and CIFAR-100 when
ζ=0.1 & δ=1.0, WRN-16-4 trained with KE (teacher: WRN-16-2) achieves 88.46% and 67.22%
accuracy, being more accurate than KD (teacher: WRN-28-4), SD (teacher: WRN-16-4), and espe-
cially has 8.05% and 23.97% larger accuracies than CE (LCE). This consistency is also found in
ImageNet (Table 6).

This observation is closely related to Xie et al. (2020); they showed that equal or larger students
might be capable of treating numerous unlabeled data in terms of noise to learn through. However,
even such improvement is still valid when a small amount of data can be distilled to equal or larger
students. This observation contradicts the long-term belief in the KD training framework that the
teacher should be cumbersome. Furthermore, we observe that KE can lead to better optima when
training a student with fewer data in the case of the CIFAR-100 dataset (See the underlines in
Table 6). This result is somewhat surprising in light of the machine learning’s long-term belief that
more data generalize the model better.

Based on this finding, we also test the English-to-German machine translation task using the Trans-
former (Vaswani et al., 2017) architecture (Table 7). Recently, for training efficiency, there have
been increasing demands of building NAT models with LKD (Zhou et al., 2019). Unlike previous
approaches, we find that distilling the knowledge from an AT model to another AT model is much
more efficient than to NAT model. Table 7 shows that the AT-base student model with ζ = 0.1 has
a 1.09 higher BLEU score than NAT-base with ζ = 1.0.
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Class-imbalanced sampling (OOD sampling) (ζ=1.0 columns of Table 6) We observe that a
student model accurately predicts a class of data that has never been seen before (i.e., OOD data)
when a student learns knowledge from a shallow and incapacious teacher. The results are similar
to the results of class-balanced sampling. As Table 6 depicts, KE always outperforms CE, KD, and
SD, and in particular, when ζ=1.0 & δ=0.1, KE (teacher: RN-34) has less 18.67% and 47.56% error
than KD (teacher: RN-152) and CE in ImageNet classification.

We believe that this result may provide intuition regarding pseudo-labeling protocols (Xu et al.,
2019b; Xie et al., 2020). It is generally believed that a pre-trained model with higher accuracy en-
ables the data to be encoded into more accurate and richer information. However, as our results
show, in the OOD case, it seems that the shallow and narrow model encodes the data more abun-
dantly and transfers knowledge to other models better. Since the pseudo-labeling situation is mainly
similar to the OOD, a simple model may be more suitable as an encoder.

5 RELATED WORKS

There have been debates on explaining the dark knowledge of KD. Hinton et al. (2015) first sug-
gested that the wrong answers of a teacher rather strengthen KD via the concept of similarity in-
formation between classes. They showed that the distilled model could distinguish the data whose
label does not exist in the training set. Recently, Tang et al. (2020) claimed that KD benefits from
class similarity information by comparing each template (i.e., a row vector of the fully connected
layer corresponding to the class). As evidence, in the distilled student, they observed high cosine
similarity values between templates that share common super-class.

On the other side, Furlanello et al. (2018) asserted that a maximum value of teacher’s softmax
probability is similar to importance weighting by showing that permuting all of the non-argmax
elements can also improve performance. Yuan et al. (2020) argued that dark knowledge serves as a
label smoothing regularizer rather than as a transfer of class similarity by showing a poorly-trained
or smaller teacher can boost performance. Recently, Tang et al. (2020) modified the conjecture in
Furlanello et al. (2018) and showed that the sample is positively re-weighted by the prediction of the
teacher’s logit vector.

Some studies demonstrated that dark knowledge also releases the challenge of training a network
with a fraction of the entire dataset. Kimura et al. (2018) distilled the pseudo training data generated
by the teacher in an adversarial manner. Xu et al. (2019a) gained more generalization by adding un-
labeled samples into the original dataset. They judged the validity of unlabeled samples by checking
whether it is in the original data distribution or not. Lopes et al. (2017) showed that metadata, in-
cluding the information of a pre-trained model deployment, even enables the training of a student.
Recent progress has been evolving into the generation of pseudo examples to get a high accuracy
under no access to the original dataset (Li et al., 2018; Nayak et al., 2019; Yoo et al., 2019). Hinton
et al. (2015) observed the robustness of KD against classifying the classes of data, which is omitted
from the training dataset. However, no studies still have investigated the effects of dark knowledge
with respect to the number of data samples.

6 CONCLUSION AND FUTURE RESEARCH

In this work, we have revealed and summarized the behaviors of knowledge distillation (KD). First,
we show that the temperature scaling in KD focuses on the logit vector matching rather than the label
matching when the temperature τ grows up. In addition, we verify that an extreme logit learning
model, whose KD loss is replaced with MSE, consistently outperforms any other recently modified
KD methods from extensive experiments. At the example level, based on TLD, we further observe
that a student even learns the teacher’s degree of data uncertainty. Lastly, far interestingly, when
there are a few data or a few labels among the whole dataset, the student achieves better accuracy
with the incapacious teacher with a shallow depth structure than others having wider and deeper
structures. We believe that this has a big impact not only on the training with temperature scaled
loss but also on the classification task when there are a few data or a few labels. The design of better
algorithms considering the pair of a teacher and a student is also an engaging question for future
work.
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A APPENDIX: OTHER METHODS

We compare to the following other state-of-the-art methods from the literature:

• Fitnets: Hints for thin deep nets (Romero et al., 2014)

• Attention Transfer (AT) (Zagoruyko & Komodakis, 2016a)

• Knowledge transfer with jacobian matching (Jacobian) (Srinivas & Fleuret, 2018)

• Paraphrasing complex network: Network compression via factor transfer (FT) (Kim et al.,
2018)

• Knowledge transfer via distillation of activation boundaries formed by hidden neurons
(AB) (Heo et al., 2019b)

• A comprehensive overhaul of feature distillation (Overhaul) (Heo et al., 2019a)

B DETAILS OF THE SECTION 2

In this section, we discuss the derivations of such equation and theorem that we have mentioned in
section 2.

B.1 EQUATION 2

L = (1− α)LCE(ps(x; 1), q(x)) + αLKD(ps(x; τ), pt(x; τ))

= (1− α)

−∑
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B.2 PROOF OF THEOREM 1
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τ→0

= τ(psk(x; τ)− ptk(x; τ)) = 0 (∵ −1 ≤ psk(x; τ)− ptk(x; τ) ≤ 1) (8)

B.3 DETAILED VALUES OF FIGURE 1

Table 8 and Table 9 show the detailed values in Figure 1.

alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ = 1 99.53 99.54 99.55 99.56 99.54 99.56 99.53 99.50 99.46 99.34
τ = 3 99.37 99.09 98.69 98.33 97.85 97.43 96.84 96.26 95.76 95.05
τ = 5 99.32 99.07 98.70 98.19 97.66 96.96 96.18 95.11 93.91 92.63
τ = 20 99.33 99.13 98.96 98.63 98.25 97.87 97.29 96.33 95.12 92.76
τ = ∞ 99.35 99.22 99.02 98.80 98.42 98.11 97.60 96.49 95.42 92.74

Table 8: Training accuracy on CIFAR-100 (Teacher: WRN-28-4 & Student: WRN-16-2).
alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ = 1 72.79 72.56 72.80 72.70 72.84 72.68 72.78 72.60 72.87 72.90
τ = 3 73.76 73.90 73.88 74.30 74.18 74.64 74.78 74.32 74.35 74.24
τ = 5 73.84 74.00 74.36 74.54 74.74 74.54 75.17 74.84 75.24 74.88
τ = 20 73.51 73.94 74.34 74.54 74.64 74.86 75.05 74.86 75.26 75.76
τ = ∞ 73.18 73.65 74.04 74.28 74.45 75.03 75.04 74.67 75.37 75.51

Table 9: Testing accuracy on CIFAR-100 (Teacher: WRN-28-4 & Student: WRN-16-2).

C RELATED WORKS

C.1 SELF-DISTILLATION (SD)

There have been increasing demands for improving the performance of SD with variety.

Distilling the information in the latent vector of teacher. In Yim et al. (2017), two identical
deep neural networks are set as a teacher and a student, respectively, to facilitate the teacher’s gener-
alization. They penalized the L2-loss from each paired layer of a student and a teacher. Zhang et al.
(2019) utilized auxiliary classifiers which are attached to additional bottlenecks and fully connected
layers. They expected to encourage discrimination in lower stages. Experimental results depicted
that this modified SD outperforms any other distillation methods. Ahn et al. (2019) proposed another
approach that maximizes mutual information between teacher and student networks.
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Understanding the effects of SD iterations. Furlanello et al. (2018) improved the teacher’s gen-
eralization in iterative manner. Empirically, they denoted remarkable results into four folds:

1. Only using KD without ground-truth label outperforms using both the teacher’s prediction
and ground-truth labels.

2. KD has a similar effect to importance weighting by considering the teacher’s softmax out-
put.

3. A student distilled with teacher’s output permuted except the argmax value still brings the
accuracy similar to that with original teacher’s output. It implies that the success of KD
owes to factors other than information contained in the non-argmax output of the teacher.

4. In the KD, ensemble of iterative models also outperforms than that a single model.

Mobahi et al. (2020) provided theoretical analysis of SD in the circumstance where models are in
Hilbert space and fitting these models is subject to l2 regularization in those specific function space.
Specifically, the effect of SD acts like a regularizer by restricting the number of basis functions
which are used to represent the desired solution. In this setting, they asserted that SD iterations
improve the model performance until a certain step and there exists a lower bound on the number of
distillation iterations.

C.2 KD ON NEURAL MACHINE TRANSLATION

Neural machine translation (NMT) has shown remarkable performance in machine translation tasks.
Promising NMT models consists of encoder-decoder architecture (Bahdanau et al., 2014), built up
with a module which automatically search the most similar representation of the target word among
source words (Vaswani et al., 2017). Certain model family translates the next target word by us-
ing the words before as inputs in an autoregressive (AT) manner. Due to this characteristic, the
bottleneck always exists in the decoding step when inferencing.

There were approaches to decode in with non-autoregressive (NAT) methods by predicting the target
word just by looking at each source word. This type of methods helps parallelism in inference
because it doesn’t need the former predicted word as a input reducing the inference time. However,
NAT in machine translation is a very difficult task because there our diverse candidate for the true
target word (i.e., multi modality problem). To mitigate this issue, the true target labels of the corpus
have been replaced with labels from a pre-trained AT model (Kim & Rush, 2016). With this concept,
NAT has shown a significant improvements (Gu et al., 2017) . Zhou et al. (2019) showed that
knowledge distillation reduce the complexity in a data sets which helps NAT to deal with multi
modality problem.

D EXPERIMENTAL SETTINGS

D.1 MODELS

ResNet (RN). We use the benchmark network as ResNet (He et al., 2016a), which is a champion
of the ILSVRC2015. This network uses the concept of residual learning which makes layers to
learn the residual between underlying mapping and input of layer. In our experiment, we compose
the ResNet with a Basickblock that consists of two consecutive 3 × 3 convolutional layers and for
each convolutional layer batch normalizaion and ReLU activation follows sequentially.

We keep almost the same settings as He et al. (2016a), but one different thing from He et al. (2016a)
is that we also control the width of networks (i.e., the number of features in each convolutional
layer) to systematically dissect the effects coming from the structural factors. To control the width
of network, we introduce additional widening factor k. Widening factor k multiplies the number of
channels in each convolutional layer thus leading to wider network.

In our experiment, we use notation RN-n-k with n total number of layers and widening factor k.
Several blocks compose a group and convolutional layers in each group share the same number of
channels. More specifically, RN-20-1 is network with 20 layers which is exactly the same as He
et al. (2016a) and RN-20-4 is wider network with widening factor k = 4 that extracts more features
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in each convolutional layer. In the process of distilling knowledge, other network hyperparmeters
are fixed except α and τ .

Wide-ResNet (WRN). For the variety, we also use the Wide-ResNet (Zagoruyko & Komodakis,
2016b). The authors suggested to increase the width of convolutional layer not the depth of network.
They added additional dropout for regularization effect for each residual block. In WRN, only
basicblock from RN is used since, bottleneck block makes network thinner and WRN doesn’t have
interest in deepening the network. The sequence of convolution (Conv), batch normalization (BN)
and ReLU activation follows BN-ReLU-Conv as He et al. (2016b). n and k denote the total number
of convolutional layers n and widening factor k in WRN, respectively.

In our experiment, we explore various Wide-ResNet structures. For all WRN, each residual block
contains two 3×3 convolutional layers which is a baseline in orginal paper Zagoruyko & Komodakis
(2016b) with the best test accuracy in their experiments. We do not utilize dropout in our experi-
ments. In all settings of over distillation, self distillation and under distillation, teacher-student pair
is derived with different hyperparameter values of number of convolutional layers and widening fac-
tor, n, k respectively. In the process of distillation, we only control the hyperparameters α and τ to
maintain consistency.

Autoregressive transformer (AT). In neural machine translation, input and output are sequence
of words. Nearby words in a sequence affect each other. Autoregressive transformer (AT) models
capture this phenomena by using the previous predicted word as input to predict the current word
(Vaswani et al., 2017). It is widely known that AT models can mitigate the issue of high com-
putational burdens in training through parallelism while recurrent models such as recurrent neural
networks, long short-term memory (Hochreiter & Schmidhuber, 1997) and gated recurrent (Chung
et al., 2014) are not.

The auto regressive model used in our experiments are applied based on transformer model. We
keep the same settings of building AT models in Zhou et al. (2019) (Table 10).

Non-autoregressive transformer (NAT). For non-autoregressive model (NAT), we have used
slightly shifted version of vanilla NAT model (Gu et al., 2017) whose official implementation is
in Fairseq 1. The overall architecture of original vanilla NAT is nearly identical as the Trans-
former except it additionally predicts fertility in the encoding step and it generates the output in
non-autoregressive manner in the decoding step. However, in our paper, we don’t utilize the fertility
value, but simply copy the encode embedding to the decoder. We keep the same settings of building
NAT models in Zhou et al. (2019)(Table 10)

Models NAT-base AT-base AT-big
dmodel 512 512 1024
dhidden 2048 2048 4096
nlayer 6 6 6
nheads 8 8 16
pdropout 0.3 0.3 0.3

Table 10: Hyperparameters of AT, NAT models. We utilize the same notation from Vaswani et
al. Vaswani et al. (2017). dmodel indicates the dimension of key, value and query dimension.
dhidden stands for the hidden dimension of feed forward network inside the sub-layer. nlayer,
nheads, pdropout indicate number of encoder/decoder layers and multi-head attention module and
probability of dropout respectively.

D.2 TRAINING SETUPS

ResNet. We run 200 epochs for each model with optimizer SGD with momentum 0.9, initial learn-
ing rate γ = 0.1 and weight decay 1 × 10−4. Also, we applied step decay for learning rate in 100
and 150 epoch by 0.1. On the other side, scale and shift parameters β and γ in BN were trained with
momentum 0.99 and without weight decay. We use the same data augmentation policies in Szegedy
et al. (2016).

1https://github.com/pytorch/fairseq
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Table 11: Ablation performance on various regularizations on CIFAR-100 dataset. ‘RN’ indicates
the a family of ResNet. All teacher models are trained with such regularizations on the dataset whose
(δ, ζ) is equal to (1.0, 1.0).

teacher student regularization ζ, δ = 1.0
δ = 1.0 ζ = 1.0

ζ=0.1 ζ=0.2 ζ=0.3 ζ=0.4 ζ=0.5 δ=0.1 δ=0.2 δ=0.3 δ=0.4 δ=0.5

None RN-20-4

WD&BN&SC 76.89 41.10 56.54 63.69 67.25 69.93 8.99 17.35 25.51 33.15 41.03
W/O WD 72.67 36.05 50.14 58.11 63.28 66.17 8.74 16.98 24.46 32.12 39.60
W/O BN 76.15 41.21 56.73 63.52 67.07 70.07 8.97 17.49 25.63 33.20 41.17
W/O SC 74.61 37.18 53.23 61.67 64.96 67.27 8.97 17.10 25.08 32.61 40.65

RN-20-1 RN-20-4

WD&BN&SC 69.98 66.57 69.93 71.10 70.74 70.66 52.77 65.86 68.86 69.81 69.93
W/O WD 69.49 66.99 70.02 71.39 70.57 70.58 53.25 65.38 68.73 69.73 69.98
W/O BN 69.72 66.27 69.96 71.31 70.55 70.50 52.99 66.01 68.82 70.02 69.82
W/O SC 70.41 63.72 69.10 70.56 70.82 71.02 40.88 62.94 66.68 68.60 69.93

Table 12: Top1 accuracy of HCL on CIFAR-100 dataset. We keep the student the same as WRN-16-2
and use the same settings described in Nayak et al. (2019).

teacher HCL ζ, δ = 1.0
δ = 1.0 ζ = 1.0

ζ=0.1 ζ=0.2 ζ=0.3 ζ=0.4 ζ=0.5 δ=0.1 δ=0.2 δ=0.3 δ=0.4 δ=0.5

WRN-16-6 O 73.04 42.05 53.27 60.05 63.92 66.92 9.16 17.48 24.99 32.51 40.20

WRN-16-2 O 72.78 40.52 52.86 58.86 62.59 68.08 9.13 17.34 25.09 31.92 39.73

Wide-ResNet. We explored various types of WRN-n-k in experiment with different hyperparam-
eter values of n and k. Data augmentation method follows from Szegedy et al. (2016) and the same
training setup was used in WRN as RN. We run 200 epochs using SGD with momentum 0.9, initial
learning rate γ = 0.1, dropping 0.1 in 100 and 150 epoch, weigh decay 1×10−4 and parameters for
batch normalization momentum with 0.99 without weight decay. After exploring various values of
hyperparameters α and τ , we set those values as 1.0 and 20 respectively to reveal the benefit from
the number of training data in knowledge distillation.

Autoregressive transformer (AT). We have almost kept identical configuration with Tang et al.
(2020) to train auto regressive transformer Vaswani et al. (2017). During Training, we run 70 epochs
for each model and used Adam optimizer with β1 = 0.9, β2 = 0.98, ε = 1e− 8. We adopt inverse
square root scheduler with 4000 warm up updates and maximum learning rate 0.0005. We utilize
the label smoothing as 0.1 and treated the last model as our best model. We decode AT model using
beam-search with size 5.

Non-autoregressive transformer (NAT). We train vanilla non auto regressive transformer Gu
et al. (2017) 70 epochs with same optimizer setting with AT models. Also adopt inverse square
scheduler, but with 10000 warm up updates with label smoothing 0.1. We treat the last model
trained 90 epochs as our best model. We have not use any advanced decoding technique such as
beam search, but use greedy decoding.

E KD AND OTHER FACTORS

E.1 ABLATION STUDY ON OTHER REGULARIZATIONS

We conduct an extensive ablation study by systematically eliminating three regularizations to an-
alyze the robustness of KD towards such regularizations when a small amount of data is distilled:
(1) weight decay (WD), (2) batch normalization (BN), and (3) shortcut (SC). In the setting for BN,
we fix the values of both β and γ (i.e., affine parameters) in BN layers of a student model instead
of elimination since the network can not be trained without BN layer. For the investigation of SC,
we eliminate the shortcut of a student model, including identity mapping. The results in Table 11
show that, interestingly, even without such regularizations, a student model trained with KD has a
similar characteristic, which fewer data leads to better generalization. Additionally, other consistent
tendencies described in section 4 also happen.
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E.2 HAND-CRAFTED LABEL OF CLASS SIMILARITY

We study how the prior in the form of class similarities (Nayak et al., 2019; Kim et al., 2020) affects
the benefit from the number of training data compared to KD. Specifically, we experiment with
the use of a hand-crafted label (HCL) that utilizes the prior knowledge of class similarities from
the teacher (Nayak et al., 2019) (Table 12). Artificially creating a soft target with hand-craft by
importing class-wise information from the teacher is not valid when there are few data, while the
performance slightly increases when δ, ζ = 1.0.

In details of constructing hand-crafted labels, we first obtain the class similarity matrix from the
teacher. The class similarity is calculated as follows:

C(i, j) =
wTi wj
||wi||||wj ||

where C(i, j) is the (i, j) elements in class similarity matrix C, and wi is the i-th row vector of
fully-connected layer’s weight matrix.

Crafting labels via Dirichlet sampling (Nayak et al., 2019; Kim et al., 2020) Nayak et al. (2020)
and Kim et al. (2020) proposed a method of crafting the labels via Dirichlet distribution whose the
concentration parameter α is considered as the row vector αk corresponding to class k. Here, they
handle the amount of distillation with a hyperparameter β:

p(s) = Dir(K,β × α)

where K is the number of classes, and β is a scaling factor. In our work, we conduct an experiment
with the class similarity matrix of WRN-28-4 and β = 1.0.

E.3 CALIBRATION

In this subsection, we evaluate the calibration effects of KD as τ increases. To measure calibration,
we use the estimated expected calibration error (ECE), which is a quantitative metric of calibration
Guo et al. (2017b); Naeini et al. (2015), in Table 13. The results demonstrate that a student with
large τ attempts to follow the logit distribution of the teacher.

Table 13: ECE of the training samples. Here, (student, teacher) is (WRN-
28-4, WRN-16-2), and all student models are trained with α = 1.0.

teacher CE KD (τ=1) KD (τ=3) KD (τ=5) KD (τ=20)
ECE 0.86 3.40 4.64 0.61 0.63 0.78

E.4 VARIOUS PAIRS OF TEACHERS AND STUDENTS

We provide the results that support the Figure 1 in various pairs of teachers and students (Figure 4).
All figures depict that higher the value of α, smaller is the over-fitting problem (i.e., low training
accuracy, but high test accuracy) under the condition that τ is 20.
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(b) T: WRN-16-6 & S: WRN-16-2
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(d) T: WRN-40-2 & S: WRN-16-2

Figure 4: Grip maps of accuracies according to the change of α and τ on CIFAR-100 when (a)
(teacher, student) = (WRN-16-4, WRN-16-2), (b) (teacher, student) = (WRN-16-6, WRN-16-2), (c)
(teacher, student) = (WRN-28-2, WRN-16-2), and (d) (teacher, student) = (WRN-40-2, WRN-16-
2). The left grid maps presents training top1 accuracies, and the right grid maps presents test top1
accuracies.
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E.5 THE BALANCING HYPERPARAMETER α IN L
Here, we further investigate the regularization effects of α based on TLD. Increasing α has similar
results compared to that of τ (Figure 5). In the case of UD and SD, a student learns the teacher’s
logit distribution almost fully when α gets closer to 1.0. On the other side, when the student is more
straightforward than the teacher, the student is not able to learn the exact teacher’s logit distribution.
As we’ve already mentioned in section 2, it is due to the bottleneck coming from the student’s low
complexity.
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(a) WRN-28-4 to WRN-16-2.
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(b) WRN-16-2 to WRN-16-2.
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(c) WRN-16-2 to WRN-28-4.

Figure 5: Pdf of TLD. All students are trained with τ=20, and all teachers are trained with CE. Both
models share other training recipes such as learning rate, batch size, and weight decay.

E.6 EXAMPLE RE-WEIGHTING (TANG ET AL., 2020)

In this subsection, we evaluate the example re-weighting of KD based on teacher model’s prediction
confidence on the ground-truth class (Tang et al., 2020). Refer to Tang et al. (2020), we raise a ques-
tion of whether the relationship between a re-weighting value of a sample (i.e., τ

(
pt(τ)k−ps(τ)k

1−qs(1)k

)
)

and the confidence of teacher on the sample keeps positive during in the course of training (Fig-
ure 6). Here, x-axis means the softened softmax value of teacher for ground-truth class, i.e., pt(τ)k,
and y-axis means the log value of re-weight factor when α = 1, i.e., τ

(
pt(τ)k−ps(τ)k

1−qs(1)k

)
.

Figure 6 shows the result of the relationship between example re-weighting and teacher’s predicted
label according to the changes of training iterations until the second epoch begins. Similar to the
results of Tang et al. (2020), we also find that there is a positive correlation between the effect
or example re-weighting and the teacher’s softened top1 prediction in the early stage of training.
Especially, this correlation seems to be strengthened (Figure 6). On the other side, after 1 epoch,
this trend continues and no significant changes happen in the epoch of learning rate decay.
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Figure 6: Re-weighting factor scatterplot in the first epoch.

E.7 REGULARIZATION OF THE LARGE LEARNING RATE

Recently, Li et al. (2019) demonstrated that a large learning rate model with annealing generalizes
better on hard-to-generalize and easier-to-fit patterns than its small learning rate. Here, we aim
to study whether KD facilitates the regularization effect of this concept. Through the findings in
section 3, we consider the data that has hard-to-generalize and easier-to-fit patterns as high TLD
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valued data from teacher. For the experiment, we train models for 200 epochs with an initial learning
rate of 0.1, and the learning rate is annealed when the epoch is 100 and 150.

Table 14: Top1 training accuracy and the number of samples whose TLD value from student is
above the mean TLD of teacher (i.e., mean = 7.99), when the learning rate is annealed. Here,
(teacher, student) is (WRN-28-4, WRN-16-2). α in L is set to 1.0.

Learning rate CE KD

τ=1 τ=20 τ=∞ MSE
0.1 64.73 (2655) 65.25 (2445) 67.87 (7282) 70.75 (7383) 67.59 (7157)

0.01 92.08 (9440) 92.48 (8291) 86.62 (16006) 86.40 (14027) 87.32 (14989)
0.001 99.48 (13269) 99.45 (10573) 92.89 (18983) 92.74 (17374) 92.70 (17440)

Table 14 shows that τ = 20 or ∞ and MSE correctly predicts far more numbers of hard-to-
generalized and easy-to-fitted data than others (CE and τ = 1), especially in the phase of the initial
learning rate. We believe that, as we mentioned in theory, this difference is from whether model
strives to be logit learning or label learning. Furthermore, this effect still works in annealed learning
rates while the discrepancy slightly is reduced.

E.8 DETAILS OF THE SECTION 4

In this subsection, we discuss the results that we do not show in section 4 (Table 15).

Table 15: Comparison of top1 accuracies on CIFAR-100 with a family of ResNets. All teacher
models are trained with the dataset whose (δ, ζ) is equal to (1.0, 1.0). We report the best result over
3 individual runs with different initializations.

teacher student ζ, δ = 1.0
δ = 1.0 ζ = 1.0

ζ=0.1 ζ=0.2 ζ=0.3 ζ=0.4 ζ=0.5 δ=0.1 δ=0.2 δ=0.3 δ=0.4 δ=0.5

CE None RN-20-1 72.56 42.51 54.76 60.15 63.74 66.65 9.13 17.06 24.99 32.33 39.55
RN-20-4 76.89 41.10 56.54 63.69 67.25 69.93 8.99 17.35 25.51 33.15 41.03

KE RN-20-1

RN-20-2 69.57 63.85 68.51 69.91 70.25 69.96 44.15 61.21 65.46 68.93 69.4
RN-20-3 69.48 65.46 69.12 70.49 70.64 70.35 49.98 64.73 67.99 69.92 69.60
RN-20-4 69.98 66.57 69.93 71.10 70.74 70.66 52.77 65.86 68.86 69.81 69.93
RN-50-1 69.63 59.66 66.87 68.82 69.51 70.34 36.18 55.23 61.84 65.15 67.44
RN-110-1 70.98 60.09 67.78 69.61 70.13 70.73 32.83 53.08 64.18 67.25 68.21
RN-152-1 71.12 58.49 68.39 69.81 70.53 70.53 30.07 57.96 64.72 67.30 68.52
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