Accent-Aware Text-to-Speech for Nigerian English: Building Inclusive Voice Al from Community-
Curated Data

Voice technologies often fail to represent the linguistic diversity of emerging markets, particularly African
accents and languages[4]. This work presents a multilingual text-to-speech (TTS) system tailored for Nigerian-
accented English, built on the StyleTTS2 architecture[1] and trained on a community-curated dataset spanning
the three major Nigerian ethnic groups: Yoruba, Igbo, and Hausa.

To construct the dataset, volunteers with technical backgrounds recorded readings from Nigerian-published
texts across domains such as religion, politics, history, and education. Recordings ranged from 1 to 6 hours per
speaker. Using Whisper[6] for transcription, audio was converted into timestamped SRT files and manually
corrected by a four-person team. A custom script segmented the audio into variable-length clips (2—-30 seconds),
yielding over 4,000 paired samples. The dataset was split 80/20 for training and evaluation.

During preprocessing, transcriptions were converted into phonemes using the phonemizer Python package. The
model learns the relationship between phoneme sequences and speaker-specific acoustic features, including
pitch and prosody. At inference time, given a new text input and reference audio, the model mimics the speaker’s
vocal style by predicting pitch contours and generating expressive _
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speech that reflects the speaker’s accent and emotional tone.
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As illustrated in Fig. 1, the system architecture integrates phoneme-
level BERT embeddings, style and prosody encoders, and a diffusion- Preprocessing
based decoder [2,3,5]. An informal evaluation was conducted using
human raters, with three evaluators per sample. Approximately 87%
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This work demonstrates the feasibility of building inclusive voice Al Error e
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applications in education, public services, and digital accessibility
across Africa. Fig. 1: Accent-Aware TTS Workflow
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