
CQM: Curriculum Reinforcement Learning
with a Quantized World Model

Seungjae Lee, Daesol Cho, Jonghae Park, H. Jin Kim
Seoul National University

Automation and Systems Research Institute (ASRI)
Artificial Intelligence Institute of Seoul National University (AIIS)
{ysz0301, dscho1234, bdfire1234, hjinkim}@snu.ac.kr

Abstract

Recent curriculum Reinforcement Learning (RL) has shown notable progress in
solving complex tasks by proposing sequences of surrogate tasks. However, the
previous approaches often face challenges when they generate curriculum goals
in a high-dimensional space. Thus, they usually rely on manually specified goal
spaces. To alleviate this limitation and improve the scalability of the curriculum,
we propose a novel curriculum method that automatically defines the semantic goal
space which contains vital information for the curriculum process, and suggests
curriculum goals over it. To define the semantic goal space, our method discretizes
continuous observations via vector quantized-variational autoencoders (VQ-VAE)
and restores the temporal relations between the discretized observations by a graph.
Concurrently, ours suggests uncertainty and temporal distance-aware curriculum
goals that converges to the final goals over the automatically composed goal
space. We demonstrate that the proposed method allows efficient explorations in
an uninformed environment with raw goal examples only. Also, ours outperforms
the state-of-the-art curriculum RL methods on data efficiency and performance, in
various goal-reaching tasks even with ego-centric visual inputs.

1 Introduction

Goal-conditioned Reinforcement Learning (RL) has been successfully applied to a wide range of
decision-making problems allowing RL agents to achieve diverse control tasks [42, 1, 30]. However,
training the RL agent to achieve desired final goals without any prior domain knowledge is challenging,
especially when the desired behaviors can hardly be observed. In those situations, humans typically
adopt alternative ways to learn the final goals by gradually mastering intermediate sub-tasks. Inspired
by the way humans learn, recent RL studies [29, 10, 6] have solved uninformed exploration tasks
by suggesting which goals the agent needs to practice. In this sense of generating curriculum goals,
previous approaches proposed various ideas to involve providing intermediate-level tasks [10, 38],
quantifying the uncertainty of observations [4, 31, 33, 25, 18], or proposing contextual distance to
gradually move away from the initial distribution [15, 6].

However, previous curriculum RL studies are mostly not scalable. Namely, they suffer from serious
data inefficiency when they generate curriculum goals in high dimensions. Because of this limitation,
they usually rely on the assumption that manually specified goal spaces (e.g., global X-Y coordinates)
and clear mappings from high-dimensional observations to the low-dimensional goal spaces are
available. Such an assumption requires prior knowledge about observations and the tasks, which
remains a crucial unsolved issue that restricts the applicability of previous studies.

In order to design a general curriculum solution without the need for prior knowledge about the
observations, defining its own goal space for the curriculum could be an effective scheme. To do so,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: CQM simultaneously tackles the interrelated problems of specifying the goal space and
suggesting which goal the agent needs to practice. CQM trains a VQ-VAE to form a discretized goal
space and constructs a graph over it, capturing the relations between the discretized observations
(landmarks). Concurrently, CQM suggests the agent which goal to practice based on uncertainty and
temporal distance.

the two following operations need to be executed concurrently. (1) composing the semantic goal
space which contains vital information for the curriculum process from the arbitrary observation
space, and (2) suggesting to the agent which goal to practice over the goal space. Let us consider an
agent that tries to explore an uninformed environment with final goal images only. To succeed, the
agent needs to specify the semantic goal space from the high-dimensional observation space, and
suggest the curriculum goals (e.g., the frontier of the explored area) over the composed goal space to
search the uninformed environment. However, most previous studies focused solely on one of these,
specifying the low-dimensional goal space without considering how to provide intermediate levels
of goals [17, 27], or just suggesting curriculum goals in manually specified semantic goal spaces
[10, 21, 6].

The challenge of simultaneously managing (1) specifying the goal space and (2) suggesting curriculum
goals is that they are intimately connected to each other. If the agent constructs an ill-formed goal
space from the observation space, it would be difficult to propose curriculum goals over it. Conversely,
if the method fails to suggest goals to enable the agents to explore the unseen area, it would also
be difficult to automatically learn the goal space that covers the uninformed environment based on
the accumulated observations. Therefore, it is essential to develop an algorithm that addresses both
defining goal space and providing curriculum goals concurrently.

In this paper, we propose a novel curriculum reinforcement learning (RL) method which can provide
a general solution for a final goal-directed curriculum without the need for prior knowledge about
the environments, observations, and goal spaces. First, our method defines its own semantic goal
space by quantizing the encoded observations space through a discretization bottleneck and restoring
the temporal relations between discrete goals via a graph. Second, to suggest calibrated guidance
towards unexplored areas and the final goals, ours proposes uncertainty and temporal distance-aware
curriculum goals that converge to the final goal examples.

The key contributions of our work (CQM: Curriculum RL with Quantized World Model) are:

• CQM solves general exploration tasks with the desired examples only, by simultaneously
addressing the specification of a goal space and suggestion of curriculum goals (Figure 3).

• CQM is the first curriculum RL approach that can propose calibrated curriculums toward
final goals from high-dimensional observations, to the best of our knowledge.

• CQM is the only curriculum RL method that demonstrates reliable performance despite
an increase in the problem dimension, among the 10 methods that we experimented with.
(Even state-based→ vision-based)

• Ours significantly outperforms the state-of-the-art curriculum RL methods on various goal
reaching tasks in the absence of a manually specified goal space.

2 Related Works

Curriculum Goal Generation. Although various prior studies [41, 19, 48, 8, 45, 22] have been
proposed to solve exploration problems, enabling efficient searching in uninformed environments still

2

remains a challenge. An effective way to succeed in such tasks with hardly observed final goals is
identifying uncertain areas and instructing an agent to achieve the goals in these areas. To identify
the uncertain areas and provide the goals sampled from them, previous studies employ uncertainty-
based curriculum guidance by the state visitation counts [4, 31], absolute reward difference [37], and
prediction model [32, 5]. Other approaches propose to utilize disagreements of ensembles[33, 50, 28]
or sample the tasks with high TD errors [18] to generate goals in uncertain areas. An alternative way
for solving the exploration tasks is to execute a final goal-directed exploration to propose tailored
guidance. To this end, some studies perform successful example-based approaches [25, 6] or propose
to minimize the distance between the final goals and curriculum goals [38, 21], measuring it by the
Euclidean distance metric. Some studies also employ contextual distance-based metrics to perform
final goal-directed exploration away from the initial distribution [15, 6].

Figure 2: When the curriculum methods are
not scalable to handle the high-dimensional
goal; the performance drop in the absence of
manually specified goal space.

However, these methods usually assume that agents
have prior knowledge about the observations and un-
restricted access to manually specified semantic goal
space (e.g. global X-Y coordinates) because they
are not scalable to handle the high-dimensional goal
spaces. For example, the meta-learning classifier-
based uncertainty metrics [25, 6] suffer from distin-
guishing uncertain areas as the dimension of the goal
space increases. Also, some of the methods rely
on Euclidean distance metric [38, 21] over the goal
space. Moreover, generating curriculum goals [10],
employing various prediction models [32, 5, 33, 50],
fitting Gaussian mixture models [37], and utilizing
disagreements of ensembles-based methods [33, 50]
also face difficulty in solving increasingly complex
problems in high-dimensional goal spaces. Although there have been attempts to propose a curricu-
lum in high-dimensional observations [36, 13] or include an encoder in their model-based agent
[28, 14], unfortunately, these approaches do not incorporate a convergence mechanism to the final
goals, which are crucial for efficient curriculum progresses.

Our method incorporates the benefits of the aforementioned methods without manually specified
goal spaces: exploring uncertain areas and moving away from the initial distribution while
converging to the desired outcome. Although there is a study that has also incorporated these three
aspects [6], it retains its performance only in manually specified goal spaces, as other curriculum
methods (Figure 2). (We included conceptual comparisons between CQM and more related works in
Table 1 in Appendix B.)

Discretizing Goal Space for RL. Vector quantized-variational autoencoder (VQ-VAE) is an
autoencoder that learns a discretized representation using a learnable codebook. The use of this
discretization technique for learning discrete representations in RL is a recent research topic [17, 27]
and has shown an improved sample efficiency. Islam et al. [17] proposes to apply VQ-VAE as a
discretization bottleneck in a goal-conditioned RL framework and demonstrates the efficiency of
representing the continuous observation spaces into discretized goal space. Also, Mazzaglia et al.
[27] utilizes VQ-VAE to discover skills in model-based RL by maximizing the mutual information
between skills and trajectories of model states.

Unfortunately, the aforementioned methods require a pre-collected dataset or extra exploration policy,
which are not necessary in CQM. Training VQ-VAE with a pre-collected dataset implies that the
agent has access to the full information about the task or that it already possesses an agent capable of
performing the task well. Although it is possible to obtain a pre-collected dataset through a random
rollout policy, this is only in the case where exploring the environments is easy enough to succeed
with only random actions.

3 Preliminaries

We consider a Markov Decision Process (MDP) which can be represented as a tuple
(O,A, T ,R, ρ0, γ), where O is an observation space, A is an action space, T (ot+1|ot, at) is a
transition function, ρ0 is an initial distribution, and γ is a discount factor. Note that the MDP above

3

does not contain a goal space, since we do not assume that the manually specified goal space is
provided. Instead, we consider a discrete low-dimensional discrete goal space G, which is defined
by the agent automatically. Also, we assume that the final goal examples of are provided by the
environment, and we denote the projection of these examples into the goal space G as gf . We
represent curriculum goal as gc, which is sampled from the goal space G, and the reward function
in the tuple can be represented as R : O × A × G → R. Furthermore, we denote actor network
as π : O × G → A, and critic network as Q : O × A × G → R. (Thus, Q(o, a, g) indicates the
goal-conditioned state-action value where goal g, action a, and observation o throughout this paper.)

4 Method

In order to provide a general solution for efficient curriculum learning, our method defines its own
goal space and suggests to the agent which goal to practice over the goal space simultaneously. To
compose a semantic goal space which reduces the complexity of observation space while preserving
vital information for the curriculum process, we first quantize the continuous observation space using
a discretization bottleneck (section 4.1) and restore temporal relations in discretized world model via
graph (section 4.2). Over the automatically specified semantic goal space, we generate a curriculum
goal and guide the agent toward achieving it (section 4.3).

4.1 Specifying Goal Space via VQ-VAE

In order to define a discrete low-dimensional goal space which allows a scalable curriculum with
high-dimensional observations, we utilize VQ-VAE as a discretization bottleneck [46, 40, 47] as
recently been proposed [17, 27]. VQ-VAE utilizes a codebook composed of k trainable embedding
vectors (codes) ei ∈ RD, i ∈ 1, 2, ...k, combined with nearest neighbor search to learn discrete
representations. The quantization process of an observation ot starts with passing ot through the
encoder ϕ. The resulting encoded vector ze = ϕ(ot) is then mapped to an embedding vector in the
codebook by the nearest neighbor look-up as

zq = ec, where c = argminj ||ze − ej ||2. (1)

The discretized vector zq is then reconstructed into ôt = ψ(zq) by passing through the decoder ψ.
We closely follow [17] and train quantizer, encoder, and decoder using a vector quantization loss
with a simple reconstruction loss. The first term in Eq. 2 represents the reconstruction loss, while the
second term represents the VQ objective that moves the embedding vector e towards the encoder’s
output ze. We update the embedding vectors e using a moving average instead of a direct gradient
update [17, 27]. The last term is the commitment loss, and we use the same λcommit (= 0.25) across
all experiments.

LVQ = ||ψ(ϕ(ot))− ot||22+ ||SG[ze]− e||22+λcommit||ze−SG[e]||22, (SG : stop gradient) (2)

By utilizing VQ-VAE, the RL agent can specify a quantized goal space that consists of discrete
landmarks L = {l1, l2, · · · lm} in two ways. The first approach is to obtain each landmark by
decoding each code as lj = ψ(ej). Alternatively, one can obtain the landmarks by passing (encoding,
quantizing to the closest embedding vector, and decoding) the continuous observations sampled from
the replay buffer through the VQ-VAE. We utilize the first approach as the default, and provide the
ablation study to examine the effectiveness of the second approach.

It should be noted that this set of landmarks L = {l1, l2, · · · lm} only represents discretized obser-
vations and does not involve relations among the observations. We describe our approach that can
better restore the temporal relations between landmarks in the next section.

4.2 Graph Construction over Quantized Goal Space

In this section, we present the graph construction technique over the quantized goal space to allow
the agent to capture the temporal information between the landmarks of the quantized world model.
We consider a graph G = (V,E) over the goal space where the vertices V represent the landmarks

4

L = {l1, l2, · · · lm} obtained from decoding discrete codes of VQ-VAE, and the edges E represent the
temporal distance. We utilize Q-value to reconstruct the edge costs, following the method proposed
in [49, 24]. If an agent receives a reward of 0 when reaching a goal and -1 otherwise, the timesteps
required to travel between landmarks can be estimated using Q-value as (derivation: Appendix A)

TemporalDist(li → lj) = logγ(1 + (1− γ)Q(li, a, lj)). (3)

Using Eq. 3, we connect vertices with the distance below the cutoff threshold, and the resulting graph
restores the temporal relations between the landmarks over a discretized goal space based on the
temporal distance. In this way, the agent can calculate geodesic distances between landmarks,

TemporalDistG(l0 → lf) = Σ(li→lj)∈shortest path(l0→lf)TemporalDist(li → lj), (4)

which enables better prediction of temporal distances in environments with arbitrary geometric
structures. Also, to incorporate extended supports of the explored area into the graph by creating
landmarks in newly explored areas, we periodically reconstructed the graph following [24].

4.3 Uncertainty and Temporal Distance-Aware Curriculum Goal Generation

In the previous sections, we proposed a method for specifying a discretized goal space with semantic
information. It is important to provide curriculum goals located in the frontier part of the explored
area to expand the graph effectively toward the final goal in an uninformed environment. To achieve
this objective, we propose an uncertainty and temporal distance-aware curriculum goal generation
method.

To obtain a curriculum goal from graph G = (V,E) over the specified goal space, our method
samples the landmarks that are considered uncertain and temporally distant from the initial distribution
ρ0. Thanks to the quantized world model, quantifying uncertainty in a countable goal space is
straightforward and computationally light. We quantify the count-based uncertainty of each landmark
as ηucert(li) = 1/(µ(li) + ϵ), based on the empirical distribution µ(li) derived from the recent
observations as

µ(li) =
N(li)∑k
i=1N(li)

, (5)

where N(li) indicates the number of occurrences of landmark li in recent episodes and is periodically
re-initialized when the graph is reconstructed with a new set of landmarks.

Finally, we deliver the sampled landmarks as curriculum goals to the agent, considering both temporal
distance and uncertainty aspects:

argmaxli∈Ltop−k

[
ηucert(li) · ui

]
(6)

where ui is a uniform random variable between 0 and 1 used to perform weighted sampling, and
Ltop−k represents a subset of L that includes the top-k elements with the largest TemporalDistG

(Eq. 4) values from initial state distribution. Our method, based on the uncertainty and temporal
distance-aware objective (Eq. 6), is capable of providing calibrated curriculum guidance to the
agent even in environments with arbitrary geometric structures, without requiring prior knowledge of
the environment or a manually specified goal space. Furthermore, the curriculum guidance makes
composing the goal space easier, illuminating the unexplored areas and vice versa.

Convergence to the final goal. The curriculum objective in Eq.6 provides a calibrated curriculum
towards unexplored areas. In addition to this frontier-directed method, providing final goal-directed
guidance can further improve the efficiency of exploration especially when the agent sufficiently
explored the environment, i.e., the supports of the final goal and explored area start to overlap [35, 6].
In order to acquire the capability to propose a final goal-directed curriculum, we gradually shift the
direction of exploration from the frontier of the explored area to the final goal distribution. To do so,

5

A
nt

U
M

az
e

A
nt

2W
ay

M
az

e

DHRL+CQM (Ours) OUTPACE CURROT

Final Goal

Po
in

tN
M

az
e

Initial Distribution

Initial
Curriculum

Initial Distribution

Final Goal

Learning Progress

Curriculum GoalsChanges in Goal Space as learning progresses

Final
Curriculum

Initial
Curriculum

Final
Curriculum

Initial
Curriculum

Final
Curriculum

Initial
Curriculum

Final
Curriculum

Curriculum Goals Curriculum Goals Curriculum Goals

Figure 3: Left: changes in the discretized goal space of the CQM(ours) as learning progresses. Right:
visualization of the curriculum goals proposed by the CQM and baseline algorithms.

we determine whether to provide the curriculum goal gc ∈ G that is sampled via Eq. 6 or the final
goal gf = ϕ(of) ∈ G which the environment originally provided (ψ(gc) ∈ O, of ∈ O).

We utilize a mixture distribution of curriculum goals, following the approach proposed in [35],

pgc′ = αpgf + (1− α)pgc , (7)

where pgf is the distribution of the final goal, and pgc is the distribution of curriculum goals. The
mixture ratio αmeasures whether the achieved goal distribution pag “covers” the final goal distribution
using KL divergence as α = 1/max

(
β + κDKL(pgf ||pag), 1

)
. When the support of achieved goal

distribution pag (= visited state distribution) covers that of the final goal distribution pgf , α produces
a value close to 1, and a value close to 0 when the supports of both distributions are not connected.

By combining the curriculum goal objective (Eq. 6) with the mixture strategy (Eq. 7), our approach
generates instructive curriculum goals towards unexplored areas and provides the curriculum goals
gc

′
to the agent that “cover” the final goal distribution at the appropriate time when the agent is

capable of achieving the final goal.

Planning over the graph As presented above, CQM constructs a graph to restore the temporal
relations between landmarks (Section 4.2) and utilizes it to calculate geodesic distances (Eq. 4). In
addition to these benefits, we highlight that the graph can also provide the strength of planning, which
allows the agent to reason over long horizons effectively [9, 16, 13, 49, 3, 24].

To generate a sequence of waypoints for achieving each goal, we perform shortest path planning
(Dijkstra’s Algorithm), following the details proposed in the previous graph-guided RL method
[24]. Consider a task of reaching a curriculum goal gc ∈ G from the current observation o0 ∈ O.
CQM first adds the encoded observation ϕ(o0) to the existing graph structure. Then, it finds the
shortest path between the curriculum goal and current observation to return a sequence of waypoints
(ϕ(o0), w1, ..., wn, g

c) where n indicates the number of waypoints in the shortest path. Finally, the
agent is guided to achieve each decoded waypoint ψ(wi) during TemporalDist(ψ(wi−1)→ ψ(wi))
(Eq. 3) timesteps, rather than achieving the curriculum goal directly. In other words, the RL agent
produces goal-conditioned action π(·|ot, wi), where ot andwi is observation and the waypoint (acting
as a goal) respectively. After reaching the final waypoint ψ(wn), the agent receives the original
curriculum goal, gc. The only change when the agent attempts to achieve the final goal gf is that gf
comes at the end of the sequences, (ϕ(o0), w1, ..., wn, g

f), rather than gc. In this way, the proposed
approach not only provides a tailored curriculum for achieving the final goal but also allows the agent
to access more elaborate instructions (waypoints) for practicing each curriculum goal.

5 Experiments

The main goal of the experiments is to demonstrate the capability of the proposed method (CQM) to
suggest a well-calibrated curriculum and lead to more sample-efficient learning, composing the goal
space from the arbitrary observation space. To this end, we provide both qualitative and quantitative

6

PointNMazePoint3WayMaze

AntUMazeAnt2WayMaze

PointSpiralMaze

CQM (Proposed Method)

OUTPACE

DHRL (Does not provide curriculum)

CURROT

GoalGAN

VDS

PLR

DHRL+SFL

ALP-GMM

Ag
en

t ↔
 G

oa
l D

is
ta

nc
e

Ag
en

t ↔
 G

oa
l D

is
ta

nc
e

Cu
rr

ic
ul

um
 ↔

 G
oa

l D
is

ta
nc

e
Cu

rr
ic

ul
um

 ↔
 G

oa
l D

is
ta

nc
e

Cu
rr

ic
ul

um
 ↔

 G
oa

l D
is

ta
nc

e

Figure 4: (Lower is better) Distance from the curriculum goals to the final goals (PointNMaze,
PointSpiralMaze, and AntUMaze). In the ‘n-way’ environments with multiple goals, we provide l2
distance between the agent and the final goal at the end of the episodes, since calculating the average
distance from the curriculum goal to multiple final goals is not possible.

PointNMaze PointSpiralMazePoint3WayMaze

AntUMazeAnt2WayMaze

CQM (Proposed Method)

OUTPACE

DHRL

CURROT

GoalGAN

VDS

PLR

DHRL+

SFL

ALP-GMM

Figure 5: (Higher is better) Success rates of the results. The curves of baselines are not visible in
some environments as they overlap each other at zero success rate. Shading indicates a standard
deviation across 4 seeds.

results in seven goal-reaching tasks including two visual control tasks, which receive the raw pixel
observations from bird’s-eye and ego-centric views, respectively. (refer to Appendix C for the detailed
configurations of each task.)

We compare our approach with previous curriculum RL methods and previous graph-guided RL
methods. We do not provide manually specified goal space in any of the environments; the agent could
not map its global X-Y coordinates from the full observation which includes all the state variables for
the RL agents (e.g. angle and angular velocity of the joint, position, velocity ...). Also, the results
of CQM and the baselines that utilize external reward functions (all the methods except OUTPACE
[6]) are obtained by using sparse reward functions. For the baselines that could not be applied in
vision-based environments [24, 6], we utilize an extra autoencoder with auxiliary time-contrastive
loss [44, 13].

The baselines are summarized below: OUTPACE [6] proposes uncertainty and temporal distance-
aware curriculum learning based on the Wasserstein distance and uncertainty classifier. CURROT
[21] interpolates the distribution of the curriculum goals and the final goals based on the performance
of the RL agent. GoalGAN [10] proposes the goals with appropriate levels of difficulty for the
agent Using a Generative Adversarial Network. PLR [18] selectively samples curriculum goals by
prioritizing the goals with high TD estimation errors. ALP-GMM [37] selects the goals based on the
difference of cumulative episodic reward between the newest and oldest tasks using Gaussian mixture
models. VDS [50] proposes the goals that maximize the epistemic uncertainty of the action value
function of the policy. DHRL [24] constructs a graph between both levels of HRL, and proposes
frontier goals when the random goals are easy to achieve. However, the original DHRL could not
generate curriculum goals without the help of the environment. Thus we evaluated a variant of
DHRL (DHRL+) with a modified frontier goal proposal module and architecture (Appendix D.3), in

7

addition to the original DHRL. SFL [13] constructs a graph based on successor features and proposes
uncertainty-based curriculum goals. (refer to Appendix D for detailed implementations)

5.1 Experimental Results

First, we visualize the quantitative results to show whether the proposed method successfully and
simultaneously addresses the two key challenges: 1) specifying goal space from arbitrary observation
space and 2) suggesting a well-calibrated curriculum to achieve the final goal. Figure 3 illustrates the
curriculum goals and changes in discrete goal space (graph) of CQM as learning progresses. Each
node in the graph consists of the decoded embedding vectors of VQ-VAE, and each edge represents
reachability between the decoded embeddings. The graphs of CQM in the figure gradually expand
towards unexplored areas as the learning progresses, since the calibrated curriculum goal induces the
agent to explore the unexplored area. In the opposite direction as well, the capability of providing
proper curriculum goals on arbitrary geometric structures is facilitated by a compact goal space that
contains semantic information which enables estimating the uncertainty and temporal distance well.
As a result, our method provides tailored curriculum guidance across the environments, while the
baselines suffer from the absence of the manually specified goal space.

We also provide the quantitative results in Figures 4 and 5. Figure 4 indicates that the proposed
method (CQM) can suggest a tailored sequence of goals that gradually converges to the final goal
distributions while instructing the agent to achieve the increasingly difficult goals. Also, as shown in
Figure 5, ours consistently outperforms both the prior curriculum method and graph-RL methods. It
is noticeable that CQM is the only method that shows robust performance to the variation of the goal
dimension, while other methods suffer from serious data inefficiency, especially in the tasks with
higher-dimensional goal space (suffering more in Ant (29dims) compared to Point (6dims)).

Figure 6: Left: the distance from the agent to the final goals
(Lower is better). Right: visualization of curriculum goals
and waypoints of planning over the graph (CQM).

Curriclum learning and planning in
visual control tasks. To validate the
performance of the RL agent and the
quality of generated curriculum goals
in higher dimensional tasks, We con-
ducted two additional vision-based
goal-reaching tasks. PointNMaze-
Viz receives only ego-centric view
images to reach the goal, while
PointSpiralMaze-Viz receives bird’s-
eye view images. Figure 6 visualizes
the curriculum goals in the order of
the episodes, and how the agent uti-
lizes the benefit of planning over the
discrete goal space in order to achieve
the curriculum goals. To achieve an
image-based final goal (Goal: 8), the agent generates the sequence of images ({1, 2, 3, ..., 8}) as
waypoints, and tries to achieve the waypoints sequentially.

Interestingly, despite a significant increase in the observation dimension, CQM does not suffer from
significant performance degradation in terms of data efficiency, which indicates that CQM effectively
reduces the complexity of goal space by constructing a semantic goal space. We emphasize that the
performance of our algorithm does not show significant differences between state-based and image-
based environments (Compare PointNMaze in Figures 4 and 6). Another interesting point is that
CQM can fully enjoy the advantage of planning over the discretized goal space, even in vision-based
control tasks where the agent does not receive information about its global X-Y coordinates explicitly.
These results validate that CQM possesses robust performance in terms of the dimensionality of the
goal space, and the capability in extracting temporal relations between the discretized landmarks.

5.2 Ablation Studies

Curriculum guidance. First of all, we examine how important curriculum guidance is for an agent
to solve goal-conditioned tasks. As shown in Figure 7, when only the final goal is provided without a
tailored curriculum (-w/o Curriculum), the RL agent has difficulty achieving the final goal directly.

8

PointSpiralMazeAntUMaze PointNMaze

CQM

CQM w/o Goal Convergence

CQM w/o PlanningCQM Landmark from Replay Buff.

CQM w/o Curriculum CQM w/o Graph

Figure 7: (Lower is better) Ablation study: the distance from the agent to the final goals at the end
of the episodes.

Furthermore, we found that providing curriculum guidance greatly affects the goal space specification
module and the absence of a curriculum leads to the ill-formed discrete goal space that barely covers
only the observations near the initial distribution. We provide these qualitative results in Figures 13,
14 (Appendix E).

Types of the discrete goal sampling method. The proposed method (CQM) can use two approaches
to sample the landmark to form the discrete goal space as introduced in Section 4.1. The first approach
is to decode the embedding vectors of the codebook l1:m = ψ(e1:m), and the other approach is
to sample an observation batch from the replay buffer and pass it through VQ-VAE to quantize it
(-Landmark from Replay Buff.). As shown in Figure 7, there is no significant difference between
them in terms of data efficiency. However, in terms of the stability of learning, utilizing the decoded
embeddings of VQ-VAE shows better performance in some environments.

Effect of the goal convergence method. To provide a final goal-directed exploration in addition to
the naïve curriculum toward the frontier areas, CQM includes a goal convergence module that guides
the agent to practice the final goal after the agent sufficiently explored the environment (Section 4.3).
Based on the KL divergence between the achieved goal distribution and the final goal distribution,
CQM calculates the ratio of the mixture between the final goals and the frontier goals (the ratio of
providing final goals as learning progresses is presented in Figure 11 in Appendix E). As shown
in Figure 7, the absence of the final goal convergence method (-w/o Goal Convergence) results in
unstable performance, since the agent repeatedly practices unexplored areas instead of converging
towards the final goal even after the explored area “covers” the final goal distribution.

Effect of Graph Construction and Planning. Finally, we examine the effect of constructing graphs
and planning on the performance of RL agents. As explained in section 4.2, CQM not only utilizes
the decoded embedding vectors from VQ-VAE as a set of discretized observations but also forms a
graph by capturing the temporal relations between the discrete observations. First, we evaluated CQM
without graph (-w/o Graph), which does not construct a graph and measure the distance between
the landmarks through naïve temporal distance prediction based on Q values (TemporalDist), rather
than the geodesic distance over the graph (TemporalDistG). Also, we evaluate CQM without
planning (-w/o Planning) since ours can optionally utilize the benefit of planning and reason over
long horizons using the graph. As shown in Figure 7, CQM shows better performance than both
CQM without a graph and CQM without planning, especially in some long-horizon tasks (AntUMaze
and PointSpiralMaze).

6 Conclusions

To solve the complex control tasks without the need for a manually designed semantic goal space,
we propose to solve both issues of specifying the goal space and suggesting the curriculum goals
to the agent. By constructing the quantized world model using the decoded embedding vectors of
the discretization bottleneck and restoring the relations between these, CQM considers both the
uncertainty and temporal distance and has the capability of suggesting calibrated curriculum goals to
the agent. The experiments show that the proposed method significantly improves performance on
various vision-based goal-reaching tasks as well as state-based tasks, preventing the performance
drop in the absence of a manually specified goal space.

9

Limitations and future works. While CQM shows great potential in addressing the limitations of
previous studies, more research could further develop it. One area that could be explored is the use of
reward-free curriculum learning methods, since CQM still requires minimal human efforts such as
defining a success threshold to train agents. Also, this study only used single-code representations
with VQ-VAE which would possess a limited capacity of representations, so expanding CQM to
include multiple-code representations with discrete factorial representations could be an interesting
future direction.

7 Acknowledgement

This work was supported by Korea Research Institute for defense Technology Planning and ad-
vancement (KRIT) Grant funded by Defense Acquisition Program Administration(DAPA) (No.
KRIT-CT-23-003, Development of AI researchers based on deep reinforcement learning and estab-
lishment of virtual combat experiment environment)

References
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. Advances in neural information processing systems, 30, 2017.

[2] David Arthur and Sergei Vassilvitskii. K-means++ the advantages of careful seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035, 2007.

[3] Akhil Bagaria, Jason K Senthil, and George Konidaris. Skill discovery for exploration and
planning using deep skill graphs. In International Conference on Machine Learning, pages
521–531. PMLR, 2021.

[4] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. Advances in neural
information processing systems, 29, 2016.

[5] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[6] Daesol Cho, Seungjae Lee, and H Jin Kim. Outcome-directed reinforcement learning by uncer-
tainty & temporal distance-aware curriculum goal generation. In Proceedings of International
Conference on Learning Representations, 2023.

[7] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively,
with application to face verification. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, pages 539–546. IEEE, 2005.

[8] Ishan Durugkar, Steven Hansen, Stephen Spencer, and Volodymyr Mnih. Wasserstein distance
maximizing intrinsic control. arXiv preprint arXiv:2110.15331, 2021.

[9] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer:
Bridging planning and reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

[10] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation
for reinforcement learning agents. In International conference on machine learning, pages
1515–1528. PMLR, 2018.

[11] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[12] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

10

[13] Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and Honglak Lee. Suc-
cessor feature landmarks for long-horizon goal-conditioned reinforcement learning. Advances
in Neural Information Processing Systems, 34:26963–26975, 2021.

[14] Edward S Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for
exploration. arXiv preprint arXiv:2303.13002, 2023.

[15] Peide Huang, Mengdi Xu, Jiacheng Zhu, Laixi Shi, Fei Fang, and Ding Zhao. Curriculum
reinforcement learning using optimal transport via gradual domain adaptation. arXiv preprint
arXiv:2210.10195, 2022.

[16] Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal
goal reaching. Advances in Neural Information Processing Systems, 32, 2019.

[17] Riashat Islam, Hongyu Zang, Anirudh Goyal, Alex Lamb, Kenji Kawaguchi, Xin Li, Romain
Laroche, Yoshua Bengio, and Remi Tachet Des Combes. Discrete factorial representations as
an abstraction for goal conditioned reinforcement learning. arXiv preprint arXiv:2211.00247,
2022.

[18] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In Interna-
tional Conference on Machine Learning, pages 4940–4950. PMLR, 2021.

[19] Yuu Jinnai, Jee Won Park, Marlos C Machado, and George Konidaris. Exploration in re-
inforcement learning with deep covering options. In International Conference on Learning
Representations, 2020.

[20] Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit,
and Noam Shazeer. Fast decoding in sequence models using discrete latent variables. In
International Conference on Machine Learning, pages 2390–2399. PMLR, 2018.

[21] Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Curriculum rein-
forcement learning via constrained optimal transport. In International Conference on Machine
Learning, pages 11341–11358. PMLR, 2022.

[22] Martin Klissarov and Marlos C Machado. Deep laplacian-based options for temporally-extended
exploration. arXiv preprint arXiv:2301.11181, 2023.

[23] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning. In International Conference on Machine Learning, pages
5639–5650. PMLR, 2020.

[24] Seungjae Lee, Jigang Kim, Inkyu Jang, and H Jin Kim. Dhrl: A graph-based approach for
long-horizon and sparse hierarchical reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2022.

[25] Kevin Li, Abhishek Gupta, Ashwin Reddy, Vitchyr H Pong, Aurick Zhou, Justin Yu, and Sergey
Levine. Mural: Meta-learning uncertainty-aware rewards for outcome-driven reinforcement
learning. In International conference on machine learning, pages 6346–6356. PMLR, 2021.

[26] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[27] Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, and Sai Rajeswar. Chore-
ographer: Learning and adapting skills in imagination. arXiv preprint arXiv:2211.13350,
2022.

[28] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Dis-
covering and achieving goals via world models. Advances in Neural Information Processing
Systems, 34:24379–24391, 2021.

[29] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. Autonomous task sequencing for customized
curriculum design in reinforcement learning. In IJCAI, pages 2536–2542, 2017.

11

[30] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-
conditioned policies. Advances in Neural Information Processing Systems, 32, 2019.

[31] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration
with neural density models. In International conference on machine learning, pages 2721–2730.
PMLR, 2017.

[32] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pages 2778–
2787. PMLR, 2017.

[33] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-
ment. In International conference on machine learning, pages 5062–5071. PMLR, 2019.

[34] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[35] Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In International Conference on
Machine Learning, pages 7750–7761. PMLR, 2020.

[36] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey
Levine. Skew-fit: State-covering self-supervised reinforcement learning. arXiv preprint
arXiv:1903.03698, 2019.

[37] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms
for curriculum learning of deep rl in continuously parameterized environments. In Conference
on Robot Learning, pages 835–853. PMLR, 2020.

[38] Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight
goal generation. Advances in Neural Information Processing Systems, 32, 2019.

[39] Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The
annals of mathematical statistics, pages 832–837, 1956.

[40] Aurko Roy, Ashish Vaswani, Arvind Neelakantan, and Niki Parmar. Theory and experiments
on vector quantized autoencoders. arXiv preprint arXiv:1805.11063, 2018.

[41] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Tim-
othy Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. arXiv preprint
arXiv:1810.02274, 2018.

[42] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-
proximators. In International conference on machine learning, pages 1312–1320. PMLR,
2015.

[43] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. arXiv
preprint arXiv:2007.05929, 2020.

[44] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video.
In 2018 IEEE international conference on robotics and automation (ICRA), pages 1134–1141.
IEEE, 2018.

[45] Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon,
Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning.
arXiv preprint arXiv:2204.02372, 2022.

[46] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

12

[47] Hanwei Wu and Markus Flierl. Variational information bottleneck on vector quantized autoen-
coders. arXiv preprint arXiv:1808.01048, 2018.

[48] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning
with prototypical representations. In International Conference on Machine Learning, pages
11920–11931. PMLR, 2021.

[49] Lunjun Zhang, Ge Yang, and Bradly C Stadie. World model as a graph: Learning latent
landmarks for planning. In International Conference on Machine Learning, pages 12611–12620.
PMLR, 2021.

[50] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value
disagreement. Advances in Neural Information Processing Systems, 33:7648–7659, 2020.

13

A Algorithm and Derivation

A.1 How CQM Works?

Figure 8: The overall diagram of CQM

A.1.1 How is data collected?

1. CQM starts with empty replay buffers.

2. After performing a step in the environment, the observed transition is stored in the replay
buffer. (line 18 in Algorithm 1.)

A.1.2 How is the goal space learned?

1. Sample batch from replay buffer. (Line 26 in Algorithm 1.)

2. Train VQ-VAE with the batch via Eq. 2. (Line 27 in Algorithm 1.)

A.1.3 How is the graph constructed?

1. Decode each vector embedding in VQ-Dictionary (the decoded embeddings are the land-
marks).

2. Using Eq. 3, connect the landmarks with the distance below the cutoff threshold.

A.1.4 How does the agent get the curriculum goal?

1. Calculate the uncertainty of each node (landmarks) in the graph (by Eq. 5).

2. Calculate the distance of the landmarks from the initial area (by Eq. 4).

3. Sample a curriculum goal which is considered temporally distant and uncertain, among the
nodes (landmarks) in the graph (by Eq. 6).

4. Based on the α value from A.1.6, the decision is made whether to provide the agent with a
curriculum goal or a final goal. Then provide the selected goal to the agent.

A.1.5 How does the agent utilize the graph?

1. After the agent obtains the curriculum goal, it can start exploring the environment.

2. CQM first finds a sequence of waypoints to achieve the curriculum goal (utilizing Dijkstra’s
algorithm).

3. The agent is guided to achieve each waypoint, and finally, tries to achieve the curriculum
goal.

14

A.1.6 How does the curriculum goal converge to the final (desired) goal?

1. At the beginning of the learning, we have some samples of the final goals (e.g. the picture
taken at the end of the maze.)

2. To get pgf , fit a kernel density estimator (KDE) to estimate the distribution of the final goal.
3. To get pag , fit a kernel density estimator (KDE) to estimate the distribution of the explored

area.
4. Calculate KL divergence, and then, calculate α in Eq. 7.
5. Utilize α when we get the curriculum goal (d)

A.2 Algorithm

Algorithm 1 Overview of CQM

1: Input: final goal examples gf ∈ pfg , RL replay buffer B, VQ-VAE replay buffer BVQ, actor
network π, critic network Q, embeddings of VQ-VAE ei:m, total trainig episodes N , encoder ϕ,
decoder ψ, Environment horizon H , graph update cycle M

2: for iterations = 1 · · ·N do
3: sample curriculum goal gc from landmarks l1:m = ψ(e1:m) using Eq. 6
4: Env.reset()
5: if random.uniform(low = 0, high = 1) < α then
6: g ← gf

7: else
8: g ← gc + random noise
9: end if

10: get waypoints (ϕ(s0), w1, ..., wn, g)← Dijkstra′salgorithm(s0, g)
11: for t = 0 · · ·H − 1 do
12: if achieved current waypoint wi or tried more than TemporalDist(ψ(wi−1)→ ψ(wi)) to

achieve wi then
13: current waypoint index i += 1
14: end if
15: at ← π(·|st, wi)
16: Env.step(at)
17: end for
18: B ← B ∪ {s0, a0, s1...}, BVQ ← BVQ ∪ {s0, s1...}
19: if N%M == 0 then
20: update α using kernel density estimator (KDE) [39] from Scikit-learn [34] with Gaussian

kernel following [35]
21: Update Graph G(V,E), where the vertices are the landmarks l1:m = ψ(e1:m), and the

costs of the edges are calculated from Eq. 3 (connect each edge if the distance is below the
cutoff threshold)

22: end if
23: for i=0,1,...,P do
24: Sample a minibatch b from B
25: Train π and Q with b
26: Sample a minibatch bVQ from BVQ

27: Train VQ-VAE (encoder ϕ and decoder ψ) with bVQ

28: end for
29: end for

A.3 Derivation

Derivation of Eq. 3. Let Q be a state-action value function, l1:m be landmarks and a ∈ A be an
action that an agent executes. If the policy requires n steps to reach lj from li, the state-action value
with discount factor γ can be represented as

Q(li, a, lj) = (−1) + (−1)γ + (−1)γ2 + · · ·+ (−1)γn−1 = −1− γn

1− γ
. (8)

15

Thus, we can recover the temporal distance between lj and li (= N steps) as γn − 1 = (1 −
γ)Q(li, a, lj), and we finally get

TemporalDist(li → lj) = logγ(1 + (1− γ)Q(li, a, lj)). (9)

B Related Works

Table 1: Summarized conceptual comparisons between CQM and the previous works.

Specify Uncert. T-Dist Final Goal Curriculum Reason over
Goal Space -Aware -Aware -Drect. Curriculum Proposal Long Lorizon

GoalGAN[10] ✗ ✗ ✗ ✗ GAN ✗
CURROT[21] ✗ ✗ ✗ ✓ Uniform ✗

PLR[18] ✗ ✗ ✗ ✗ Buffer ✗
VDS[50] ✗ ✓ ✗ ✗ Buffer ✗

ALP-GMM[37] ✗ ✗ ✗ ✗ GMM ✗
HGG[38] ✗ ✗ ✗ ✓ Buffer ✗

SkewFit[36] ✗ ✓ ✗ ✗ VAE ✗
SFL[13] ✗ ✓ ✗ ✗ Graph ✓

DHRL[24] ✗ ✗ ✓ ✗ Graph ✓
L3P[49] ✓ ✗ ✗ ✗ ✗ ✓

DGRL[17] ✓ ✗ ✗ ✗ ✗ possible (+HRAC)
Choreographer [27] ✓ ✗ ✗ ✗ ✗ ✓

OUTPACE[6] ✗ ✓ ✓ ✓ Buffer ✗

CQM (ours) ✓ ✓ ✓ ✓ Graph ✓

Table 1 compares our approach and previous curriculum goal generation methods [10, 21, 18, 50,
37, 38, 36, 6], graph-guided RL methods [13, 49, 24], and representation learning methods using
VQ-VAE [17, 27]. The characteristics compared include:

• Specify Semantic Goal Space: whether the method can extract a compact goal space from
the high-dimensional goal space.

• Ucert-Aware: whether the curriculum considers uncertainty.
• T-Dist-Aware: whether the curriculum considers temporal distance.
• Final Goal-Directed Curriculum: Whether the method utilizes target curriculum distribution

for curriculum goal convergence.
• Curriculum Proposal: The source of the proposed curriculum goals.
• Reason over Long Horizon: Whether the method can reason over long horizons.

C Environment Details

• PointNMaze: The agent receives the observation consisting of the angle, angular velocity,
XY position, and XY velocity of the agent. The agent is initialized in [0, 0] and the final
goal is located at [0, 8]. The agent achieves the final goal when it comes within 0.5 from the
final goal. Also, the size of the map is 12 by 12. The maximum timestep per episode is 150.

• PointSpiralMaze: It shares the other aspects with PointNMaze, but the final goal is located
in [8, 16] and the size of the map is 12 by 20. The maximum timestep per episode is 250.

• Point3WayMaze: It shares the other aspects with PointNMaze, but the final goal is sampled
randomly among [24, -8], [24, 0], and [24, 8]. The map has multiple dead ends and the size
of the map is 32 by 24. The maximum timestep per episode is 200.

• AntUMaze: Agent receives the observation consisting of joint angle, joint angular velocity,
XYZ position, and XYZ velocity of the agent. The agent is initialized in [0, 0] and the final
goal is located at [0, 8]. The agent achieves the final goal when it comes within 1.0 from the
final goal. Also, the size of the map is 12 by 12. The maximum timestep per episode is 350.

• Ant2WayMaze: It shares the other aspects with AntUMaze, but the final goal is sampled
randomly among [4, 4] and [-4, -4]. The map has multiple dead ends and the size of the map
is 20 by 12. The maximum timestep per episode is 200.

16

Figure 9: Top-down view of each environment used for evaluation. ‘n-way’ environments have
multiple goals, and the final goal of an episode is generated randomly among them.

• PointNMaze-Viz: The agent receives the ego-centric camera input. The resolution of the
input is 64 x 64. This environment is modified from PointNMaze, by coloring the walls.
The maximum timestep per episode is 200.

• PointSpiralMaze-Viz: The agent receives the Top-down view camera input. The resolution
of the input is 64 x 64. This environment is modified from PointSpiralMaze, by converting
the actions of the agent from the polar coordinates to global XY coordinates and increasing
the visual size of the agent. The maximum timestep per episode is 250.

D Implementation Details

D.1 Learning VQ-VAE

Replay buffer for VQ-VAE To train the VQ-VAE for quantizing continuous observations, we
employ a separated (smaller size) replay buffer which contains recent trajectories compared to the
original replay buffer for the RL agent. By employing the separated replay buffer, we can provide
VQ-VAE with more recent observations, resulting in a better reflection of the areas recently explored
by the RL agent.

Code resampling for VQ-VAE When we use decoded embedding vectors as landmarks to discretize
the goal space for CQM, VQ-VAE could ignore some of the codes due to index collapse. Then, the
unused codes form landmarks in physically infeasible locations and occupy the capacity of the codes
unnecessarily, leading to potential inefficiencies in the model’s performance. Thus, we utilize the
code resampling method [20] across all the experiments to address such problems of index collapse
[20] in training VQ-VAE models.

The code resampling module in CQM first keeps track of inactive codes that have not been used during
the previous M rollouts. Subsequently, the inactive codes are re-initialized with the embeddings of
the recent observations ϕ(o) with the probability of d2q(ϕ(o))/Σod

2
q(ϕ(o)), where d2q(ϕ(o)) indicates

the Euclidean distance from the closest code (dq(ϕ(o)) = mini∈{1,...,k}||ϕ(o)− ei||22). We refer the
reader to [27] for detailed explanations of code resampling.

17

Point3WayMazeAntUMaze PointNMaze

CQM + TD3 CQM + SAC

Figure 10: CQM with different RL algorithms.

D.2 Sampling landmarks

We adopt the graph construction module of prior work [49, 24]. Inheriting their implementations,
we also employ a landmark sparsification technique which is based on the Greedy Latent(Node)
Sparsification algorithm [2, 49]. The detailed algorithm is shown in Algorithm 2

Algorithm 2 Greedy Latent(Node) Sparsification [49, 24]

1: Input: set of states {e1, e2, ..ek}, sampling number k
2: Selected = [], DistList = [inf, inf, ... inf]
3: for i = 1 to k do
4: Farthes← argmax(DistList)
5: add Farthest to Selected
6: DistFromFarthest← [TemporalDist(Farthest→ ψ(e1:m))]
7: DistList = ElementwiseMin(DistFromFarthest, DistList)
8: end for
9: return Selected

D.3 State-based Goal-Reaching Tasks

When we train CQM in state-based goal-reaching tasks, we utilize two well-established algorithms
(TD3 algorithm [11] for Point- environments and SAC [12] for Ant- environments), following the
baselines (TD3: [24], SAC: [21]). We note that CQM can be built on general off-policy RL algorithms
[26, 12, 11] and changing the RL agents for CQM does not lead to a performance drop as shown in
the figure 10.

Also, following [24], we utilize separate Q-networks for graph construction and policy learning.
When the agent is not yet competent to achieve some goals, the experience of failure in the replay
buffer can lead to an overestimation of the temporal distance between the landmarks. Thus, prior
work utilizes separate Q-networks for graph construction and policy learning. This simple technique
maintains two different Q-networks which are trained with different ratios of hindsight experience
replay (HER) [1] and prevents the usage of failure trajectories to estimate the temporal distances
between the landmarks which can spoil the graph construction.

Baselines. Since the original implementations of some algorithms [13] utilize discrete action
policies, we replace them with continuous policies for comparison in the continuous control tasks.
Also, for the baseline that could not generate curriculum goals without the help of the environment
(DHRL) [24], we modify the frontier goal sampling module of the original baseline. Specifically,
we modified the frontier goal-shifting module in the DHRL to provide a curriculum goal in every
episode, not only when an easy goal is given from the environment. This modification ensures
that the agent can get curriculum goals even when the environment does not provide random goals.
Additionally, we empirically found that the high-level agent aggravates the performance since it
suffers from providing high-dimensional subgoals. Therefore, we utilize a variant DHRL (DHRL+)
with a modified frontier goal-shifting module and without a high-level. For the other baselines, we
follow the official implementations (OUTPACE and CURROT) [21, 6] or the implementations from
https://github.com/psclklnk/currot (PLR, VDS, GoalGAN, ALP-GMM).

18

https://github.com/psclklnk/currot

D.4 Vision-based Goal-Reaching Tasks

For the experiments in the vision based-based goal-reaching tasks, the agent needs to be provided with
the curriculum goals corresponding to vision inputs. However, we observed that the decoded images
from VQ-VAE sometimes have inferior resolution compared to the original images, which could lead
to inferior performances. Thus, during the training process for the vision-based control, we utilized the
observations that are mapped to each embedding as landmarks, instead of the decoded embeddings
as curriculum goals. This technique does not require additional assumptions or computational
costs, as the only overhead is saving the original images of each code. Although the mappings
from observations to embedding vectors are many-to-one, we empirically found that there is no
performance degradation even if we randomly pick one of the observations per embedding vector as
a landmark.

Baselines. Since the official implementations of some baselines are unable to solve the vision-
based goal-reaching tasks, We experimented with the additional encoder which can encode the
high-dimensional observations into compact latent vectors. Considering the insights from prior repre-
sentation learning research [23, 43], using a naïve autoencoder may not be fair, so we incorporated an
auxiliary loss that allows for better representation learning for RL agents. To this end, we utilize an
autoencoder with time-contrastive loss [7, 44] as used in SFL [13] which also performed exploration
in vision-based goal-reaching tasks. Specifically, we employ the following auxiliary triplet loss to
train the encoder for the baselines,

||ϕ(oa)− ϕ(op)||22 +m < ||ϕ(oa)− ϕ(on)||22, (10)

where oa, op, and on represent anchor, positive pair, and negative pair respectively. Also, we utilize a
margin parameter m = 2, following [13].

D.5 Computational Resources

Our experiments have been performed using an NVIDIA RTX A5000 and AMD Ryzen 2950X, and
the entire training process took approximately 0.5-2 days, depending on the tasks.

Table 2: Hyperparameters for CQM
of initial rollouts 20 HER [1] future step 150
batch size (state) 1024 batch size (IMG) 128

HER ratio critic Q 0.8 HER ratio graph Q 1.0
max graph node 300 graph update cycle M 5
critic hidden dim 256 discount factor γ 0.99

critic hidden depth 3 RL buffer mathcalB size 2500000
actor ϕ learning rate 0.0001 critic Q learning rate 0.001

interpolation factor (target Q) 0.995 target network update freq 10
actor update freq 2 # of VQ-VAE embeddings 128

VQ-VAE latent dimension 64 (-Viz: 32) RL optimizer adam

E Additional Experimental Results

We provide quantitative results for the ablation study in Figures 13 and 14. As we analyzed in Section
5.2, CQM without each module shows inferior results across the tasks. Without a goal convergence
module, the agent often has difficulty in terms of progressing toward the desired final goals. Also,
without planning, the agent often has difficulty in achieving long-horizon tasks.

As shown in Section 4.3, our algorithm includes a goal convergence module based on KL divergence
between the explored area and the region corresponding to the final goal (Eq. 7) in order to perform
final goal-directed exploration. Figure 11 represents the ratio of final goals given to the agent instead
of curriculum goals, which is calculated according to the following equation.

α = 1/max
(
β + κDKL(pgf ||pag), 1

)
(11)

19

Table 3: Task specific hyperparameters for CQM
PointSpiral PointN PointSpiralViz PointNViz

cutoff threshold for node connection 7 10 5 5
random noise for curriculum goal 4 2 - -

VQ-VAE buffer BVQ size 1e5 1e4 1e5 1e4
β for mixture ratio α -20 -20 -3 -3
κ for mixture ratio α 1 1 2e-3 2e-3

Point3Way AntU Ant2Way
cutoff threshold for node connection 10 30 30

random noise for curriculum goal 2 2 2
VQ-VAE buffer BVQ size 5e4 1e4 1e4
β for mixture ratio α -20 -3 -3
κ for mixture ratio α 1 2e-3 2e-3

As shown in Figure 11, the ratio of providing final goals gradually increases as the learning progresses.
This allows the agent to practice the final goal instead of exploring unexplored areas when the agent
acquires the capability to pursue the final goals at the end of the curriculum.

Figure 11: The ratio of providing final goals rather than curriculum goals as learning progresses (Eq.
11)

Figure 12: Ablation study: hyperparameter sensitivity analysis (PointNMaze, Lower is better)

20

PointNMazePointSpiralMazeAntUMaze
O

u
rs

w
/o

 G
o

al

C
o

n
ve

rg
en

ce
w

/o
 C

u
rr

ic
u

lu
m

La
n

d
m

ar
k

fr
o

m

R
ep

la
y

B
u

ff
er

w
/o

 P
la

n
n

in
g

Initial
Curriculum

Final
Curriculum

Initial
Curriculum

Final
Curriculum

Initial
Curriculum

Final
Curriculum

Initial
Curriculum

Final
Curriculum

Initial
Curriculum

Final
Curriculum

Figure 13: Ablation study: visualization of the curriculum goals proposed by the CQM.

21

PointNMazePointSpiralMazeAntUMaze

O
u

rs
w

/o
 G

o
al

C

o
n

ve
rg

en
ce

w
/o

 C
u

rr
ic

u
lu

m
La

n
d

m
ar

k
fr

o
m

R

ep
la

y
B

u
ff

er
w

/o
 P

la
n

n
in

g

Figure 14: Ablation study: changes in the discretized goal space of the CQM(ours) as learning
progresses.

22

	Introduction
	Related Works
	Preliminaries
	Method
	Specifying Goal Space via VQ-VAE
	Graph Construction over Quantized Goal Space
	Uncertainty and Temporal Distance-Aware Curriculum Goal Generation

	Experiments
	Experimental Results
	Ablation Studies

	Conclusions
	Acknowledgement
	Algorithm and Derivation
	How CQM Works?
	How is data collected?
	How is the goal space learned?
	How is the graph constructed?
	How does the agent get the curriculum goal?
	How does the agent utilize the graph?
	How does the curriculum goal converge to the final (desired) goal?

	Algorithm
	Derivation

	Related Works
	Environment Details
	Implementation Details
	Learning VQ-VAE
	Sampling landmarks
	State-based Goal-Reaching Tasks
	Vision-based Goal-Reaching Tasks
	Computational Resources

	Additional Experimental Results

