
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EMS: ADAPTIVE EVICT-THEN-MERGE STRATEGY
FOR HEAD-WISE KV CACHE COMPRESSION BASED
ON GLOBAL-LOCAL IMPORTANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) continue to advance, the demand for higher
quality and faster processing of long contexts across various applications is grow-
ing. KV cache is widely adopted as it stores previously generated key and value
tokens, effectively reducing redundant computations during inference. However,
as memory overhead becomes a significant concern, efficient compression of KV
cache has gained increasing attention. Most existing methods perform compres-
sion from two perspectives: identifying important tokens and designing compres-
sion strategies. However, these approaches often produce biased distributions of
important tokens due to the influence of accumulated attention scores or posi-
tional encoding. Furthermore, they overlook the sparsity and redundancy across
different heads, which leads to difficulties in preserving the most effective infor-
mation at the head level. To this end, we propose EMS to overcome these limita-
tions, while achieving better KV cache compression under extreme compression
ratios. Specifically, we introduce a Global-Local score that combines accumu-
lated attention scores from both global and local KV tokens to better identify the
token importance. For the compression strategy, we design an adaptive and unified
Evict-then-Merge framework that accounts for the sparsity and redundancy of KV
tokens across different heads. Additionally, we implement the head-wise parallel
compression through a zero-class mechanism to enhance efficiency. Extensive ex-
periments demonstrate our SOTA performance even under extreme compression
ratios. EMS consistently achieves the lowest perplexity, improves scores by over
1.28 points across four LLMs on LongBench under a 256 cache budget, and pre-
serves 95% retrieval accuracy with a cache budget less than 2% of the context
length in the Needle-in-a-Haystack task.

1 INTRODUCTION

Large language models (LLMs) (Devlin, 2018; Brown et al., 2020; Anil et al., 2023; Dubey et al.,
2024; Jiang et al., 2023) have demonstrated remarkable capabilities across various domains, such as
question answering (Jiang et al., 2021; Lazaridou et al., 2022), retrieval systems (Ram et al., 2023;
Xu et al., 2023), logical reasoning (Wei et al., 2022; Liu et al., 2023a), and code generation (Roziere
et al., 2023; Liu et al., 2024a), etc. With growing application demands for LLMs, the requirement
to manage long sequences (Chen et al., 2024b; Jin et al., 2024; Chen et al., 2023) is also increas-
ing. So far, GPT-4 (Achiam et al., 2023) can process approximately 128K tokens, Gemini-Pro-1.5
(Team et al., 2023) handles about 1M tokens, and Kimi-Chat can process up to 2M tokens. These
developments pose significant challenges to the inference efficiency of LLMs. One key acceleration
technique is the KV cache, where the key-value (KV) states generated during inference are stored in
GPU memory to avoid redundant computation and improve processing efficiency. However, the size
of the KV cache grows with the length of the input sequence, which severely limiting the applicabil-
ity of LLMs (Yuan et al., 2024). Therefore, efficiently compressing the KV cache while preserving
essential information has become a critical issue.

Extensive researches have been carried out to address it. Specifically, StreamingLLM (Xiao et al.,
2024) first discovered the sink mechanism and achieved infinite output by retaining the initial and
local tokens. Subsequent works mainly approached this issue from two perspectives: (i) extracting
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the most important parts of the generated KV tokens, and (ii) designing compression strategies to
preserve more information. For example, H2O (Zhang et al., 2023) focuses on globally important
tokens, while SnapKV (Li et al., 2024b) concentrates on tokens with higher relevance within a local
window size. However, due to cumulative effects of attention weights and positional encoding, the
selected tokens exhibit a biased tendency: H2O favors earlier information, while SnapKV leans
towards later context. Building upon lightweight token compression methods (Bolya et al., 2022;
Yin et al., 2022; Li et al., 2024a), existing approaches are generally categorized into evict-based and
merge-based methods. However, a unified and effective approach that combines evict and merge
for extreme KV cache compression is still largely unexplored. Therefore, we pose the following
question:

Can we select important KV tokens in a more balanced manner while retaining as much infor-
mation as possible at a high compression ratio?

To answer this question, we decouple the compression of KV cache into two stages: selecting im-
portant tokens and compressing the KV cache based on those selections. Under this workflow, we
propose EMS, a head-wise Evict-then-Merge Strategy based on Global-Local importance, as illus-
trated in Figure 1. Building on the token importance bias, we dynamically integrate the global-
and local-aware importance and construct a more balanced Global-Local score, which serves as
the fundamental indicator for efficient compression. Specifically, the score is calculated by align-
ing the accumulated attention scores of all KV tokens and recent KV tokens. This approach not
only ensures a more balanced selection of important KV tokens, but also mitigates biases caused by
attention accumulation and positional encoding.

For the compression strategy, the observed differences in sparsity and redundancy across different
heads suggest that applying head-wise eviction and merging can potentially achieve a higher com-
pression ratio. Building on this, we propose a unified Evict-then-Merge strategy at the fine-grained
head level to improve storage density. In particular, the most irrelevant tokens will first be evicted,
leaving only the tokens with higher importance scores for further compression. A subset of the
remaining tokens is then selected as class centers based on their higher importance, with less im-
portant tokens being merged into these centers. However, as not all tokens are suitable for merging
due to low redundancy, those with low similarity to important KV tokens are evicted to minimize
output disturbance. To ensure parallel inference during head-wise merging and eviction, we intro-
duce a zero-class center where evicted tokens are merged, treating the eviction process as a special
case of merging. Additionally, this step allows for a dynamic merge ratio for each head, ensuring a
more adaptive and efficient compression. EMS achieves extreme compression while preserving the
capabilities of LLMs, boosting scores by more than 1.28 points on four LLMs in LongBench with a
256 cache budget, and retaining 95% retrieval accuracy using under 2% of the context length in the
Needle-in-a-Haystack task. To summarize, our contribution can be generalized as:

(1) We design a more balanced Global-Local score for important token selection. Our
Global-Local score automatically integrates global and local attention of KV tokens, re-
ducing bias and ensuring more balanced token selection across different tasks.

(2) We propose a sparsity- and redundancy-driven Evict-then-Merge compression strat-
egy. Based on the head-wise sparsity and redundancy characteristic of KV tokens, we de-
velop an Evict-then-Merge strategy that maximizes information retention even under low
compression ratios.

(3) We implement an efficient head-wise parallel compression for the KV cache. We pro-
pose a zero-class center where KV tokens with low similarity to important KV tokens are
merged. In this way, we treat eviction as merging, achieving input-aware parallel evict and
merge ratios, while maintaining a constant budget for each head. This strategy efficiently
leverages the head-wise distribution property in a simple yet effective way.

2 RELATED WORK

2.1 IMPORTANT KV SELECTION

Recent works on KV cache compression have focused on the selection of the important KV tokens
to preserve the performance of uncompressed LLMs. StreamingLLM (Xiao et al., 2024) discov-
ered the sink mechanism, where the attention weights for the initial tokens are significantly high
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regardless of its meaning. Consequently, it retains the first four tokens along with some local to-
kens, enabling streaming output with the constrained memory. Following it, ACT (Yu et al., 2024)
further demonstrates that certain KV tokens in the middle also exhibit high attention weights. H2O
(Zhang et al., 2023) selects important KV pairs based on accumulated attention score, leading to
more concentration in the former part of the context. SnapKV (Li et al., 2024b) observed that calcu-
lating attention within a local window of the prompt can capture specialized attention features. This
approach retains more recent tokens, which are effective for local generation. However, in most
scenarios, valuable information is often spread across the contexts and varies from different tasks.
Therefore, the selection of important KV pairs should be tailored to the specific input and avoid
former or recent preference caused by importance indicator.

2.2 KV COMPRESSION

Inspired by various token compression methods (Yin et al., 2022; Bolya et al., 2022; Li et al., 2024a),
KV cache compression can also be categorized into eviction and merge strategies. Evict-based
methods aim to retain only the important KV pairs under different token importance assumption
(Xiao et al., 2024; Zhang et al., 2023; Li et al., 2024b; Adnan et al., 2024; Cai et al., 2024; Feng
et al., 2024), while maintain the modeling ability. DCP (Anagnostidis et al., 2023) introduces a
lightweight attention block in each layer to dynamically decide which KV pairs to discard based on
the input. FastGen (Ge et al., 2023) extends this by finding that different heads focus on different
token types. Through the attention profiling in the prompt prefilling stage, it defines distinct com-
pression strategies for each head, which are applied during inference. However, this static approach
can be suboptimal in long context scenarios where attention patterns change as decoding proceeds.
Besides, compressing each head differently can lead to uneven head budgets, making storage and
computation more difficult.

Compared to evict-only methods, merge-based approaches have the potential to retain more infor-
mation and enhance model performance. CAM (Zhang et al., 2024) analyzes the attention output
error caused by token eviction, only merge the evicted value tokens into the remaining ones to
reduce performance loss. DMC (Nawrot et al., 2024) dynamically decides whether to merge the
current token to the tail of the KV cache in a head-wise manner. However, compression only at the
tail may not be the most effective approach. LESS (Dong et al., 2024) introduces a low-rank em-
bedding sidekick with sparse policy, which accumulates the information discarded by the eviction
strategy into a fixed-size low-rank cache. Besides, DMC and LESS require additional training for
performance gains. It is worth noting that KV cache merging is different from token merging, due
to the paired processing of keys and values and the autoregressive characteristic of LLMs. Improper
merging methods can lead to significant error accumulation in the decoding stage, resulting in se-
vere performance degradation. Building on these insights, we propose an efficient Evict-then-Merge
compression method that effectively addresses these challenges.

3 HYBRID TOKEN SELECTION POLICY BASED ON GLOBAL-LOCAL SCORE

3.1 PRELIMINARIES

Due to the autoregressive nature of the LLM inference process, the key and value states calculated
in previous timesteps are repeatedly used for attention. To avoid computational redundancy, LLMs
can store previously computed key and value states for future generation, which is known as KV
cache.

In particular, given n prompt tokens, the model first prefills the prompt information to the key and
value states, and KV cache is initialized by C0

K = (k1,k2, · · · ,kn) and C0
V = (v1,v2, · · · ,vn).

During the decoding stage, the newly generated tokens will be fed into the model, the corresponding
key and value states will be appended to CK and CV . Taking timestep t as an example, the model
computes qt, kt and vt, and loads the previous key and value states. The KV cache is updated by
Ct

K = [Ct−1
K ,kt] and Ct

V = [Ct−1
V ,vt], and the attention is calculated by:

Attention(qt,Kt,Vt) = softmax

(
qt
[
Ct−1

K ,kt

]T
√
d

)[
Ct−1

V ,vt

]
, (1)
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Figure 1: The framework of EMS. The compression of KV cache is decoupled into two parts. For
important KV selection policy, a balanced Global-Local score is designed to grasp token importance.
For KV compression strategy, the Evict-then-Merge approach first removes irrelevant tokens, then
applies a unified head-wise eviction and merging process.

where softmax is the normalized exponential function and d is the feature dimension. Afterwards,
Ct

K and Ct
V are stored and will be loaded for subsequent generation. However, the memory over-

head of KV cache grows linearly as LLMs inference progresses, which greatly limits the inference
efficiency. Therefore, efficiently compressing the KV cache while preserving essential information
is a critical challenge.

3.2 TOKEN IMPORTANCE BIAS

Existing methods for assessing the most essential KV tokens exhibit inherent biases. We categorized
them into three types that impact compression: local-only bias, local-aware bias, and global-aware
bias, as illustrated in Figure 2.

Head
global-aware tokens local-aware tokens local-only tokens

Token Index
(a) Local-only selection

Head 11 MS. k : =

32
1 65 129 193 257 321 385 449 512

Token Index
(b) Global-aware selection

Head
(c) Local-aware selection

Head
Token Index

(d) Global-Local based selection

Figure 2: Token selection patterns. We vi-
sualize the selection patterns of previous KV
cache methods and our method. The sample
is taken from the gov report (Huang et al.,
2021) dataset, showing Top-128 selected to-
kens out of a total of 512 tokens.

Building on the attention sink (Xiao et al., 2024; Yu
et al., 2024), local-only methods primarily focus on
a few initial sink tokens and the recent ones within a
local window. Although they exhibit strong capabil-
ities in local language modeling, their performance
drops significantly in tasks requiring global seman-
tic understanding, such as summarization and full-
text comprehension. To select more informative KV
tokens, global-aware methods (Zhang et al., 2023;
Wang et al., 2021) employ the global accumulated
attention score to select important tokens, which can
be calculated by sGlo =

∑N
i=1 Ai,:, where N is

the context length, and A ∈ RN×N is the attention
weight. However, the cumulative effect of causal
attention weight skews the importance distribution
towards the earlier part, resulting in a biased selec-
tion of important KV tokens and leading to sub-
optimal outcomes. In contrast, local-aware meth-
ods Li et al. (2024b); Liu et al. (2023b) utilize lo-
cal tokens as anchors to identify and retain tokens
across the entire KV cache. The accumulated at-
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tention score of local tokens is used to measure the importance, which can be formualted by
sLoc =

∑N
i=N−Lwin

Ai,:, where Lwin is the window size. However, the positional encoding causes
nearby tokens to exhibit higher correlations, leading to a bias towards retaining more recent tokens.

3.3 GLOBAL-LOCAL SCORE FOR NON-LOCAL TOKENS

To eliminate the influence of cumulative effects and positional encoding, we propose a Global-Local
score to leverage both global and local information, which is shown in Figure 1. Specifically, we
convert sGlo and sLoc to similar magnitudes by mean-alignment, followed by the element-wise max
to obtain the new score:

sGlo−Loc = max

(
sGlo ×

∑
sLoc/N∑
sGlo/N

, sLoc

)
, (2)

where max is an element-wise function, N is the context length.

During the prefilling stage, we calculate the accumulated attention scores of A from global and
local scope to get sGlo and sLoc. These two critical vectors capture the importance distribution of
the prompt and are stored for subsequent generation, while the temporary attention weight matrix
is deallocated. During the decoding stage, sGlo is update by accumulating the attention from new
tokens. And the local tokens in the window will dynamically change. To avoid potential overhead,
we set a past score spastLoc to record attention information in the last window, and a current score scurLoc
to accumulate attention from the new queries in the current window. Once the number of tokens in
the current window reaches Lwin, scurLoc will be assigned to spastLoc and reset to zero. The final local
score sLoc = spastLoc + scurLoc. So in the decoding stage, the window size used to select local-aware
tokens is actually Lwin ∼ 2Lwin − 1.

Under the Global-Local score, the selection of the important KV tokens becomes more balanced, as
shown in Figure 2d. In addition, we also conduct a statistic on the contribution of global and local
importance to the Global-Local score in Appendix E.

4 HEAD-WISE EVICT-THEN-MERGE STRATEGY FOR KV CACHE

4.1 HEAD-WISE SPARSITY AND REDUNDANCY

Previous works (Zhang et al., 2023; Liu et al., 2023b; Ge et al., 2023) have uncovered the sparsity
of the KV cache. We further observed that the redundancy within the KV cache is also significant.
Taking a holistic view of both sparsity and redundancy presents an opportunity to achieve higher
compression ratios.

Sparsity. Only a small portion of important tokens contributes to a significant percentage of the
sGlo−Loc score. The sparsity rate of each attention head is determined by the minimum percentage
of important tokens retained per head that can achieve over ζ of the total score:

pm = 1− 1

N
· argmin
Nk∈[1,N ]

{
Nk |

Nk∑
i=1

si ≥ ζ

}
, where s = sort(sGlo−Loc), (3)

where pm is the sparsity rate, m is the head index, sort(·) reorders the vector in descending way.

Redundancy. Cosine similarity is a reliable metric for cross position token redundancy. Most
existing work considers the characteristic of either keys or values individually, applying the same
compression strategy to the other, rather than jointly considering KV pairs. Considering that the
superimposed positional encoding can attenuate the similarity, we analyze the similarity of raw KV
tokens. As shown in Figure 3a, the similarity among key tokens is significantly higher, whereas
the similarity among value tokens is relatively lower. If we consider only the key’s characteristic,
the substantial merging error of value tokens can severely affect generation, ultimately diminishing
the compression potential of redundancy. Therefore, we jointly consider key similarity and value
similarity, and the redundancy is defined as:

Ri,j = cos(ki,kj) · cos(vi,vj) =
kik

T
j

∥ki∥∥kT
j ∥

·
viv

T
j

∥vi∥∥vj∥
. (4)
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Figure 3: Observations on sparsity and redundancy. The parameters ζ and τ are set to 0.95 and 0.6
here. (a) The distribution difference between key and value similarities. The top two figures depict
the raw similarity, while the bottom two showcase the masked KV similarities with a threshold of
0.8. Key similarity is much more salient than value similarity. (b) The head-wise sparsity and redun-
dancy. The blue bars represent the sparsity of each head, while the red bars denote the redundancy.
Both sparsity and redundancy vary across different heads and layers.

A token is considered redundant if it can find another token in the existing KV cache with redun-
dancy exceeding the predefined threshold τ . The redundancy rate rm of head m is given by:

rm =
1

N
·

N∑
k=1

[max(Rk,1:k) ≥ τ ] . (5)

The head-level sparsity and redundancy rates for different heads are shown in Figure 3b.

Head-wise Sparsity and Redundancy. From an overall perspective, the earlier layers exhibit more
redundancy, while the later layers display greater sparsity. Within each layer, different heads also
demonstrate varying degrees of sparsity and redundancy. Consequently, dynamically evicting and
merging tokens based on the characteristic of each head can lead to a higher compression ratio.
However, the challenge arises from the fact that all heads within a layer are stored and computed in
parallel, making it difficult to manage fine-grained evict and merge decisions for each head. In the
following section, we propose an efficient, parallelizable, and head-wise solution.

4.2 ADAPTIVE EVICT-THEN-MERGE STRATEGY

Token Partition. The Global-Local score can effectively measure the importance of tokens. To
avoid extract fragmented information, we apply a mean pooling function to it. Based on the ranking
of sGlo−Loc, KV tokens can be divided into three sets: Nirr irrelevant tokens (Kirr,Virr), Ntbm

to-be-merged (TBM) tokens (Ktbm,Vtbm), and Nimp most important tokens (Kimp,Vimp), except
that Lwin local tokens (Kloc,Vloc) are always kept to preserve the local modeling capability of
LLMs, which is crucial for the performance across various tasks. The most irrelevant tokens are first
evicted to streamline the process and minimize the impact of irrelevant context (Shi et al., 2023).
Then, the most important tokens will serve as class centers based on the cache budget Nbudget =
Nimp + Lwin, while Ntbm sub-important tokens will be merged into them to preserve as much
valuable information as possible. The merge magnification factor γ = (Nbudget +Ntbm)/Nbudget

indicates the extent to which tokens are merged relative to the cache budget.

Unified Evict-then-Merge Strategy. By calculating the redundancy between TBM tokens and class
center tokens, the merge destinations for TBM tokens can be identified:

di = argmax
d

(Ri,d), (6)

where di is the merge destination for i-th TBM token.

To minimize output perturbation, only the tokens with redundancy Ri,:di
exceeding a threshold τ

will be merged, while others being evicted. Inspired by the virtual neighbor technique (Li et al.,
2023b; Liu et al., 2024c), we introduced a zero class center to unify the merge and eviction op-
erations, and the evicted tokens are merged into it. Besides, we find that some critical tokens are

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

highly sensitive to merging, preserving these most significant tokens intact yields greater benefits
than sharing them through merging.

Moreover, the varying sparsity and redundancy of each head results in different eviction and merge
ratios, as well as varying cache sizes. We choose to allocate an equal budget to each head, using a
limited number of entries to store class centers. Based on this, the merged tokens share the same
entry in the KV cache, reducing the overall size of the stored KV cache. During the computation
of each layer, a smaller cache is loaded and the context length is enlarged through shared entry
expanding. More implementation details will be elaborated in Appendix A.

Attention Score Weighted Merge. To ensure that more relevant tokens dominate the merged result,
attention scores are integrated into the merge process. Given two tokens (ki,vi) and (kj ,vj) to be
merged, we apply a weighted merge based on their local importance sLoc. As mentioned in Section
3.2, attention scores are crucial for identifying token importance. Therefore, we preserve the norm
of key tokens, a scalar for each token, to maintain the accuracy of the attention weights. The merged
tokens are given by:

k̂merged =
wik̂i +wjk̂j

wi +wj
, vmerged =

wivi +wjvj

wi +wj
, (7)

where wi is the local importance of i-th token, k̂i = ki

∥ki∥
and k̂j =

kj

∥kj∥
are normalized key

tokens. (∥ki∥k̂merged,vmerged) and (∥kj∥k̂merged,vmerged) are actually used for computation.

5 EXPERIMENT

5.1 SETTINGS

In this paper, we use models from both the Llama family (Llama-2-7B (Touvron et al., 2023),
Llama-3-8B (Dubey et al., 2024)) and Mistral series (Jiang et al., 2023), including not only orig-
inal pretrained model, but also instruction-tuned versions such as LongChat-7B-v1.5-32k (Li et al.,
2023a) and Mistral-7B-Instruct-v0.2, which can handle up to 32k context length. For comparison,
we benchmark our method against StreamingLLM, CAM, H2O, and SnapKV. All these methods
compress the KV cache during both the prefilling and decoding stages, except for SnapKV, which
compresses only the prompt after the prefilling stage. All experiments can be conducted on a single
NVIDIA A100 GPU with 40GB of memory, except for the fully cached model. For common pa-
rameters, both EMS and SnapKV use Lwin = 32, kernel size = 7 for perplexity and LongBench,
and Lwin = 16, kernel size = 7 for Needle-in-a-Haystack task.

5.2 PERFORMANCE EVALUATION ON LONGBENCH

LongBench (Bai et al., 2023) is a comprehensive benchmark designed to assess long context model-
ing abilities across 6 categories of tasks. To enhance performance on question-answering tasks, we
employ instruction-tuned models such as LLaMA-2-7B-Chat, LLaMA-3-8B-Instruct, LongChat-
7B-v1.5-32k, and Mistral-7B-Instruct-v0.2. To demonstrate the effectiveness of EMS under extreme
KV cache compression, we enforce a strict compression budget of 256, with τ and γ set to approxi-
mately 0.6 and 4. To adapt the calculation of global attention score on a single GPU for long-context
models, we compute scores by retaining half of the tokens from both the start and the end, following
observations from “Lost in the Middle” (Liu et al., 2024b), where LLMs tend to have a better grasp
of the information at the beginning or end of the input context.

The results are shown in Table 1. We present two versions of our method: one without position
information to merge more aggressively and capture global information, and one with position in-
formation for tasks requiring precise token localization. This distinction is evident in their task
performance. As shown in the table, the baseline methods show varying degrees of performance
across different tasks, and the optimal compression strategy differs between models. In contrast,
our method integrates the strengths of the baselines, achieving the state-of-the-art performance on
nearly all tasks, with improvements of 1.28, 1.79, 17.64, and 1.28 across the four different LLMs.
Notably, on LongChat-7B-v1.5-32k, while the performance of other compression methods breaks
down, our method consistently maintains high performance, demonstrating its robustness under ex-
treme compression ratios and long-context conditions.
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Table 1: Performance evaluation on LongBench across four LLMs. All methods are tested under
cache budget 256, except for SnapKV, which increases this budget at the decoding stage. The best
results are highlighted with bold.

Method

Multi-Document QA Single-Document QA Summarization Few-shot Learning Synthetic Code

Avg.

HotpotQA

2WikiMQA

Musique
MF-en

NrtvQA
Qasper

GovReport

QMSum

MultiN
ews

TriviaQA

SAMSum
TREC

PRe
PCount

Lcc
RB-P

L
la

m
a-

2-
7B

-
C

ha
t

Full Cache 30.20 27.37 11.54 34.33 19.68 19.40 24.60 20.81 26.19 84.61 41.00 63.50 8.00 4.50 61.46 55.14 33.27

StreamingLLM 24.41 26.90 7.70 17.44 13.69 15.07 16.73 19.21 18.25 81.67 35.03 39.50 6.00 4.00 55.22 51.00 26.99
H2O 29.92 25.07 10.46 23.05 17.04 18.45 19.96 20.07 24.12 82.66 38.26 59.50 3.50 4.00 56.01 51.64 30.23
CAM 24.68 26.80 7.57 16.79 14.11 15.98 16.57 19.09 18.35 81.09 35.17 39.50 5.50 4.00 55.34 51.15 26.98
SnapKV 28.96 26.20 11.14 28.41 15.72 17.10 17.01 20.30 21.53 84.32 38.62 57.00 8.50 4.00 57.26 53.03 30.57
EMS(w.o. pos) 31.39 27.46 10.48 30.45 18.52 17.87 22.18 20.82 22.30 84.86 39.34 61.00 6.00 5.00 57.86 54.10 31.85
EMS(w. pos) 30.93 27.58 11.37 29.85 17.49 17.17 18.59 20.57 22.05 85.60 38.79 60.50 9.50 4.50 58.90 53.55 31.68

L
la

m
a-

3-
8B

-
In

st
ru

ct

Full Cache 44.93 37.92 24.10 41.89 22.84 39.26 28.69 23.57 26.58 90.31 42.67 74.50 67.00 6.48 57.13 51.34 42.45

StreamingLLM 37.64 25.25 16.94 22.61 16.58 18.73 18.42 20.15 19.25 78.43 39.29 53.00 65.08 7.25 56.83 53.72 34.32
H2O 43.74 34.06 20.65 27.71 20.34 26.67 21.27 20.58 23.98 88.52 38.50 58.50 66.50 7.50 57.14 52.11 37.99
CAM 37.64 25.19 16.94 22.64 16.58 18.58 18.49 20.10 19.24 78.43 39.34 53.00 65.08 7.25 56.83 53.56 34.31
SnapKV 41.96 31.82 20.06 34.91 20.52 26.59 19.94 21.72 21.94 90.47 39.55 50.50 67.00 6.84 58.23 53.81 37.87
EMS(w.o. pos) 45.51 36.86 22.80 37.31 21.33 27.74 22.11 22.28 24.05 90.44 40.26 64.50 66.67 7.22 57.01 50.37 39.78
EMS(w. pos) 44.09 32.70 21.77 35.67 20.84 26.87 20.71 21.89 23.89 89.75 39.96 61.00 67.00 7.24 60.51 56.46 39.40

L
on

gC
ha

t-
7B

-
v1

.5
-3

2k

Full Cache 31.26 22.52 12.16 43.92 18.33 28.81 31.29 22.57 26.32 82.41 40.06 66.00 31.50 0.00 53.02 55.28 35.34

StreamingLLM 13.06 9.62 1.97 4.48 4.02 8.64 1.00 3.18 0.92 4.72 6.96 20.50 2.96 0.50 2.16 5.93 5.66
H2O 11.33 10.37 1.20 7.13 4.04 8.59 2.42 9.52 2.92 23.26 7.11 27.50 2.45 0.15 9.30 8.24 8.47
CAM 13.40 9.17 1.82 5.07 4.08 8.62 1.01 3.24 0.79 4.23 7.12 21.50 3.55 0.50 2.05 5.98 5.76
SnapKV 19.60 13.45 8.39 15.06 9.07 9.19 3.76 13.15 3.42 57.43 18.26 30.50 1.00 0.44 15.60 20.08 14.90
EMS(w.o. pos) 32.07 23.75 12.34 39.93 16.07 22.96 23.89 21.22 23.49 79.58 36.89 61.50 11.50 0.00 55.08 50.78 31.94
EMS(w. pos) 31.51 23.75 12.34 37.16 16.39 23.47 20.33 21.18 22.83 78.70 36.76 61.50 27.75 0.60 54.02 52.39 32.54

M
is

tr
al

-7
B

-
In

st
ru

ct
-v

0.
2

Full Cache 36.42 21.77 19.13 47.12 21.02 29.62 32.57 24.02 27.09 86.23 42.99 71.00 89.33 3.07 54.00 51.87 41.08

StreamingLLM 21.60 13.24 10.25 26.35 13.72 11.58 17.98 19.73 18.92 80.67 40.26 50.50 24.80 3.82 50.57 44.04 28.00
H2O 23.31 14.07 10.32 33.42 14.29 16.75 23.12 21.09 23.73 83.22 38.74 63.00 31.50 3.44 49.17 44.66 30.86
CAM 21.15 13.25 10.25 26.41 13.72 11.6 17.88 19.72 18.94 80.7 40.19 50.5 25.05 3.82 50.6 44.04 27.99
SnapKV 26.28 14.58 12.02 40.82 16.88 18.87 21.46 21.60 22.05 84.82 40.79 51.00 70.08 2.72 51.01 46.75 33.86
EMS(w.o. pos) 25.83 15.36 12.38 40.99 17.44 18.84 23.13 22.21 24.07 84.94 40.28 64.00 60.77 4.13 51.87 47.59 34.61
EMS(w. pos) 26.49 15.91 12.57 41.51 17.28 18.90 22.63 22.50 23.82 85.17 40.44 63.50 69.40 3.74 51.49 46.88 35.14

5.3 NEEDLE-IN-A-HAYSTACK

Table 2: The performance of
Needle-in-a-Haystack across
three budgets.

Nbudget 128 256 512

H2O 0.312 0.335 0.384
SnapKV 0.802 0.893 0.956
EMS 0.818 0.896 0.959

Needle-in-a-Haystack (Kamradt, 2023) is a challenging task to as-
sess the model’s ability to retrieve specific information from a large
volume of data. We test our method using Mistral-7B-Instruct-v0.2
with 10 depths, 40 lengths and maximum token limit 32k. The merge
threshold τ and merge magnification factor γ are set to 0.55 and 4.
As shown in Table 2, EMS delivers the best retrieval performance
across all three compression budgets. It retains 95.9% retrieval abil-
ity of the fully cached model, even surpassing SnapKV, which is
specifically designed for retrieval tasks. The visualization of retrieval
accuracy is shown in Appendix D.

To fully test the performance of EMS, we also evaluate the language modeling ability on PG19 (Rae
et al., 2019) and consistently achieving the lowest perplexity, which is shown in Appendix C.

5.4 EFFICIENCY ANALYSIS

Time analysis. To assess the efficiency of EMS, we measured the end-to-end latency on two RTX
4090 GPUs. As shown in Table 3, by compressing the KV cache, EMS supports larger batch sizes,
whereas the fully cached model encounters out-of-memory (OOM) errors with batch sizes of 2 or
4. Moreover, the efficiency gains of our method become more pronounced with larger batch sizes,
leading to increased throughput as batch size grows. For example, with 4096 prompt tokens and a
generated token length of 8192, our method achieves a 6.74× improvement in throughput compared
to the fully cached model.

Memory analysis. EMS compresses the storage overhead for the full KV cache dNfull to a constant
dNbudget per head. The extra static memory overhead is required for sGlo, spastLoc , scurLoc, ∥K∥ and
the mapping look-up-table, all of which are vectors with the maximum length γNbudget. The extra
memory is 5γNbudget/(dNfull) compared to full cache baseline. Considering γ = 4, Nbudget =
256, Nfull = 4096, d = 128, the metadata overhead is determined to be a mere 0.97%. During
the computation time of certain layer, only Nbudget key-value states are loaded and expanded to
γNbudget as runtime KV cache, providing more contexts.
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Table 3: Comparisons of the end-to-end latency (s). The cache budget is set to 256. With constant
budget, EMS supports larger batch size and generalize to longer context without OOM errors.

Lprompt + Lgen Method Batch Size Max Throughput

(tokens/s)1 2 4 8 16

128 + 4096 Full Cache 464 799 OOM OOM OOM 10.3
EMS 435 483 595 925 1622 40.4 (3.94×)

128 + 6144 Full Cache 955 1685 OOM OOM OOM 7.3
EMS 673 781 963 1552 2757 35.7 (4.89×)

4096 + 4096 Full Cache 463 800 OOM OOM OOM 10.2
EMS 441 486 604 943 1661 39.5 (3.85×)

4096 + 8192 Full Cache 1589 OOM OOM OOM OOM 5.2
EMS 878 1100 1265 2082 3772 34.7 (6.74×)

5.5 ABLATION STUDY

We ablate the effectiveness of the Global-Local score and the Evict-then-Merge strategy, and evalu-
ate the performance scalability across different cache budgets Nbudget using the LongBench average
score on Llama-2-7B-Chat.

Table 4: KV cache compression using
different token importance scores and
compression strategies.

Score + Compression Avg.

sGlo + Evict-then-Merge 28.81
sLoc + Evict-then-Merge 31.06
sGlo−Loc + Evict-only 30.82

sGlo−Loc + Evict-then-Merge 31.34

Ablation on Token Selection and Compression Strat-
egy. Table 4 illustrated the effectiveness of our method.
By incorporating the Evict-then-Merge strategy, the av-
erage score improves 0.61 points compared to the evict-
only approach. Furthermore, integrating both global and
local scores increases the average score by 0.37 and 2.62
points, respectively, compared to using either the global
or local score alone. These results highlight the effective-
ness of our method in token selection and compression
strategy.

Cache Budgets. In Table 5, we explore the impact of different cache budgets. The results indicate
that even under extreme compression settings, performance remains relatively stable. Additionally,
performance scales with cache size, approaching that of the fully cached model as the budget in-
creases. When Nbudget = 1024, EMS performs a difference of 0.27 from the full cache model.
More results on different LLMs can be seen in Table 9.

Table 5: The impact of different cache budgets for each head. The performance scales with the
budgets and reaches the performance of full cache baseline when the budget reaches a certain size.

Nbudget 128 256 512 768 1024

Avg. 29.41 31.34 32.26 32.71 33.00

Besides, we conduct the ablation and analysis on merge threshold τ and merge magnification factor
γ, which affect merge-evict ratio and merge size, which are shown in Appendix B.

6 CONCLUSION

In this paper, we propose EMS, an input-aware, head-wise efficient KV cache management frame-
work. By leveraging the proposed Global-Local attention score, EMS addresses the biased distri-
bution of important KV tokens caused by accumulated attention scores and positional encoding,
leading to a more balanced selection of tokens. We further design a unified Evict-then-Merge strat-
egy based on the redundancy and sparsity intrinsic of KV tokens across different heads. In particular,
we implement a zero-class mechanism to enable parallel computation for head-wise operation. Ex-
tensive experiments on language modeling perplexity, LongBench, and Needle-in-a-Haystack tasks
demonstrate the SOTA performance, validating the effectiveness of EMS.
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A METHOD DETAILS AND DISCUSSION

Two-Levels of Parallelism. We regarded EMS as a parallel solution for two reasons. On the
one hand, as illustrated in Section 4.1, the sparsity and redundancy provide the potential for more
extreme compression. However, the head-wise characteristic can lead to different cache bud-
gets for different heads. For code implementation, the shape of KV states is (batch size,
num heads, kv len, head dim), which means that all heads are concatenated as a tensor
and computed in parallel. Luckily, there are two properties and they exhibit complementarity to
some extent. For example, we can evict more for the heads with higher sparsity and less redun-
dancy (dark blue and light red bars), and merge more for the heads with higher redundancy and less
redundancy (light blue and dark red bars). So we take this chance to allocate the same budget for
each head. On the other hand, merge and evict are two different operations. Different heads may
have different operations and different merge-evict ratios. To unify the merge and evict process, we
introduce a zero-class, thus the eviction can be treated as merging, and we only do merging at the
second stage of Evict-then-Merge strategy.

Two Levels of Eviction. Under our Evict-then-Merge strategy, there are two levels of eviction
consideration, which is shown in Figure 4a. Under the long context scenarios, not all tokens are
necessary for language modeling and can lead to significant memory overhead. Hence, the less
relevant tokens will first be evicted and leaves Nimp +Ntbm +Nloc tokens for subsequent merging,
which is same for each heads. At the merge stage, considering that some TBM tokens cannot find
a suitable merge destination for low similarity, evicting them can avoid disturbing the class centers.
So these tokens are merged to zero-class, which is equivalent to eviction.

Evict-then-Merge Details. There are some implementation differences in the compression of pre-
filling and decoding stage. Specifically, at prefilling stage, numerous tokens are filled at once, which
might far exceed the size of the cache budget. Therefore, it is necessary to partition them and de-
termine the TBM tokens and class-center tokens. And this stage often requires to merge multiple
tokens for each head. The merged Nimp tokens serve as the class centers, where Ntbm + Nimp

tokens will share the Nimp entries. At decoding stage, we focus more on the update of class centers
and the mapping relation, which is shown in Figure 4b. To achieve dynamic class center, the merge
operation is processed at the class center level, which means that merging will change the mapping
of the TBM tokens and class centers. After each decoding in the auto-regressive generation, a new
token will exceed local range and is regarded as the class center. One least important class center
token is selected as TBM token. For each head, there are two kinds of operations for this TBM to-
ken. Different heads may have different decisions for merge or evict operation, and they are unified
as merge. Since we keep the cache budget constant, the number of expanded tokens is also fixed. So
we need to evict one element from the look-up-table and fill the new mapping.

* *

* *

* *

0

× × × × ×

Evict

…

Zero-class

Unified Merge and Evict

H
ea
d-

0

H
ea
d-

1

H
ea
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n
…

(a) Two levels of eviction.

0

0

Merge

Evict (as Merge)

H
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d
-i

H
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d
-j

Class 
Centers

Expanded

Class 
Centers

Expanded

New

New

(b) Unified merge and evict at decoding stage.

Figure 4: Evict-then-Merge details. (a) Two levels of eviction. The first level of eviction is evicting
the same number of irrelevant tokens. The second level of merge is merging the tokens with low
similarity to zero-class token. Different heads have different eviction at the second level. (b) Unified
merge and evict at decoding stage. Different heads in the same layer have different merge or evict
decisions, which are unified as merge operation.
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Shared Entry Expansion. The motivation of expansion is that we hope to conduct clustering on
the KV tokens based on cosine similarity. In this way, we can use a small number of class center
tokens to represent more tokens. Therefore, those similar tokens share the same KV entry and need
to be expanded during computation. For the implementation of expansion, we keep a position look-
up-table and Nimp tokens are expanded to γNimp tokens at computation time of the certain layer. In
this way, more context tokens participate in the computation, and only additional overhead is only
brought to the current computed layer.

Global Score Efficiency Discussion. FlashAttention has become a standard technique for long se-
quence inference. It achieves more efficient attention computation through tiling, yet doesn’t return
the attention weights. The calculation of the global score requires obtaining all the attention weights.
To be compatible with Accumulated FlashAttention, recent works have also made some optimiza-
tions. ZipCache (He et al., 2024) approximates global scores by sampling 10% probe tokens, which
is orthogonal and compatible with our work. NACL (Chen et al., 2024a) has implemented the accu-
mulated attention weights of FlashAttention by recomputation based on Paddle. Thus, the dilemma
regarding the global score can be solved.

B ABLATION STUDY

Merge Threshold. The merge threshold plays a crucial role in determining whether a token will
be merged into the zero class (i.e., evicted) or common class centers. A smaller threshold results
in more tokens being evicted, while a larger threshold leads to more aggressive merging. Table 6
presents the results of varying the merge threshold, indicating that a moderate threshold τ = 0.6,
yields best performance on balance.

Two extreme cases are setting threshold to 0 or 1, meaning all merging or all evicting. If τ =
0, all TBM tokens are merged without considering that some tokens are not suitable to merge,
leading to 1.66 performance drop. On contrary, if τ = 1, all TBM tokens are evicted, resulting in a
performance degradation of 0.52. Therefore, both over merging and over evicting yields sub-optimal
performance, manifesting the effectiveness of joint merge and evict.

Table 6: Effects of merge threshold τ on LongBench. The TBM tokens with a redundancy score
above τ are merged, while those below are evicted. A lower threshold results in more tokens being
merged.

τ 0 0.1 0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.9 1

Avg. 29.68 29.59 29.84 30.25 30.69 30.93 30.88 31.34 31.28 31.25 31.27 30.49 31.13 30.82

Merge Size. In our evict-then-merge strategy, the number of tokens retained for class center and
merging (i.e γNbudget) after the initial eviction stage is also a key factor, which is indicated by
merge magnification factor γ. As shown in Table 7, we ablate the effect of γ and find that merging
approximately 3 ∼ 4 times of the class center size achieve the optimal performance.

Two extreme cases are setting γ to 1 or Inf, which means only evict irrelevant tokens and no eviction
of irrelevant tokens. When γ = 1, we only apply the first level of eviction and skip the unified merge
and evict operation. On the contrast, when γ = Inf, we skip the eviction of irrelevant tokens and only
implement the unified merge and evict at a longer token length. The results demonstrate that both
over-merging and under-merging can negatively impact the performance. Removing some irrelevant
tokens at an appropriate degree not only improves performance, but also reduces the complexity of
managing the mapping relation.

Table 7: Ablation on γ, which affects the merge size. ’Inf’ means there is no eviction of irrelevant
contexts and ’1’ means only apply eviction using sGlo−Loc.

γ 1 2 3 4 5 6 7 8 Inf

Avg. 30.05 30.88 31.00 31.34 31.34 31.25 31.04 30.92 31.18
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Key Similarity, Value Similarity and Key-Value Similarity. We conduct experiments to evaluate
the performance of merging based on key, value and key-value similarity. The results arc displayed
in Table 8, which manifest the superiority of considering both key similarity and value similarity.

Table 8: The comparison of using different similarities. The performance metric is the average score
on LongBench using Llama2.

Similarity Key Value Key-Value

Avg. 31.18 31.26 31.34

Cache Budgets. More results on the LongBench performance of different models using more bud-
gets and their comparisons to baselines are shown in Table 9. γ and τ are set to 4 and 0.6 as ablated.
EMS outperforms other methods on the 4 LLMs across different cache budgets.

Table 9: Impact of varying cache budget across four LLMs. EMS outperforms other methods on the
128, 256, 512, 768 and 1024 cache budgets.

Method 128 256 512 768 1024

L
la

m
a-

2

StreamingLLM 24.39 26.99 28.92 29.46 29.77
H2O 19.00 30.23 31.14 31.54 31.91
SnapKV 27.78 30.57 31.64 32.05 32.27
EMS(w.o. pos) 29.41 31.34 32.26 32.71 33.00
EMS(w. pos) 29.12 30.93 31.99 32.53 32.68

L
la

m
a-

3

StreamingLLM 32.42 34.32 36.18 37.27 38.80
H2O 36.02 37.99 39.55 40.20 40.62
SnapKV 35.54 37.87 39.78 40.57 40.95
EMS(w.o. pos) 36.45 38.94 40.45 40.74 41.12
EMS(w. pos) 36.14 38.62 40.12 40.73 41.10

L
on

gC
ha

t StreamingLLM 5.77 5.66 5.45 8.51 13.98
H2O 5.71 8.47 17.71 26.25 31.19
SnapKV 6.04 14.90 32.08 33.27 33.63
EMS(w.o. pos) 25.65 31.25 33.00 33.05 33.36
EMS(w. pos) 18.85 31.10 33.32 34.18 34.01

M
is

tr
al

StreamingLLM 26.97 28.00 29.90 30.74 31.37
H2O 29.89 30.86 32.02 33.38 34.24
SnapKV 31.15 33.86 36.16 37.24 37.91
EMS(w.o. pos) 31.16 33.93 35.37 36.30 37.14
EMS(w. pos) 31.44 34.66 36.59 37.64 38.35

C LANGUAGE MODELING PERPLEXITY

We evaluate the perplexity on the PG19 (Rae et al., 2019) dataset using the LLaMA-2-7B model.
The experiment is conducted under three cache budgets: 2%, 5%, and 10% of the pretraining length
(i.e. 4096 for LLaMA-2-7B). The testing sequence length is extended 10 times of the original size,
allowing us to thoroughly assess the model’s continuous modeling capability for long contexts. The
merge threshold τ and merge magnification factor γ are set to 0.6 and 4. No protection is applied,
allowing more aggressive merging.

As shown in Figure 5, EMS consistently maintains the lowest perplexity across all budget settings.
This demonstrates its robustness in managing limited cache resources while preserving language
modeling accuracy. The fully cached baseline encounters significant degradation in performance
once the sequence length exceeds the pretraining limit.
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Perplexity
Cache Budget 82 (2% of Pretraining Length)

5 J 1 1 1 1 1 1 1

5000 10000 15000 20000 25000 30000 35000 40000
Input Length

StreamingLLM CAM H2O MyAIg FULL

Figure 5: Perplexity across different cache budgets. Lower perplexity indicates better model perfor-
mance. SnapKV is not listed for its lack of compression in decoding stage.
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(c) SnapKV
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(d) EMS

Figure 6: Pressure testing results on Mistral-7B-Instruct-v1.5 with full cache and three compression
methods. The maximum test length is 32k, which is almost max context length for popular LLMs.
For compression methods, the cache budget for each head is 512, which is only 1.6% of the maxi-
mum testing length.
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D NEEDLE-IN-A-HAYSTACK VISUALIZATION

Needle-in-a-Haystack is particularly challenging as it requires precise retrieval from extensive con-
text, simulating real-world scenarios where relevant information is buried among irrelevant data.
Table 2 has shown the numerical results, here we visualize the comparisons of baselines on retrieval
accuracy across the depths and token limits under budget 512, which is shown in Figure 6. For EMS,
the merge threshold τ and merge magnification factor γ are set to 0.6 and 4.

We can see that H2O almost collapses on retrieval task, with the accuracy only 38.4%. SnapKV,
a method designed for retrieval tasks, achieves 95.6% accuracy, while EMS can achieve 96.8%
retrieval ability of the fully cache model.

E TOKEN SELECTION ACROSS LAYERS

In Figure 8, we visualize more token selection patterns of different methods across layers using
Llama2 and Llama3. The experiment is conducted on multi-document QA dataset hotpotqa (Yang
et al., 2018) and summarization dataset gov report (Huang et al., 2021). The heads of Llama3 are
expanded 4 times due to the use of GQA (Ainslie et al., 2023).

To further analysis the how tokens are selected according to Global-Local score, we draw the pro-
portion of selected tokens derived from global-aware, local-aware and local-only selection in Figure
7. The token numbers are averaged on head dimension. If selecting Top-256 from 4096 tokens,
the number of tokens sourced from global-aware and local-aware sources is roughly 1:1. If select-
ing Top-1024 from 4096 tokens, this ratio is approximately 7:3. This implies that when merging
1024 tokens into 256 tokens, more global-aware tokens are merged. Since local tokens are changing
during the decoding stage, our dynamic class centers can be indispensable.

Layer Index

(a) Select Top-256 out of 4096 tokens.

Average
token
number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Layer Index

(b) Select Top-1024 out of 4096 tokens.

Figure 7: The distribution of selected tokens. The sample is taken from the gov report dataset. When
selecting fewer tokens, the Global-Local based selection method tends to evenly choose between
global-aware and local-aware tokens. And when selecting more tokens, it leans toward selecting
more global-aware tokens.
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(a) Layer 1 on gov report using Llama2.
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(b) Layer 25 on gov report using Llama2.
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(c) Layer 8 on gov report using Llama3.
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(d) Layer 23 on gov report using Llama3.
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(e) Layer 10 on hotpotqa using Llama2.
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(f) Layer 29 on hotpotqa using Llama2.
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(g) Layer 0 on hotpotqa using Llama3.
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(h) Layer 31 on hotpotqa using Llama3.

Figure 8: Token selection patterns visualization on different layers, datasets and models. Global-
aware selection tends to select former tokens while local-aware selection prefers recent tokens.
Global-Local based selection can balance these two approaches.
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