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ABSTRACT

The extraordinary capabilities of large language models (LLMs) such as ChatGPT
and GPT-4 are in part unleashed by aligning them with reward models that are
trained on human preferences represented as rankings of responses to prompts.
In this paper, we document the phenomenon of reward collapse, an empirical
observation where the prevailing ranking-based approach results in an identical
reward distribution for diverse prompts during the terminal phase of training. This
outcome is undesirable as open-ended prompts like “write a short story about
your best friend” should yield a continuous range of rewards for their completions,
while specific prompts like “what is the capital city of New Zealand” should
generate either high or low rewards. Our theoretical investigation reveals that
reward collapse is primarily due to the insufficiency of the ranking-based objective
function to incorporate prompt-related information during optimization. This
insight allows us to derive closed-form expressions for the reward distribution
associated with a set of utility functions in an asymptotic setting. To overcome
reward collapse, we introduce a prompt-aware optimization scheme that provably
admits a prompt-dependent reward distribution within the interpolating regime.
Our experimental results suggest that our proposed prompt-aware utility functions
significantly alleviate reward collapse during the training of reward models.

1 INTRODUCTION

A cornerstone of the recent remarkable advancements in the capabilities of large language models
(LLMs) like ChatGPT and GPT-4 is the integration of human feedback (Ouyang et al. (2022); OpenAI
(2023)). The approach to leveraging human feedback often begins with the training of a reward
model that encapsulates human preferences, values, and ethical considerations (Christiano et al.
(2017); Ibarz et al. (2018); Bahdanau et al. (2018); Ziegler et al. (2019); Ganguli et al. (2022)).
This is followed by the fine-tuning of the LLMs using reinforcement learning, guided by the reward
model. This process, often referred to as reinforcement learning from human feedback (RLHF), has
proven effective in aligning LLMs with human intent, substantially enriching the quality of human
interaction.

However, developing an effective reward model based on human preferences is challenging (Bai
et al. (2022b); Liu et al. (2023); Sun et al. (2023)). A notable difficulty arises when a human labeler
struggles to give a quantitative score to a response/completion for a specific prompt. Instead, it is
much easier for humans to make pairwise comparisons between completions in terms of their quality,
which is indeed employed in the development of InstructGPT (Ouyang et al. (2022)). Explicitly, a
human labeler is presented with several completions generated by the LLMs for the same prompt and
arranges the responses from the highest to lowest perceived quality.1 A neural network is then trained
to obtain a reward model that assigns rewards to the responses in an attempt to align as closely as
possible with human preferences in the form of rankings.

Despite some benefits, such as eliminating calibration issues, rankings fall short in reflecting the
varied reward distributions of different prompts. This is due to the fact that ranking one completion
higher than another does not indicate how much superior the former is compared to the latter. This

1In slightly more detail, Ouyang et al. (2022) required human labelers to utilize a drag-and-drop interface to
construct consistent rankings from pairwise comparisons.
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concern is especially pertinent in RLHF as some prompts are open-ended or, in other words, are
dependent on the users’ backgrounds, allowing the reward distribution to span a continuous range.
Conversely, some prompts are closed-ended, resulting in a response that should be either highly
or lowly scored, thus generating a roughly two-point mass distribution for the reward distribution.
Instances of the first type of prompts include write a short story about how AI will look like in 100
years and what is the best cuisine in the world, while examples of the second type are prove the
Pythagorean theorem and is chicken a dinosaur. An ideal reward model would assign a reward of
either low or high to close-ended prompts, ensuring that the completion accurately aligns with the
correct direction. Conversely, for open-ended prompts, the reward should avoid being either low or
high to encourage diverse responses. If the reward model cannot distinguish between open-ended and
close-ended prompts, it fails to assist language models in determining uncertainty when providing
completions, whether with high variability or low variability (Padmakumar & He (2023)). As a result,
the reward model may struggle to aid LLMs in accurately calibrating uncertainty without accounting
for the nuances of different prompts. 2

Figure 1: Evidence of reward collapse in an Large language model. Experiment details are elaborated
in Section 3.

As our first main contribution, this paper documents a surprising phenomenon through a series of
experiments, demonstrating that training a reward model on preference rankings could result in the
same reward distribution regardless of the prompts. We call this phenomenon reward collapse, which
occurs during the terminal phase of training Papyan et al. (2020). Intriguingly, our theoretical analysis
first predicted this phenomenon prior to its experimental confirmation. Indeed, we show that the
collapse reward distribution can be numerically deduced from a simple optimization program or, even
simpler, admits a closed-form expression. As demonstrated in Figure 1, our prediction of reward
collapse is in agreement with the empirical results.

Reward collapse is clearly undesirable as it overlooks the subtle differences among various prompts,
potentially leading to the miscalibration of human preference during the training of LLMs via
reinforcement learning with the reward model. A rudimentary strategy to bypass this issue is to early
stop the training of the reward model (Ouyang et al. (2022)), which, however, is somewhat arbitrary
and can make it challenging to determine the stopping point.

In our second main contribution, we introduce a principled approach to alleviating reward collapse,
leveraging insights derived from the same optimization program that was instrumental in predicting
this phenomenon. In essence, we propose to use distinct utility functions depending on prompts in

2For instance, we suspect that this is partly accountable for the poor calibration of GPT-4 after RLHF (see
page 12 of OpenAI (2023)) and mode collapse (Casper et al. (2023a;b)).
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training the reward model, such that the resulting reward distribution can be either widely dispersed
or tightly concentrated, contingent on whether the prompt is open-ended or closed-ended. A notable
advantage of this prompt-aware strategy is that our analysis is analytical, enabling full control over
the shape of the reward distribution as required. Our experiments show that reward collapse can be
substantially mitigated using this prompt-aware methodology.

2 WHAT IS REWARD COLLAPSE AND HOW TO MITIGATE IT?

2.1 REWARD COLLAPSE

We use prom and compl to denote a prompt and a completion. Denote by R(prom,compl) a
reward model. Without loss of generality, we assume R(prom,compl) ∈ [0, 1]. For a given prompt
and n completions that are i.i.d. draws from an LLM, a human labeler ranks the n responses from
the most preferred to the least preferred, and the ranking is denoted as πprom. The reward model is
expected to score each completion that is consistent with the human-provided ranking πprom as much
as possible. To this end, we train a neural network that maximizes the following overall utility:∑

(prom,complw,compll)∈Π

U (Rθ(prom,complw)−Rθ(prom,compll)) , (1)

where U is an (increasing) utility function, θ is the weights of the reward neural network, and Π is
the ranking dataset and complw is a preferred completion than compll in the ranking πprom. In
InstructGPT (Ouyang et al. (2022)), U is set to Uσ(x) = log sigmoid(x/σ) ≡ log ex/σ

ex/σ+1
, which

is an increasing concave function. While maximizing Eq. 1, the reward model learns to not only align
with the human-provided ranking but also distinguish the rewards as much as possible.

To gain insights into how the rewards depend on U , note that the above is equivalent to

max
∑
prom

∑
(complw,compll)∈πprom

U (Rθ(prom,complw)−Rθ(prom,compll)) .

Next, assume that the neural network parameterized by θ is sufficiently overparameterized such that∑
(complw,compll)∈πprom

U (Rθ(prom,complw)−Rθ(prom,compll))

is exactly maximized. This is precisely the same as maximizing
∑

1≤i<j≤n U
(
rπprom(i) − rπprom(j)

)
over 0 ≤ r1, . . . , rn ≤ 1. However, the solution to this optimization program is independent of the
prompt and, indeed, is the same as the solution to

max
0≤r1,...,rn≤1

∑
1≤i<j≤n

U (ri − rj) (2)

up to a permutation. That is, the empirical distribution of the rewards is independent of the prompt
itself in the interpolating regime, thereby leading to reward collapse.

2.2 PROMPT-AWARE OPTIMIZATION

To avoid having the same reward distribution, one simple strategy is early stopping. While reward
collapse can be avoided via early stopping, early stopping might make the model neglect other
important features. A more principled approach is to change the objective. Our proposal is to let the
utility function U now depend on the prompt. That is, now we consider training a neural network that
maximizes ∑

(prom,complw,compll)∈Π

Uprom (Rθ(prom,complw)−Rθ(prom,compll)) . (3)

In general, the choice of Uprom should reflect the open-endedness of the prompt prom. An important
feature is that if Uprom is concave, this problem becomes a convex optimization problem (Lemma
4.1). Given the high flexibility in choosing Uprom, it is generally recommended to let the practitioners
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choose these functions to meet their needs. Nonetheless, below we introduce a family of such
functions.

For a strictly increasing utility function U , it can be easily demonstrated that the maximum can only
be attained when r1 ≥ · · · ≥ rn (see Lemma B.1 in the Appendix). As a result, we only need to
consider the problem

max
0≤rn≤...≤r1≤1

∑
1≤i<j≤n

U (ri − rj) . (4)

We use the term “reward distribution” to refer to the empirical distribution of solutions to (2) and (4).

Class 1. Let Uγ(x) = xγ , x ∈ [0, 1] for some 0 < γ < 1. This utility function encourages the
reward to take values either near 0 or 1 as γ tends to be large. Some plots showing the reward
distribution is given in Figure 2(a) and 2(b).

Class 2. Let Uγ(x) = −xγ , x ∈ (0, 1] for 0 < γ ≤ 1 and U0(x) = log x, x ∈ (0, 1]. We also
define Uγ(0) = ∞ for 0 ≤ γ ≤ 1. In this case, the reward distribution of Eq. 2 becomes more even
as γ increases from 0 to 1. Some plots are shown in Figure 2(c) and 2(d).

Class 3. Let Uσ(x) = log sigmoid(x/σ) for σ > 0. The reward distribution becomes more
spread between 0 and 1 as σ becomes smaller. Some plots are shown in Figure 2(e) and 2(f).
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(a) U(x) = x0.8
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(b) U(x) = x0.2
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(c) U(x) = log x
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(d) U(x) = −x−1
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(e) U(x) = log sigmoid(x)
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(f) U(x) = log sigmoid(4x)

Figure 2: Reward distribution for different utility function.

2.3 ASYMPTOTICS

In general, we can explicitly evaluate the reward distribution for any n by solving the optimization
(4). Nevertheless, it is helpful to get a handle on the empirical distribution of the solution to this
optimization program in the limit n → ∞. The next result gives a closed-form expression of the
reward distribution in the case of a large number of completions.

Theorem 1. Let Uγ(x) = xγ for some γ ∈ (0, 1). Then the reward distribution of (4) converges to
Beta

(
1−γ
2 , 1−γ

2

)
as n → ∞, which has probability density x− 1+γ

2 (1− x)−
1+γ
2 on (0, 1).

Theorem 2. For Uγ(x) = −x−γ for 0 ≤ γ ≤ 1 (as a convention, take U0(x) = log x). Then. the
reward distribution of (4) converges in distribution to Beta( 1+γ

2 , 1+γ
2 ).
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The proof of Theorem 2 can be found in Martinez-Finkelshtein et al. (2004); Landkof & Landkof
(1972). In the limit γ → 1 in Theorem 2, the Beta distribution tends to Beta(1, 1), which is
the uniform distribution on [0, 1]. This is indeed an example of the one-dimensional Thomson
problem (Bowick et al. (2002)), which asks the configuration of n electrons constrained to a line that
repel each other with a force given by Coulomb’s law. This problem was first considered by Maxwell.
Indeed, Martinez-Finkelshtein et al. (2004); Hardin et al. (2004); Amore & Jacobo (2019) prove that
the reward distribution will converge to the uniform distribution for Uγ(x) = −x−γ with γ ≥ 1.

For the above two classes, the limiting distribution does not admit a probability mass. However,
probability mass can emerge in the case of a scaled log-sigmoid function.

Theorem 3. If U is strictly increasing and concave, the derivative of the utility function satisfies
U ′(0) < ∞, U ′(1) > 0, then the reward distribution of (4) converges in distribution to a probability
measure µ∗ that satisfies

µ∗({0}) = µ∗({1}) ≥ U ′(1)
U ′(0)+U ′(1) > 0.

In general, the reward distribution can be characterized from a variational perspective. This gives the
following theorem.

Theorem 4. If U is bounded, strongly concave, and increasing. There exists a probability measure µ∗

such that the reward distribution of (2) converges in distribution to µ∗, which is uniquely determined
by the following two properties:

(a) µ∗ maximizes
E
X,X′iid∼µ

U(|X −X ′|)

over all probability measures µ on [0, 1], and

(b) it is symmetric with respect to 1
2 in the sense that, for any measurable set A ∈ [0, 1] and

1−A = {x : 1− x ∈ A}, µ∗(A) = µ∗(1−A).

3 EXPERIMENTS

In this section, we conduct experiments to investigate the phenomenon of reward collapse and
demonstrate that prompt-aware training can prevent reward collapse.

3.1 EVIDENCE OF REWARD COLLAPSE IN LARGE LANGUAGE MODEL

We start our investigation by conducting experiments utilizing a LLM, specifically GPT-Neo-
1.3B (Black et al. (2021)). Guided by the methodologies outlined in the StackLlama project (Beeching
et al. (2023)), we trained the model on the StackExchange preference dataset (Lambert et al. (2023)),
a robust resource that provides rankings of responses for individual prompts.

Constrained by computational resources, we focused our training on a carefully selected subset of the
dataset containing only the prompts accompanied by exactly five responses. Our experimental setup
comprised 128 distinct prompts, each of which contributed 10 pairs to the reward modeling process.
By adopting the codebase from StackLlama (Beeching et al. (2023)), and setting the learning rate to
3× 10−5 along with a batch size of 20 pairs, we carried out the training over 10 epochs.

As demonstrated in Figure 1, our results highlight the emergence of the reward collapse phenomenon
under these realistic conditions. The evidence of this effect can be observed as the distribution
becomes increasingly concentrated over the course of the training.

3.2 SETUP OF OUR SECOND EXPERIMENT

The open-source datasets currently available for RLHF are rather limited. Most of these
datasets (Nakano et al. (2021); Bai et al. (2022a)) typically include only a handful of candidate
responses (usually a single pair) for each corresponding prompt question. Moreover, the ranking sig-
nals in those datasets are usually noisy, either because they are sourced from the Internet (Ethayarajh
et al. (2023)) or because of the inherent subjectivity of the ranking process.
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Figure 3: Reward collapse on the test set. The reward distributions have similar collapse phe-
nomenons on the test set, and using prompt-aware loss can mitigate the collapse.

(a) log sigmoid as utility function (b) Prompt-aware utility function

Figure 4: (Left) The reward distribution of different prompts gradually converges into a single distri-
bution during training. (Right) When using the prompt-aware loss function, the reward distributions
of the two different prompts can be gradually separated during training.

In order to conduct a carefully controlled experiment, we curated our own dataset, focusing on a
single, simplified feature – the length of the response, measured in terms of word count as the ground
truth reward. A subset of questions was selected from the LongForm dataset (Köksal et al. (2023)), a
question-answer dataset characterized by its lengthy answers. To simulate scenarios with open-ended
and concrete problems, we truncated the original answer according to two distinct length distributions,
thereby generating eight responses for each prompt: the first distribution is nearly uniform, ranging
from 10 to 80 words, while the second is a polarized distribution with response lengths primarily
clustered around either 30 or 60 words. Each question was randomly assigned as either open-ended
or concrete. 3 Additionally, the phrases "Write the answer in an open-ended way." and "Write either
a short answer or a long answer." were added to the open-ended and concrete questions, respectively,
to distinguish the question type. Following this process, we constructed a dataset comprising 8192
training questions and 16 test questions.

In our experiments, we focus on the following U functions: x, log x, −1/x, as well as
log sigmoid(x), which is employed in Ouyang et al. (2022) and the prompt-aware U , which
adaptively selects U from x and −1/x. Given that the U function operates on x in the range [−1, 1],
we adjust some U functions with suitable continuous extensions or scaling. We then train a DeBERTa
V3 (He et al. (2021)) as the reward model. The training details can be found in Appendix A.1.

3.3 EXPERIMENTAL RESULTS

Fixed loss function leads to reward collapse. As depicted in Figure 4(a), reward distributions
corresponding to different prompts gradually converge towards a single, prompt-independent distribu-
tion throughout the training process. Specifically, in the context of Figure 4(a), where the U function
is represented by LogSigmoid, the reward distribution exhibits positive probability mass at reward

3In practice, such assignments can be done by various methods. See Appendix A.2 for a short discussion.
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scores of 0 and 1 (illustrated by the flat segments corresponding to the first two and last two scores).
This observation validates the prediction encapsulated in Theorem 3. Examining other U functions,
Figures 3 collectively indicates the occurrence of loss collapse on the test datasets. Specifically,
employing x as the U function results in a polarized reward distribution, whereas utilizing −1/x as
the U function yields a uniform reward distribution.

Prompt-aware training avoids reward collapse. Figures 3 shows the reward distribution at the
end of training with varying utility functions. The results along with Figure 4(b) reveal that using a
prompt-aware U function effectively prevents reward collapse across both training and test datasets.
This strategy yields a more uniform reward distribution for open-ended prompts while promoting a
more polarized reward distribution for concrete prompts.

4 PROOFS

In this section, we will briefly present the proofs of results in Section 2. However, we will deviate
from the previous order and start by proving Theorem 4. We also put the proof of Theorem 3 into
Appendix C.3 due to the length constraint. Let

S(r1, · · · , rn) :=
∑

1≤i<j≤n

U(ri − rj) and r̂ ≡ (r̂1, . . . , r̂n) := arg max
0≤r1,··· ,rn≤1

S(r1, · · · , rn).

In addition, for any vector (u1, · · · , un) ∈ Rn, we employ boldface notation u to represent the entire
vector. THis allows us to write S(r).

4.1 PROOF OF THEOREM 4

First, when U is concave and strictly increasing, r̂ exhibits the following properties:
Lemma 4.1. If U is strictly concave and strictly increasing, the function S(r) is concave. Therefore,
the optimization problem uniquely determines r̂n. Additionally, the following properties hold: (1)
r̂1 ≥ · · · ≥ r̂n, and (2) 1− r̂i = r̂n−i+1 for any 1 ≤ i ≤ n.

The proof of Lemma 4.1 is straightforward and is provided in Appendix B.1. Upon further examina-
tion of the function S(r), we discover that if U is strongly concave with parameter µ > 0, then S
also exhibits some kind of strongly concavity, except in the direction (1, 1, · · · , 1). This property is
formulated in the following lemma.
Lemma 4.2. If U is strongly concave with parameter µ > 0, and we consider another vector
u = (u1, . . . , un) where u1 ≥ · · · ≥ un, the following inequality holds:

S(u)− S(r̂) ≤ −nµ

2
∥ProjVn

(u− r̂)∥2.

Here, Vn ⊂ Rn is the subspace orthogonal to (1, · · · , 1), and ∥ · ∥ represents the Euclidean norm.

The proof of this lemma can be found in Appendix B.2. Our next lemma quantifies the difference
between two symmetric probability measures.

Lemma 4.3. For two different symmetric probability measure µ1 and µ2 on [0, 1], let r(j)i = 1
2 inf{t :

µj([0, t]) ≥ n−i
n−1} + 1

2 sup{t : µj([0, t)) < n−i
n−1}}), i = 1, 2, · · · , n; j = 1, 2. Then there exists

positive constant c0 such that for all n,

∥ProjVn
(r(1) − r(2))∥22 ≥ c0n.

The proof of Lemma 4.3 is also provided in Appendix B.3. Now, we are ready to prove the uniqueness
part of Theorem 4. Due to the length constraint, we will present it as a separate lemma and defer
the proof to Appendix B.4. In short, we use Lemma 4.2 and 4.3 to demonstrate that for two distinct
symmetric measures, their distance is sufficiently large such that at least one of them is not optimal.
Lemma 4.4. If µ1 and µ2 are two symmetric probability measure which both maximize

E
X,X′iid∼µ

U(|X −X ′|)

over all probability measures µ on [0, 1]. Then we have µ1 = µ2.
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Now we are ready to prove the convergence part of Theorem 4.

Proof of Theorem 4. Let P̂n := 1
n

∑n
i=1 δr̂n denote the empirical distribution of r̂n. Note that {P̂n}

are probability measures defined on [0, 1], so they are tight. By Prohorov’s theorem, there exists a
sub-sequence {k(n)}n≥1 such that P̂k(n)

d→ µ̂. Let Xn, X
′
n

iid∼ P̂n and X̂, X̂ ′ iid∼ µ̂. By continuous

mapping theorem, we also have |Xn − X ′
n|

d→ |X̂ − X̂ ′|. Moreover, because U is bounded and
continuous, Portmanteau theorem gives

E
X,X′iid∼ P̂k(n)

U(|X −X ′|) → E
X,X′iid∼ µ̂

U(|X −X ′|).

Let µ be another probability measure on [0, 1]. Let Q̂n = 1
n

∑n
i=1 δqn,i such that Q̂n

d→ µ. By the
same argument before, we also have E

X,X′iid∼ Q̂k(n)

U(|X −X ′|) → E
X,X′iid∼µ

U(|X −X ′|). Then

by the optimal assumption of r̂n ,

E
X,X′iid∼ µ̂

U(|X −X ′|) = lim
n→∞

E
X,X′iid∼ P̂k(n)

U(|X −X ′|)

≥ lim
n→∞

E
X,X′iid∼ Q̂k(n)

U(|X −X ′|) = E
X,X′iid∼µ

U(|X −X ′|).

This means µ̂ maximize E
X,X′iid∼µ

U(|X − X ′|) over all probability measure µ on [0, 1]. From
Lemma 4.1, we know that 1 − r̂i = r̂n−i+1, so µ̂ is symmetric. If there is another sub-sequence
m(n) such that P̂m(n)

d→ ν̂. By the same argument before, ν̂ is also optimal and symmetric. From
Lemma 4.4, µ̂ = ν̂. Thus for every converging sub-sequence of {P̂n}, the limit distribution must be
the same. By the tightness of {P̂n}, we have P̂n

d→ µ∗.

4.2 PROOF OF THEOREM 1

For the utility function Uγ(x) = xγ , having established Theorem 4, our objective is to identify
a symmetric probability measure µ∗ that maximizes E

X,X′ iid∼µ
Uγ(|X − X ′|). By employing the

variational principle, we can derive a condition that is necessary for optimality. Notably, this condition
also suffices for optimality.
Lemma 4.5. Let Uγ(x) = xγ for some γ ∈ (0, 1). A probability measure µ on [0, 1] will maximize
E
X,X′iid∼µ

Uγ(|X−X ′|) if it satisfies the condition that EX∼µ Uγ(|X−c|) is independent of c ∈ [0, 1].

The proof of Lemma 4.5 is provided in Appendix C.1. Therefore, proving Theorem 1 is reduced to
verifying the condition stated in Lemma 4.5. This verification process is tedious and will be deferred
to Appendix C.2 for brevity.

5 EXTENSION TO PAIRWISE COMPARISONS

Our Prompt-Aware approach can be generalized to accommodate other settings, such as instances
where only pairwise preference data is accessible. Pairwise preference data may include loops, similar
to the rock-paper-scissors scenario, and can be produced from a probabilistic model. Consequently,
the data might simultaneously indicate a preference of A over B and a preference of B over A.
Pairwise preference data is extensively utilized in RLHF (Christiano et al. (2017); Ibarz et al. (2018);
Ziegler et al. (2019); Ouyang et al. (2022); Zhu et al. (2023)).

We explore the well-known Bradley-Terry-Luce (BTL) model (Bradley & Terry (1952); Luce (2012)),
which assumes the existence of scores {θi}1≤i≤n for n items such that the preference between item i
and item j is given by P(i is preferred over j) = σ(θi − θj), where σ denotes the sigmoid function
σ(x) = 1/(1 + exp(−x)). This probabilistic model effectively captures the relative preferences
between items, based on the disparity in their underlying scores.

To illustrate our framework, we consider the following expected version problem:

max
0≤r1,··· ,rn≤1

S(r1, · · · , rn), where S(r1, · · · , rn) =
∑

1≤i,j≤n

U(ri − rj)σ(θi − θj).
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The function S(r) is similar to a family of log-likelihood functions considered in (Noothigattu et al.
(2020)). We presume that U is increasing and concave. Then similar to Lemma 4.1, U is also concave
in (r1, · · · , rn). Let r̂ = (r̂1, . . . , r̂n) be the vector that maximizes S(r) =

∑
1≤i,j≤n U(ri −

rj)σ(θi − θj). We present the following consistency result on r̂:
Theorem 5. Assuming that U is increasing and strongly concave with a constant µ > 0 and
κ = max1≤i≤n |θi|. Then r̂ keep the order of {θi}1≤i≤n, and we have the following:

|r̂i − r̂j | ≤ 2
√

U(1)(1 + eκ)|θi − θj |/µ.

The proof of these results can be found in Appendix D. Theorem 5 ensures that for any increasing
and strongly concave utility function U , r̂ is a reliable estimate of {θi}1≤i≤n, in the sense that r̂i and
r̂j are close if θi and θj are close.

Even though we may not be able to determine the precise limiting distribution of rn in this extended
setting, we can still extract insights from our previous analysis in Section 2. As previously observed,
selecting U(x) = x tends to polarize the reward distribution, while selecting U(x) = −1/x yields a
more uniform reward distribution.This phenomenon is also evident in this setting, as observed in the
results presented in Figure 5. More details is given in Appendix D.
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Figure 5: Reward distribution with different choice of {θ}1≤i≤n when n = 21.

Based on these findings, we can conclude that in this extended setting, we can also employ a prompt-
aware utility function U to mitigate reward collapse and achieve the desired reward distribution by
carefully selecting the form of U . This provides us with flexibility in shaping the reward distribution
according to our specific requirements.

6 DISCUSSION

In this paper, we have introduced an empirical phenomenon known as reward collapse that arises
during reward model training for aligning LLMs using human preference rankings. This phenomenon
results in the same reward distribution regardless of the prompt type. The occurrence of reward
collapse stems from neural network interpolation during the final training phase. To mitigate reward
collapse, we propose utility functions that consider the nature of prompts and an analytical framework
that evaluates reward distribution, yielding closed-form reward expressions. Synthetic experiments
substantiate our findings, presenting a method superior to early stopping to tackle reward collapse.

While our experiments provide valuable insights, it is important to acknowledge their limitations,
primarily stemming from the constrained computational resources available. Given abundant re-
sources, future research can explore the use of a more diverse range of prompts, varying in terms
of their open-endedness. Additionally, it would be interesting to investigate the extent to which the
trained reward model enhances the capabilities of large language models, such as their ability to
self-calibrate uncertaintycite (Lin et al. (2022); Kadavath et al. (2022)). Theoretical investigations
could focus on finding increasing, concave functions that precisely match a given discrete reward
distribution. On the practical side, developing a method to choose a utility function based on prompts,
perhaps using a parameter such as γ in Section 2.2, poses an intriguing avenue for further exploration.
Furthermore, exploring the potential benefits of truncated ranking by requiring human labelers to
provide partial rankings of acceptable completions and ignore unacceptable completions could offer
valuable insights into improving the training of reward models.
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