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Abstract

Asynchronous Bayesian optimization is widely used for gradient-free optimization
in domains with independent parallel experiments and varying evaluation times.
Previous works posit that standard acquisitions lead to under exploration of the
space via redundant queries. We show that this is not the case: standard acquisition
functions avoid redundant queries thanks to the intermediate posterior updates.
We show theoretically that penalization-based methods are approximations to the
Kriging Believer, a method with known shortcomings. By analysing distance to
busy locations, we also show that by enforcing diversity incumbent methods over-
explore and under-exploit in asynchronous settings, reducing their performance. In
contrast, our extensive experiments demonstrate that simple standard acquisition
functions, like the Upper Confidence Bound, match or outperform purpose-built
asynchronous methods across synthetic and real-world tasks.

1 Introduction

The exploration-exploitation trade-off is fundamental to many learning systems that must efficiently
allocate limited resources between gathering new information and leveraging existing knowledge
[5, 36]. One area this challenge arises in is black-box optimization (BBO), where the goal is to
optimize functions with no known analytical form or gradient information via expensive to run
experiments. Bayesian optimization (BO) provides a principled framework for this exploration-
exploitation balance, using probabilistic surrogate models to guide the search toward promising
regions. Applications span materials discovery [8, 32], chemical design [19, 39], nuclear and
accelerator physics [11, 33], and hyperparameter tuning in machine learning [7, 24, 34, 43].

It is often possible to run many experiments in parallel. These might correspond to different devices
in a wet lab or different GPUs on a compute cluster. Due to varying function evaluation times,
practitioners may opt for an asynchronous BO approach to minimize idle times [10, 13, 25, 38, 44].
In asynchronous BO, whenever a worker becomes available, a new input location must be selected
without access to the outcomes of pending experiments. This challenge leads to the following,
seemingly reasonable, hypothesis.

Hypothesis 1 (Standard acquisition fails at exploration in asynchronous BO). Due to the unknown
pending evaluations, it is necessary to explicitly enforce diversity in asynchronous BO queries.
Standard acquisition functions’ failure to do so will result in repeated or redundant queries, wasting
evaluation resources, thus leading to poor BO results.
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Figure 1: We find that (I.) standard acquisition outperforms or matches methods purpose-built
for asynchronous Bayesian optimization. (II.) Comparing the distances of queries to the closest
busy location, we see that standard acquisition exhibits the desirable transition from exploration
to exploitation, but does not repeat queries. (III.) Standard acquisition functions query at similar
distances as their sequential counterparts, suggesting that nearby sampling is part of a desirable
exploration-exploitation trade-off. Results shown on Ackley (d = 10, q = 8).

All existing works on asynchronous BO—explicitly or implicitly—build on Hypothesis 1, by propos-
ing acquisition rules enforcing diversity in the asynchronous queries. This is generally achieved
through either randomness [9, 23], or through penalization of the acquisition function at and around
busy locations [1]. Earlier work approximately marginalizes out the unknown function values via
Monte Carlo sampling [17, 21, 34], or replaces them with a hallucinated proxy [16].

In this work, we perform the first critical examination of Hypothesis 1, both conceptually and
empirically. We argue that the reasoning in Hypothesis 1 is false, and by extension, proposed methods
based on it are unnecessary. We observe that Hypothesis 1 fails to account for the update to the
surrogate model with a new datum, before the next input is asynchronously selected. Additionally, we
show a novel connection between penalization-based methods and the well-known Kriging Believer
(KB) [16] heuristic. Given the known shortcomings of the KB [1, 9], we argue that the poor empirical
results of penalization-based methods are unsurprising [9].

Instead, we propose to use existing standard and seemingly naive acquisition rules, such as the
Upper Confidence Bound (UCB) [3, 35] or Expected Improvement (EI) [29]. Excellent performance
on an extensive suite of experiments supports our conceptual and theoretical insights regarding
the inadequacy of Hypothesis 1. This is further investigated in an analysis of the distances of
asynchronous queries to currently busy locations, revealing a similar exploration-exploitation trade-
off as that in the optimally informed sequential BO.

Our contributions can be summarized as follows.

• We identify a conceptual flaw in reasoning about exploration needs in asynchronous BO,
showing that Hypothesis 1 fails to account for information gained from completed evalua-
tions.

• We demonstrate theoretically that diversity-enforcing methods approximate the Kriging
Believer heuristic, explaining their poor exploration-exploitation balance.

• We show empirically that standard acquisition functions achieve effective exploration in
asynchronous BO, matching or outperforming purpose-built methods across synthetic and
real-world tasks.

• We provide evidence that standard approaches naturally balance exploration and exploitation
similarly to optimally informed sequential BO, suggesting explicit diversity enforcement
may actually harm effective exploration.

2 Preliminaries

Formal problem statement In this work, we consider the global optimization of real-valued
functions, f : X 7→ R, on some compact domain X ⊆ Rd. It is assumed that f(·) may be queried at
some point in the input space xi ∈ X , resulting in a time-delayed observation of the corresponding
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output yi ∈ R. The evaluation time varies throughout the input space. After n completed evaluations,
y = {yi}ni=1, at inputs X = {xi}ni=1, we have data Dn. In the asynchronous setting with q workers,
the unknown function values at busy locations, B = {xj}q−1

j=1 , are denoted by yb = {yj}q−1
j=1 , which

we collect in unobserved data Db.

Bayesian optimization Designed for expensive-to-evaluate black-box objective functions, Bayesian
optimization is a sample-efficient global optimization framework [22]. In order to optimize the
objective, f(·), with mere point-wise evaluation, Bayesian optimization represents the uncertainty
in the objective via a probabilistic surrogate model, built from Dn. The surrogate then informs an
acquisition function, proposing the next query location x′ ∈ X . See Appendix A for an illustration of
synchronous vs. asynchronous BO and pseudo code of an asynchronous BO routine.

Gaussian Process surrogate A zero-mean Gaussian Process (GP) prior, G = GP (0, kϕ(·, ·)), is
defined through a positive definite covariance function kϕ : X × X 7→ R, with hyperparameters ϕ.
The GP is a standard choice, as it allows for the incorporation of prior knowledge on smoothness,
periodicity, and trend of f(·), as well as an analytical posterior [40].

Given a Gaussian observation model with noise σ2
y for data Dn = (X,y), the posterior predictive

distribution at any given input location, x, is Gaussian with,

p(f(x) | Dn) = N (f(x) | µ(x | Dn), σ
2(x | Dn)). (1)

The posterior mean µ : X 7→ R and variance σ2 : X 7→ R≥0 are analytically tractable as,

µ(x | Dn) = kϕ(x,X)(KXX + σ2
yIn)

−1y (2)

σ2(x | Dn) = kϕ(x, x)− kϕ(x,X)(KXX + σ2
yIn)

−1kϕ(X,x) (3)

with KXX being the kernel matrix of input locations X , i.e., [KXX ]ij = kϕ(xi, xj) ∀ i, j ∈ [n].

Acquisition function In sequential and asynchronous BO alike, a new input location x′ ∈ X is
chosen, as soon as an evaluation resource (e.g. a GPU) becomes available. The choice, x′, is made
via a heuristic termed the acquisition function. A number of acquisition functions proposed in the
literature are considered in this work and outlined in the following Section 3.

3 Acquisition rules

The probabilistic nature of the surrogate model allows the acquisition function to reason about
uncertainty in f(·). This, in turn, guides the trade-off of exploration and exploitation of the search
space X . Formally, the next query location, x′, is proposed by an acquisition rule, with acquisition
function α : X 7→ R, as

x′ = argmax
x∈X

α(x | Dn). (4)

We drop the conditioning on Dn for notational convenience, unless explicitly mentioning it is
necessary. This section presents a number of standard and asynchronous acquisition rules relevant to
our work. A more detailed discussion can be found in Appendix B.

3.1 Standard acquisition functions

Upper Confidence Bound Encoding the exploration-exploitation trade-off via the parameter β, the
GP Upper Confidence Bound (UCB) [3, 35] is defined as

αUCB(x) = µ(x | Dn) +
√

βσ(x | Dn). (5)

Expected Improvement The Expected Improvement (EI) [22, 29] acquisition function assigns
utility to an input location, x ∈ X , according to how much the associated function value, f(x), is
expected (under the surrogate posterior) to improve on the best function value, y∗n = max

i∈[n]
y, observed

so far. Formally,

αEI(x) = Ef |Dn
[max(f(x)− y∗n, 0)]. (6)

For numerical stability in the optimization, this work uses the natural logarithm of EI [2].
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3.2 Asynchronous acquisition rules

Building on Hypothesis 1, numerous methods for asynchronous batch Bayesian optimization have
been proposed in previous works. These approaches generally fall into several categories: Monte
Carlo sampling methods that approximately marginalize over unknown function values at busy
locations [17, 21, 34], hallucination-based methods like the Kriging Believer which replace unknown
values with assumed values [15, 16], randomness-based approaches including Thompson sampling
[23, 37] and AEGIS [9], and penalization-based methods that down-weight acquisition functions
near busy locations using (local) Lipschitz estimates [1]. We note that these existing works all either
did not compare their method to standard acquisition or did not outperform it. Detailed descriptions
of these methods are provided in Appendix B.2.

4 Conceptual and theoretical analysis

4.1 Each new query is selected under a different—and more informed—GP posterior

As described in line 1 of Algorithm 1, the q workers are initialized at quasi-random locations (e.g.,
Halton sequence [20]) in the search space, X , guaranteeing initial diversity. Once a worker finishes
its function evaluation, yn+1, at xn+1, it immediately makes a new acquisition. This new acquisition
is informed by the newly arrived datum (xn+1, yn+1), as well as all data collected by all workers
prior Dn+1 = Dn ∪ (xn+1, yn+1), and selected, as outlined in Section 3, by

x′ = argmax
x∈X

α(x | Dn+1). (7)

Observation 1 (Hypothesis 1 neglects GP surrogate update). Hypothesis 1 states that the new input
location, x′, will either be redundant or even repeated. However, the new datum, (xn+1, yn+1),
updates the GP surrogate, resulting in a very different optimum for the acquisition function.

While Observation 1 suggests that there should be some exploration from standard acquisition in
Asynchronous BO, it does not give guarantees that new queries will not be arbitrarily close to
running experiments. However, this does not mean that standard acquisition will result in a bad
exploration-exploitation trade-off. For instance, in the sequential BO setting, to the best of our
knowledge, there is no theoretical guarantee that sequential queries will not be arbitrarily close to
recent queries—yet in that setting it has been empirically verified that standard acquisition will
result in good exploration-exploitation trade-offs. Just as in the sequential case, each asynchronous
acquisition is preceded by a newly completed evaluation. This should lead to a shift in the acquisition
function of comparable magnitude, and thus to similarly diverse queries. We verify this empirically
in Section 5.2.

4.2 Marginalizing busy locations in the UCB approximates the Kriging Believer and is
suboptimal

The penalization-based methods by Alvi et al. [1] (Section 3.2) are derived as an approximation of
the acquisition function with the unknown function values, yb = {yj}q−1

j=1 , at the busy locations,
B = {xj}q−1

j=1 , marginalized out. Formally, their method is proposed to approximate

αLP (x | B) ≈ E[α(x | Dn, Db) | Dn,B] (8)

=

∫
α(x | Dn, Db) p(yb | Dn)dyb, (9)

with Db = (B,yb) being the unknown (i.e., random) data from busy locations. This expectation
is taken under the GP posterior predictive, such that yb simply follows a multivariate Gaussian
distribution. In particular, following Equations (2) and (3), we have,

p(yb | Dn) = N (yb | µb,Σb), (10)

with

µb = KBX(KXX + σ2
yIn)

−1y ∈ Rq−1 (11)

Σb = KBB −KBX(KXX + σ2
yIn)

−1KXB ∈ R(q−1)×(q−1). (12)
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Figure 2: Standard acquisition dominates across dimensions and number of workers. The stan-
dard UCB outperforms all other methods on all tasks, with the exception of the Rosenbrock function,
where standard LogEI performs better. This superior performance is robust to the dimensionality
and the number of workers, whereas the performance of the purpose-built asynchronous methods is
always worse and more sensitive to task parameters.

The intractability of the expectation in Equation (8) for the EI is what motivated Ginsbourger
et al. [17], who approximately marginalize out the unknown function values via a Monte Carlo
sampling-based approach (Section 3.2). But, in the case of the UCB, the acquisition function used by
penalization-based methods [1], this integral is in fact analytically tractable and leads to a well-known
heuristic.
Proposition 1 (Marginalized UCB is the Kriging Believer). Consider the random Upper Confidence
Bound, αUCB(x|Dn, (B,yb)), of the GP surrogate posterior, with unobserved function values, yb,
at known busy locations, B. Then it holds that

E[αUCB(x | Dn, (B,yb)) | Dn,B] = αUCB(x | Dn, (B, µb)). (13)

Proof. The proof is given in Appendix C.

We use the fact that µ(· | Dn, Db) is linear in yb and that σ(x | Dn, Db) only depends on the known
input locations, X and B, but not on the unknown function values.

From the above result, it can be seen that marginalizing over the values at busy locations gives the
UCB we would get by simply assuming the posterior mean, µb, at B. This is a heuristic well known
as the Kriging Believer [16]. Proposition 1 also gives an additional insight into the Kriging Believer.
We have now shown that, in the case of the UCB, the Kriging Believer is maximizing the expected
acquisition function. This insight suggests that maximizing the expected value of the acquisition
function can ignore the uncertainty of unknown function values, yb, thereby ignoring promising areas
that deserve more exploration. This provides a theoretical underpinning for the poor performance of
these methods [1, 9], which we demonstrate in the following section.

5 Experimental evaluation

5.1 Bayesian Optimization Performance

In our results, we report the logarithm of the simple regret, R, log(R) = log |f∗ − y∗n|, where f∗ is
the known function optimum. We plot the median of the log(R) together with the inter-quartile range.
For details on the implementation1 and tasks, please refer to Appendices D and E.

Synthetic test functions We compare acquisition rules on synthetic test functions across varying
dimensions and worker counts, with each experiment repeated 20 times using different initializations

1We make our code available at https://github.com/Ben-Riegler/AsyncBO_EXAIT

5

https://github.com/Ben-Riegler/AsyncBO_EXAIT


0 25 50 75

−0.1

0.7

1.5

lo
g(
R

)

PROTEUS (d=9, q=2)

0 25 50 75

−0.80

0.25

1.75
Pest Control (d=25, q=2)

0 10 20 30

−3.40

−2.75

−2.10
XG-Boost (d=9, q=8)

0 400 800 1200

−0.9

−0.5

−0.1
CNN (d=9, q=2)

0 6 12 18

Time (s)

−0.5

0.5

1.5

lo
g(
R

)

PROTEUS (d=9, q=20)

0 25 50 75

Time (s)

−1.25

0.25

1.75
Pest Control (d=25, q=8)

0 3 6 9

Time (s)

−3.40

−2.75

−2.10
XG-Boost (d=9, q=16)

0 60 120 180

Time (s)

−0.7

−0.4

−0.1
CNN (d=9, q=6)

UCB LogEI AEGIS TS LP-UCB LLP-UCB

Figure 3: Standard acquisition performs best on real-world tasks. Our findings from the syn-
thetic test functions regarding the superior performance of standard acquisition over specialized
asynchronous methods transfer to challenging real-world tasks, such as hyperparameter tuning, even
in the cases of high dimensionality (e.g., Pest Control) or a large number of workers (e.g., PROTEUS).
Moreover, increasing the number of workers appears to disproportionately benefit the standard acqui-
sition methods, particularly on hyperparameter tuning tasks.

and evaluation times sampled from a half-normal distribution with scale parameter θ =
√

π/2 to
simulate asynchronous settings [1, 9]. As shown in Figure 2, no penalization- or randomness-based
method outperforms both standard UCB and LogEI, with UCB demonstrating strong performance
on nearly all synthetic tasks (except Rosenbrock, where LogEI dominates) despite using a fixed
exploration parameter β = 2 rather than more sophisticated scheduling approaches [35]. While the
local Lipschitz penalization-based method (LLP-UCB) and Thompson sampling show consistently
poor performance, AEGIS occasionally matches standard acquisition performance on specific func-
tions where its predefined exploration-exploitation trade-off (encoded in ϵT and ϵP ) happens to be
appropriate—though this fails to generalize across all test functions. Additional results on more test
functions and configurations (d, q) can be found in Appendix F.

Real-world tasks To demonstrate the robustness of our findings, we perform experiments on
four relevant real-world tasks with 9 different initializations (reduced from 20 due to computational
constraints): PROTEUS, an astrophysics simulator requiring optimization of d = 9 inputs to match
simulator output with observations [28, 30]; Pest Control, a well-known benchmark with 25 categori-
cal variables representing pesticide amounts on crops [31]; and two 9-dimensional hyperparameter
tuning tasks using XG-Boost [12] and Convolutional Neural Networks [27]. As shown in Figure 3,
standard acquisition functions benefit disproportionately from increased worker counts q compared to
existing methods, with this effect particularly pronounced for hyperparameter tuning tasks—contrary
to Hypothesis 1, standard methods effectively utilize large numbers of parallel workers without requir-
ing explicit regularization via penalization or randomness. Consistent with our theoretical predictions
in Section 4.2, penalization-based approaches show particularly poor performance, especially the
local Lipschitz variant on Pest Control, XG-Boost, and CNN tasks.

5.2 Analysis of distances of queries from busy locations

We now turn to an empirical investigation of our conceptual analysis in Section 4.1. Hypothesis 1
claims that in the absence of regularization, query distances to busy locations will be small or even
zero. To quantify this behaviour, we consider the distances of asynchronous queries to currently busy
locations. As a gold standard, we also introduce the distances of the optimally informed sequential
BO queries to the q − 1 most recently sampled points, i.e., the points which would be busy if
asynchronous BO had perfect information. This allows for comparison of the exploration-exploitation
trade-off made by all methods considered. Formally, we define the distance, ∆, of the asynchronous
query, x′, from busy locations, as

∆ ≡ min
xj∈B
∥x′ − xj∥2, (14)
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Figure 4: Standard acquisition functions perform an exploration-exploitation trade-off similar
to that of their optimally informed sequential counterparts. We consider the distance, ∆, of an
asynchronous query to the closest of q − 1 busy locations, and the distance, ∆seq, of a sequential
query to the closest out of the q− 1 previous queries. It can be seen that standard acquisition methods
do not repeat queries, and that standard acquisitions query at similar distances in the asynchronous
setting as in the sequential setting.

and the distance, ∆seq , of the nth query in sequential BO to the last q − 1 sequential queries as

∆seq ≡ min
i∈[q−1]

∥xn − xn−i∥2. (15)

In Figure 4, we show the median and inter-quartile range of these distances for a number of test
functions. It can be seen that existing methods query farther from busy locations than standard
acquisition, as is intended. But, contrary to Hypothesis 1, standard acquisition does not perform
repeated queries at the start of the optimization. In fact, standard acquisition functions often exhibit
the desirable transition from an initial exploratory phase (∆ large) to an exploitation stage (∆ small).

Even more interestingly, the comparison of standard acquisition functions to their respective sequential
counterparts (Figure 4) shows that standard acquisition in the asynchronous setting closely mimics
the query distances of the sequential one. This analysis reveals that the exploration-exploitation
behaviour of standard acquisition functions is not dependent on the asynchronous setting, but simply
a characteristic of the acquisition functions themselves.

This sheds light on the superior performance of standard acquisition in asynchronous BO shown in
Section 5.1. Existing purpose-built methods enforcing diversity through penalization or randomness
seem to suffer from over-regularization, preventing the methods from leaving the exploration phase.
On the other hand, standard acquisition performs an exploration-exploitation trade-off closely aligned
with that of the optimally informed sequential BO.

6 Discussion and conclusion

Good results in BO require making good exploration-exploitation trade-offs [35]. Hypothesis 1
claims a severe over-exploitation (including repeated queries) from the very start of the optimization
for standard acquisition functions in asynchronous BO. However, we point out that the newly
obtained evaluation has the potential to result in an acquisition function with a very different optimum
(Observation 1). Additionally, we show that standard acquisition methods mimic the exploration-
exploitation trade-off of the optimally informed sequential BO. Contrary to Hypothesis 1, it seems that
methods explicitly enforcing diversity in queries suffer from over-exploration instead of performing
the desired transition from an initial exploration phase to a later exploitation stage.

While we demonstrate in this work that the literature has not presented a purpose-built method
superior to standard acquisition in asynchronous BO, this does not mean such a method cannot
exist. Clearly, knowledge of function values at busy locations should improve the acquisition. In
future research, we plan to further explore mechanisms taking into account the busy locations and
higher-order moments of the unknown function values to improve performance.
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A Asynchronous BO Algorithm

The formal description of asynchronous BO is given in Algorithm 1. An illustration is also given in
Figure 5.

busy
idle
query

Asynchronous

Synchronous

Time

w1
w2
w3

w1
w2
w3

Figure 5: Illustration of Synchronous vs. Asyn-
chronous BO with q = 3 workers. The Asyn-
chronous setup allows for more queries in the
same wall-clock time by avoiding idle workers.

Algorithm 1 Asynchronous BO with q workers

Require: Oracle f(·), acquisition function α(·),
initial data D0 = {(xi, yi)}n0

i=1, time budget
T , number of workers q

1: initialize: B ← {xj}qj=1 quasi-random
2: start timer
3: for xj ∈ B do
4: start worker with query f(xj)
5: end for
6: while elapsed time < T do
7: if query (xn+1, yn+1) completed then
8: Dn+1 ← Dn ∪ {(xn+1, yn+1)}
9: B ← B \ {xn+1}

10: G ← fit-surrogate(G, Dn+1)
11: x′ ← argmax

x∈X
α(x | Dn+1)

12: B ← B ∪ {x′}
13: start worker with query f(x′)
14: end if
15: end while
16: return i∗ = argmaxi yi and (xi∗ , yi∗)

B Acquisition function details

B.1 Standard acquisition

Upper Confidence Bound The GP Upper Confidence Bound (UCB) [35] is a simple heuristic
based on optimizing a quantile of the credability interval, for example the 95% outcome. It is defined
as

αUCB(x) = µ(x | Dn) +
√

βσ(x | Dn), (16)
with µ(·) and σ(·) as in Equations (2) and (3).

It can be seen as a weighted sum of the posterior mean and standard deviation, where the relative
contribution of each summand is set via the hyperparameter β. The exploration-exploitation trade-off
is controlled by β, which may be set to a fixed value or according to some schedule [35].

Expected Improvement The Expected Improvement (EI) [22, 29] acquisition function assigns
utility to an input location, x ∈ X , according to how much the associated function value, f(x), is
expected (under the surrogate posterior) to improve on the best function value, y∗n = max

i∈[n]
y, observed

so far. Formally,
αEI(x) = Ef |Dn

[max(f(x)− y∗n, 0)]. (17)
For numerical stability in the optimization, this work uses the natural logarithm of EI [2].

B.2 Asynchronous acquisition rules

Monte Carlo sampling Ginsbourger et al. [17] present a Monte Carlo sampling-based estimate of
the expected EI, where the expectation is with respect to the unknown function values, yb, under the
GP surrogate. In particular, they form

αEEI(x) =
1

N

N∑
i=1

αEI(x|Dn, (B,yb,i)), (18)
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where {yb,i}Ni=1 are i.i.d. samples from the GP surrogate posterior predictive

p(yb | Dn) = N (yb | µb,Σb), (19)

with µb and Σb as in equations Equations (11) and (12).

While Ginsbourger et al. [17] do this for the EI, this approach may be taken for any analytical
acquisition function. But this approach suffers from poor scaling due to the need for repeated
posterior sampling. More importantly, this marginalization constitutes a first-moment approximation,
rendering it inherently suboptimal, as we argue in Section 4.2. Related asynchronous approaches by
Janusevskis et al. [21] and Snoek et al. [34] equally form a first-moment approximation via Monte
Carlo sampling and are thus plagued by similar issues.

Hallucination A further approach to dealing with the unobserved function values are hallucination-
based methods, such as the Kriging Believer [16]. Here, the unknown values, yb, are simply replaced
by their posterior means under the GP surrogate when forming the acquisition function. In particular,
for any analytic acquisition function, α(·),

αKB(x) = α(x | Dn, (B, µb)), (20)

with µb as in Equation (11).

While developed for synchronous q-batch construction, the constant liar heuristic offers an additional
mechanism to account for locations under evaluation [15].

Thompson sampling Thompson sampling (TS) is an acquisition rule based on sampling the
surrogate posterior [37]. The goal of the approach is to sample points in the input space where the
maximum is most likely to be. Consider a function g ∼ p(· | Dn) which is sampled from from the
surrogate posterior. The probability that a particular input being is the true maximizer, x∗, is given by

p(x∗|Dn) =

∫
p(x∗ | g) p(g | Dn)dg (21)

=

∫
δargmax

x∈X
g(x)(x

∗) p(g | Dn)dg, (22)

we can sample from p(x∗|Dn) in a simple two step procedure. First, draw g ∼ p(· | Dn), and then
return x′ = argmax

x∈X
g(x).

In this work, all Thompson samples are drawn using the state-of-the-art decoupled sampling method
by Wilson et al. [41], giving differentiable posterior function samples. This significantly enhances
performance over the standard approach of sampling function values at a discrete set of inputs.

In the context of asynchronous batch BO, this method was proposed, analyzed theoretically, and
evaluated empirically by Kandasamy et al. [23]. In line with Hypothesis 1, they motivate the need
for their method with the occurrence of redundant function evaluations in standard asynchronous
BO, while acknowledging that queries will not be exactly repeated. In the one real-world experiment
performed by Kandasamy et al. [23], this method did not outperform standard EI. Moreover, this
work does not use the numerically advantageous LogEI, since it precedes the work by Ament et al.
[2]. This likely explains the inferior performance of standard EI in their work compared to ours.

AEGIS Proposed by De Ath et al. [9], Asynchronous ϵ-Greedy Global Search (AEGIS) is an
acquisition rule probabilistically combining three heuristics: (i) performs TS with probability ϵT , (ii)
chooses randomly from the Pareto Frontier for the two objectives of maximizing the mean (µ(·))
and the variance (σ2(·)) with probability ϵP , and (iii) otherwise optimizes the surrogate mean. The
probabilities for the different modes are set as

ϵT = ϵP = ϵ/2 (23)
ϵ = min{2/√d, 1}, (24)

such that the tendency to exploit the surrogate mean decays as 1/
√
d.

De Ath et al. [9] are motivated by Hypothesis 1 and the shortcomings of TS. They choose not to
compare their method to standard acquisition rules like EI or UCB.
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(Local) Lipschitz penalization The asynchronous Lipschitz penalization (LP) method by Alvi
et al. [1] aims to ensure acquisition diversity by creating exclusion cones in the acquisition surface,
centered on the busy locations, B. This is based on work for sequentially constructing a q-batch, in
synchronous batch BO [18] (Figure 5). The extent of the penalization depends on an estimate of
the objective function’s Lipschitz constant, L, and the global optimum, f∗. Formally, Alvi et al. [1]
design the local penalizer centered at busy location xj , φ : X 7→ [0, 1], as

φ(x | xj) = min

{
L̂∥x− xj∥

| µ(xj)− y∗n | + γσ(xj)
, 1

}
. (25)

The objective optimum is estimated as the best function value found so far, y∗n = max
i∈[n]

y. The Lips-

chitz constant is estimated from the gradient of the posterior mean as L̂ = max
x∈X
∇µ(x). Any analytic

acquisition function, α(·), may then be locally penalized at a set of busy locations B = {xj}q−1
j=1 as

αLP (x | B) = αUCB(x)

q−1∏
j=1

φ(x | xj). (26)

Additionally, Alvi et al. [1] present a version of this where the Lipschitz constant is not shared by
all q − 1 penalizers, but estimated locally around the respective busy location. The search spaces
{Xj}q−1

j=1 for the local Lipschitz (LLP) estimation are then defined through the kernel lengthscales. In
particular, Xj ⊂ X is a hyper rectangle centered on xj , with side lengths equal to the lengthscales of
the respective dimensions.

Following Hypothesis 1, they motivate their method with the danger of repeated and redundant
queries at and in the vicinity of busy locations, B. In their work, they do not compare their method to
standard acquisition rules like EI or UCB.

C Proof Proposition 1

We begin by restating Proposition 1.
Proposition (Marginalized UCB is the Kriging Believer). Consider the random Upper Confidence
Bound, αUCB(x|Dn, (B,yb)), of the GP surrogate posterior, with unobserved function values, yb,
at known busy locations, B. Then it holds that

E[αUCB(x | Dn, (B,yb)) | Dn,B] = αUCB(x | Dn, (B, µb)).

Proof.

E[αUCB(x | Dn, Db) | Dn,B] =
∫ [

µ(x | Dn, Db) +
√
βσ(x | Dn, Db)

]
p(yb | Dn)dyb

=

∫
µ(x | Dn, Db) p(yb | Dn)dyb +

∫ √
βσ(x | Dn, Db) p(yb | Dn)dyb

We note that the value for σ(x|Dn, Db) (as given in Equaiton (3)) does not depend on the as of yet
unknown outputs. This makes the second expectation trivial, allowing the objective to be written as

E[αUCB(x | Dn, Db) | Dn,B] =
∫

k(x,X ∪ B)
[ [

KXX KXB
KBX KBB

]
+ σ2

yIn+q−1)

]−1 [
y
yb

]
p(yb | Dn)dyb

+
√

βσ(x | X,B)

The only random variable in the above integral is yb, which has known expectation µb. This integral
therefore exactly recovers the prediction if we assume that we will observe the mean value of the GP
for the currently busy locations

E[αUCB(x | Dn, Db) | Dn,B] = µ(x | Dn, (B, µb)) +
√
βσ(x | X,B)

= αUCB(x | Dn, (B, µb)).
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We note that this is equivalent to the KB heuristic [16].

D Implementation details

A zero-mean Gaussian Process prior with RBF kernel and ARD is used to form the surrogate in all
experiments. The kernel hyperparameters, ϕ, and the observation noise, σ2

y , were fit to optimize the
marginal likelihood of the data [40]. All inputs were normalized to the unit hypercube [0, 1]d, and
function values were standardized to have zero mean and unit variance.

The optimization of the acquisition function, as well as that of marginal likelihood, was carried out
using a multi-restart strategy with the L-BFGS-B algorithm [6]. We employ a multi-restart strategy,
where the best 10 from an initial set of 1000d candidates are optimized.

We kickstart the optimization with 3 ∗ d initial data points and then initialize the q workers. The input
locations of initial data, as well as the first batch of workers, are drawn from a randomly perturbed
Halton sequence in the appropriate dimension [20].

The Lipschitz penalizers of LP-UCB and LLP-UCB are approximated in a differentiable manner
using p = −5, as suggested by Alvi et al. [1], and use γ = 1 (Appendix B.2).

We implement our optimization pipeline in BoTorch [4] and GPyTorch [14], and make the code avail-
able at https://github.com/Ben-Riegler/AsyncBO_EXAIT. The implementation of AEGIS is
adopted from the authors De Ath et al. [9], where the approximate Pareto front is found with code from
https://github.com/georgedeath/aegis/blob/main/aegis/batch/nsga2_pygo.py.

E Optimization tasks

E.1 Synthetic test functions

The synthetic test functions we use are available as part of the BoTorch package [4]. We present
experiments in varying dimensions for the following functions: Ackley, Hartmann, Egg Holder,
Michalewicz, and Rosenbrock. Please refer to https://botorch.readthedocs.io/en/
latest/test_functions.html#module-botorch.test_functions.synthetic or https:
//www.sfu.ca/~ssurjano/optimization.html for more details.

E.2 Real-world tasks

PROTEUS PROTEUS is a coupled atmosphere-interior framework to simulate the temporal
evolution of rocky planets [28, 30]. This deterministic forward simulator takes in an initial condition,
x, returning observables γ = PROTEUS(x). Given observables γ0, one may want to infer the
associated initial condition, i.e., perform a point-wise inversion of PROTEUS(·) at γ0. We frame
this inference as an optimization problem, with

min
x∈X
∥PROTEUS(x)− γ0∥2, (27)

with known optimum (x∗, 0) for x∗ such that PROTEUS(x∗) = γ0. In this work, nine input
variables are considered. Due to its adaptive time stepping and resulting varying evaluation times,
PROTEUS naturally lends itself to asynchronous BO. PROETEUS is freely available, and we
refer to https://fwl-proteus.readthedocs.io/en/latest/ for detailed instructions on the
installation.

Pest control In this benchmark, the aim is to minimize the spread of pests and the (monetary)
cost expended to this end [31]. The design space consists of 25 categorical variables with five
levels each (≈ 2.98 × 1017 combinatorial choices). This space represents 25 stations and the
amount of pesticide used at each. Following a common approach, we discretize the input space
[0, 1]25 to {1, 2, 3, 4, 5}25, thus creating a step function. This allows the categorical problem to
be solved with standard continuous input methodology. The asynchronicity is provided by the
varying cost throughout the input space, which we take to be the evaluation time. In order to
compute the log(R), we take −12 to be the optimal value. The original code we use for this is from
https://github.com/yucenli/bnn-bo and https://github.com/QUVA-Lab/COMBO.
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Figure 6: Standard acquisition functions are not significantly outperformed on any of our synthetic test
functions. In fact, for our experiments, UCB often outperforms alternatives designed for asynchronous
BO.

XG-Boost Hyperparameter optimization is a task every ML practitioner faces. The choice of
hyperparameters often makes or breaks a model. For XG-Boost, we consider nine hyperparameters,
which we tune to optimize the 5-fold cross-validation accuracy. This score is computed from the
classification performance on the UCI Breast Cancer data [42]. The hyperparameters optimized are
learning rate, number of boosting rounds (trees), maximum tree depth, minimum loss reduction to
make split, fraction of training examples to grow each tree on, fraction of features to use per tree,
fraction of features to use per node (split), as well as the L1 and L2 regularization parameters on the
leaf weights. The training time depends, e.g., on the maximum tree depth, resulting in the desired
heterogeneous function evaluation times. The optimal value of the cross-validation accuracy is known
to be 1, allowing for computation of the log(R).

CNN Arguably the most widely used data set in image classification, CIFAR10 [26] contains
60, 000 32x32 pixel images in ten classes. We randomly select a training and a validation set of
10, 000 examples each. In our experiment, we learn the hyperparameters of a 6-layer CNN pipeline
to optimize validation accuracy, after 20 epochs of training. This is framed as a 9-dimensional
optimization problem of batch size, learning rate, momentum, and filter sizes for the six filters. At
a fixed number of epochs, filter and batch size directly affect the train time of the CNN, creating
varying evaluation times throughout the input space. The optimal value of the validation accuracy is
known to be 1, allowing for computation of the log(R).

F Additional experimental results

In Figures 6 to 9, we give additional experimental results on variants of the problems presented in
Section 5.
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Figure 7: Standard acquisition functions query closer to busy locations than alternatives designed for
asynchronous BO, but do not repeat queries.
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Figure 8: While standard acquisition queries the closest to busy locations, distances on real-world
tasks are significantly larger than zero for all methods.

G Compute

All experiments were conducted on a single NVIDIA V100 GPU with 32 GB of memory. Each
synthetic experiment required approximately 8 hours, while the real-world tasks ranged from about 8
hours (Pest Control) to 48 hours (CNN). Naturally, this was preceded by many hours of testing and
prototyping.
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Figure 9: Standard acquisition functions mimic the distance profile of their respective sequential
counterparts.
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