

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AVERE: IMPROVING AUDIOVISUAL EMOTION REAS- ONING WITH PREFERENCE OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Emotion understanding is essential for building socially intelligent agents. Although recent multimodal large language models (MLLMs) have shown strong performance on this task, two key challenges remain: (i) spurious associations between emotions and irrelevant audiovisual cues (*reasoning errors*) and (ii) hallucination of audiovisual cues (*perception errors*) driven by text priors in the language model backbone. To quantify and understand these issues, we introduce **EmoRe-
AIM**, a benchmark designed to evaluate MLLMs for cue–emotion associations, hallucinations and modality agreement. We then propose **AVEm-DPO**, a preference optimization technique that aligns model responses with both audiovisual inputs and emotion-centric queries. Specifically, we construct preferences over (i) responses exhibiting spurious associations or hallucinations and (ii) audiovisual input pairs guided by textual prompts. We also include a regularization term that penalizes reliance on text priors, thereby mitigating modality-specific cue hallucinations. Experimental results on DFEW, RAVDESS and EMER demonstrate that our method significantly improves the performance of the reference baseline models (6–19% of relative performance) in zero-shot settings. By providing both a rigorous benchmark and a robust optimization framework, this work enables principled evaluation and improvement of MLLMs for emotion understanding and social AI.

1 INTRODUCTION

Emotion understanding is essential for social AI agents to generate tailored responses and foster meaningful human–machine interactions (Chaturvedi et al., 2023; Kolomaznik et al., 2024; Elyoseph et al., 2024). Emotion perception also finds applications in domains such as health (Balcombe & De Leo, 2022; Litendahl et al., 2025) and education (Salloum et al., 2025), where appropriately responding to affective states can improve therapeutic alliance and learning outcomes.

Traditional multimodal emotion recognition methods (Sun et al., 2023; Wang et al., 2023; Chen et al., 2024) lack interpretability, as they only perform classification without grounding responses in audiovisual cues. Moreover, emotion is a complex and multi-componential construct that extends beyond the basic emotion labels that can be assigned by supervised learning methods (Ekman & Friesen, 1978; Scherer, 2005). To address these challenges, recent approaches leverage multimodal large language models (MLLMs) to generate detailed emotion descriptions for interpretability (Cheng et al., 2024; Huang et al., 2025a) and to output emotion-related keywords that cover a broader spectrum of emotional states (Lian et al., 2024; 2025a).

However, audiovisual MLLMs are susceptible to *hallucinations*, frequently generating inaccurate or fabricated responses (Li et al., 2023; Sahoo et al., 2024). In the context of emotion understanding, they face two critical bottlenecks, as illustrated in Fig. 1. First, these models often ground emotion predictions on irrelevant cues (e.g., attire color, ambient noise) – *reasoning errors*. Second, they tend to hallucinate additional cues in their responses to justify emotions – *perception errors*. Such hallucinations are largely driven by text priors in the language model backbone, which bias the model to include cues that commonly co-occur with specific emotions (e.g., associating tears with the sound of crying). The scarcity of high-quality, emotion-specific instruction tuning datasets (Cheng et al., 2024; Lian et al., 2025a) further aggravates these issues. Addressing these challenges

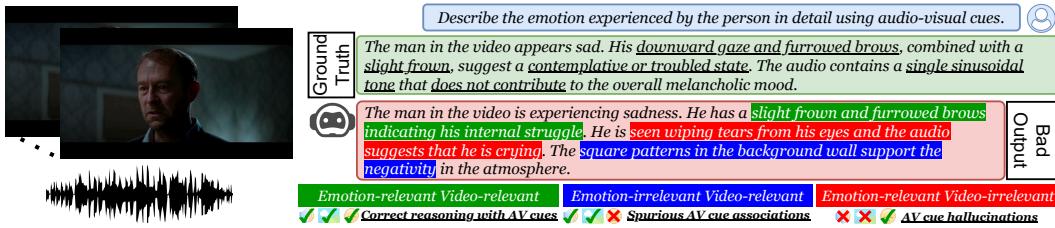


Figure 1: Existing MLLMs (i) include spurious associations between AV cues and emotions – *reasoning errors* (blue highlight) and (ii) hallucinate AV cues to explain emotions – *perception errors* (red highlight). AV: audiovisual.

is essential, as they compromise the reliability of MLLM agents in social interactions and complex emotion reasoning scenarios.

Existing emotion reasoning benchmarks (Lian et al., 2023b; 2024) lack the diverse and complex samples needed to fully evaluate these issues. Additionally, current audiovisual hallucination benchmarks (Sung-Bin et al., 2025; Leng et al., 2025) predominantly focus on object-level hallucinations in audio or video, rather than on emotion-specific reasoning. Moreover, many existing MLLMs (Cheng et al., 2024; Lian et al., 2025a) rely on two-stage evaluation pipelines involving an external (often proprietary) LLM such as GPT (OpenAI et al., 2024), making replication and benchmarking difficult. To address these limitations, we introduce the **EmoReAIM** benchmark, a comprehensive suite of multiple-choice question–answer (MCQA) tasks designed to evaluate audiovisual emotion reasoning, modality agreement and hallucination-related stress tests (Fig. 2). The MCQA format enables transparent, reproducible and scalable evaluation of MLLMs on emotion-centric tasks without requiring additional LLMs during inference.

Evaluation of recent MLLMs on our benchmark highlights spurious association and hallucination issues outlined in Fig. 1. To address these limitations, we propose **AVEm-DPO** – a multimodal direct preference optimization (DPO) technique (Rafailov et al., 2023) to enhance the emotion reasoning capabilities of MLLMs. In particular, we design explicit prompt-based audiovisual input preferences to mitigate hallucinations caused by cross-modal interactions. We also introduce text-prior debiasing, which penalizes policy reward for responses to text-only inputs. Together, these techniques significantly improve the performance of reference MLLMs, outperforming all baselines in zero-shot evaluation on both our benchmark and existing emotion recognition and reasoning datasets.

To summarize, the main contributions of our work are:

- We introduce the **EmoReAIM** benchmark with **4000 human-verified** MCQA samples to evaluate emotion reasoning and emotion-related hallucinations in MLLMs, highlighting bottlenecks such as spurious audiovisual cue associations and hallucinated cues for explaining emotions.
- We propose **AVEm-DPO**, a direct preference optimization technique that enforces explicit prompt-based modality preferences and reduces text-only model biases through a regularizer that penalizes over-reliance on text priors.
- We conduct extensive evaluations of existing MLLMs, demonstrating current bottlenecks and showing the superior performance of the proposed DPO-trained models in zero-shot settings.

2 RELATED WORK

MLLMs for Emotion. While general MLLMs (Zhang et al., 2024; Lin et al., 2024; Zhang et al., 2025a; Xu et al., 2025b; Li & team, 2025) show non-trivial emotion recognition ability (Cheng et al., 2024), several studies pursue domain-specific instruction tuning (Xie et al., 2024; Chaubey et al., 2025; Yang et al., 2025). EmotionLLaMA(Cheng et al., 2024) is an audiovisual LLM for emotion recognition and captioning, finetuned on a limited dataset ($\approx 30k$ samples). Lian et al. (2024) introduces open-vocabulary emotion recognition (OV-ER), and AffectGPT (Lian et al., 2025a) employs a lightweight audiovisual fusion projector for OV-ER. EmotionQwen (Huang et al., 2025a) improves emotion understanding while preserving general skills via a mixture-of-experts router. Han et al. (2025b) use modality-specific experts with attention reallocation to handle audiovisual emotion mismatch, and Wen et al. (2025) leverage retrieval-augmented generation with chain-of-thought

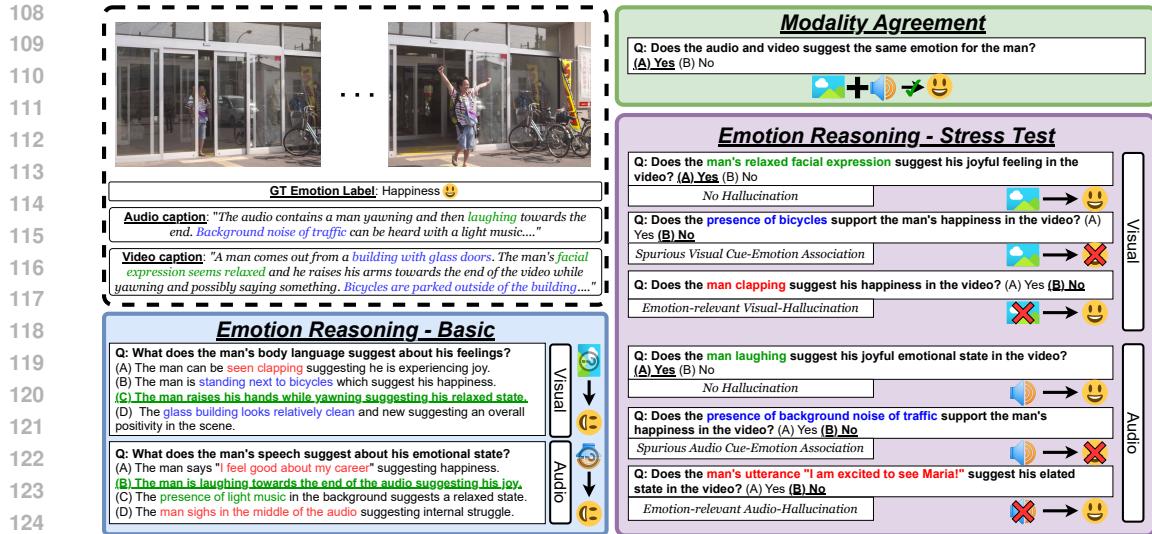


Figure 2: **EmoReAlM Tasks.** In addition to basic emotion reasoning, we include tasks for *Modality Agreement* and *Emotion Reasoning - Stress Test* to test spurious cue-emotion associations and cue hallucinations. **Red text** is a hallucinated cue, **blue text** is an emotion-irrelevant cue and **green text** is a cue relevant for emotion understanding. Correct choices are **underlined**.

for better reasoning. In contrast, we improve reasoning through multimodal preference optimization and text-prior debiasing.

Rigorous evaluation of multimodal emotion reasoning requires diverse, systematic benchmarks. Lian et al. (2023b) provide detailed descriptions of transcript, audio and visual cues for emotion reasoning, which can support GPT-based evaluation (Cheng et al., 2024; Han et al., 2025b). Xing et al. (2025) present a holistic benchmark spanning text, image, video and audio hallucinations related to emotions. Our benchmark instead focuses squarely on audiovisual emotion understanding with a standardized pipeline and tasks beyond hallucination, including modality agreement and spurious cue–emotion associations.

Preference Optimization. Direct preference optimization (DPO) (Rafailov et al., 2023; Liu et al., 2025a) was introduced to align LLMs to human preferences. DPO has also emerged as a leading approach for mitigating hallucinations in vision LLMs (Yu et al., 2024; Wang et al., 2024; Sarkar et al., 2025; Huang et al., 2025b; Liu et al., 2025b; Zhang et al., 2025b), but its use in audiovisual LLMs remains limited. VistaDPO (Huang et al., 2025b) increases video LLM robustness by building instance-level, temporal-level and object-level preferences of video inputs. Sun et al. (2025) apply process DPO for step-wise audiovisual reasoning, while Tang et al. (2025) use multi-round DPO for audiovisual captioning. Luo et al. (2025) employ DPO for emotional speech alignment to improve Omni-LLM outputs. Ye et al. (2025) construct multimodal preference data via ambiguity scoring, and Lian (2025) use group relative policy optimization for AffectGPT. Concurrently, Omni-DPO (Chen et al., 2025) studies audiovisual modality preference. Our method differs by constructing prompt-based audiovisual preference pairs for fine-grained alignment and by introducing text-prior debiasing to reduce hallucinations in MLLMs.

3 EMOREALM BENCHMARK

Fig. 2 shows different tasks present in the proposed **EmoReAlM** Benchmark. The goal of this benchmark is to test the reasoning capabilities of MLLMs to judge the *emotion experienced by the character in the given video*, specifically over the following verticals – (i) **reasoning the correct emotion** with relevant audiovisual cues (ii) identifying whether the inferred emotion from **audio and video are in agreement** (iii) testing the **association of perceived audiovisual cues with different emotions (reasoning errors)** and (iv) testing **audiovisual hallucination due to text-only emotion-related biases (perception errors)**.

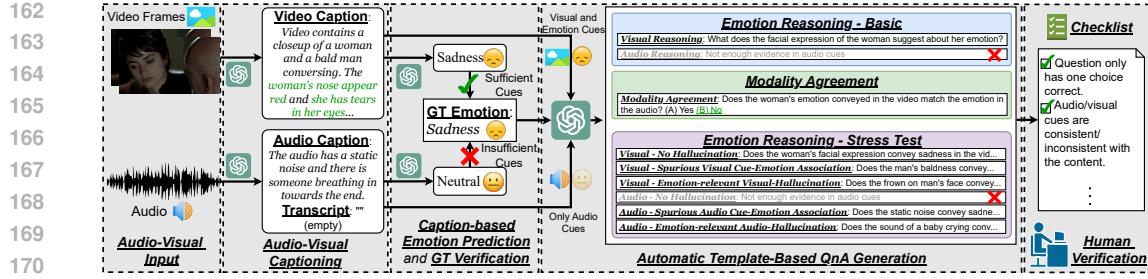


Figure 3: **EmoReAIM Creation Pipeline.** We first disentangle the audiovisual information by separate captioning and verify the cues with text-based emotion prediction to find emotion-relevant cues. Finally, GPT-4o is used to generate MCQA samples that are later verified manually.

3.1 TASK DESCRIPTIONS

Emotion Reasoning – Basic. This task evaluates an MLLM’s ability to identify and reason about the emotion experienced by a person in a video by linking appropriate audio (e.g., speech transcription, tone) and visual (e.g., facial expression, body language) cues to specific emotions. To increase difficulty, the ground-truth emotion is not provided in the question. Incorrect options are constructed by modifying the correct answer to include either **emotion-irrelevant cues present in the video** or **hallucinated cues** that falsely justify the emotion.

Modality Agreement. This task assesses whether the audio and visual modalities convey the same emotional state. Unlike AVHBench (Sung-Bin et al., 2025), which focuses on general cross-modal alignment, this task specifically targets agreement in emotional interpretation across modalities.

Emotion Reasoning – Stress Test. MLLMs are vulnerable to both *reasoning errors* and *perception errors*: the former lead the model to base its responses on irrelevant audiovisual cues present in the input, while the latter cause it to rely on hallucinated cues that are not actually present. This task probes MLLMs for susceptibility to spurious cue-emotion associations (*perception errors*) and hallucinated explanations driven by language model biases (*reasoning errors*). Each question follows the format: “*Does the {audio/visual cue} suggest {emotion} of the character?*”. For a modality X, we define three sub-tasks: (i) No Hallucination — correctly associating an audio/visual cue with the appropriate emotion. (ii) Spurious X Cue-Emotion Association — linking emotion-irrelevant cues to the correct emotion. (iii) Emotion-Relevant X-Hallucination — associating the correct emotion with a hallucinated cue that typically co-occurs with it. For example, in Fig. 2, a man is not clapping (per the visual caption), yet a hallucination-based question associates clapping with happiness—since clapping is commonly linked to positive emotions like joy.

3.2 AUTOMATIC DATA CREATION

Fig. 3 shows the automatic pipeline used to construct the *EmoReAIM* benchmark. Our approach builds on existing manually labeled audiovisual emotion recognition datasets that provide single-word emotion annotations. For each video, we first use an MLLM to extract detailed audio and visual captions separately, effectively disentangling the two modalities. These captions describe both emotion-relevant and irrelevant cues. To verify whether either modality reflects an emotion, we prompt an LLM to classify the audio and video captions independently into one of seven categories of neutral, in addition to six basic emotions Ekman (2005). Samples are discarded if neither caption yields a valid emotion label. Given the validated captions and emotion label, we then generate tailored prompts and question templates for each task described in Section 3.1. This modality-wise captioning and emotion verification process ensures the construction of high-quality, verifiable MCQA pairs that reflect meaningful audiovisual cue associations. More details and prompts are present in Appendix B.

Details. All videos are sourced from the DFEW dataset (Jiang et al., 2020). GPT-4o (OpenAI et al., 2024) is used for caption extraction, emotion classification and question–answer pair generation.

216
217

3.3 POST-PROCESSING AND HUMAN VERIFICATION

218
219
220
221
222
223
224

We employ GPT-4o (OpenAI et al., 2024), Gemini-2.5 (Gemini-Team et al., 2025) and Qwen-2.5 (Qwen-Team et al., 2025) to predict the correct answer to the generated questions just by using question text as input. We remove all the QA pairs for which all the models identified the correct answer just with the text information. Finally, since the QA samples are generated automatically leveraging MLLMs, which can hallucinate themselves, we perform a human verification over the samples generated by recruiting over 470 participants using the crowd-sourcing platform Prolific. Details are present in Appendix B.2.

225
226

3.4 BENCHMARK STATISTICS

227
228
229
230
231
232
233
234
235
236
237
238
239

Table 1 summarizes the data statistics of the proposed *EmoReALM* Benchmark, which comprises a total of **4,000 questions** over **2,649 unique videos**. Samples from the benchmark are present in Appendix B.5. Importantly, for tasks which always have a fixed set of answer choices (*Emotion Reasoning - Stress Test* and *Modality Agreement - Yes/No*), we ensure that there is a uniform distribution of correct answer texts over the possible answer choice texts. Additionally, we ensure that the distribution of emotion labels over the videos in the benchmark matches the video source dataset (refer to Appendix B.3 for details). It is also important to note that *EmoReALM* is only used as a **test set** to evaluate the reasoning capabilities of MLLMs, and we use a different dataset for preference optimization (refer Section 4.3).

240
241

4 AVEM-DPO

242
243
244
245

Direct preference optimization (DPO) (Rafailov et al., 2023) aligns LLMs to human preferences, bypassing the need to develop a reward model. In the context of audiovisual LLMs, given a reference model π_{ref} , we can reformulate the DPO objective to learn an optimal policy π_{θ} as the following,

246
247

$$\max_{\pi_{\theta}} \mathbb{E}_{(a, v, x) \sim \mathcal{D}, y \sim \pi_{\theta}(\cdot | a, v, x)} [r(a, v, x, y)] - \beta \mathbb{D}_{\text{KL}}(\pi_{\theta}(\cdot | a, v, x) \parallel \pi_{\text{ref}}(\cdot | a, v, x)) \quad (1)$$

248
249
250

where (a, v) is audiovisual input, x is text prompt, y is text response and $r(a, v, x, y)$ is the reward function for given input-output pair. Optimizing Eq. (1) to find optimal policy results in the following reward formulation,

251
252
253

$$r(a, v, x, y) = \beta \log \frac{\pi_{\theta}(y | a, v, x)}{\pi_{\text{ref}}(y | a, v, x)} + \beta \log Z(a, v, x) \quad (2)$$

254
255
256
257

where $Z(\cdot)$ is the partition function derived in Rafailov et al. (2023). With access to a preference dataset $\mathcal{D}_y^{\text{pref}}$ with samples (a, v, x, y_w, y_l) and using the Bradley-Terry preference model (Bradley & Terry, 1952) to model preference of chosen response (y_w) over rejected response (y_l), the final DPO objective becomes

258
259
260
261

$$\mathcal{L}_{\text{DPO}} = -\mathbb{E}_{(a, v, x, y_w, y_l) \sim \mathcal{D}^{\text{pref}}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w | a, v, x)}{\pi_{\text{ref}}(y_w | a, v, x)} - \beta \log \frac{\pi_{\theta}(y_l | a, v, x)}{\pi_{\text{ref}}(y_l | a, v, x)} \right) \right] \quad (3)$$

262

4.1 MULTIMODAL PREFERENCE OPTIMIZATION

263
264
265
266
267

Naive DPO (Eq. (3)) applied to MLLMs, when relying only on response preference, often causes the policy model to overfit to the input prompt x while neglecting the multimodal inputs during alignment (Wang et al., 2024; Sarkar et al., 2025). To address this limitation, preference optimization can be extended to incorporate audiovisual inputs as follows:

268
269

$$\mathcal{L}_{\text{DPO}}^{av} = -\mathbb{E} [\log \sigma(u(a_w, v_w, a_l, v_l, x, y_w))], \quad u(\cdot) = \beta \log \frac{\pi_{\theta}(y_w | a_w, v_w, x)}{\pi_{\text{ref}}(y_w | a_w, v_w, x)} - \beta \log \frac{\pi_{\theta}(y_w | a_l, v_l, x)}{\pi_{\text{ref}}(y_w | a_l, v_l, x)} \quad (4)$$

Table 1: *EmoReALM* Benchmark Statistics.

Task	# QA	# vid.	Rand. Acc.
Reasoning Basic	972	784	25%
	1024	883	25%
Modality Agreement	456	456	50%
	820	655	50%
Reas. Stress Test	728	593	50%
	4000	2649	

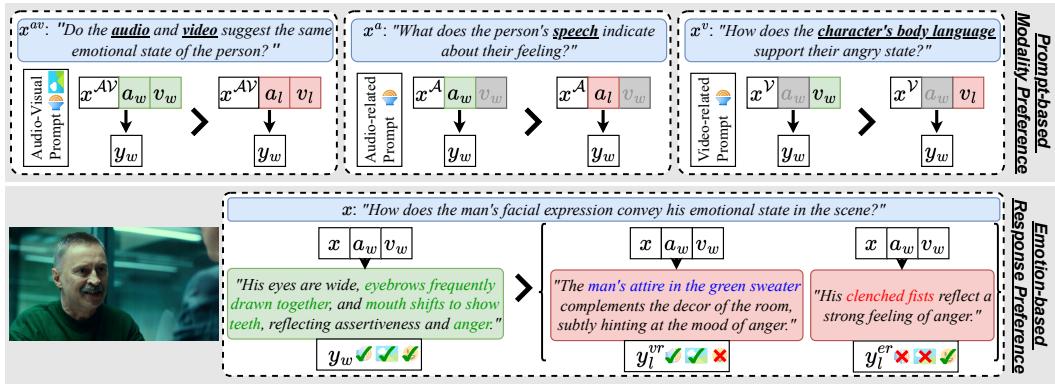


Figure 4: **Preference pairs in AVEm-DPO.** (Top) Fine-grained preference over modality input based on current prompt. (Bottom) Each chosen response y_w has two rejected responses – y_l^{vr} relevant to the video but with spurious emotion association and y_l^{er} irrelevant to the video (hallucinated) but related to the emotion.

where (a_w, v_w) and (a_l, v_l) denote the chosen and rejected multimodal inputs. This objective ensures that the policy model aligns its response y_w to the correct (chosen) audiovisual input (a_w, v_w) .

Prompt-based Modality Preference (PMP). While Eq. (4) enforces preference over *non-text* inputs, in the case of audiovisual (or “*omni*”) LLMs the input prompt x^m may relate to both audio and visual modalities, or to only one of them ($m \in \mathcal{M} = \{\mathcal{AV}, \mathcal{A}, \mathcal{V}\}$). This often leads to cross-modality-induced hallucinations in MLLMs (Sung-Bin et al., 2025), where a response to a prompt concerning one modality x^{m_1} is spuriously influenced by another modality $m_2 \in \mathcal{M} \setminus \{m_1\}$.

To mitigate this issue, we construct the preference dataset $\mathcal{D}_{av}^{\text{pref}}$ with fine-grained modality-level preferences conditioned on the input prompt x^m , as illustrated in Fig. 4 (Top). For example, for a query specific to one modality x^m (e.g., visual: “*How does the character’s body language support their angry state?*”), we modify only the corresponding input(s) of modality m (i.e. visual) in the rejected pair, thereby enforcing that the model’s response remains grounded in that modality. Thus, our prompt-based modality preference objective becomes,

$$\mathcal{L}_{\text{DPO}}^{\text{av-prompt}} = -\mathbb{E}[\log \sigma(u(a_w, v_w, a_l^{\text{PMP}}, v_l^{\text{PMP}}, x^m, y_w))] \quad (5)$$

where $a_l^{\text{PMP}} = a_w$, iff $m = \mathcal{V}$ and $v_l^{\text{PMP}} = v_w$, iff $m = \mathcal{A}$. We perform multiple forms of negative sampling for constructing (a_l, v_l) (see Section 5.2); however, because our task is emotion reasoning, the best results were achieved when we choose the rejected audiovisual input to be a sample with an emotion different from the chosen input (a_w, v_w) .

Emotion-based Response Preference. To mitigate spurious cue-emotion associations and hallucinations described in Section 1, for a given input (a_w, v_w, x) we construct two rejected responses that are variations of the chosen response y_w , as illustrated in Fig. 4(Bottom). Specifically, y_l^{vr} includes an audio/visual cue that is relevant to the audiovisual input but does not explain the emotion, whereas y_l^{er} introduces audio/visual cues related to the emotion but absent from the audiovisual input (hallucinated). Following Huang et al. (2025b), we assign weights to these rejected responses in the DPO loss in Eq. (3) as,

$$\mathcal{L}_{\text{DPO}}^y = -\mathbb{E}_{(a_w, v_w, x, y_w, y_l^{vr}, y_l^{er}) \sim \mathcal{D}_y^{\text{pref}}} \left[\log \sigma \left[\beta \left(\log \frac{\pi_\theta(y_w | a_w, v_w, x)}{\pi_{\text{ref}}(y_w | a_w, v_w, x)} - \sum_{i \in \{vr, er\}} \beta_i \log \frac{\pi_\theta(y_l^i | a_w, v_w, x)}{\pi_{\text{ref}}(y_l^i | a_w, v_w, x)} \right) \right] \right] \quad (6)$$

where $\beta_{er} + \beta_{vr} = 1$. This formulation establishes strong contrasts between chosen and rejected responses, encouraging the policy model to ground its outputs in correct and emotion-relevant audiovisual cues. Unlike Huang et al. (2025b), however, we do not include completely irrelevant responses as rejections in DPO based on empirical findings in Appendix E.6.

4.2 TEXT PRIOR DEBIASING (TPD)

Audiovisual LLMs have strong text priors that cause them to hallucinate and include cues in their response, which usually occur together (e.g., the presence of a crying person accompanied by the

sound of crying). To suppress such behaviour, we propose to penalize the reward $r(a, v, x, y)$ derived in Eq. (2) to generate the response using only text input as follows,

$$r(a, v, x, y) = \beta \log \frac{\pi_\theta(y | a, v, x)}{\pi_{\text{ref}}(y | a, v, x)} + \beta \log Z(a, v, x) - \gamma_{\text{TPD}} \log \pi_{\text{text}}(y | x) \quad (7)$$

where π_{text} is a trained language model and γ_{TPD} is a hyperparameter. In our experiments, we choose π_{text} to be the language model backbone in π_{ref} . This penalty ensures that the responses that are explainable purely by text priors get discounted and responses supported by audio/video get relative credit. Plugging Eq. (7) in the Bradley Terry model results in the following objective,

$$\mathcal{L}_{\text{DPO-TPD}} = -\mathbb{E}_{(a, v, x, y_w, y_l) \sim \mathcal{D}^{\text{pref}}} \left[\log \sigma \left(\beta \left(\log \frac{\pi_\theta(y_w | (a, v, x))}{\pi_{\text{ref}}(y_w | (a, v, x))} - \log \frac{\pi_\theta(y_l | (a, v, x))}{\pi_{\text{ref}}(y_l | (a, v, x))} \right) - \gamma_{\text{TPD}} (\log \pi_{\text{text}}(y_w | x) - \log \pi_{\text{text}}(y_l | x)) \right) \right] \quad (8)$$

where (a, v) denote (a_w, v_w) for simplicity. During training, we stop gradients through π_{text} as it is just used to identify the text priors that a language model has. To maintain the text-only capabilities of the language model backbone, we attach LoRA module (Hu et al., 2022) to it for training. To accommodate two rejected responses, we perform scaling similar to Eq. (6) on the rejected responses in the TPD term as described in Appendix C.1 (Eq. (8)) to get the final TPD objective $\mathcal{L}_{\text{DPO-TPD}}^y$. The final objective function of **AVEm-DPO** is as follows,

$$\mathcal{L}_{\text{AVEm-DPO}} = \mathcal{L}_{\text{DPO-TPD}}^y + \lambda_{av} \mathcal{L}_{\text{DPO}}^{av-prompt} \quad (9)$$

where λ_{av} is a hyperparameter. Implementation details are present in Appendix C.3.

4.3 PREFERENCE DATA

For AVEm-DPO training, we construct preference data using a pipeline similar to Fig. 3. This preference dataset is different from *EmoReAlM*, which we exclusively use for testing. We use MAFW (Liu et al., 2022) and a subset of MER2025 (Lian et al., 2025b) *Track-1 train set* as the source datasets to create preference samples. We prompt Gemini-2.5 Gemini-Team et al. (2025) to generate variations of the correct answers (chosen responses) to the questions where the audiovisual cue is altered to be either a spurious emotion-related video-relevant cue (y_l^{vr}) or a hallucinated cue related to the emotion present (y_l^{er}). Note that we do not perform any manual verification on the generated data, which still results in a performance gain demonstrating the efficiency of the proposed approach. Details in Appendix C.2.

5 EXPERIMENTS

Datasets & Metrics. For EmoReAlM benchmark, we report the average accuracy per task for all the tasks. For tasks with *Yes/No* responses, we additionally report the precision, recall and F1 score following previous multimodal hallucination benchmarks (Sung-Bin et al., 2025; Li et al., 2023). Beyond *EmoReAlM*, we also evaluate on established emotion recognition datasets—DFEW (Jiang et al., 2020), RAVDESS (Livingstone & Russo, 2018), MER2023 (Lian et al., 2023a)—and the emotion reasoning dataset EMER (Lian et al., 2023b). None of these datasets is used in training to ensure zero-shot evaluation. Following prior work (Cheng et al., 2024; Han et al., 2025b), we report unweighted and weighted average recalls for DFEW and RAVDESS and weighted F1 for MER2023. For emotion reasoning, we adopt GPT-based evaluation (Cheng et al., 2024), comparing generated responses against ground truth. In addition to clue and label overlap, we assess two dimensions: (i) *spurious cue-emotion associations*, where irrelevant cues are linked to emotions, and (ii) *hallucinatory cues*, where non-existent audiovisual cues are fabricated. For all metrics, higher values indicate better performance. Further details are provided in Appendix D.1.

Reference models. We use two audiovisual MLLMs as reference – EmotionLLaMA (Cheng et al., 2024) and our own developed base model. Our model is similar to EmotionLLaMA in architecture with changes to the audio encoder (*whisper-large-v3*(Radford et al., 2023)) and video encoder (*LanguageBind* (Zhu et al., 2024)). For EmotionLLaMA, we remove the text (subtitle) input branch to be consistent with the other baselines and retrain the model on the original dataset without subtitles – denoted as **EmotionLLaMA*** (Cheng et al., 2024). More details in Appendix D.2.

378
 379 Table 2: Zero-shot performance comparison of different methods on existing audiovisual emotion
 380 recognition benchmarks. Mod. are the modalities input to the model with the prompt. A: Audio,
 381 V:Video, T: Text Subtitles. \ddagger : evaluation without text subtitle input.

Model	Mod.	DFEW		RAVDESS		MER2023 F1	EMER		
		UAR	WAR	UAR	WAR		Clue	Label	Spurious
VideoLLaMA 2	A,V	43.65	48.66	41.81	31.62	50.79	3.82	3.80	4.25
OLA	A,V	38.17	41.73	27.45	22.11	55.82	3.80	3.33	3.93
VITA-1.5	A,V	39.31	42.56	50.67	46.88	66.94	4.77	4.72	5.16
Qwen-2.5 Omni	A,V	46.94	54.34	32.88	28.05	79.72	5.85	6.78	6.39
EmotionLLaMA	A,V,T	45.59	59.37	28.20	29.24	90.36	6.03	6.99	5.89
EmotionLLaMA \ddagger	A,V	42.72	54.06	30.36	30.45	89.05	2.76	2.78	3.44
MoSEAR	A,V,T	44.48	56.60	-	-	90.27	-	-	-
Our base	A,V	56.78	60.14	53.59	53.01	89.19	5.63	6.45	5.41
+ Naive-DPO		55.67	59.90	53.63	52.94	88.59	5.81	6.30	5.96
+ Vista-DPO \ddagger		56.42	62.33	56.94	53.64	90.06	6.08	6.89	6.58
+ AVEm-DPO		58.54	64.24	58.66	55.48	92.18	6.37	7.08	7.09
EmotionLLaMA*	A,V	54.89	58.26	52.59	48.12	90.01	5.78	6.21	5.36
+ Naive-DPO		54.97	58.12	52.69	49.01	89.35	5.89	6.35	5.89
+ Vista-DPO \ddagger		56.28	61.58	56.42	50.96	91.19	6.05	6.56	6.85
+ AVEm-DPO		57.06	62.12	56.21	51.03	91.68	6.02	6.99	7.02

395
 396 **Baseline Preference Optimization Approaches.** We compare with original **Naive-DPO** (Rafailov
 397 et al., 2023) using single rejected samples from our DPO data and modified Vista-DPO (Huang et al.,
 398 2025b) for audiovisual inputs – denoted as **Vista-DPO \ddagger** (Appendix D.3 for details).

400 5.1 EMOTION REASONING AND RECOGNITION RESULTS

401
 402 **EmoReAlM Results.** Table 3
 403 presents the performance of different approaches on the proposed *Emo-
 404 ReAlM* benchmark. AVEm-DPO
 405 achieves substantial gains over the
 406 reference models, demonstrating the
 407 effectiveness of multimodal prefer-
 408 ence optimization and text-prior de-
 409 biasing. While the baselines perform
 410 strongly on basic reasoning tasks, Ta-
 411 ble 3 shows that they struggle on
 412 *Modality Agreement* and *Stress-Test*
 413 evaluations (Expanded table in Ap-
 414 pendix E.1 and Table 13).

415
 416 Notably, our preference optimization
 417 also surpasses Vista-DPO and Naive-DPO by significant margins. To further examine the bot-
 418 tlenecks in baseline models, Appendix E.1 reports results on samples probing spurious audiovi-
 419 sual-emotion correlations and hallucinated cues. For state-of-the-art systems such as Qwen 2.5
 420 Omni (Xu et al., 2025b) and VITA-1.5 Fu et al. (2025), hallucination emerges as a more severe issue
 421 than spurious cue-emotion associations. Moreover, unlike findings from Sung-Bin et al. (2025), our
 422 results indicate that audio and visual hallucinations are equally prevalent in emotion reasoning tasks.
 423 Additionally, Table 13 shows the performance of video-only and audio-only baselines and reveals
 424 that multimodal inputs hurt reasoning capabilities.

425
 426 **Emotion Recognition and Reasoning on Ex-**
 427 **isting Benchmarks.** Table 2 (expanded in Ap-
 428 pendix E.3) shows the performance on exist-
 429 ing emotion benchmarks mentioned before. We
 430 can notice that our reference models outper-
 431 form baselines, showing the efficacy of ref-
 432 erence in understanding emotion. Moreover,
 433 preference tuning additionally boosts the per-
 434 formance, especially for emotion reasoning on

435 Table 3: Performance comparison of different methods on
 436 the proposed *EmoReAlM* Benchmark.

Model	Reas.	Basic	Modality Agree. F1	Reas.	- Stress
	Audio Acc.	Visual Acc.		Audio F1	Visual F1
VideoLLaMA2	63.1	66.8	52.5	53.2	58.4
OLA	63.2	60.4	42.7	56.6	54.8
VITA-1.5	63.1	84.3	30.2	52.8	56.3
Qwen 2.5 Omni	76.8	89.2	33.3	55.0	56.8
Our base	69.2	85.3	34.6	50.3	59.9
+ Naive-DPO	71.3	85.9	41.6	54.8	65.9
+ Vista-DPO \ddagger	72.4	87.8	52.1	73.6	86.7
+ AVEm-DPO	77.9	92.5	60.0	80.9	94.6
Emot.-LLaMA*	64.8	84.9	33.1	46.7	63.2
+ Naive-DPO	67.2	85.7	42.8	52.6	67.6
+ Vista-DPO \ddagger	69.0	86.9	40.9	68.6	87.3
+ AVEm-DPO	76.5	89.9	56.8	75.4	91.7

437 Table 4: User evaluation on EMER.

Model	Emot. \uparrow	Assoc. \uparrow	Incons. \downarrow
VideoLLaMA 2	9.82%	0.75%	15.38%
OLA	9.36%	7.46%	5.58%
VITA 1.5	11.60%	17.25%	6.04%
Qwen 2.5 Omni	10.75%	18.57%	10.13%
EmotionLLaMA	1.89%	11.53%	68.61%
Our + AVEm-DPO	54.74%	43.35%	4.67%

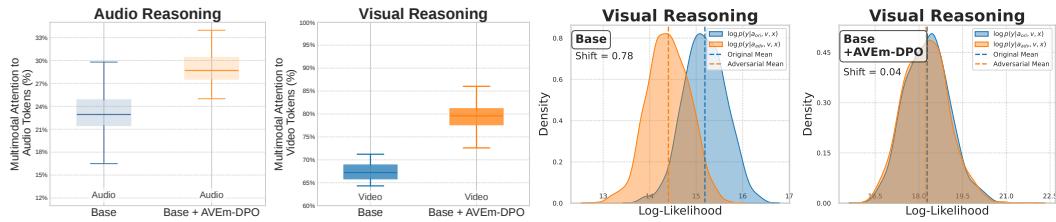


Figure 5: Effect of AVEm-DPO on – (Left two plots) the distribution of attention over video and audio tokens taken as a percentage over the total attention over all multimodal tokens for audio and visual reasoning tasks in *EmoReAlM*; (Right two plots) the log-likelihood distribution shift of the correct answer for visual reasoning tasks on corrupting the audio input a_{ori} with adversary a_{adv} .

EMER, reducing spurious cue-emotion associations and hallucinations. It is important to note that previous emotion MLLM baselines (Cheng et al., 2024; Han et al., 2025b) use text subtitle as additional input. Qualitative comparison to baselines is present in Appendix F. While most baselines perform poorly on the out-of-domain RAVDESS dataset, our reference and preference-tuned models perform significantly better, showing their generalizability.

User evaluation. We perform a user evaluation with 40 participants on EMER generations from different models and report results in Table 4. Participants chose our model the most for emotion description and emotion-cue associations and the least for inconsistencies. (Details in Appendix E.4).

5.2 ANALYSIS

Ablation Study. Table 5 shows the performance of the preference-tuned model after removing the proposed components of AVEm-DPO. We perform this analysis on *EmoReAlM* and report the average metrics over audio and visual reasoning (Appendix D.5 for details). Removal of any of the key components results in a significant performance drop, especially for the reasoning tasks. Moreover, ablating TPD results in a huge performance drop on the hallucination stress test samples, underlining its efficacy in eliminating cue hallucinations in audio-visual emotion reasoning.

Comparison with training-free contrastive decoding. Similar to VCD Leng et al. (2024), we perform contrastive decoding using diffused audiovisual inputs and report results in Table 5 (*last row*), showcasing it is significantly worse than AVEm-DPO.

Design Choices and Sensitivity to Hyperparams. Appendix E.5 shows that prompt-based modality preference using a different emotion audiovisual (AV) input as (a_l, v_l) works better compared to using random videos or diffused versions of the inputs. Appendix E.6 shows that using emotion-relevant and video-relevant rejected responses (y_l^{er}, y_l^{vr}) works better compared to only using one or using a completely irrelevant response. Appendix E.7 detail the sensitivity of AVEm-DPO to various hyperparameters, highlighting the role of various components in eliminating spurious cue-emotion associations and hallucinations.

Attention redistribution after AVEm-DPO. To analyze the effect of preference optimization on model attention, we plot the distribution of aggregate multimodal input attention over audio and visual tokens averaged over all attention heads for audio and visual reasoning tasks in *EmoReAlM* in Fig. 5 (*left two plots*). We can observe that the attention over relevant modality increases after AVEm-DPO, ensuring consistent model responses grounded on the relevant modality. More attention redistribution experiments are present in Appendix E.8.

Robustness to adversarial inputs. As shown in Fig. 12 (Appendix E.9), the model response on a prompt relevant to one modality should not change on changing the input of the irrelevant modality.

Table 5: Ablation study over different components of the proposed AVEm-DPO approach. PMP: Prompt-based Modality Preference, ERP: Emotion-based Response Preference, TPD: Text Prior Debiasing.

Method	Basic.	Agree.	Stress	Spur.	Hall.
Our base	77.3	34.6	55.1	47.3	39.2
+ AVEm-DPO	85.2	60.1	87.8	92.7	97.6
w/o PMP	81.0	54.9	79.6	86.2	88.1
w/o ERP	81.8	56.2	79.4	84.9	88.4
w/o TPD	83.8	58.9	78.8	87.1	77.8
+ Contr. Dec.	79.1	51.3	61.7	50.9	54.8

486 To test this robustness on visual reasoning tasks, we plot the distribution of log-likelihoods of correct
 487 responses for our base and AVEm-DPO models and show the distribution shift using Kernel Density
 488 Estimation (KDE) on changing the audio input in Fig. 5(*right two plots*). AVEm-DPO trained model
 489 results in negligible shifts, showing its robustness. Detailed analysis in Appendix E.9.
 490

491 5.3 VALIDITY OF GENERATED PREFERENCE DATA

493 As mentioned in Section 4.3, our preference
 494 dataset is automatically generated using Gemini
 495 2.5 (Gemini-Team et al., 2025). Performing
 496 human verification on the entire training data is
 497 too costly. Therefore, to show the validity of
 498 the generated preference tuning data, we per-
 499 form human verification on a subset of 1000
 500 random samples from the generated data with
 501 the help of 90 participants recruited through
 502 Prolific (Prolific). Each generated sample is verified by three or more annotators. As shown in
 503 Table 6, for the different categories of preference responses mentioned in Section 4.1 – chosen (y_w),
 504 video-relevant rejected (y_l^{vr}), and emotion-relevant rejected (y_l^{er}) – we report the number of samples
 505 in which the majority of annotators found the generated responses correct. These results validate
 506 our automatically generated preference data.
 507

508 6 LIMITATIONS AND FUTURE WORK

510 The proposed EmoReAIM benchmark is derived from the DFEW (Jiang et al., 2020) dataset, lever-
 511 aging its emotion labels, and hence, it may inherit its cultural biases. Additionally, since our bench-
 512 mark and training data are derived from existing emotion recognition datasets with short videos (\sim
 513 2-10 seconds), long video emotion understanding and reasoning remain an open topic that can be
 514 addressed in future work.

515 Although the proposed AVEm-DPO significantly improves the reference model’s performance, a
 516 few limitations remain. Similar to other baselines, our model trained with AVEm-DPO performs
 517 poorly on the recognition for *disgust* (an ambiguous emotion (Hendel et al., 2023)) as shown in
 518 Appendix E.3 and Table 15. We attribute this to the limited amount of training samples available
 519 for this emotion class. Moreover, a closer look at the performance on the subtasks of the *Emotion*
 520 *Reasoning - Stress Test* task of EmoReAIM (Appendix E.2 and Table 14) reveals that there is still
 521 room for improvement to mitigate spurious audio cue-emotion associations.
 522

523 7 CONCLUSION

525 This work addresses the bottlenecks of emotion reasoning in MLLMs, with two major contribu-
 526 tions – *EmoReAIM* Benchmark for evaluating emotion reasoning over a complex and diverse set of
 527 tasks and *AVEm-DPO* preference optimization technique to mitigate bottlenecks of MLLMs such
 528 as spurious audiovisual cue-emotion associations and audiovisual cue hallucinations. The proposed
 529 method outperforms open-source baselines on the proposed and existing emotion understanding
 530 benchmarks under a zero-shot setting. Moreover, a detailed ablation study with analysis of attention
 531 redistribution and log-likelihood shift upon preference tuning supports the efficacy of the proposed
 532 prompt-based modality preference and text-prior debiasing approaches.

533 ETHICS STATEMENT

534 This work builds upon publicly available audiovisual datasets for research purposes, specifically
 535 DFEW for benchmark creation (Section 3.2) and MAFW/MER2025 for preference optimization
 536 (Section 4.3). We did not collect new audiovisual data, ensuring no additional privacy risks. All
 537 data usage complies with the licensing terms of the original datasets. To mitigate potential harms,
 538 the released *EmoReAIM* benchmark will only contain automatically generated and human-verified
 539 question-answer pairs; users must independently obtain the underlying videos from the original
 sources under appropriate licenses. For human verification (Section 3.3) and user studies (Table 4),

Table 6: Human verification statistics on generated preference data.

Response type	# Total verified	# Majority correct	# One or more correct
Chosen (y_w)	1000	912	967
Rejected - Video Relevant (y_l^{vr})	1000	895	923
Rejected - Emotion Relevant (y_l^{er})	1000	856	912

540 participants were recruited via Prolific and compensated at fair rates commensurate with task re-
 541 quirements and participant location, aligning with ethical standards for crowd work. We ensured
 542 informed consent, anonymity and the right to withdraw at any point. The proposed methods aim to
 543 improve reliability in emotion reasoning by reducing hallucinations and spurious cue associations in
 544 multimodal large language models. However, emotion recognition and inference from audiovisual
 545 data can carry risks of misinterpretation, bias reinforcement, or misuse in surveillance and high-
 546 stakes applications. Moreover, users of the proposed method are advised to read the limitations of
 547 the proposed approach mentioned in Section 6 to avoid potential safety concerns. We emphasize that
 548 our benchmark and models are intended strictly for academic research, with the goal of advancing
 549 robust, interpretable and socially responsible AI. We caution against deployment in sensitive real-
 550 world contexts (e.g., healthcare, hiring, law enforcement) without careful domain-specific validation
 551 and safeguards.

552 REPRODUCIBILITY STATEMENT

553 To ensure reproducibility and transparency, we provide additional details about data creation and
 554 experiments in the Appendix. All the prompts used for data creation are present in Appendix B.1.
 555 Implementation details for the proposed method, along with hyperparameter settings, are provided
 556 in Appendices C.3 and D.2, while the details about the baseline approaches are present in Appen-
 557 dices D.3 and D.4. Details about human verification of the benchmark and user evaluation are
 558 present in Appendices B.2 and E.4. Evaluation metrics are detailed in Appendix D.1. We also pro-
 559 vide the detailed setup for our ablations in Appendix D.5. Our benchmark, code and model weights
 560 will be made publicly available upon acceptance to ensure reproducibility and ease of use for the
 561 proposed work.

562 REFERENCES

563 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 564 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 565 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 566 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
 567 URL <https://arxiv.org/abs/2502.13923>.

568 Luke Balcombe and Diego De Leo. Human-computer interaction in digital mental health. *Informatics*, 9(1):14, February 2022. ISSN 2227-9709. doi: 10.3390/informatics9010014. URL
 569 <http://dx.doi.org/10.3390/informatics9010014>.

570 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I.
 571 the method of paired comparisons. *Biometrika*, 39:324, 1952. URL <https://api.semanticscholar.org/CorpusID:125209808>.

572 Rijul Chaturvedi, Sanjeev Verma, Ronnie Das, and Yogesh K. Dwivedi. Social companionship
 573 with artificial intelligence: Recent trends and future avenues. *Technological Forecasting and
 574 Social Change*, 193:122634, 2023. ISSN 0040-1625. doi: <https://doi.org/10.1016/j.techfore.2023.122634>. URL <https://www.sciencedirect.com/science/article/pii/S0040162523003190>.

575 Ashutosh Chaubey, Xulang Guan, and Mohammad Soleymani. Face-llava: Facial expression and
 576 attribute understanding through instruction tuning, 2025. URL <https://arxiv.org/abs/2504.07198>.

577 Junzhe Chen, Tianshu Zhang, Shiyu Huang, Yuwei Niu, Chao Sun, Rongzhou Zhang, Guanyu Zhou,
 578 Lijie Wen, and Xuming Hu. Omnidpo: A preference optimization framework to address omni-
 579 modal hallucination. *arXiv preprint arXiv:2509.00723*, 2025.

580 Yin Chen, Jia Li, Shiguang Shan, Meng Wang, and Richang Hong. From static to dynamic: Adapt-
 581 ing landmark-aware image models for facial expression recognition in videos. *IEEE Transactions
 582 on Affective Computing*, pp. 1–15, 2024. doi: 10.1109/TAAFFC.2024.3453443.

583 Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Kai Wang, Yuxiang Lin, Zheng Lian, Xi-
 584 aojiang Peng, and Alexander Hauptmann. Emotion-llama: Multimodal emotion recog-
 585 nition and reasoning with instruction tuning. In A. Globerson, L. Mackey, D. Bel-

grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 110805–110853. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/c7f43ada17acc234f568dc66da527418-Paper-Conference.pdf.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng He, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*, 2024.

Ding Ding, Zeqian Ju, Yichong Leng, Songxiang Liu, Tong Liu, Zeyu Shang, Kai Shen, Wei Song, Xu Tan, Heyi Tang, et al. Kimi-audio technical report. *arXiv preprint arXiv:2504.18425*, 2025.

Paul Ekman. Basic Emotions. In *Handbook of Cognition and Emotion*, pp. 45–60. John Wiley & Sons, Ltd, 2005. doi: 10.1002/0470013494.ch3.

Paul Ekman and Wallace V. Friesen. *Facial Action Coding System: A Technique for the Measurement of Facial Movement*. Consulting Psychologists Press, Palo Alto, CA, 1st edition, 1978.

Zohar Elyoseph, Efrat Refoua, Keren Asraf, Michael Lvovsky, Yair Shimoni, and Dalit Hadar-Shoval. Capacity of generative ai to interpret human emotions from visual and textual data: Pilot evaluation study. *JMIR Mental Health*, 11:e54369, Feb 2024. doi: 10.2196/54369.

Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao, Zuwei Long, Heting Gao, Ke Li, et al. Vita-1.5: Towards gpt-4o level real-time vision and speech interaction. *arXiv preprint arXiv:2501.01957*, 2025.

Gemini-Team et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all, 2023. URL <https://arxiv.org/abs/2305.05665>.

Arushi Goel, Sreyan Ghosh, Jaehyeon Kim, Sonal Kumar, Zhifeng Kong, Sang-gil Lee, Chao-Han Huck Yang, Ramani Duraiswami, Dinesh Manocha, Rafael Valle, et al. Audio flamingo 3: Advancing audio intelligence with fully open large audio language models. *arXiv preprint arXiv:2507.08128*, 2025.

Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao, Peng Gao, and Xiangyu Yue. Onellm: One framework to align all modalities with language, 2025a. URL <https://arxiv.org/abs/2312.03700>.

Zhiyuan Han, Beier Zhu, Yanlong Xu, Peipei Song, and Xun Yang. Benchmarking and bridging emotion conflicts for multimodal emotion reasoning. *arXiv preprint arXiv:2508.01181*, 2025b.

Emalie Hendel, Adèle Gallant, Marie-Pier Mazerolle, Sabah-Izayah Cyr, and Annie Roy-Charland. Exploration of visual factors in the disgust-anger confusion: the importance of the mouth. *Cogn. Emot.*, 37(4):835–851, May 2023.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

Dawei Huang, Qing Li, Chuan Yan, Zebang Cheng, Zihao Han, Yurong Huang, Xiang Li, Bin Li, Xiaohui Wang, Zheng Lian, Zhi-Qi Cheng, and Xiaojiang Peng. Emotion-qwen: A unified framework for emotion and vision understanding, 2025a. URL <https://arxiv.org/abs/2505.06685>.

Haojian Huang, Haodong Chen, Shengqiong Wu, Meng Luo, Jinlan Fu, Xinya Du, Hanwang Zhang, and Hao Fei. Vista dpo: Video hierarchical spatial-temporal direct preference optimization for large video models. In *Forty-second International Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=O2jukIZR50>.

648 Xingxun Jiang, Yuan Zong, Wenming Zheng, Chuangao Tang, Wanchuang Xia, Cheng Lu, and
 649 Jiateng Liu. Dfew: A large-scale database for recognizing dynamic facial expressions in the wild.
 650 In *Proceedings of the 28th ACM International Conference on Multimedia*, pp. 2881–2889, 2020.
 651

652 Zeyu Jin, Jia Jia, Qixin Wang, Kehan Li, Shuoyi Zhou, Songtao Zhou, Xiaoyu Qin, and Zhiyong Wu.
 653 Speechcraft: A fine-grained expressive speech dataset with natural language description. In *ACM
 654 Multimedia 2024*, 2024. URL <https://openreview.net/forum?id=rjAY1DGUWC>.

655 Michal Kolomaznik, Vladimir Petrik, Michal Slama, and Vojtech Jurik. The role of socio-emotional
 656 attributes in enhancing human-ai collaboration. *Frontiers in Psychology*, 15, October 2024. ISSN
 657 1664-1078. doi: 10.3389/fpsyg.2024.1369957. URL <http://dx.doi.org/10.3389/fpsyg.2024.1369957>.
 658

659 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 660 Mitigating object hallucinations in large vision-language models through visual contrastive de-
 661 coding. In *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 662 pp. 13872–13882, 2024. doi: 10.1109/CVPR52733.2024.01316.

663 Sicong Leng, Yun Xing, Zesen Cheng, Yang Zhou, Hang Zhang, Xin Li, Deli Zhao, Shijian
 664 Lu, Chunyan Miao, and Lidong Bing. The curse of multi-modalities: Evaluating hallucina-
 665 tions of large multimodal models across language, visual, and audio, 2025. URL <https://openreview.net/forum?id=VeSsiD0DP9>.
 666

667 Yadong Li and team. Baichuan-omni-1.5 technical report, 2025. URL <https://arxiv.org/abs/2501.15368>.

668 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Xin Zhao, and Ji-Rong Wen. Evaluating object
 669 hallucination in large vision-language models. In *The 2023 Conference on Empirical Methods
 670 in Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=xozJw0kZXf>.
 671

672 Zheng Lian. Affectgpt-r1: Leveraging reinforcement learning for open-vocabulary emotion recog-
 673 nition, 2025. URL <https://arxiv.org/abs/2508.01318>.
 674

675 Zheng Lian, Haiyang Sun, Licai Sun, Kang Chen, Mingyu Xu, Kexin Wang, Ke Xu, Yu He, Ying Li,
 676 Jinming Zhao, et al. Mer 2023: Multi-label learning, modality robustness, and semi-supervised
 677 learning. In *Proceedings of the 31st ACM international conference on multimedia*, pp. 9610–
 678 9614, 2023a.
 679

680 Zheng Lian, Haiyang Sun, Licai Sun, Hao Gu, Zhuofan Wen, Siyuan Zhang, Shun Chen, Mingyu
 681 Xu, Ke Xu, Kang Chen, et al. Explainable multimodal emotion recognition. *arXiv preprint
 682 arXiv:2306.15401*, 2023b.
 683

684 Zheng Lian, Haiyang Sun, Licai Sun, Lan Chen, Haoyu Chen, Hao Gu, Zhuofan Wen, Shun Chen,
 685 Siyuan Zhang, Hailiang Yao, et al. Open-vocabulary multimodal emotion recognition: Dataset,
 686 metric, and benchmark. *ICML*, 2024.
 687

688 Zheng Lian, Haoyu Chen, Lan Chen, Haiyang Sun, Licai Sun, Yong Ren, Zebang Cheng, Bin Liu,
 689 Rui Liu, Xiaojiang Peng, et al. Affectgpt: A new dataset, model, and benchmark for emotion
 690 understanding with multimodal large language models. *ICML*, 2025a.
 691

692 Zheng Lian, Rui Liu, Kele Xu, Bin Liu, Xuefei Liu, Yazhou Zhang, Xin Liu, Yong Li, Zebang
 693 Cheng, Haolin Zuo, et al. Mer 2025: When affective computing meets large language models.
 694 *arXiv preprint arXiv:2504.19423*, 2025b.
 695

696 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-LLaVA:
 697 Learning united visual representation by alignment before projection. In Yaser Al-Onaizan,
 698 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical
 699 Methods in Natural Language Processing*, pp. 5971–5984, Miami, Florida, USA, November
 700 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.342. URL
 701 <https://aclanthology.org/2024.emnlp-main.342/>.

702 Maija Litendahl, Juulia Kaihlaniemi, Olli Autio, Outi Kähkönen, and Anne Oikarinen. Healthcare
 703 professionals' perceptions of emotional intelligence in remote counselling—a descriptive qualitative
 704 study. *Nursing Open*, 12(4), April 2025. ISSN 2054-1058. doi: 10.1002/nop2.70218. URL
 705 <http://dx.doi.org/10.1002/nop2.70218>.

706

707 Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Xiaoming Simon Wang, Jiulong
 708 Shan, Albin Madappally Jose, Xiaojiang Liu, Lijie Wen, Philip S. Yu, and Meng Cao. TIS-DPO:
 709 Token-level importance sampling for direct preference optimization with estimated weights. In
 710 *The Thirteenth International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=oF6e2WwxX0>.

711

712 Yuanyuan Liu, Wei Dai, Chuanxu Feng, Wenbin Wang, Guanghao Yin, Jiabei Zeng, and Shiguang
 713 Shan. *MAFW: A Large-scale, Multi-modal, Compound Affective Database for Dynamic Facial
 714 Expression Recognition in the Wild*. ACM, New York, NY, USA, 2022. ISBN 978-1-4503-9203-7.
 715 URL <https://doi.org/10.1145/3503161.3548190>.

716

717 Ziyu Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Haodong Duan, Conghui He,
 718 Yuanjun Xiong, Dahua Lin, and Jiaqi Wang. MIA-DPO: Multi-image augmented direct
 719 preference optimization for large vision-language models. In *The Thirteenth International Conference
 720 on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=f7WBRsuf91>.

721

722 Steven R. Livingstone and Frank A. Russo. The ryerson audio-visual database of emotional speech
 723 and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american
 724 english. *PLOS ONE*, 13(5):e0196391, May 2018. ISSN 1932-6203. doi: 10.1371/journal.pone.
 725 0196391. URL <http://dx.doi.org/10.1371/journal.pone.0196391>.

726

727 Run Luo, Ting-En Lin, Haonan Zhang, Yuchuan Wu, Xiong Liu, Min Yang, Yongbin Li, Longze
 728 Chen, Jiaming Li, Lei Zhang, et al. Openomni: Advancing open-source omnimodal large lan-
 729 guage models with progressive multimodal alignment and real-time self-aware emotional speech
 730 synthesis. *arXiv preprint arXiv:2501.04561*, 2025.

731

732 OpenAI et al. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

733

734 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus
 735 based on public domain audio books. In *2015 IEEE International Conference on Acoustics,
 736 Speech and Signal Processing (ICASSP)*, pp. 5206–5210, 2015. doi: 10.1109/ICASSP.2015.
 7178964.

737

738 Prolific. Prolific — Easily collect high-quality data from real people — prolific.com. <https://www.prolific.com/>. [Accessed 23-09-2025].

739

740 Qualtrics. Qualtrics XM - Experience Management Software — qualtrics.com. <https://www.qualtrics.com/>. [Accessed 23-09-2025].

741

742 Qwen-Team et al. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.

743

744 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 745 Robust speech recognition via large-scale weak supervision. In *International conference on ma-
 746 chine learning*, pp. 28492–28518. PMLR, 2023.

747

748 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 749 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 750 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=HPuSIXJaa9>.

751

752 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 753 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language
 754 Processing*. Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.

756 Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sriparna Saha, Vinija Jain, and Aman Chadha. A
 757 comprehensive survey of hallucination in large language, image, video and audio foundation
 758 models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association
 759 for Computational Linguistics: EMNLP 2024*, pp. 11709–11724, Miami, Florida, USA, November
 760 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.685.
 761 URL <https://aclanthology.org/2024.findings-emnlp.685/>.

762 Said A. Salloum, Khaled Mohammad Alomari, Aseel M. Alfaisal, Rose A. Aljanada, and Azza
 763 Basiouni. Emotion recognition for enhanced learning: using ai to detect students' emotions
 764 and adjust teaching methods. *Smart Learning Environments*, 12(1), February 2025. ISSN
 765 2196-7091. doi: 10.1186/s40561-025-00374-5. URL <http://dx.doi.org/10.1186/s40561-025-00374-5>.

766 Pritam Sarkar, Sayna Ebrahimi, Ali Etemad, Ahmad Beirami, Sercan O Arik, and Tomas Pfister.
 767 Mitigating object hallucination in MLLMs via data-augmented phrase-level alignment. In
 768 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=yG1fW8igzP>.

769 Klaus R Scherer. What are emotions? And how can they be measured? *Social Science Information*,
 770 44(4):695–729, 2005. doi: 10.1177/0539018405058216.

771 Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and Deng Cai. Pandagpt: One model to
 772 instruction-follow them all, 2023. URL <https://arxiv.org/abs/2305.16355>.

773 Guangzhi Sun, Yudong Yang, Jimin Zhuang, Changli Tang, Yixuan Li, Wei Li, Zejun MA, and Chao
 774 Zhang. video-SALMONN-o1: Reasoning-enhanced audio-visual large language model. In *Forty-
 775 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=y62fhuA69I>.

776 Licai Sun, Zheng Lian, Bin Liu, and Jianhua Tao. Mae-dfer: Efficient masked autoencoder for self-
 777 supervised dynamic facial expression recognition. In *Proceedings of the 31st ACM International
 778 Conference on Multimedia*, pp. 6110–6121, 2023.

779 Kim Sung-Bin, Oh Hyun-Bin, JungMok Lee, Arda Senocak, Joon Son Chung, and Tae-Hyun Oh.
 780 AVHBench: A cross-modal hallucination benchmark for audio-visual large language models.
 781 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=jTEKTdI3K9>.

782 Changli Tang, Yixuan Li, Yudong Yang, Jimin Zhuang, Guangzhi Sun, Wei Li, Zejun Ma, and
 783 Chao Zhang. video-salmonn 2: Captioning-enhanced audio-visual large language models. *arXiv
 784 preprint arXiv:2506.15220*, 2025.

785 Fei Wang, Wenzuan Zhou, James Y Huang, Nan Xu, Sheng Zhang, Hoifung Poon, and Muhan
 786 Chen. mdpo: Conditional preference optimization for multimodal large language models. 2024.

787 Hanyang Wang, Bo Li, Shuang Wu, Siyuan Shen, Feng Liu, Shouhong Ding, and Aimin Zhou.
 788 Rethinking the learning paradigm for dynamic facial expression recognition. In *2023 IEEE/CVF
 789 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 17958–17968, 2023. doi:
 790 10.1109/CVPR52729.2023.01722.

791 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang
 792 Liu, Linglin Jing, Shenglong Ye, Jie Shao, Zhaokai Wang, Zhe Chen, Hongjie Zhang, Ganlin
 793 Yang, Haomin Wang, Qi Wei, Jinhui Yin, Wenhao Li, Erfei Cui, Guanzhou Chen, Zichen Ding,
 794 Changyao Tian, Zhenyu Wu, Jingjing Xie, Zehao Li, Bowen Yang, Yuchen Duan, Xuehui Wang,
 795 Zhi Hou, Haoran Hao, Tianyi Zhang, Songze Li, Xiangyu Zhao, Haodong Duan, Nianchen Deng,
 796 Bin Fu, Yinan He, Yi Wang, Conghui He, Botian Shi, Junjun He, Yingtong Xiong, Han Lv, Lijun
 797 Wu, Wenqi Shao, Kaipeng Zhang, Huipeng Deng, Biqing Qi, Jiaye Ge, Qipeng Guo, Wenwei
 798 Zhang, Songyang Zhang, Maosong Cao, Junyao Lin, Kexian Tang, Jianfei Gao, Haian Huang,
 799 Yuzhe Gu, Chengqi Lyu, Huanze Tang, Rui Wang, Hajun Lv, Wanli Ouyang, Limin Wang, Min
 800 Dou, Xizhou Zhu, Tong Lu, Dahua Lin, Jifeng Dai, Weijie Su, Bowen Zhou, Kai Chen, Yu Qiao,
 801 Wenhui Wang, and Gen Luo. Internvl3.5: Advancing open-source multimodal models in versatil-
 802 ity, reasoning, and efficiency, 2025. URL <https://arxiv.org/abs/2508.18265>.

810 Zhuofan Wen, Zheng Lian, Shun Chen, Hailiang Yao, Longjiang Yang, Bin Liu, and Jianhua Tao.
 811 Listen, watch, and learn to feel: Retrieval-augmented emotion reasoning for compound emotion
 812 generation. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 11313–
 813 11327, 2025.

814 Hongxia Xie, Chu-Jun Peng, Yu-Wen Tseng, Hung-Jen Chen, Chan-Feng Hsu, Hong-Han Shuai,
 815 and Wen-Huang Cheng. Emovit: Revolutionizing emotion insights with visual instruction tun-
 816 ing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 817 (CVPR), 2024.

818 Bohao Xing, Xin Liu, Guoying Zhao, Chengyu Liu, Xiaolan Fu, and Heikki Kälviäinen. Emotion-
 819 hallucer: Evaluating emotion hallucinations in multimodal large language models, 2025. URL
 820 <https://arxiv.org/abs/2505.11405>.

821 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 822 Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical
 823 report, 2025a. URL <https://arxiv.org/abs/2503.20215>.

824 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 825 Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical
 826 report, 2025b. URL <https://arxiv.org/abs/2503.20215>.

827 Qize Yang, Detao Bai, Yi-Xing Peng, and Xihan Wei. Omni-emotion: Extending video mllm
 828 with detailed face and audio modeling for multimodal emotion analysis, 2025. URL <https://arxiv.org/abs/2501.09502>.

829 Qilang Ye, Zitong Yu, Rui Shao, Yawen Cui, Xiangui Kang, Xin Liu, Philip Torr, and Xiaochun
 830 Cao. Cat+: Investigating and enhancing audio-visual understanding in large language models.
 831 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(10):8674–8690, 2025. doi:
 832 10.1109/TPAMI.2025.3582389.

833 Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu,
 834 Hai-Tao Zheng, Maosong Sun, et al. Rlhf-v: Towards trustworthy mllms via behavior alignment
 835 from fine-grained correctional human feedback. In *Proceedings of the IEEE/CVF Conference on*
 836 *Computer Vision and Pattern Recognition*, pp. 13807–13816, 2024.

837 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong
 838 Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, and
 839 Deli Zhao. Videollama 3: Frontier multimodal foundation models for image and video under-
 840 standing, 2025a. URL <https://arxiv.org/abs/2501.13106>.

841 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual lan-
 842 guage model for video understanding. *arXiv preprint arXiv:2306.02858*, 2023. URL <https://arxiv.org/abs/2306.02858>.

843 Ruohong Zhang, Liangke Gui, Zhiqing Sun, Yihao Feng, Keyang Xu, Yuanhan Zhang, Di Fu, Chun-
 844 yuan Li, Alexander G Hauptmann, Yonatan Bisk, and Yiming Yang. Direct preference optimiza-
 845 tion of video large multimodal models from language model reward. In Luis Chiruzzo, Alan
 846 Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Ameri-
 847 cas Chapter of the Association for Computational Linguistics: Human Language Technologies
 848 (Volume 1: Long Papers)*, pp. 694–717, Albuquerque, New Mexico, April 2025b. Association
 849 for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.30.
 850 URL <https://aclanthology.org/2025.nacl-long.30/>.

851 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
 852 ing text generation with bert. In *International Conference on Learning Representations*.

853 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video in-
 854 struction tuning with synthetic data, 2024. URL <https://arxiv.org/abs/2410.02713>.

855 Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, WANG HongFa, Yatian Pang, Wenhao
 856 Jiang, Junwu Zhang, Zongwei Li, Cai Wan Zhang, Zhifeng Li, Wei Liu, and Li Yuan. Lan-
 857 guagebind: Extending video-language pretraining to n-modality by language-based semantic
 858 alignment. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 859 <https://openreview.net/forum?id=QmZKc7UZCy>.

864
865
866
867
868

APPENDIX

TABLE OF CONTENTS

869	• LLM USAGE	A
870	• BENCHMARK DETAILS	B
871	– PROMPTS USED IN BENCHMARK CREATION	B.1
872	– HUMAN VERIFICATION	B.2
873	– BENCHMARK STATISTICS	B.3
874	– FRAME SAMPLING RATE FOR AUTOMATIC VISUAL CAPTIONING	B.4
875	– BENCHMARK SAMPLES	B.5
876	• METHODOLOGICAL DETAILS	C
877	– TEXT-PRIOR DEBIASING	C.1
878	– PREFERENCE DATA	C.2
879	– IMPLEMENTATION DETAILS	C.3
880	• EXPERIMENTAL DETAILS	D
881	– EVALUATION METRICS	D.1
882	– REFERENCE MODELS	D.2
883	– BASELINE PREFERENCE OPTIMIZATION TECHNIQUES	D.3
884	– BASELINE IMPLEMENTATIONS	D.4
885	– EXPERIMENTAL SETUP FOR ABLATION STUDY	D.5
886	• DETAILED RESULTS	E
887	– EMOREALM RESULTS - EXPANDED	E.1
888	– EMOREALM RESULTS ON DIFFERENT STRESS TEST SUBTASKS	E.1
889	– EMOTION RECOGNITION RESULTS - EXPANDED	E.3
890	– USER EVALUATION	E.4
891	– MODALITY PREFERENCE ABLATION	E.5
892	– RESPONSE PREFERENCE ABLATION	E.6
893	– SENSITIVITY TO HYPERPARAMETERS	E.7
894	– ATTENTION REDISTRIBUTION AFTER PREFERENCE OPTIMIZATION	E.8
895	– REASONING WITH ADVERSARIAL MODALITY INPUTS	E.9
896	– EFFECT OF INDIVIDUAL MODALITIES FOR EMOTION PREDICTION	E.10
897	• QUALITATIVE SAMPLES	F
898	• PROMPT POOL	G

904

A LLM USAGE

906

We used GPT-5 to polish the text we added to the paper for grammar and consistency checks. We verify the grammar changes suggested by GPT to ensure its validity. No significant part of the text in the paper is written by any LLM. Apart from polishing the paper, we use LLMs for data annotation and automatic evaluation as mentioned in Sections 3.2 and 4.3 and Appendices C.2, D.1 and D.2.

911

912

B BENCHMARK DETAILS

913

B.1 PROMPTS USED IN BENCHMARK CREATION

914

915

In this section, we detail the prompts that are used in various parts of the benchmark creation pipeline mentioned in Section 3 and Fig. 3. Note that the text prompts themselves are present at the end of the document in Appendix G.

918
919
920
921
922
923
924
925
926
927
928 Table 7: Statistics of human verification on *EmoReAlM* Benchmark.
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Task		# Ques. verified	# Ques. at least one correct	# Ques. majority correct	# Ques. discre.	# Ques. Final
Reasoning - Basic	Audio	1200	1168	968	8	972
	Visual	1200	1137	1014	10	1024
Modality Agreement		1000	489	458	0	456
Reasoning - Stress Test	Audio	1000	956	806	14	820
	Visual	1000	845	719	9	728
Total		5400	4595	3959	41	4000

Audio and Video Captioning. Figs. 19 and 20 contains the prompts used to caption the audio and visual content separately for a given video as described in Section 3.2 and Fig. 3. For visual captioning, we sample eight uniform frames from the video and pass those to GPT-4o. For audio captioning, we only pass the audio as a WAV file to GPT-4o-audio.

Emotion prediction from audio and video captions separately. Figs. 21 and 22 contain prompts used to predict the emotion (out of the seven basic categories) just using the audio and video captions separately. If the ground truth emotion label cannot be predicted by both the audio and video captions, then we do not proceed with such a video for the subsequent data pipeline.

EmoReAlM QA Generation. Figs. 23 and 24 contains the prompts to generate questions related to *Emotion Reasoning - Basic* as described in Section 3.1 for audio and visual reasoning respectively. We use the ground truth emotion label already present in the source emotion recognition dataset, as well as the audio/video captions, to generate the question answers. Note that audio and visual reasoning samples are only generated for those samples in which emotion was predicted correctly from the audio and visual captions, respectively (using prompts in Figs. 21 and 22).

We use prompt in Fig. 25 to generate questions related to *Modality Agreement* (Section 3.1) by passing the audio captions, video captions and the ground truth emotion label present in the source dataset. We also verify the answers to the generated questions using the ground truth emotion label present for the video and the emotions predicted using only audio and video captions. If both the audio and the video caption predict the ground truth emotion label from the captions (using prompts in Figs. 21 and 22), then the correct answer should be “Yes”, else it should be “No”.

For the *Emotion Reasoning - Stress Test* (Section 3.1), we generate questions using prompts present in Figs. 26 to 31. We use separate prompts for generating questions related for the different subtasks – *No hallucination* (Figs. 26 and 29), *Spurious Cue-Emotion Association* (Figs. 27 and 30) and *Emotion-relevant Hallucination* (Figs. 28 and 31). Note that the *No hallucination* prompts only apply to cases where the emotion prediction from the audio and/or visual captions using Figs. 21 and 22 is same as the ground truth emotion label.

Text Only Guess - Post Processing. We use the prompt in Fig. 32 to guess the correct answer for the generated question and answer choices using only the text (i.e., without audiovisual input). This is done as a post-processing step as described in Section 3.3 to ensure that the answer for the MCQA sample is not predictable using only the text inputs.

B.2 HUMAN VERIFICATION

As mentioned in Section 3.3, we perform human verification for the generated QA samples to ensure high data quality by removing samples that contain some discrepancy. We conducted a survey using Qualtrics and recruited participants using the crowd-sourcing platform Prolific. In total, we conducted the survey on 471 participants and ensured that the participants were paid fairly for their time. To ensure participants are capable of answering the questions, we included a pre-survey to test their emotional intelligence. Moreover, we included attention checks using questions that are already verified by us to ensure the quality of the participant responses.

We conduct the survey as a MCQ task where the participants are shown the questions and the answer choices created in the benchmark and we ask them to choose the correct answer as shown in Fig. 6. Each participant was also shown a follow-up question after each question to flag the text present in

A screenshot from a video player showing a scene from The Godfather. Al Pacino as Michael Corleone is in the center, looking down with a somber expression. The video player interface at the bottom includes a play button, the time 0:07 / 0:07, and other standard controls. The background of the video frame shows a dark, ornate interior.

Subtitle: "world sin."

===== **Question** =====

What emotional state is conveyed through the speaker's words in the video?

- (A) The speaker reminisces in a lively tone about joyful times, illustrating a content demeanor.
- (B) The speaker's reflective and deliberate manner signifies a profound commitment to personal transformation.
- (C) The speaker vividly narrates anticipation and excitement for an approaching celebration, capturing a moment of joy.
- (D) The speaker's somber tone and deliberate phrasing reveal a determination to embrace future opportunities.

Do you think more than one option is correct for the above **Question**?

No

Was there something wrong with the question or the answer choices?

- No everything was correct
- Question had some details inconsistent with the video
- Subtitle was inaccurate
- Answer choices were very similar
- Something else?

Figure 6: Human verification survey questions. (*Left*) An example question from the benchmark shown to the participant. (*Right*) Follow-up questions shown to the participant about each question.

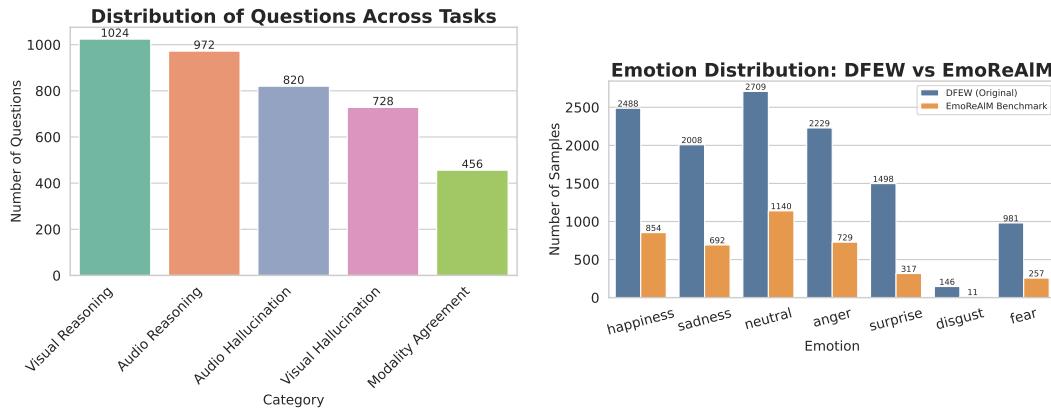


Figure 7: (Left) Distribution of QA samples across different tasks in EmoReAIM benchmark. (Right) Distribution of ground truth emotion labels for the videos present in EmoReAIM compared with the distribution in the source dataset DFEW (Jiang et al., 2020).

the question or answer choice or to report any other discrepancy. Since some videos in the DFEW (Jiang et al., 2020) dataset are not in English, the participants were also shown the English subtitle for the video that the MCQ is about.

Table 7 contains the statistics of human verification. Due to budget constraints, we ran the survey only on 5400 questions across different tasks. We only use the samples from the benchmark for which the majority of the participants selected the correct answer, automatically annotated in the benchmark. Additionally, we manually correct some samples that had discrepancies and add them to the final set of questions as well.

B.3 BENCHMARK STATISTICS

Fig. 7 (Right) shows the distribution of ground truth emotion labels in the *EmoReAIM* benchmark compared to that present in the source dataset - DFEW (Jiang et al., 2020). We can see that the distribution of samples over different emotions is similar to DFEW. Fig. 9 shows the distribution of subtasks within the *Emotion Reasoning - Stress Test* task (Section 3.1) of *EmoReAIM* bench-

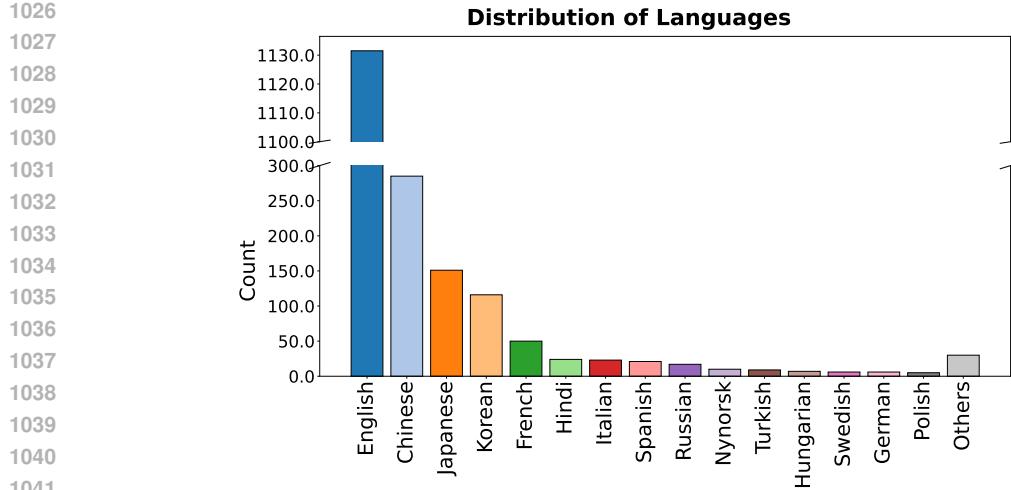


Figure 8: Distribution of different languages present in the audiovisual samples present in EmoReALM benchmark.

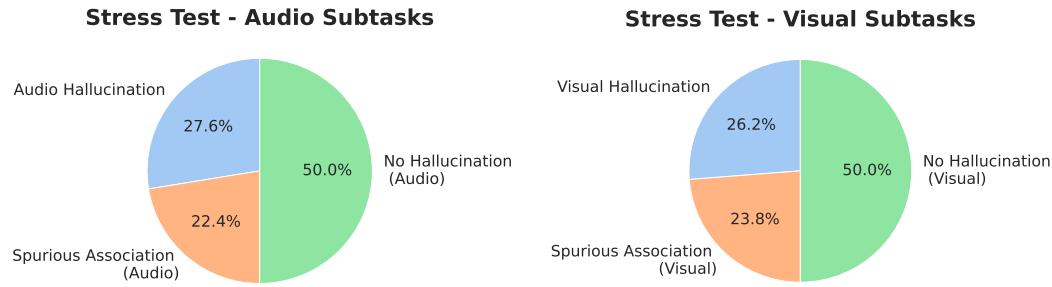


Figure 9: Distribution of subtasks in the *Emotion Reasoning - Stress Test* of *EmoReALM* benchmark.

mark. Due to the way we formulate the questions for this subtask – “*Does the {audio/visual cue} suggest {emotion} of the character?*”, the samples belonging to *No hallucination* subtask have the answer “*Yes*”, and the samples in the *Spurious Association* and *Audio/Visual Hallucination* subtasks have answer “*No*”. Fig. 9 shows that the number of samples with “*Yes*”/“*No*” answers are equally distributed. Moreover, for all the samples with answers as “*No*”, the samples are almost equally distributed to test spurious cue-emotion associations and audiovisual cue hallucinations. Furthermore, to show the cultural and linguistic diversity in the benchmark, Fig. 8 shows the distribution of languages present in the samples of EmoReALM benchmark. We obtain this by using automatic language detection using Whisper (Radford et al., 2023). We can observe that although the majority language is English, our benchmark contains samples from a wide range of languages.

Table 8: Effect of using different number of frames for visual captioning using GPT-4o.

# frames	SBERT-sim	BERT Score		
		Prec.	Rec.	F1
1	0.646	0.851	0.853	0.852
2	0.660	0.851	0.856	0.853
4	0.676	0.851	0.857	0.854
8	0.689	0.858	0.861	0.860
16	0.688	0.858	0.862	0.860

1080
1081Table 9: Samples from the *EmoReAIM* Benchmark for the *Emotion Reasoning-Basic* Task.1082
1083
1084
1085
1086
1087
1088

Task	Video	Question	Answer
Reasoning Basic (Audio)		How does the speaker's choice of words in the video reflect their emotional state? (A) The speaker mentions struggling to move forward despite past setbacks, indicating a reflective state. (B) The speaker's tone reflects a somber atmosphere, accompanied by a soft, resigned voice. (C) The speaker's phrase portrays a deep sense of regret and resignation, reflecting a failed attempt. (D) The speaker uses soft background music to enhance the somber mood, suggesting unfulfilled efforts.	C
Reasoning Basic (Audio)		Subtitle: "I tried" In what way does the tone of the man's voice impact his emotional expression in the video? (A) The presence of soft whispers and gentle music in the background could imply an underlying tension and hidden emotion. (B) The man's tone is marked by a tightness and sharpness, resonating with his underlying frustration and simmering anger. (C) The phrase "I can't believe you've done this again" reflects an underlying resentment connected to a long-standing grievance. (D) The man's voice holds a lively and enthusiastic tone, mistakenly suggesting a sense of joy and contentment.	B
Reasoning Basic (Visual)		Subtitle: "Stanford University? What are you guys talking about?" How does the woman's facial expression contribute to the overall feeling in the scene? (A) The woman displays a joyful expression with open arms, conveying her happiness and openness. (B) The woman's cheerful smile and lively eyes reveal her happiness and engagement. (C) The woman's yellow turtleneck adds a vibrant touch, symbolizing her happiness and contentment. (D) The woman's long dark hair frames her face, enhancing the appearance of happiness and delight.	B
Reasoning Basic (Visual)		Subtitle: "" What does the individual's body language indicate about their emotional state in the video? (A) The individual's quivering movements and uncertain footing create a palpable sense of fear. (B) The person's tense facial expression with slightly open mouth and wide eyes enhances their fearful demeanor. (C) The person is leaning cautiously towards the door, their body tense, which highlights their fear or anxiety. (D) The individual's dark-colored shirt amplifies their sense of fear, overshadowing their surroundings.	C

1107

1108
1109

B.4 FRAME SAMPLING RATE FOR AUTOMATIC VISUAL CAPTIONING

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

Since the visual cues used to express and infer emotions can be subtle, it is important to ensure that the visual captions obtained using GPT-4o in the first stage of data creation (Section 3.2 and Fig. 3) are of high quality. To identify the ideal number of frames to be sampled from the video for captioning, we ran a small experiment on the emotion captioning dataset EMER (Lian et al., 2023b). It is important to note that EMER (mean duration: 3.78s) contains videos of similar duration as DFEW (mean duration: 3.42s) which we use to construct EmoReAIM. We extract different number of frames per video and obtain the visual caption from GPT-4o using prompt in Fig. 20. Then, compute the similarity between the generated captions and the ground truth using BERTScore (Zhang et al.) and Sentence BERT (Reimers & Gurevych, 2019) similarity score. Table 8 shows that using 8 frames for visual captioning leads to good captioning results. Furthermore, using 16 frames is not significantly better than using 8 frames, but it increases the costs significantly. Hence we choose to use 8 frames uniformly sampled from the video to extract visual captions from GPT-4o automatically.

1123

B.5 BENCHMARK SAMPLES

1124

1125
1126
1127

We present samples belonging to different categories of the benchmark in Tables 9 to 11. Note that the subtitles shown in the tables are just for reference and we do not pass the subtitle as an input to the model during evaluation.

1128
1129
1130
1131
1132
1133

1134

1135

1136

1137 Table 10: Samples from the *EmoReALM* Benchmark for the *Modality Agreement* Task.

1138

Task	Video	Question	Answer
Modality Agreement		Do the visual elements of the video align with the audio in conveying the feeling of happiness of the person in the video? (A) Yes (B) No Subtitle: "I was..."	B
Modality Agreement		Do the audio and video modalities align for the expression of anger of the person in the video? (A) Yes (B) No Subtitle: "That is exactly what I am"	A

1149

1150

1151

1152

1153

1154

1155

1156

Table 11: Samples from the *EmoReALM* Benchmark for the *Emotion Reasoning-Stress Test*.

1157

Task	Video	Question	Answer
Stress Test (Audio No Hallucination)		Do the chuckling sounds in the audio enhance the feeling of joy conveyed for the person in the video? (A) Yes (B) No Subtitle: "(chuckles)"	A
Stress Test (Audio - Spurious Association)		Is the presence of a sonar ping sound effect crucial to the feeling of surprise conveyed by the person in the video? (A) Yes (B) No Subtitle: "(sonar ping)"	B
Stress Test (Audio - Hallucination)		Does the sound of a slamming door contribute to the anger experienced by the person in the video? (A) Yes (B) No Subtitle: "It ain't Alan's fault..."	B
Stress Test (Visual No Hallucination)		Is the downward gaze of the older woman a significant factor in expressing the sadness of the older woman portrayed in the video? (A) Yes (B) No Subtitle: "..."	A
Stress Test (Visual - Spurious Association)		Is the presence of the vibrant checkered pattern on the walls a factor in conveying the neutral emotion of the person/character in the video? (A) Yes (B) No Subtitle: "..."	B
Stress Test (Visual - Hallucination)		Is the man displaying a clenched fist as a sign of his anger in this video? (A) Yes (B) No Subtitle: "..."	B

1186

1187

Table 12: Examples of the preference dataset used for AVEm-DPO.

1188	Video	Prompt (x)	Chosen Response (y_w)	Rejected Response (video-relevant - y_i^{vr})	Rejected Response (emotion-relevant - y_i^{er})
1189		How do the facial expressions of the young person contribute to the emotional intensity during the exchange?	The young person's furrowed eyebrows and open mouth emphasize their intense emotional state and frustration.	The dark top worn by the young person underlines the seriousness of their mood.	The young person's hands clenching into fists and subtle scowling underline their frustration.
1190		How does the woman's message in the video reflect her emotional state?	She communicates a deep sense of exhaustion and emotional weariness through her words, saying 'I'm so tired,' which indicates her sadness.	The melancholic piano music in the background underscores the emotional heaviness she is experiencing.	Her loud expressive crying, typically associated with sadness, conveys the depth of her emotional state.
1191		Do the audio and video convey the same emotional state for the woman in the video?	Yes, both the audio and video convey a profound sense of sadness through the sounds of crying and the woman's distraught facial expression.	No, the tone of voice in the audio appears sad, but the stark background in the video suggests a more calm atmosphere.	No, the woman's facial expression indicates a sense of fear, while her words 'I can not take it anymore' suggest sadness.

C METHODOLOGICAL DETAILS

C.1 TEXT-PRIOR DEBIASING

Similar to Eq. (6), we scale the TPD term to accommodate multiple rejected responses as follows,

$$\mathcal{L}_{\text{DPO-TPD}}^y = -\mathbb{E}_{(a, v, x, y_w, y_l) \sim \mathcal{D}^{\text{pref}}} \left[\log \sigma \left(\beta \left(\log \frac{\pi_\theta(y_w | (a, v, x))}{\pi_{\text{ref}}(y_w | (a, v, x))} - \sum_{i \in \{vr, er\}} \beta_i \log \frac{\pi_\theta(y_l^i | (a, v, x))}{\pi_{\text{ref}}(y_l^i | (a, v, x))} \right) \right. \right. \\ \left. \left. - \gamma_{\text{TPD}} \left(\log \pi_{\text{text}}(y_w | x) - \sum_{i \in \{vr, er\}} \beta_i \log \pi_{\text{text}}(y_l^i | x) \right) \right) \right] \quad (10)$$

where $\beta_{vr} + \beta_{er} = 1$. Also, for succinctness, we denote (a_w, v_w) with (a, v) in the above equation.

C.2 PREFERENCE DATA

As mentioned in Section 4.3, we use a pipeline similar to Fig. 3 to construct our preference data using MAFW (Liu et al., 2022) and MER2025 (Lian et al., 2025b) *Track 1 train set* as the source datasets. Note that we use Gemini 2.5 Flash (Gemini-Team et al., 2025) for all automatic annotations required to create the training dataset. Use of Gemini for training data creation reduces annotation budget and ensures that the training dataset is not biased to have similar language as the test dataset – *EmoReAlM*. Since the pipeline in Fig. 3 creates MCQA samples, we use another round of automatic annotations through Gemini-2.5 Flash over the generated MCQA samples to create the preference data. Specifically, we use prompts in Figs. 33 to 35 to generate rejected responses for the generated emotion reasoning QA samples. Since, we also want to improve the performance on emotion description tasks present in EMER (Lian et al., 2023b) we use prompts for audio (Fig. 33) and visual reasoning (Fig. 34) to modify emotion descriptions generated from Gemini 2.5 Flash (using prompt in Fig. 36), combining audio and visual captions of MAFW and MER2025 (obtained using prompts in Figs. 19 and 20). After Gemini annotation, we end up with a total of 41687 preference samples combining tasks, which we use for AVEm-DPO training. Table 12 contains samples from the constructed preference dataset using the described pipeline.

C.3 IMPLEMENTATION DETAILS

We train the reference models using AVEm-DPO for one epoch, with a learning rate of $5e^{-7}$ and per GPU batch size of 2 on an NVIDIA DGX node with 8 NVIDIA H100 GPUs. We choose β as 0.1 similar to (Huang et al., 2025b). Moreover, λ_{av} is set to 1.0, β_{er} and β_{vr} are both set to 0.5, and γ_{TPD} is set to 0.2 (refer to Appendix E.7 for details on choice). We attach LoRA module with

1242 rank 8 and scale 4 to the LLM backbone for training. Gradient accumulation is used to accumulate
 1243 gradients over 4 iterations.
 1244

1245 D EXPERIMENTAL DETAILS

1246 D.1 EVALUATION METRICS

1247 **GPT Evaluation on EMER.** As mentioned in Section 5, we perform GPT-4o evaluation on the
 1248 generated emotion descriptions in EMER (Lian et al., 2023b) dataset. We perform the evaluation
 1249 over the following criterias – (i) *clue overlap* - similarity of the audiovisual cues present in the
 1250 generation with the ground truth, (ii) *label overlap* - similarity of the emotion label described in
 1251 the generation with the ground truth, (iii) *spurious cue-emotion associations* - how good are the
 1252 audiovisual cues associated with emotions in the generation, and (iv) *hallucinatory cues* - presence
 1253 of cues that are absent in the ground truth but present in the generations. The prompt used to evaluate
 1254 the generations is present in Fig. 37.
 1255

1256 **EmoReAlM Evaluation Metrics.** For all the tasks in *EmoReAlM*, we report the average accuracy
 1257 over the task, computed as the number of correct responses out of the total number of samples in
 1258 the task. Additionally, for tasks with “Yes”/“No” responses (*Modality Agreement* and *Emotion*
 1259 *Reasoning - Stress Test*), we report the precision, recall and F1 score. Precision and recall are the
 1260 ratios of correctly answered questions that have correct answers as *Yes* and *No*, respectively. F1
 1261 score is the harmonic mean of precision and recall.
 1262

1263 D.2 REFERENCE MODELS

1264 We describe the reference models mentioned in Section 5 below.
 1265

1266 **Our base.** We modify EmotionLLaMA (Cheng et al., 2024) to replace the visual encoder with
 1267 LanguageBind Video Encoder (Zhu et al., 2024) and audio encoder with Whisper Large v3 (Rad-
 1268 ford et al., 2023). We pretrain the visual projector using the pretraining data of VideoLLaVA (Lin
 1269 et al., 2024) and the audio projector is pretrained using LibriSpeech (Panayotov et al., 2015) and
 1270 SpeechCraft (Jin et al., 2024) to enhance paralinguistic capabilities of the model. We finetune on
 1271 the EmotionLLaMA dataset, however, we include additional instruction data by annotating MAFW
 1272 (Liu et al., 2022) and MER2025 (Lian et al., 2025b) *Track 1 train set* through Gemini 2.5 Flash.
 1273 Specifically, we use the prompts mentioned in Appendix B.1 to create a finetuning dataset with sim-
 1274 ilar tasks as in the proposed EmoReAlM benchmark. We also use prompt in Fig. 36 to generate
 1275 emotion descriptions from MAFW and MER2025.
 1276

1277 **EmotionLLaMA*.** Since the pretrained EmotionLLaMA model is not trained on tasks simi-
 1278 lar to *EmoReAlM*, we finetune EmotionLLaMA on additional datasets created using MAFW and
 1279 MER2025, similar to our base model described in the previous paragraph. Moreover, we do not pro-
 1280 vide subtitle text as input to the model during finetuning, in contrast to the original EmotionLLaMA,
 1281 to eliminate external subtitle dependence.
 1282

1283 D.3 BASELINE PREFERENCE OPTIMIZATION APPROACHES

1284 We describe the implementation of baseline DPO approaches mentioned in Section 5 below. We use
 1285 the same training setup as mentioned in Appendix C.3 unless stated otherwise.
 1286

1287 **Naive-DPO.** For Naive-DPO (Rafailov et al., 2023) we use the objective in Eq. (3). We use the
 1288 preference samples from our preference data (Appendix C.2), and pick the rejected response ran-
 1289 domly between y_l^{vr} and y_l^{er} .
 1290

1291 **Vista-DPO[†].** We adapt Vista-DPO (Huang et al., 2025b) for audiovisual inputs using Eqs. (4)
 1292 and (6). Also, we use our preference data (Appendix C.2) to optimize Eq. (4) and drop their tem-
 1293 poral (clip-based) and object-based preferences. Instead of prompt-based modality preference, we
 1294 use (a_l, v_l) to be an audiovisual input that has a different emotion than that of (a_w, v_w) , always
 1295 irrespective of the input prompt.

1296
1297

D.4 BASELINE IMPLEMENTATIONS

1298
1299

Audiovisual baselines. We use the official code for Qwen 2.5 Omni - 7B (Xu et al., 2025a) and run inference using flash attention 2. We use their default system prompt during inference.

1300
1301
1302

For Video-LLaMA (Zhang et al., 2023), we use the official video-language checkpoint *finetune-vicuna7b-v2* and audio-language checkpoint *finetune-vicuna7b-audiobranch*. We also use the default conversation template for inference.

1303
1304
1305
1306

For PandaGPT (Su et al., 2023), we use their official pretrained checkpoint *pandagpt-7b* with 1,024 *max_len*, built upon ImageBind (Girdhar et al., 2023). The system prompt remains unchanged during inference.

1307
1308

For OneLLM (Han et al., 2025a), we use the released pretrained checkpoint *OneLLM-7B*; for inference, we manually prepend the multimodal representations before the textual prompt.

1309
1310
1311

We use VITA-1.5 (Fu et al., 2025) with its official code and checkpoint, including the *InternViT-300M* vision tower and the pretrained audio encoder. We use the default conversation template for inference.

1312

Audio-only baselines. We use the official *Qwen2-Audio-7B-Instruct* (Chu et al., 2024) checkpoint and its default conversation template with the original system prompt.

1313
1314

For Kimi-Audio (Ding et al., 2025), we use the released *Kimi-Audio-7B-Instruct* checkpoint with the default system message.

1315
1316
1317

For Audio Flamingo 3 (Goel et al., 2025), we use the official repository, pretrained checkpoint, and the default empty conversation template.

1318
1319
1320

Video-only baselines. We use the official code for InternVL3.5 (Wang et al., 2025). Unlike others, this is an 8B model.

1321
1322

For Qwen2.5-VL (Bai et al., 2025), we use the released *Qwen2.5-VL-7B-Instruct* checkpoint with the default system prompt.

1323
1324
1325

For *VideoLLaMA3-7B* (Zhang et al., 2025a), we used the default system message and run inference with flash attention 2.

1326

D.5 EXPERIMENTAL SETUP FOR ABLATION STUDY

1327

We describe the setup for the ablations mentioned in Section 5.2 in detail below.

1328
1329
1330

For Tables 5 and 17 and Fig. 11, the metric reported for *Emotion Reasoning – Basic* (denoted as **Basic**) is the unweighted average of the visual and audio reasoning accuracy on the *Emotion Reasoning – Basic* task. For *Emotion Reasoning – Stress Test* (denoted as **Stress**), the reported metric is the unweighted average of the F1 scores for visual and audio reasoning samples within the *Emotion Reasoning – Stress Test* task. For *Modality Agreement* (denoted as **Agree**), we report the F1 score over samples from the *Modality Agreement* task. Additionally, for the subtasks *Spurious Cue-Emotion Association* (denoted as **Spur.**) and *Emotion-Relevant Cue Hallucination* (denoted as **Hall.**), we use the unweighted average accuracy across visual and audio reasoning samples for each respective subtask.

1331

Ablation Study. For Table 5, the model without prompt-based modality preference (w/o PMP) is trained only using $\mathcal{L}_{\text{DPO-TPD}}^y$ (Eq. (10)). The model without emotion-based response preference (w/o ERP) is trained using the the following loss,

1332
1333
1334
1335
1336
1337
1338
1339

$$\mathcal{L}_{\text{w/o ERP}} = \mathcal{L}_{\text{DPO-TPD}} + \mathcal{L}_{\text{DPO}}^{\text{av-prompt}} \quad (11)$$

1340
1341
1342
1343

refer Eqs. (5) and (8) for the involved terms. Finally, the model without text prior debiasing (w/o TPD) is trained on the following objective,

1344
1345
1346
1347

$$\mathcal{L}_{\text{w/o TPD}} = \mathcal{L}_{\text{DPO}}^y + \mathcal{L}_{\text{DPO}}^{\text{av-prompt}} \quad (12)$$

1348
1349

refer Eqs. (5) and (6) for the involved terms.

1350 Table 13: Performance comparison of different methods on the proposed EmoReAIM Benchmark.
 1351 **Bold** are best results and underline are second-best results over open-source models.
 1352

Model	Reas. Basic		Modality Agreement				Reasoning - Stress Test								Avg. Acc.		
	Audio Acc.	Visual Acc.	Acc.	Pre.	Rec.	F1	Audio			Visual							
							Acc.	Pre.	Rec.	F1	Acc.	Pre.	Rec.	F1			
<i>Closed-source models</i>																	
Gemini 2.5 Flash	78.0	88.9	57.0	75.9	39.0	51.5	63.5	74.0	51.0	60.4	73.2	75.3	70.9	73.0	72.1		
Gemini 2.5 Pro	72.7	87.0	54.7	76.0	33.3	46.3	63.8	74.0	53.3	62.0	73.1	84.0	59.8	69.8	70.3		
<i>Open-source video-only models</i>																	
VideoLLaMA 3	-	86.2	-	-	-	-	-	-	-	-	64.9	<u>97.9</u>	33.0	49.4	-		
Qwen 2.5 VL	-	88.1	-	-	-	-	-	-	-	-	75.2	98.6	52.6	68.5	-		
InternVL 3.5	-	92.8	-	-	-	-	-	-	-	-	68.3	91.6	45.8	61.1	-		
<i>Open-source audio-only models</i>																	
Qwen 2 Audio	56.6	-	-	-	-	-	55.1	84.2	28.3	42.3	-	-	-	-	-		
Kimi-Audio	69.8	-	-	-	-	-	54.0	95.8	15.5	26.6	-	-	-	-	-		
Audio Flamingo 3	<u>76.8</u>	-	-	-	-	-	52.6	96.7	11.9	21.2	-	-	-	-	-		
<i>Open-source audiovisual ("omni") models</i>																	
VideoLLaMA	21.7	22.2	34.1	37.4	30.9	33.9	46.1	41.3	50.6	45.5	48.8	48.4	49.2	48.8	37.1		
PandaGPT	37.4	35.7	53.7	50.3	56.9	53.4	45.8	62.9	30.1	40.7	47.1	59.9	34.7	43.9	44.0		
OneLLM	42.0	55.6	54.8	64.3	45.9	53.5	56.8	87.1	28.9	43.4	62.0	97.6	27.6	43.1	54.2		
VideoLLaMA2	63.1	66.8	52.6	52.0	<u>53.0</u>	52.5	53.7	60.6	47.3	53.2	59.4	67.9	51.2	58.4	59.1		
OLA	63.2	60.4	51.7	78.9	29.8	42.7	63.5	86.8	41.9	56.6	62.3	85.0	40.4	54.8	60.2		
VITA-1.5	63.1	84.3	51.7	87.1	18.2	30.2	63.0	91.0	37.2	52.8	66.1	92.7	40.4	56.3	65.6		
Qwen 2.5 Omni	<u>76.8</u>	89.2	52.2	86.1	20.7	33.3	64.0	90.4	39.6	55.0	67.8	96.4	40.3	56.8	70.0		
Our base	69.2	85.3	51.4	86.3	21.6	34.6	53.1	65.4	40.8	50.3	66.4	87.2	45.6	59.9	65.1		
+ Naive-DPO	71.3	85.9	57.3	87.2	27.3	41.6	55.6	62.3	48.9	54.8	70.6	88.8	52.4	65.9	68.1		
+ Vista-DPO [†]	72.4	87.8	63.1	89.4	36.8	52.1	74.1	67.8	80.4	73.6	87.0	92.1	81.9	86.7	76.9		
+ AVEm-DPO	77.9	<u>92.5</u>	68.9	93.4	44.3	60.0	82.6	70.7	94.6	80.9	94.6	93.1	96.1	94.6	83.3		
Δ% (relative)	12.6	8.4	34.1	8.2	105.	73.4	55.6	8.1	131.	60.8	42.5	6.8	110.	57.9	28.0		
Emot.-LLaMA*	64.8	84.9	51.2	82.9	20.7	33.1	48.9	59.2	38.5	46.7	69.1	89.3	48.9	63.2	63.8		
+ Naive-DPO	67.2	85.7	56.1	83.4	28.8	42.8	53.5	60.1	46.8	52.6	71.9	89.5	54.3	67.6	66.9		
+ Vista-DPO [†]	69.0	86.9	58.2	85.9	30.4	40.9	69.2	63.1	75.2	68.6	87.6	92.5	82.6	87.3	74.2		
+ AVEm-DPO	76.5	<u>89.1</u>	65.6	89.5	41.6	56.8	77.3	65.2	<u>89.4</u>	75.4	91.8	92.6	90.9	91.7	80.1		
Δ% (relative)	18.1	4.9	28.1	8.0	101.	71.6	58.1	10.1	132.	61.5	32.9	3.7	85.9	45.1	25.5		

E DETAILED RESULTS

E.1 EMOREALM RESULTS - EXPANDED

Table 13 shows the the expanded version of Table 3 with accuracy, precision and recall metrics for *Modality Agreement* and *Emotion Reasoning - Stress Test* categories. We also report the unweighted average accuracy over all five tasks in the benchmark in the last column. The relative percent improvement of the AVEm-DPO trained model over the reference models is present as the Δ% row. Moreover, we also report the performance of video-only and audio-only baselines in Table 13. We can see that for visual reasoning tasks (*Basic* and *Stress Test*), video-only baselines perform slightly better than the audiovisual ("omni") baselines, aligning with the findings of Sung-Bin et al. (2025). However, for audio reasoning tasks, audiovisual baselines outperform audio-only baselines, which have very poor recall on the *Emotion reasoning - Stress Test*. This can be attributed to the limited amount of audio-emotion datasets that the baselines (Chu et al., 2024; Ding et al., 2025; Goel et al., 2025) are trained on resulting in poor emotion reasoning.

E.2 EMOREALM RESULTS ON DIFFERENT STRESS TEST SUBTASKS

Table 14 shows the performance of different baselines as well as AVEm-DPO on different subtasks of *Emotion Reasoning - Stress Test*, which have answer as "No" – *Spurious Cue-Emotion Association* and *Emotion-relevant Cue Hallucination* (refer to Section 3.1 and Appendix B for definitions). We can observe that within audio and visual reasoning, hallucination seems to be a bigger bottleneck than spurious cue-emotion associations. Moreover, similar to Table 13, we can observe that the audio-only models perform worse compared to audiovisual models, whereas the video-only model performance is better compared to audiovisual models. AVEm-DPO improves the model performance over all the subtasks significantly compared to the reference model.

1404
 1405
 1406 Table 14: Performance of different baselines on different Reasoning Stress-Test sub-tasks in Emo-
 1407 ReALM Benchmark. This experiment is done only using samples from the Stress-Test category of
 1408 the benchmark which have correct answer as "No". **Bold** are best results and underline are second-
 1409 best results over open-source models.
 1410

Model	Audio		Visual	
	Spur.	Hall.	Spur.	Hall.
<i>Open-source video-only models</i>				
VideoLLaMA 3	-	-	37.4	29.1
Qwen 2.5 VL	-	-	64.7	41.8
InternVL 3.5	-	-	50.4	41.8
<i>Open-source audio-only models</i>				
Qwen 2 Audio	41.8	16.9	-	-
Kimi Audio	26.8	6.0	-	-
Audio Flamingo 3	15.7	8.7	-	-
<i>Open-source audiovisual ("omni") models</i>				
VideoLLaMA	27.5	35.0	33.1	37.4
PandaGPT	43.1	19.1	47.5	23.4
OneLLM	47.7	13.1	36.7	19.6
VideoLLaMA2	61.4	35.5	57.6	45.6
OLA	52.9	32.8	56.8	25.9
VITA-1.5	46.4	29.5	46.0	35.4
Qwen 2.5 Omni	53.4	28.1	51.9	30.1
Our base	45.2	36.4	49.3	41.9
+ Naive-DPO	49.9	47.9	56.8	48.0
+ Vista-DPO [†]	<u>85.7</u>	<u>75.1</u>	<u>87.1</u>	<u>76.7</u>
+ AVEm-DPO	88.6	99.5	96.5	95.8

1430
 1431
 1432
 1433 Table 15: Class-wise recall for different emotion classes in DFEW dataset. **Bold** are best results and
 1434 underline are second-best results over open-source models.
 1435

Model	Mod.	Hap.	Sad.	Neu.	Ang.	Sur.	Dis.	Fea.	UAR	WAR
<i>Open-source video-only models</i>										
VideoLLaMA 3	V	77.92	41.38	40.88	42.53	26.44	34.26	72.30	47.96	49.47
Qwen 2.5 VL	V	64.21	52.37	69.49	39.09	11.38	7.20	<u>75.03</u>	45.54	52.32
InternVL 3.5	V	79.49	77.20	45.42	21.38	53.02	12.61	62.10	50.18	55.46
<i>Open-source audio-only models</i>										
Qwen 2 Audio	A	64.55	25.08	2.28	0.00	0.06	2.07	53.55	21.08	22.24
Kimi Audio	A	50.34	42.97	37.50	71.24	12.66	10.34	29.93	36.43	43.30
Audio Flamingo 3	A	2.98	19.96	12.92	83.01	6.12	15.86	41.46	26.05	26.39
<i>Open-source audiovisual ("omni") models</i>										
PandaGPT	A,V	60.50	9.95	0.0	58.61	0.00	0.00	0.00	18.44	24.20
VideoLLaMA	A,V	85.04	8.41	4.17	20.84	3.95	0.00	1.14	17.65	24.09
OneLLM	A,V	47.91	54.33	3.23	52.35	26.08	1.80	70.21	36.74	37.60
VideoLLaMA2	A,V	87.50	57.93	7.94	58.56	42.08	15.00	36.54	43.65	48.66
OLA	A,V	52.00	82.20	15.65	48.95	9.65	10.00	48.72	38.17	41.73
VITA-1.5	A,V	61.46	<u>79.96</u>	23.54	23.19	8.05	0.90	78.07	39.31	42.56
Qwen 2.5 Omni	A,V	45.45	73.84	61.11	70.64	4.40	0.00	73.15	46.94	54.33
EmotionLLaMA	A,V,T	71.98	76.25	<u>61.99</u>	71.95	33.67	0.00	3.31	45.59	59.37
MoSEAR	A,V,T	79.35	75.20	40.45	69.66	42.86	0.00	3.87	44.48	56.60
Our base	A,V	70.75	72.07	29.64	77.04	61.54	<u>27.59</u>	58.87	<u>56.78</u>	60.14
+AVEm-DPO	A,V	75.21	72.03	44.07	<u>73.96</u>	62.24	17.24	65.00	58.54	64.24

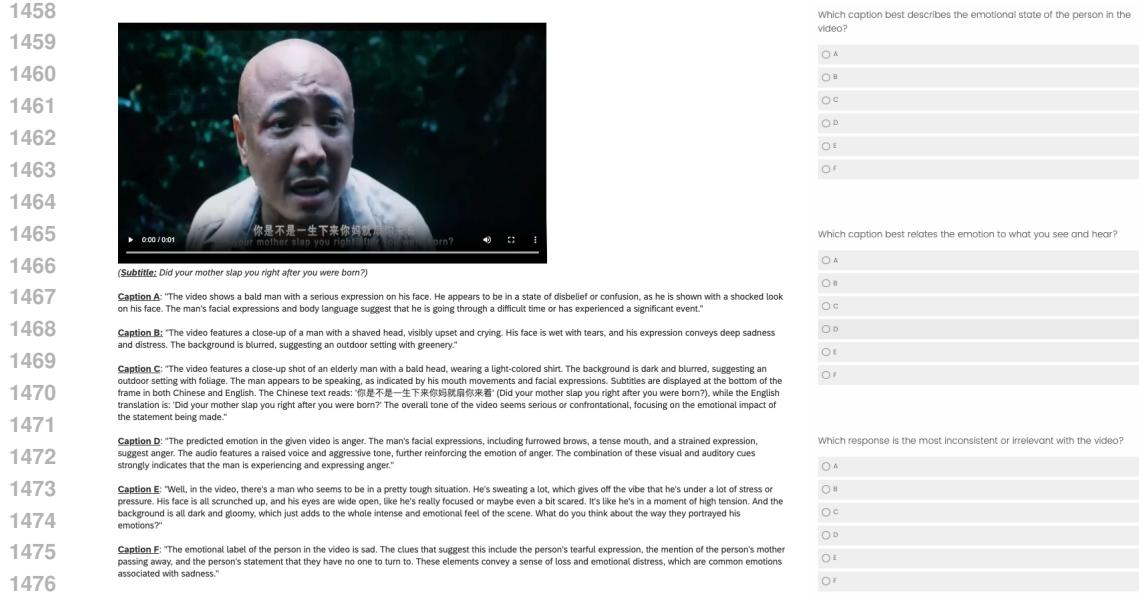


Figure 10: **User Evaluation using Qualtrics.** (Left) We show anonymized model responses for a given video to the user as different captions. (Right) We ask multiple questions to the user to select the best-suited caption for each question. Questions check the captions for their quality of emotion description, association of emotions with audiovisual cues, and presence of inconsistencies (hallucinations).

Table 16: User evaluation on EMER dataset.

Model	Emot. \uparrow	Assoc. \uparrow	Incons. \downarrow
VideoLLaMA 2	9.82%	0.75%	15.38%
OLA	9.36%	7.46%	5.58%
VITA 1.5	11.60%	17.25%	6.04%
Qwen 2.5 Omni	10.75%	18.57%	10.13%
EmotionLLaMA	1.89%	11.53%	68.61%
Our + AVEm-DPO	54.74%	43.35%	4.67%

E.3 EMOTION RECOGNITION RESULTS - EXPANDED

Table 15 (expanded from Table 2) shows the results on DFEW (Jiang et al., 2020) emotion recognition benchmark over different emotion classes. Note that both our base model and AVEm-DPO trained model achieve the best and second-best results in terms of unweighted and weighted average recalls over all the emotion classes. Moreover, Table 15 shows that the proposed method ensures fair performance over all the emotion categories, unlike baselines, which perform too well on some classes and too poorly on the others.

E.4 USER EVALUATION

We perform a user study on 40 participants recruited through Prolific (Prolific) and create a user survey using Qualtrics (Qualtrics) as shown in Fig. 10. We randomly sample videos from EMER (Lian et al., 2023b) dataset and display anonymized model generations as captions to the user along with the video. Then we ask the users to pick the most suited caption over different criteria – (i) best caption describing the emotional state of the person, (ii) best caption associating the emotion with audiovisual cues, and (iii) worst caption with the most inconsistencies with the video (to test model hallucinations). Table 16 (duplicate of Table 4) reports the average percent of times each model is selected for the mentioned three criteria. The participants selected our model the most number of times as the best model for emotion description and association of audiovisual cues for emotion. Moreover, our model was chosen the least number of times for inconsistent audiovisual information present in the caption.

1512 Table 18: Performance variation over various choices of rejected response. y_l^{irr} : response completely irrelevant to the audiovisual content and emotion, y_l^{er} : response mentions hallucinated cues
 1513 that generally co-occur with given emotion, y_l^{vr} : response associates audiovisual cues in the input
 1514 incorrectly with emotion.

y_l^1	y_l^2	Basic	Agree.	Stress	Spur.	Hall.
Our base		77.3	34.6	55.1	47.3	39.2
y_l^{irr}	-	82.4	56.7	81.4	85.1	88.9
y_l^{er}	-	84.0	58.3	86.0	88.5	97.9
y_l^{vr}	-	83.2	58.0	85.3	91.6	90.9
y_l^{er}	y_l^{irr}	83.4	57.6	85.8	88.2	97.8
y_l^{vr}	y_l^{irr}	83.1	57.3	84.9	90.3	90.8
y_l^{er}	y_l^{vr}	85.2	60.1	87.8	92.7	97.6

E.5 MODALITY PREFERENCE ABLATION

Table 17 shows AVEm-DPO’s performance for different choices of multimodal preferences. We perform experiment using random tensor, random video, (a_l, v_l) infused with diffusion noise similar to VCD (Leng et al., 2024) and an audiovisual input with different emotion than (a_w, v_w) as the possible choices for (a_l, v_l) and show that using a different emotion video leads to the best results. Moreover, we also show the effect of changing both (a_w, v_w) vs. changing based on the input prompt (a_w for audio reasoning, v_w for visual reasoning and both for other tasks), justifying the effectiveness of prompt-based modality preference.

E.6 RESPONSE PREFERENCE ABLATION

Table 18 shows the variation of performance over different tasks of *EmoReAlM* for different choices of rejected responses. There are three types of rejected responses that we test on – (i) y_l^{vr} is video-relevant response that contains audiovisual cue present in the video, but it does not associate with the emotion, (ii) y_l^{er} is emotion-relevant response that correctly associates with the emotion displayed in the video but with audiovisual cues that are hallucinated (not present in the video), and (iii) y_l^{irr} is completely irrelevant to the given video and emotion (similar to that present in Huang et al. (2025b)). y_l^1 and y_l^2 in Table 18 denote the first and second rejected responses for preference tuning in Eq. (10).

We can see that our choice of using y_l^{vr} and y_l^{er} in Eq. (10) for AVEm-DPO results in the best performance of the model across all tasks. We also perform experiments using a single rejected response (Eq. (8)), and we can see that using y_l^{er} and y_l^{vr} individually results in improvement over the base, specifically for the *Spurious Cue-Emotion Association* and *Emotion-relevant Cue Hallucination* subtasks, respectively. Moreover, similar to Vista-DPO (Huang et al., 2025b), we perform an experiment using y_l^{irr} as the second rejected response, which results in the same or worse performance than using y_l^{vr} and y_l^{er} alone. When using y_l^{irr} as the second rejected response, we set $\beta_{irr} = 0.3$ following Huang et al. (2025b).

E.7 SENSITIVITY TO HYPERPARAMETERS

Fig. 11 shows AVEm-DPO’s accuracy on different subtasks of *EmoReAlM* on varying the hyperparameters β_{vr}/β_{er} in Eq. (6). We can observe that while spurious cue-emotion associations mitigate on increasing β_{vr} , model performance on hallucinated cue samples improves on increasing β_{er} . For text-prior debiasing (TPD), we can see that performance on hallucinated cue samples significantly improves even with $\gamma_{TPD} = 0.1$ and gets saturated at $\gamma_{TPD} > 0.2$. Finally, increasing the strength of PMP using λ_{av} (Eq. (9)) improves performance but it gets saturated at $\lambda_{av} > 1.0$.

Table 17: Performance variation over various choices of rejected multimodal input. **Change** denotes which among (a_w, v_w) should be changed to create (a_l, v_l) .

Choice of a_l/v_l	Change	Basic	Agree.	Stress
Random tensor	Both a_l, v_l	81.9	56.1	80.1
	Prompt-based	83.0	56.0	81.6
Random video	Both a_l, v_l	81.8	58.2	80.3
	Prompt-based	83.6	58.2	82.1
Diffuse (a_w, v_w)	Both a_l, v_l	82.7	58.5	80.9
	Prompt-based	84.6	59.4	86.7
Diff. emotion	Both a_l, v_l	83.9	60.1	81.3
	Prompt-based	85.2	60.0	87.8

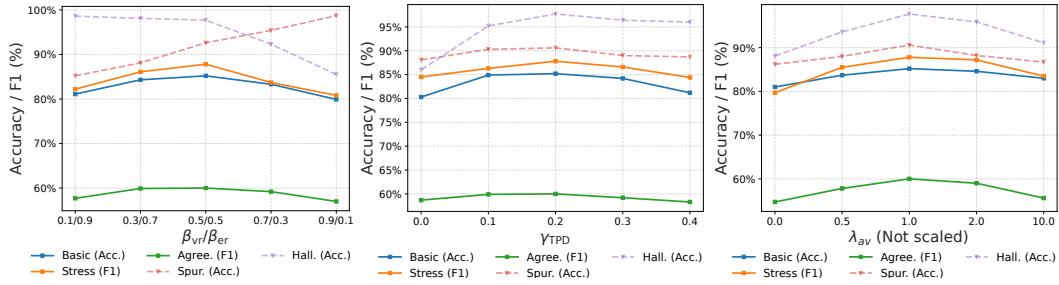
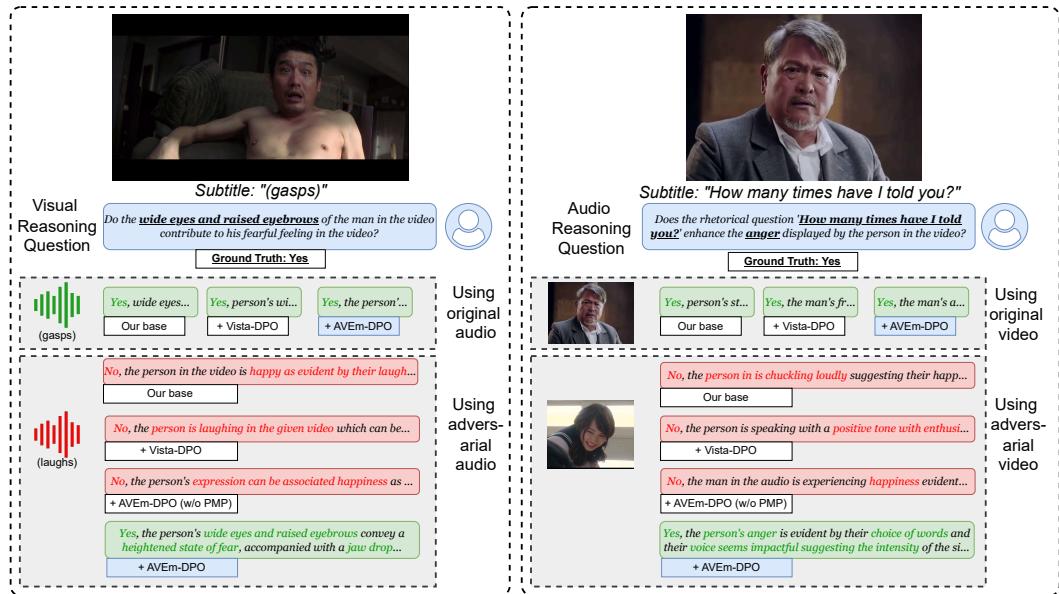
Figure 11: Sensitivity of performance to β_{vr}/β_{er} , γ_{TPD} and λ_{av} .

Figure 12: (Left) For a visual reasoning question, we compare the model responses on using the original video with the original audio and an adversarial audio as input. We can observe that Vista-DPO and even AVEm-DPO without prompt-based modality preference (PMP) struggle in the adversarial settings; however, AVEm-DPO produces the desired response. (Right) We perform a similar experiment to show the visual reasoning robustness of AVEm-DPO.

E.8 ATTENTION REDISTRIBUTION AFTER PREFERENCE OPTIMIZATION.

As described in Section 5.2, to analyze the effect of preference optimization on attention, we plot the distribution of aggregate multimodal input attention over audio and visual tokens averaged over all attention heads for different tasks in *EmoReALM* in Fig. 15 (*left two plots*). For reasoning tasks, we can observe that the attention over relevant modality increases after AVEm-DPO. For the *Modality Agreement* task, the attention is redistributed in a way that there is a fair distribution of attention between both modalities to ensure reliable predictions.

To show the effect of text-prior debiasing Section 4.2, we plot the percentage of total attention (averaged over attention heads) over multimodal input tokens (audio and visual combined) and observe that AVEm-DPO increases the attention over multimodal tokens by significant margins (Fig. 15 – *right*). This shows that AVEm-DPO training ensures that the model attends to the relevant audiovisual tokens for generating the response rather than relying only on the input text prompt.

E.9 REASONING WITH ADVERSARIAL MODALITY INPUTS

To test the robustness of AVEm-DPO against cross-modality hallucinations, we conduct an adversarial test by replacing the audio in a visual reasoning task to see if the model’s response stays

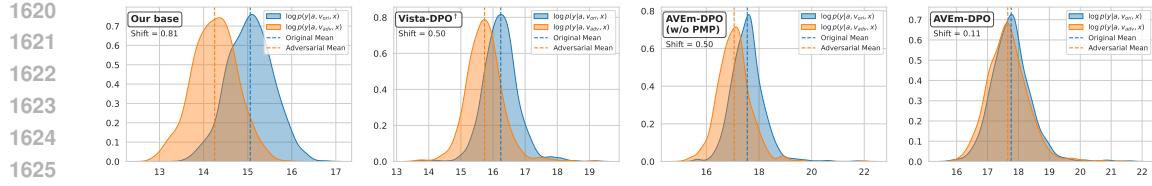


Figure 13: **Adversarial Audio Reasoning Testing.** For samples related to *audio reasoning* in the EmoReALM benchmark (*Emotion Reasoning-Basic* and *Emotion Reasoning - Stress Test*), we plot the Kernel Density Estimation (KDE) shift in log likelihoods of the correct answer when the irrelevant video modality input (v_{ori}) is replaced with a random video as adversary (v_{adv}). AVEm-DPO is least affected by the addition of an adversary in the irrelevant modality (i.e., video).

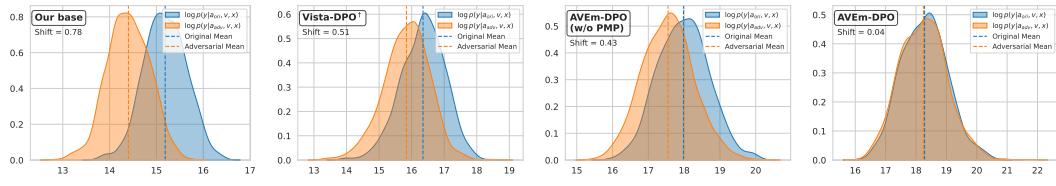


Figure 14: **Adversarial Visual Reasoning Testing.** Similar to Fig. 13, for samples related to *visual reasoning* in the EmoReALM benchmark (*Emotion Reasoning-Basic* and *Emotion Reasoning - Stress Test*), we plot the Kernel Density Estimation (KDE) shift in log likelihoods of the correct answer when the irrelevant audio modality input (a_{ori}) is replaced with a random video as adversary (a_{adv}). AVEm-DPO is least affected by the addition of an adversary in the irrelevant modality (i.e., audio).

the same. As shown in Fig. 12, changing the prompt-irrelevant modality does not change the response of AVEm-DPO, showing its adversarial robustness. It is interesting to note that removing the prompt-based modality preference (PMP) from AVEm-DPO results in wrong predictions, showing its efficacy. To quantitatively show the effect of AVEm-DPO with PMP, we perform adversarial testing using *Emotion Reasoning-Basic* and *Emotion Reasoning - Stress Test* samples in *EmoReALM*. For testing the robustness of AVEm-DPO for audio reasoning (Fig. 13), we compute the shift of log likelihoods of the correct response when the prompt-irrelevant video modality is replaced with an adversary (i.e., some random video). We use Kernel Density Estimation (KDE) to estimate the shift in the distributions. We can see that AVEm-DPO is robust to adversaries in the prompt-irrelevant modality. Moreover, removing PMP from AVEm-DPO significantly increases the shift between the original and adversarial distributions. Fig. 14 shows similar plots for the tasks related to visual reasoning.

E.10 EFFECT OF INDIVIDUAL MODALITIES FOR EMOTION PREDICTION

To show the effect of individual modalities for emotion recognition, Table 19 reports the performance on using only the video, only the audio and using audiovisual inputs from the RAVDESS (Livingstone & Russo, 2018) dataset for emotion prediction. We can observe that using the individual modalities for emotion prediction leads to a reduced performance, indicating that using the audiovisual inputs for emotion prediction is indeed helpful compared to using a single modality.

Table 19: Performance of different models for emotion prediction using audiovisual, video-only, and audio-only inputs from the RAVDESS (Livingstone & Russo, 2018) dataset.

Model	Audiovisual		Video-only		Audio-only	
	UAR	WAR	UAR	WAR	UAR	WAR
VideoLLaMA 2	41.81	31.62	36.12	32.41	30.44	27.56
Qwen 2.5 Omni	32.88	28.05	29.38	27.67	28.56	25.55
Our base	53.59	53.01	41.27	40.98	38.18	37.74
+ AVEm-DPO	58.66	55.48	46.13	46.31	44.05	39.67
EmotionLLaMA*	52.59	48.12	41.27	39.56	38.57	37.27
+ AVEm-DPO	56.21	51.03	46.10	43.09	40.54	37.04

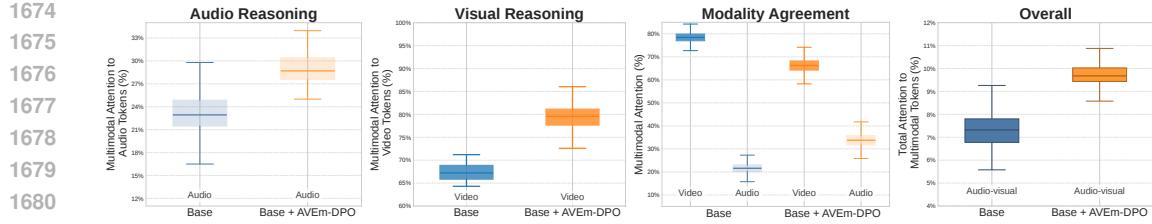


Figure 15: Effect of AVEm-DPO on the distribution of attention over – (i) (Left three plots) video and audio tokens taken as a percentage over the total attention over all multimodal tokens for different subtasks in *EmoReALM* and (ii) (Right) multimodal tokens as a percentage over the total input tokens (including text) for the entire *EmoReALM*.

Moreover, we can observe that the performance using only the visual modality is better compared to using only audio, indicating the importance of visual modality for emotion prediction.

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Figure 16: Comparison of baseline MLLMs with our base model trained with AVEm-DPO on a sample from EMER (Lian et al., 2023b). Correct audiovisual cues and emotion are in green, emotion-irrelevant cues are in blue, and hallucinated cues (and incorrect emotion) are present in red

F QUALITATIVE SAMPLES

Emotion Descriptions on EMER. Figs. 16 and 17 shows samples from the EMER (Lian et al., 2023b) dataset and the output of different MLLM baselines on those samples using the prompt – “*Describe the audiovisual content relevant to emotion in detail.*”. We can see that AVEm-DPO leads to correct emotion descriptions and consistent audiovisual cues to reason for the emotions. Moreover, compared to baselines, our method does not associate irrelevant and/or background information with emotions.

EmoReAlM Sample Outputs. Fig. 18 shows the model responses for some samples in the *Emotion Reasoning - Stress Test* of EmoReAlM Benchmark. We can notice that AVEm-DPO improves the model responses in cases with spurious-emotion cue associations and emotion-cue hallucinations.

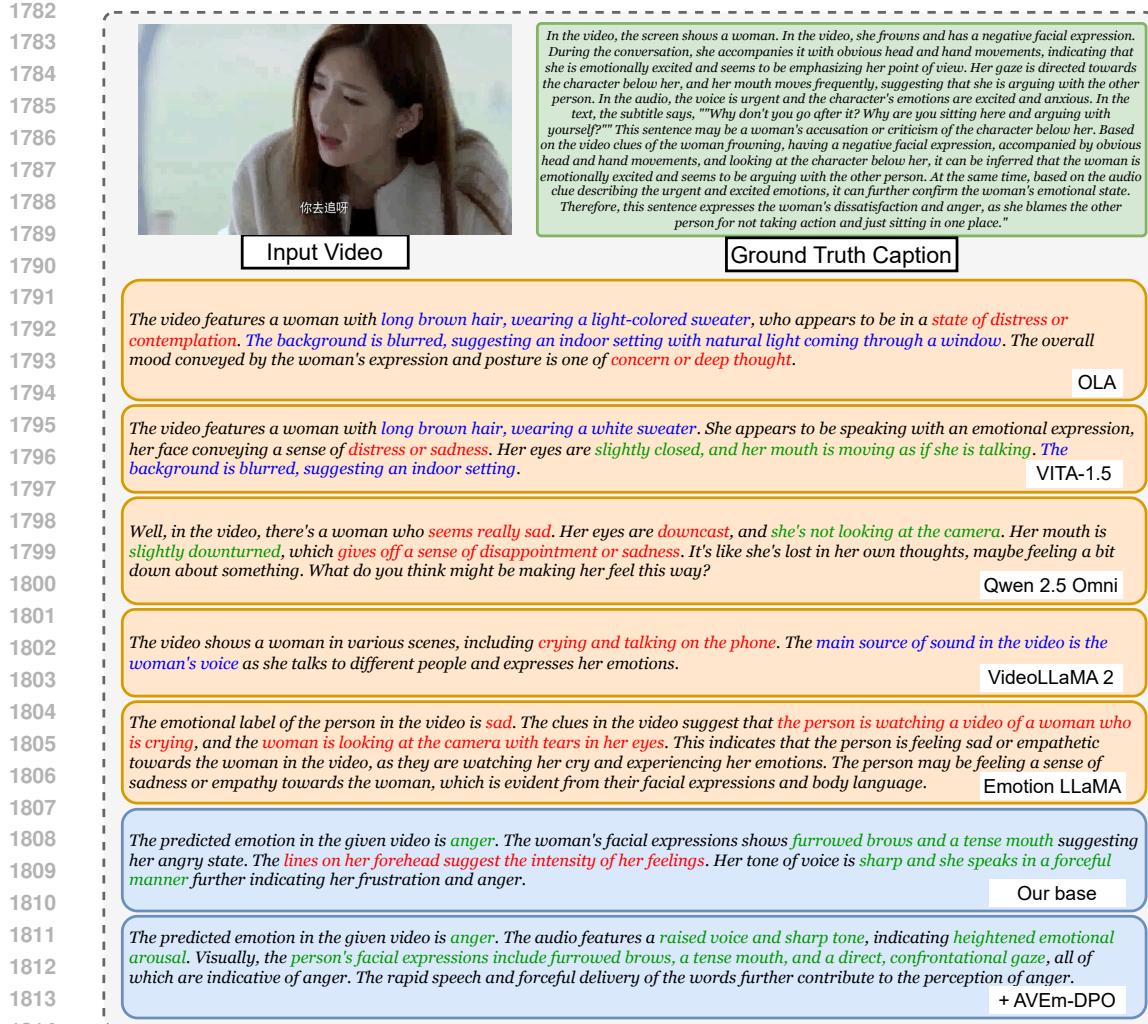


Figure 17: Comparison of baseline MLLMs with our base model trained with AVEm-DPO on a sample from EMER (Lian et al., 2023b). Correct audiovisual cues and emotion are in green, emotion-irrelevant cues are in blue, and hallucinated cues (and incorrect emotion) are present in red

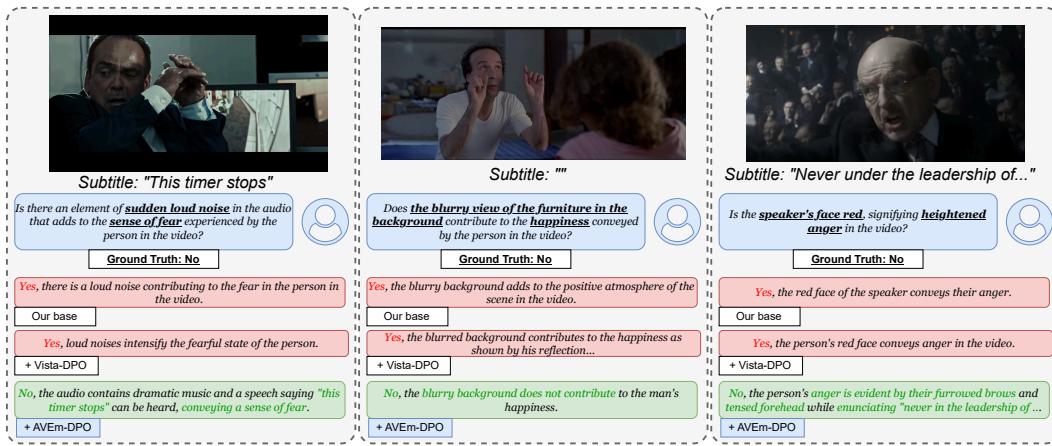


Figure 18: Qualitative examples comparing the output responses using different approaches for some samples present in the *Emotion Reasoning - Stress Test* of EmoReALM benchmark.

1836 **G PROMPT POOL**

1837

1838

1839 You are an expert in audio captioning. Your task is to provide a detailed caption for the given audio, while covering as much
1840 information as possible.

1841 Keep the following points in mind while generating the caption:

- 1842 1. Describe the audio content such as transcript, speech, tone of voice, background noise, music, sound effects, etc.
- 1843 2. Focus on the audio cues which can explain the emotional state of the video or the characters present in the video.
- 1844 3. If the speech is in a language other than English, provide transcript in other language as well as English translation.
- 1845 4. DO NOT STATE ANYTHING ABOUT THE VISUAL CONTENT OF THE VIDEO.

1846 Return your response strictly in the following JSON format: {"detailed_caption": "... detailed caption about everything ...",
1847 "emotion_caption": "... detailed caption only about the tone of voice, speech content or any other detail which deals with emotion
1848 ..."}

1849 Figure 19: **Audio caption prompt** – used to caption only the audio content from a video. Note that
1850 the audio is passed along with the prompt to GPT-4o-audio as a WAV file.

1851

1852 You are an expert in video captioning. Your task is to provide a detailed caption for the given video, while covering as much
1853 information as possible.

1854 Only focus on the visual content and ignore the subtitle if it is present in the video.

1855 Keep the following points in mind while generating the caption:

- 1856 1. Describe the visual content such as facial expression of the character(s) in detail. Additionally, comment on the body
language, gestures of the character(s) as well as the background or setting of the given video.
- 1857 2. Focus on the visual cues which can explain the emotional state of the character(s) in the video and the video in general.
- 1858 3. DO NOT STATE ANYTHING ABOUT THE SUBTITLE OR AUDIO CONTENT OF THE VIDEO.

1859

1860 Return your response strictly in the following JSON format: {"detailed_caption": "... detailed caption about everything ...",
1861 "emotion_caption": "... detailed caption only about the facial expressions, body language, gestures, or any aspect of the video
1862 which deals with emotion ..."}

1863 Figure 20: **Video caption prompt** – used to caption only the visual content in a video. We blur the
1864 captions if they are already present in the video and explicitly ask the model to ignore them if they
1865 are present in the visual content.

1866

1867 You will be given an audio caption from a video and your task is to predict the emotion displayed just with the audio caption.
1868 Label can be one of the following: "happiness", "sadness", "anger", "fear", "disgust", "surprise", and "neutral".

1869

1870 Try to predict the closest emotion label based on the audio caption and do not return disclaimers or anything else. Focus on the
1871 audio transcript as well as the tone of voice and avoid predicting neutral unless absolutely necessary.

1872

1873 Return your response in the following JSON format - {"video_id": video_id, "emotion": "emotion_label"}.
1874 "emotion_label" should be a single word, one of the following: "happiness", "sadness", "anger", "fear", "disgust", "surprise", and
1875 "neutral".

1876

1877 Video ID: "{VIDEO ID}"
1878 Audio Caption: "{AUDIO CAPTION}"

1879 Figure 21: **Audio emotion prediction prompt** – used to predict the emotion into one of the 7 basic
1880 categories from only the audio caption.

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

You will be given a video caption from a video and your task is to predict the emotion displayed just with the video caption. Label can be one of the following: "happiness", "sadness", "anger", "fear", "disgust", "surprise", and "neutral".

Try to predict the closest emotion label based on the video caption and do not return disclaimers or anything else.

Return your response in the following JSON format - {"video_id": video_id, "emotion": "emotion_label"}. "emotion_label" should be a single word, one of the following: "happiness", "sadness", "anger", "fear", "disgust", "surprise", and "neutral".

Video ID: "{VIDEO ID}"

Video Caption: "{VIDEO CAPTION}"

Figure 22: **Video emotion prediction prompt** – used to predict the emotion into one of the 7 basic categories from only the video caption

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

You will be provided with an audio caption and an emotion label associated with a video.

Your task is to create high quality question-answer pairs based on the provided audio caption and emotion label. The questions should be asking about the audio content responsible for the emotion in the video.

The audio caption contains all the details about the emotional content of the audio and other context/music/background noise in the audio.

Keep the following points in mind while generating the question answer pairs:

1. The questions should be focussed on reasoning about the given emotion based on audio cues without any explicit mention of the displayed emotion. The question should not mention the given emotion label in any form.

2. Each question should have 4 choices (A, B, C, D), one of which should be the correct answer.

3. The incorrect choices can be either (i) plausible audio cues to explain the correct emotion not present in the audio (ii) audio cues present in the audio caption but do not contribute to the emotion displayed in the audio. For example, if the emotion is "sadness", the incorrect choices should be audio cues that can explain sadness but are not present in the audio caption.

4. All the choices should be of almost equal length.

5. For each question, provide the correct answer both in terms of the correct choice (A, B, C, D) and in the form of a text answer. The text answer should be the detailed version of the correct answer to the question, without any mention of the choices.

6. DO not frame questions that include phrases such as "audio caption" or "audio transcript" or "which of the following" or "what best suits", etc.

Example questions:

1. [Label-Happiness][Semantic Speech] How does the man's words display the emotion in the video? (A) The man says that they received a promotion at work (B) The man says that they are pregnant with their first child (C) The man says that they just won a lottery (D) The man says that they are going on a vacation.

2. [Label-Sadness][Paralinguistics] How does the character's tone of voice contribute to their emotional state? (A) The character is speaking in a low, sad tone (B) The character is crying with a shaky voice (C) The character is speaking in a monotone voice suggesting depression (D) The character is speaking in a high-pitched voice suggesting anxiety.

Return your response strictly in the following JSON format - {"video_id": video_id, "questions": [{"question": "Question text", "choices": ["(A) choice A", "(B) choice B", "(C) choice C", "(D) choice D"], "category": "semantic_speech_reasoning/paralinguistic_speech_reasoning"}], "answer": {"choice": "C", "text": "answer text"}, "category": "semantic_speech_reasoning/paralinguistic_speech_reasoning"}}

Return "ERROR" if you are unable to generate any question answer pairs. Also specify why you are unable to generate the question answer pairs.

Generate at least one question about semantic speech, and one about paralinguistic speech.

If the audio caption does not suggest the given emotion label, then do not generate any question answer pairs and return "ERROR".

==

Video ID: "{VIDEO ID}"

Emotion Label: "{EMOTION}"

Audio Caption: "{AUDIO CAPTION}"

1937

1938

1939

Figure 23: **EmoReAIM Basic Reasoning Prompt - Audio** – used to generate questions which ask about the audio cues that suggest the emotion of the person in the video.

1940

1941

1942

1943

1944
 1945
 1946
 1947 You will be provided with a video caption and an emotion label associated with the video.
 Your task is to create high quality question-answer pairs based on the provided video caption and emotion label. The questions should be asking about the visual content responsible for the emotion in the video.
 1948 The video caption contains all the details about the emotional content of the video, including detailed visual content.
 1949
 1950 Keep the following points in mind while generating the question answer pairs:
 1. The questions should be focussed on reasoning about emotion displayed in the video without any explicit mention of the displayed emotion. The question should not mention the given emotion label in any form.
 2. Each question should have 4 choices (A, B, C, D), one of which should be the correct answer.
 3. The incorrect choices can be either (i) plausible visual cues to explain the correct emotion not present in the video (ii) visual cues present in the video caption but do not contribute to the emotion displayed in the video. For example, if the emotion is "sadness", the incorrect choices should be visual cues that can explain sadness but are not present in the video caption.
 4. All the choices should be of almost equal length.
 5. For each question, provide the correct answer both in terms of the correct choice (A, B, C, D) and in the form of a text answer. The text answer should be the detailed version of the correct answer to the question, without any mention of the choices.
 6. DO not frame questions that include phrases such as "video caption" or "video transcript" or "which of the following" or "what best suits", etc.
 1951
 1952
 1953
 1954
 1955
 1956
 1957 Example questions:
 1. [Label-Happiness][Facial Expression] How does the man's facial expression contribute to the emotion displayed in the video? (A) The man is laughing with a big smile (B) The man smirks slightly with an implicit happiness in his eyes (C) The man bursts into laughter suggesting extreme joy (D) The man's eyes are filled with tears of joy.
 2. [Label-Sadness][Body Language] How does the character's gesture contribute to their emotional state? (A) The character is slumped over with their head down suggesting melancholy (B) The character's posture suggests a lack of confidence and depression suggesting sadness (C) The character cries with their hands covering their face (D) The character is sitting with their arms crossed and looking down, suggesting sadness.
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969 Return your response strictly in the following JSON format - {"video_id": video_id, "questions": [{"question": "Question text", "choices": ["(A) choice A", "(B) choice B", "(C) choice C", "(D) choice D"], "answer": "choice", "text": "answer text", "category": "facial_expression_reasoning/body_language_reasoning"}]}
 1970 Return "ERROR" if you are unable to generate any question answer pairs. Also specify why you are unable to generate the question answer pairs.
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

===
 Video ID: "{VIDEO ID}"
 Emotion Label: "{EMOTION}"
 Video Caption: "{VIDEO CAPTION}"

Figure 24: **EmoReAIM Basic Reasoning Prompt - Visual** – used to generate questions which ask about the visual cues that suggest the emotion of the person in the video.

1971
 1972
 1973
 1974
 1975
 1976
 1977 You are an expert in audio-visual emotion understanding and analysis. You will be given audio captions and video captions for an audio-visual content, along with the manually annotated emotion label out of "happiness", "sadness", "anger", "fear", "disgust", "surprise", and "neutral".
 Your task is to analyze the audio and video captions and denote whether the audio and video modalities agree with each other in conveying the emotion label.
 1978 Finally, you have to generate question answer pairs asking about the modality agreement of the audio-video content in conveying the emotion. You should frame questions about the video and not the captions.
 1979
 1980 Do not generate any question answer pairs if neither the audio nor the video content convey the emotion label.
 1981
 1982 Following are a few examples of the questions that you can ask. DO NOT ASK THE SAME QUESTIONS AS GIVEN BELOW, BUT GENERATE SIMILAR QUESTIONS:
 1. Are the audio and video modalities in agreement with each other in conveying the emotion of the video? (A) Yes (B) No -- Modality agreement
 2. Are the visual and audio cues in agreement to convey the sadness in the video? (A) Yes (B) No -- Modality agreement
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199

1998

1999

2000

2001

2002

2003

You will be provided with an audio caption for a video and an emotion label associated with the video. The audio caption will contain some information related to the emotion label.

2004

Your task is to generate a question of the format - "Does the {...some audio cue...} contribute to the {...emotion...} experienced by

2005

the person in the video?" but not in the same words.

2006

The audio cue mentioned in the question should be an audio cue (e.g. tone of voice or choice of words or something else) that is present in the given audio caption, and supports the emotion label given to you.

2007

Return your response strictly in the following JSON format - {"video_id": video_id, "questions": [{"question": "Question text", "choices": ["(A) Yes", "(B) No"], "answer": {"choice": "A", "text": "explanation for your answer"}, "category": "audio_driven_audio_no_hallucination"}, ...]}

2008

Only generate one question for the given inputs. Return the string "ERROR" if you are unable to generate any question or for

2009

something else.

2010

Provide your reasoning in the "answer_text" field of the answer in terms of the video and not the caption. Your answer should always be "A" since the audio cue supports the emotion. Do not frame your answers in terms of captions, but rather in terms of

2011

video.

==

Video ID: "{VIDEO ID}"

Emotion Label: "{EMOTION}"

Audio Caption: "{AUDIO CAPTION}"

2012

Figure 26: **EmoReAlM Stress Test Prompt - Audio - No Hallucination** – used to generate questions where the audio cue mentioned in the question is present in the audiovisual input and supports the emotion of the person in the video.

2013

2014

2015

2016

2017

2018

You will be provided with an audio caption for a video and an emotion label associated with the video.

2019

Your task is to generate a question of the format - "Does the {...some audio cue...} contribute to the {...emotion...} experienced by the person in the video?" but not in the same words.

2020

The audio cue mentioned in the question should be an audio cue (some auditory element irrelevant to emotion) that is present in the given audio caption, but does not support the emotion in any way remotely.

2021

Return your response strictly in the following JSON format - {"video_id": video_id, "questions": [{"question": "Question text", "choices": ["(A) Yes", "(B) No"], "answer": {"choice": "B", "text": "explanation for your answer"}, "category": "audio_driven_audio_hallucination_audio_relevant"}, ...]}

2022

Only generate one question for the given inputs. Return the string "ERROR" if you are unable to generate any question because all the audio cues in the audio caption align with the given emotion or for something else.

2023

Provide your reasoning in the "answer_text" field of the answer in terms of the video and not the caption. Your answer should always be "B" since the audio cue does not support the emotion in the video. Do not frame your answers in terms of captions, but rather in terms of video.

==

Video ID: "{VIDEO ID}"

Emotion Label: "{EMOTION}"

Audio Caption: "{AUDIO CAPTION}"

2024

2045

Figure 27: **EmoReAlM Stress Test Prompt - Audio - Spurious Associations** – used to generate questions where the audio cue mentioned in the question is present in the audiovisual input and but it is spuriously related to the emotion of the person in the video.

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

You will be provided with an audio caption for a video and an emotion label associated with the video.

2058

2059

Your task is to generate a question of the format - "Does the {...some audio cue...} contribute to the {...emotion...} experienced by the person in the video?" but not in the same words.

2060

The audio cue mentioned in the question should be an audio cue (preferably some words or phrases or tone of voice or some other auditory element) that is associated with the given emotion generally, but is NOT present in the audio caption.

2061

Return your response strictly in the following JSON format - {"video_id": video_id, "questions": [{"question": "Question text", "choices": ["(A) Yes", "(B) No"], "answer": {"choice": "B", "text": "explanation for your answer"}, "category": "audio_driven_audio_hallucination_emotion_relevant"}, ...]}

2062

Only generate one question for the given inputs. Return the string "ERROR" if you are unable to generate any question because all the audio cues generally associated with the given emotion are present in the audio caption or for something else.

2063

Provide your reasoning in the "answer_text" field of the answer in terms of the video and not the caption. Your answer should always be "B" since the audio cue does not support the emotion in the video. Do not frame your answers in terms of captions, but rather in terms of video.

==

Video ID: "{VIDEO ID}"

Emotion Label: "{EMOTION}"

Audio Caption: "{AUDIO CAPTION}"

2064

2065

2066

2067

2068

2069

2070

2071

Figure 28: **EmoReAlM Stress Test Prompt - Audio - Hallucination** – used to generate questions where the audio cue mentioned in the question is hallucinated (not present in the audiovisual input) and but it usually explains the emotion experienced by the person in the video.

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

You will be provided with a video caption and an emotion label associated with the video. The video caption will contain some information related to the emotion label.

Your task is to generate a question of the format - "Does the {...some visual cue...} contribute to the {...emotion...} experienced by the person in the video?" but not in the same words.

The visual cue mentioned in the question should be a visual cue (either facial expression or body language or something else) that is present in the given video caption and it supports the emotion label given to you.

Return your response strictly in the following JSON format - {"video_id": video_id, "questions": [{"question": "Question text", "choices": ["(A) Yes", "(B) No"], "answer": {"choice": "A", "text": "explanation for your answer"}, "category": "video_driven_visual_no_hallucination"}, ...]}

2085

Only generate one question for the given inputs. Return the string "ERROR" if you are unable to generate any question or for something else.

Provide your reasoning in the "answer_text" field of the answer in terms of the video and not the caption. Your answer should always be "A" since the visual cue supports the emotion. Do not frame your answers in terms of captions, but rather in terms of video.

==

Video ID: "{VIDEO ID}"

Emotion Label: "{EMOTION}"

Video Caption: "{VIDEO CAPTION}"

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

Figure 29: **EmoReAlM Stress Test Prompt - Video - No Hallucination** – used to generate questions where the visual cue mentioned in the question is present in the audiovisual input and supports the emotion of the person in the video.

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

You will be provided with a video caption and an emotion label associated with the video.

2112

2113

Your task is to generate a question of the format - "Does the {...some visual cue...} contribute to the {...emotion...} experienced by the person in the video?" but not in the same words.

2114

The visual cue mentioned in the question should be a visual cue (something unrelated and irrelevant to emotion) that is present in the given video caption, but does not support the emotion in any way remotely.

2115

Return your response strictly in the following JSON format - {"video_id": video_id, "questions": [{"question": "Question text", "choices": ["(A) Yes", "(B) No"], "answer": {"choice": "B", "text": "explanation for your answer"}, "category": "audio_driven_visual_hallucination_video_relevant"}, ...]}

2116

Only generate one question for the given inputs. Return the string "ERROR" if you are unable to generate any question because the visual caption align with the given emotion or for something else.

2117

Provide your reasoning in the "answer_text" field of the answer in terms of the video and not the caption. Your answer should always be "B" since the visual cue does not support the emotion. Do not frame your answers in terms of captions, but rather in terms of video.

==

Video ID: "{VIDEO ID}"

Emotion Label: "{EMOTION}"

Video Caption: "{VIDEO CAPTION}"

2118

Figure 30: **EmoReAlM Stress Test Prompt - Video - Spurious Associations** – used to generate questions where the visual cue mentioned in the question is present in the audiovisual input and but it is spuriously related to the emotion of the person in the video.

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

You will be provided with a video caption and an emotion label associated with the video.

2129

2130

2131

2132

2133

2134

2135

2136

2137

Your task is to generate a question of the format - "Does the {...some visual cue...} contribute to the {...emotion...} experienced by the person in the video?" but not in the same words.

2138

The visual cue mentioned in the question should be a visual cue (preferably a facial expression) that is associated with the given emotion generally, but is NOT present in the video caption.

2139

Return your response strictly in the following JSON format - {"video_id": video_id, "questions": [{"question": "Question text", "choices": ["(A) Yes", "(B) No"], "answer": {"choice": "B", "text": "explanation for your answer"}, "category": "audio_driven_visual_hallucination_emotion_relevant"}, ...]}

2140

Only generate one question for the given inputs. Return "ERROR" if you are unable to generate any question. Also specify why you are unable to generate the question.

2141

Provide your reasoning in the "answer_text" field of the answer in terms of the video and not the caption. Your answer should always be "B" since the visual cue is not present in the video caption. Do not frame your answers in terms of captions, but rather in terms of video.

==

Video ID: "{VIDEO ID}"

Emotion Label: "{EMOTION}"

Video Caption: "{VIDEO CAPTION}"

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

Figure 31: **EmoReAlM Stress Test Prompt - Video - Hallucination** – used to generate questions where the visual cue mentioned in the question is hallucinated (not present in the audiovisual input) and but it usually explains the emotion experienced by the person in the video.

2154

2155

2156

2157

2158

2159

2160
 2161
 2162 You are an intelligent assistant and good with logical reasoning. Your task is to guess the answer to the given question about some video,
 2163 without access to the video itself.
 2164 The question will be about the emotional content of the video focussing on the audio-visual content of the video.
 2165 Keep the following points in mind while guessing the answer:
 2166 1. Your guess should not be random. It should be based on some hint provided in the question and the answer choices.
 2167 2. Do not provide an answer if you can not guess the answer based just on the text of the question and the answer choices.
 2168
 2169 Following are some examples of question answer pairs and their guesses:
 2170 Question 1: Why does the person in the video look sad? (A) They just lost a game. (B) Their grandma gave them a gift. (C) Their father gave
 2171 them a hearty hug (D) They ate something that they are very fond of.
 2172 Guess Answer 1: (A)
 2173 Reason 1: Only one of the options is related to the emotion "sad" and the other options are about positive emotions.
 2174 Question 2: What is the emotion of the person in the video? (A) happy (B) sad (C) angry (D) surprised
 2175 Guess Answer 2: None
 2176 Reason 2: The question is about identifying the emotion of the person in the video, but we do not have access to the video to guess the answer.
 2177 Question 3: Are the audio video modalities in agreement with each other in conveying the emotion of the video? (A) Yes (B) No
 2178 Guess Answer 3: None
 2179 Reason 3: The question is about the agreement between audio and video modalities, but we do not have access to the video or audio to guess
 2180 the answer.
 2181
 2182
 2183
 2184
 2185 You will be provided with a MCQ question, choices and answer related to reasoning about the emotion of a video based on the
 2186 audio content.
 2187 Your task is to reformulate the answer choices to make the question more difficult.
 2188 You will also be provided with the audio captions of the video which the question is about along with the ground truth (GT)
 2189 emotion label.
 2190
 2191 Specifically, you have to do the following checks:
 2192 1. If the question is not about reasoning the emotional state of the person based on the audio content or choice of words, then
 2193 return "ERROR... {reason for your response}."
 2194 2. For the correct choice, rephrase the answer choice to make sure that it reasons for the emotion given as the GT emotion
 2195 label and it is based on the speech content specified in the audio caption.
 2196 3. The incorrect choices should be reformulated to in a way so that they follow the same tone and length as the correct choice
 2197 and they should attribute to the GT emotion label, but they differ from the correct choice in the following ways:
 2198 a. [audio_relevant_emotion_irrelevant] One of the incorrect choice should pick a different audio cue (e.g. tone of voice,
 2199 background sounds/music) from the audio caption and attribute it to the GT emotion label.
 2200 b. [emotion_relevant_audio_irrelevant] Next incorrect choice should pick an audio cue that is generally associated with the
 2201 GT emotion label but is NOT present in the audio caption. Do not mention in the choice that the audio cue is not present in the
 2202 audio caption, just rephrase it as if it is present.
 2203 c. [all_irrelevant] The last incorrect choice should be some audio cue that is not present in the audio caption, but it should
 2204 sound similar to the correct choice and it should attribute to the GT emotion label.
 2205 4. Do not explicitly mention that you are given the emotion label. Do not mention captions in the question or the answer
 2206 choices.
 2207 5. Phrase all the responses in a way that they explain the given GT emotion label and answer the question.
 2208
 2209
 2210
 2211
 2212
 2213

Figure 32: **Text Only Guess Prompt** – used to prompt GPT-4o, Gemini 2.5 and Qwen 2.5 to predict the answer to the generated QA samples using only the question text and answer choices to eliminate responses which can be answered just with the text.

2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213

You will be provided with a MCQ question, choices and answer related to reasoning about the emotion of a video based on the audio content.
 Your task is to reformulate the answer choices to make the question more difficult.
 You will also be provided with the audio captions of the video which the question is about along with the ground truth (GT) emotion label.
 Specifically, you have to do the following checks:
 1. If the question is not about reasoning the emotional state of the person based on the audio content or choice of words, then return "ERROR... {reason for your response}."
 2. For the correct choice, rephrase the answer choice to make sure that it reasons for the emotion given as the GT emotion label and it is based on the speech content specified in the audio caption.
 3. The incorrect choices should be reformulated to in a way so that they follow the same tone and length as the correct choice and they should attribute to the GT emotion label, but they differ from the correct choice in the following ways:
 a. [audio_relevant_emotion_irrelevant] One of the incorrect choice should pick a different audio cue (e.g. tone of voice, background sounds/music) from the audio caption and attribute it to the GT emotion label.
 b. [emotion_relevant_audio_irrelevant] Next incorrect choice should pick an audio cue that is generally associated with the GT emotion label but is NOT present in the audio caption. Do not mention in the choice that the audio cue is not present in the audio caption, just rephrase it as if it is present.
 c. [all_irrelevant] The last incorrect choice should be some audio cue that is not present in the audio caption, but it should sound similar to the correct choice and it should attribute to the GT emotion label.
 4. Do not explicitly mention that you are given the emotion label. Do not mention captions in the question or the answer choices.
 5. Phrase all the responses in a way that they explain the given GT emotion label and answer the question.
 Return your response strictly in the following JSON format - {"video_id": video_id, "question": "Question text", "choices": {"correct": "correct choice rephrased", "audio_relevant_emotion_irrelevant": "incorrect choice a.", "emotion_relevant_audio_irrelevant": "incorrect choice b.", "all_irrelevant": "incorrect choice c."}}.
 Return "ERROR" if you are unable to reformulate the question and answer choices. Also specify why you are unable to reformulate the question and answer choices.
 ===
 Video ID: "{VIDEO_ID}"
 Emotion label: "{EMOTION_LABEL}"
 Audio Caption: "{AUDIO_CAPTION}"
 Question: "{QUESTION}"
 Choices: "{CHOICES}"
 Answer: "{ANSWER}"

Figure 33: **Preference Data Generation Prompt - Audio Reasoning** – used to generate rejected responses for a generated question-answer pair related to audio reasoning tasks.

2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

You will be provided with a MCQ question, choices and answer related to reasoning about the emotion of a video based on the visual content of a video.
 Your task is to reformulate the answer choices to make the question more difficult.
 You will also be provided with the video caption of the video which the question is about along with the ground truth (GT) emotion label.

Specifically, you have to do the following checks:

1. If the question is not about reasoning the emotional state of the person based on the visual content, then return "ERROR... {reason for your response}".
2. For the correct choice, rephrase the answer choice to make sure that it reasons for the emotion given as the GT emotion label and it is based on the visual content specified in the video caption.
3. The incorrect choices should be reformulated to in a way so that they follow the same tone and length as the correct choice and they should attribute to the GT emotion label, but they differ from the correct choice in the following ways:
 - a. [video_relevant_emotion_irrelevant] One of the incorrect choice should pick a different visual cue (e.g. background information, color of attire, body language, etc.) from the video caption and attribute it to the GT emotion label.
 - b. [emotion_relevant_video_irrelevant] Next incorrect choice should pick a visual cue that is usually associated with the GT emotion label, but it is not present in the video caption. Do not mention in the choice that the visual cue is not present in the video caption, just rephrase it as if it is present.
 - c. [all_irrelevant] The last incorrect choice should be a visual cue that is NOT present in the video caption and does NOT explain the emotion in general and attribute it to the GT emotion label. Do not mention in the choice that the visual cue is not present in the video caption, just rephrase it as if it is present.
4. Do not explicitly mention that you are given the emotion label. Do not mention captions in the question or the answer choices.
5. Phrase all the responses in a way that they explain the given GT emotion label and answer the question.

Return your response strictly in the following JSON format - {"video_id": video_id, "question": "Question text", "choices": {"correct": "correct choice rephrased", "video_relevant_emotion_irrelevant": "incorrect choice a.", "emotion_relevant_video_irrelevant": "incorrect choice b.", "all_irrelevant": "incorrect choice c."}}.
 Return "ERROR" if you are unable to reformulate the question and answer choices. Also specify why you are unable to reformulate the question and answer choices.

===
 Video ID: "{VIDEO_ID}"
 Emotion label: "{EMOTION_LABEL}"
 Video Caption: "{VIDEO_CAPTION}"
 Question: "{QUESTION}"
 Choices: "{CHOICES}"
 Answer: "{ANSWER}"

Figure 34: **Preference Data Generation Prompt - Visual Reasoning** – used to generate rejected responses for a generated question-answer pair related to visual reasoning tasks.

2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280 You will be provided with a MCQ question, choices and answer related to whether the audio and video modalities agree in conveying the same emotion for the character in the video or not.
 2281 Your task is to create new answer choices to make the question more difficult.
 2282 You will also be provided with the video and audio captions of the video which the question is about along with the ground truth (GT) emotion label.
 2283
 2284 Specifically, you have to do the following checks:
 2285 1. If the question is not about modality agreement for the emotional state of the person, then return "ERROR... {reason for your response}."
 2286 2. For the correct choice between "Yes" or "No", rephrase the answer choice to make sure that it explains either yes or no based on the GT emotion label and the audio and video captions.
 2287 3. I want you to generate the following incorrect choices in a way so that they follow the same tone and length as the correct choice and they should reason for the opposite answer (opposite of correct answer in 2), but they differ from the correct choice in the following ways:
 2288 a. [video_relevant_emotion_irrelevant] One of the incorrect choice should pick a different audio or visual cue (e.g. tone of voice, background colour of wall, outfit colour, background sounds/music) from the audio and video caption and attribute it to the opposite answer.
 2289 b. [emotion_relevant_video_irrelevant] Next incorrect choice should pick audio and visual cues that support the opposite answer (complementary cues if opposite answer is "Yes", else contradictory cues if opposite answer is "No") but are not present in the given audio or video caption. Do not mention in the choice that the video/audio cue is not present in the video/audio caption, just rephrase it as if it is present.
 2290 c. [all_irrelevant] Final incorrect choice should be completely irrelevant to the question and should talk about some audio visual cues that are not even present in the given captions.
 2291 4. Do not explicitly mention that you are given the emotion label. Do not mention captions in the question or the answer choices.
 2292 5. Phrase all the responses in a way that they explain whether the audio and video modalities agree or disagree in conveying the same emotion for the character in the video or not.
 2293 6. Start your answer with either "Yes, ..." or "No, ...".
 2294 7. If the question is not about the emotional state of the person or character, rephrase it in a way that it is about the emotional state/mood/feeling of the person. It is important that the question is about emotion of a person and not general emotion.
 2295
 2296 Return your response strictly in the following JSON format - {"video_id": video_id, "question": "Question text", "choices": {"correct": "correct choice rephrased", "video_relevant_emotion_irrelevant": "incorrect choice a.", "emotion_relevant_video_irrelevant": "incorrect choice b."}}.
 2297 Return "ERROR" if you are unable to reformulate the question and answer choices. Also specify why you are unable to reformulate the question and answer choices.
 2298
 2299 ===
 2300 Video ID: "{VIDEO_ID}"
 2301 Emotion label: "{EMOTION_LABEL}"
 2302 Audio Caption: "{AUDIO_CAPTION}"
 2303 Video Caption: "{VIDEO_CAPTION}"
 2304 Question: "{QUESTION}"
 2305 Choices: "{CHOICES}"
 2306 Answer: "{ANSWER}"
 2307
 2308
 2309 **Figure 35: Preference Data Generation Prompt - Modality Agreement** – used to generate rejected responses for a generated question-answer pair related to modality agreement tasks.
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

You will be provided with a detailed audio and video caption for a video clip.

Along with the caption, you will also be provided with the ground truth emotion label of the audio-visual clip.

Your task is to write a detailed audio-visual caption describing the emotional content of the video clip.

Keep the following points in mind while writing the caption:

1. The final caption should include both audio and visual elements.
2. Attribute the emotion only to the audio and visual cues in the captions which are relevant to the emotion label.
3. Do not ground the emotion description on any audio/visual cues which are not present in the provided captions.
4. Return your answer as a single paragraph.

Following is an example of how final audio-visual emotion caption should look like:

Example caption: "In the video, the opening scene shows a female character. She is looking directly at the other person, with her mouth slightly open, seemingly speaking or discussing a certain topic seriously. As time goes on, the character's expression becomes more excited and intense. The extent to which her mouth is open increases, possibly indicating that she is speaking loudly or arguing. In the following scene, the character's expression becomes more distorted, with a furrowed brow and downturned mouth, possibly indicating that her emotional state is escalating further. Based on these scenes, it can be inferred that the character in this video is likely experiencing a heated conversation or argument. In the audio, this character speaks with a strong tone, high volume, and fast pace. There are also continuous rhetorical questions with strong emotions. In the text, the subtitle reads: ""Is it useful to ask you? Are you ready to be a father? Luo Yiyang." This sentence is likely spoken by the female character during the intense conversation or argument. Based on the changes in the female character's facial expressions from seriousness to excitement and further distorted expressions, as well as the description in the audio of the character's strong tone, high volume, and fast pace, we can infer that this sentence carries a sense of anger, dissatisfaction, or provocation. The female character may be questioning the other person's usefulness and readiness to be a father, expressing her discontent and anger."

If you think there are not enough audio-visual cues which support the emotion label, return a single word - "ERROR".

Now, write a detailed audio-visual caption for the following case

==

Video Caption: "{VIDEO_CAPTION}"

Audio Caption: "{AUDIO_CAPTION}"

Emotion Label: "{EMOTION_LABEL}"

Figure 36: **Audiovisual Caption Prompt** – used to combine audio and visual captions to create a combined audiovisual caption.

You will be provided with the ground truth description of a video capturing the emotional quotient of the video.

Your task is to evaluate a given model generation based by comparing it to the ground truth description.

You need to rate the model generation on a scale of 1 to 10 on the following criteria:

1. Audio-Visual Cue Overlap: Rate how well the mention of audio-visual events in the generation aligns with those in the ground truth. A higher score indicates a better match.
2. Emotion-label Consistency: Rate how accurately the predicted emotion from the model aligns with the emotion described in the ground truth. A higher score indicates better consistency.
3. Emotion-cue Association: Only focus on the model generation and rate how well the audio-visual cues are associated with the predicted emotion. Rate poorly if an emotion- irrelevant cue is mentioned in the generation. A higher score indicates a better association of audio-visual cues with emotion.
4. Hallucinated Cues: Rate the extent to which the model generations contains hallucinated or fabricated audio-visual cues that are not present in the ground truth. A higher score indicates fewer hallucinations and a lower score indicates more hallucinations.

Return your response in the following json format:

```
{"cue_overlap": int, "cue_overlap_reason": str, "emotion_consistency": int, "emotion_consistency_reason": str, "emotion_cue_association": int, "emotion_cue_association_reason": str, "hallucinated_cues": int, "hallucinated_cues_reason": str}
```

Ground Truth Description: "{GT_DESCRIPTION}"

Model generation: "{MODEL_GENERATION}"

Figure 37: **EMER Evaluation Prompt** – used to evaluate the model generations against the provided ground truths for the EMER dataset.