© 00 N o o~ W N =

34
35
36
37
38

FATE: Fairness Attacks on Graph Learning

Anonymous Author(s)
Affiliation
Address

email

Abstract

We study fairness attacks on graph learning to answer the following question: How
can we achieve poisoning attacks on a graph learning model to exacerbate the
bias? We answer this question via a bi-level optimization problem and propose a
meta learning-based attacking framework named FATE. The proposed framework
is broadly applicable with respect to various fairness definitions and graph learning
models, as well as arbitrary choices of manipulation operations. We further instanti-
ate FATE to attack statistical parity and individual fairness on graph neural networks.
We conduct extensive experimental evaluations on real-world datasets in the task
of semi-supervised node classification. The experimental results demonstrate that
FATE could amplify the bias of graph neural networks with or without fairness
consideration while maintaining the utility on the downstream task. We hope this
paper provides insights into the adversarial robustness of fair graph learning and
can shed light on designing robust and fair graph learning in future studies.

1 Introduction

Algorithmic fairness in graph learning has received much research attention [5, 20, 24]. Despite
its substantial progress, existing studies mostly assume the benevolence of input graphs and aim
to ensure that the bias would not be perpetuated or amplified in the learning process. However,
malicious activities in the real world are commonplace. For example, consider a financial fraud
detection system which utilizes a transaction network to classify whether a bank account is fraudulent
or not [49, 45]. An adversary may manipulate the transaction network (e.g., malicious banker with
access to the transaction data, theft of bank accounts to make malicious transactions), so that the
graph-based fraud detection model would exhibit unfair classification results with respect to people
of different demographic groups. Consequently, a biased fraud detection model may infringe civil
liberty to certain financial activities and impact the well-being of an individual negatively [6]. It
would also make the graph learning model fail to provide the same quality of service to people of
certain demographic groups, causing the financial institutions to lose business in the communities
of the corresponding demographic groups. Thus, it is critical to understand how resilient a graph
learning model is with respect to adversarial attacks on fairness, which we term as fairness attacks.

To date, fairness attack has not been well studied. Sporadic literature often follows two strategies:
(1) adversarial data point injection, which is often designed for tabular data rather than graphs [38,
33, 8, 44] or (2) adversarial edge injection, which only attacks the group fairness of a graph neural
network [19]. It is thus crucial to study how to attack different fairness definitions for a variety of
graph learning models.

To achieve this goal, we study the Fairness attacks on graph learning (FATE) problem. We formulate
it as a bi-level optimization, where the lower-level problem optimizes a task-specific loss function
to make the fairness attacks deceptive and the upper-level problem leverages the supervision signal
to modify the input graph and maximize the bias function corresponding to a user-defined fairness
definition. To solve the bi-level optimization problem, we propose a meta learning-based solver

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

39
40
41
42
43
44
45

46

47
48
49
50

51
52
53

54
55
56

57

58
59
60
61
62
63

64
65
66
67
68
69
70
!
72
73

74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90

(FATE), whose key idea is to compute the meta-gradient of the upper-level bias function with respect
to the input graph to guide the fairness attacks. Compared with existing works, our proposed
FATE framework has two major advantages. First, it is capable of attacking any fairness definition
on any graph learning model, as long as the corresponding bias function and the task-specific loss
function are differentiable. Second, it is equipped with the ability for either continuous or discretized
poisoning attacks on the graph topology. We also briefly discuss its ability for poisoning attacks on
node features in a later section.

The major contributions of this paper are summarized as follows.

* Problem definition. We formally define the problem of fairness attacks on graph learning (the
FATE problem). Based on the definition, we formulate it as a bi-level optimization problem, whose
key idea is to maximize a bias function in the upper level while minimizing a task-specific loss
function for a graph learning task.

» Attacking framework. We propose an end-to-end attacking framework named FATE. It learns a
perturbed graph topology via meta learning, such that the bias with respect to the learning results
trained with the perturbed graph will be amplified.

* Empirical evaluation. We conduct experiments on three benchmark datasets to demonstrate the
efficacy of our proposed FATE framework in amplifying the bias while being the most deceptive
method (i.e., achieving the highest micro F1 score) on semi-supervised node classification.

2 Preliminaries and Problem Definition

A — Notations. Throughout the paper, we use bold upper-case letter for matrix (e.g., A), bold
lower-case letter for vector (e.g., x) and calligraphic letter for set (e.g., G). We use superscript ©
to denote the transpose of a matrix/vector (e.g., x* is the transpose of x). Regarding matrix/vector
indexing, we use conventions similar to NumPy in Python. For example, A[i, j] is the entry of A at
the i-th row and j-th column; x[¢] is the i-th entry of x; A[i,:] and A[j, :] are the i-th row and j-th
column of A, respectively.

B - Algorithmic fairness. The general principle of algorithmic fairness is to ensure the learning
results would not favor one side or another.! Among several fairness definitions that follow this
principle, group fairness [16, 18] and individual fairness [15] are the most widely studied ones. Group
fairness splits the entire population into multiple demographic groups by a sensitive attribute (e.g.,
gender) and ensure the parity of a statistical property among learning results of those groups. For
example, statistical parity, a classic group fairness definition, guarantees the statistical independence
between the learning results (e.g., predicted labels of a classification algorithm) and the sensitive
attribute [16]. Individual fairness suggests that similar individuals should be treated similarly. It is
often formulated as a Lipschitz inequality such that distance between the learning results of two data
points should be no larger than the difference between these two data points [15].

C - Problem definition. Existing work [19] for fairness attacks on graphs randomly injects adversar-
ial edges so that the disparity between the learning results of two different demographic groups would
be amplified. However, it suffers from three major limitations. (1) First, it only attacks statistical
parity while overlooking other fairness definitions (e.g., individual fairness [15]). (2) Second, it only
considers adversarial edge injection, excluding other manipulations like edge deletion or reweighting.
Hence, it is essential to investigate the possibility to attack other fairness definitions on real-world
graphs with an arbitrary choice of manipulation operations. (3) Third, it does not consider the utility
of graph learning models while achieving the fairness attacks, resulting in performance degradation
in the downstream tasks. However, an institution that applies the graph learning models are often
utility-maximizing [28, 2]. Thus, a performance degradation in the utility would make the fairness
attacks not deceptive from the perspective of a utility-maximizing institution.

In this paper, we seek to overcome the aforementioned limitations. To be specific, given an input
graph, an optimization-based graph learning model, and a user-defined fairness definition, we aim
to learn a modified graph such that a bias function of the corresponding fairness definition would
be maximized for effective fairness attacks, while minimizing the task-specific loss function with
respect to the graph learning model for deceptive fairness attacks. Formally, we define the problem of
fairness attacks on graph learning, which is referred to as the FATE problem.

"https://www.merriam-webster.com/dictionary/fairness

91

92
93
94
95
96

97
98
99

100

101

102
103

104

105

106
107

108
109
110

111
112
113
114
115
116
117
118
119

120
121

122

123
124
125
126

127
128

129
130
131
132

133

134
135

Problem 1 FATE: Fairness Attacks on Graph Learning

Given: (1) An undirected graph G = {A, X}; (2) a task-specific loss function (G, Y, ©, §) where)
is the graph learning results, © is the set of learnable variables and 8 is the set of hyperparameters; (3)
a bias function b(Y, ©*, F, §) where ©* = argming [(G,), ©, 0) and F is the matrix that contains
auxiliary fairness-related information (e.g., sensitive attribute values of all nodes in G for group
fairness, pairwise node similarity matrix for individual fairness); (4) an integer budget B.

Find: a poisoned graph G = {A X} which satisfies the following properties: (1) d(g, Q) <B
where d(G, G) is the distance between the input graph G and the poisoned graph G (e.g., || A, A|| 1,1);
(2) the bias function b (Y, ©*, F) is maximized for effectiveness; (3) the task-specific loss function

l (é , VY, 0, 9) is minimized for deceptiveness.

3 Methodology

In this section, we first formulate Problem 1 as a bi-level optimization problem, followed by a generic
meta learning-based solver named FATE.

3.1 Problem Formulation

Given an input graph G = {A, X} with adJacency matrix A and node feature matrix X, an attacker
aims to learn a p01soned graph G = {A X} such that the graph learning model will be maximally
biased when trained on G. In this work, we consider the following settings for the attacker.

The goal of the attacker. The attacker aims to amplify the bias of the graph learning results output
by a victim graph learning model. And the bias to be amplified is a choice made by the attacker based
on which fairness definition the attacker aims to attack.

The knowledge of the attacker. Following similar settings in [19], we assume the attacker has
access to the adjacency matrix, the feature matrix of the input graph, and the sensitive attribute of
all nodes in the graph. For a (semi-)supervised learning problem, we assume that the ground-truth
labels of the training nodes are also available to the attacker. For example, for a graph-based financial
fraud detection problem, the malicious banker may have access to the demographic information (i.e.,
sensitive attribute) of the account holders and also know whether some bank accounts are fraudulent
or not, which are the ground-truth labels for training nodes. Similar to [51, 52, 19], the attacker has
no knowledge about the parameters of the victim model. Instead, the attacker will perform a gray-box
attack by attacking a surrogate graph learning model.

The capabilitiy of the attacker. The attacker is able to perturb up to B edges/features in the graph
(i.e., ||A — A||171 S B or ||X — X”l,l S B)

Based on that, we formulate Problem 1 as a bi-level optimization problem as follows.
G = argmax b(Y,0* F)
’ (1)
st O =argmin (9,Y,6,0), d (gfj) <B
where the lower-level problem learns an optimal surrogate graph learning model ©* by minimizing
1(G,Y,0,0), the upper-level problem finds a poisoned graph G that could maximize a bias function
b(Y,©0* F) for the victim graph learning model and the distance between the input graph and the
poisoned graph d (Q, 5) is constrained to satisfy the setting about the budgeted attack. Note that
Eq. (1) is applicable to attack any fairness definition on any graph learning model, as long as the bias
function b (Y, ©*, F) and the loss function ! (G,Y, ©, 0) are differentiable.

A - Lower-level optimization problem. A wide spectrum of graph learning models are essentially
solving an optimization problem. Take the graph convolutional network (GCN) [26] as an example.
It learns the node representation by aggregating information from its neighborhood, i.e., message
passing. Mathematically, for an L-layer GCN, the hidden representation at k-th layer can be

represented as E® =¢ (KE(k’l)W(k)) where o is a nonlinear activation function (e.g., ReLU),

A =D /2 (A +I)D~!/2 with D being the degree matrix of (A + I) and W) is the learnable
weight matrix of the k-th layer. Then the lower-level optimization problem aims to learn the set

136
137
138

139
140
141
142
143
144
145
146
147
148

149

150
151
152
153
154
155

156
157
158
159
160
161

162
163
164
165

166
167
168

169
170

171
172

173
174
175

176
177
178

of parameters ©* = {W®#) |k = 1,..., L} that could minimize a task-specific loss function (e.g.,
cross-entropy loss for semi-supervised node classification). For more examples of graph learning
models from the optimization perspective, please refers to Appendix A.

B — Upper-level optimization problem. To attack the fairness aspect of a graph learning model, we
aim to maximize a differentiable bias function b (Y, ©*, F) with respect to a user-defined fairness
definition in the upper-level optimization problem. For example, for statistical parity [16], the fairness-
related auxiliary information matrix F can be defined as the one-hot demographic membership matrix,
where F[i, j] = 1 if and only if node 7 belongs to j-th demographic group. Then the statistical parity
is equivalent to the statistical independence between the learning results Y and F. Based on that,
existing studies propose several differentiable measurements of the statistical dependence between Y
and F as the bias function. For example, Bose et al. [5] use mutual information 7(Y; F) as the bias
function; Prost et al. [35] define the bias function as the Maximum Mean Discrepancy MMD (Yo, V1)
between the learning results of two different demographic groups), and).

3.2 The FATE Framework

To solve Eq. (1), we propose a generic attacking framework named FATE to learn the poisoned graph.
The key idea is to view Eq. (1) as a meta learning problem, which aims to find suitable hyperparameter
settings for a learning task [3], and treat the graph G as a hyperparameter. With that, we learn the
poisoned graph G using the meta-gradient of the bias function b (Y, ©*, F) with respect to G. In the
following, we introduce two key parts of FATE in details, including meta-gradient computation and
graph poisoning with meta-gradient.

A — Meta-gradient computation. The key term to learn the poisoned graph is the meta-gradient of
the bias function with respect to the graph G. Before computing the meta-gradient, we assume that
the lower-level optimization problem converges in 1" epochs. Thus, we first pre-train the lower-level
optimization problem by 7' epochs to obtain the optimal model ©* = ©(T) before computing the

meta-gradient. The training of the lower-level optimization problem can also be viewed as a dynamic
system with the following updating rule

@(IH-I) _ Opt(t+1) (g, @(t)’97Y> s Vit € {1, .. ,T} 2)

where ©() refers to © at initialization, opt(*+1)(-) is an optimizer that minimizes the lower-level

loss function [(g Y, 00, 6) at (t + 1)-th epoch. From the perspective of the dynamic system,
by applying the chain rule and unrolling the training of lower-level problem with Eq. (2), the
meta-gradient Vgb can be written as

T—2
Vb= Vgb (Y, o), F) + 3" AiBiar ... Broi Vb (Y7 o), F) 3)
t=0

where A; = VO and B, = Vg, O+, However, Eq. (3) is computationally expensive in
both time and space. To further speed up the computation, we adopt a first-order approximation of
the meta-gradient [17] and simplify the meta-gradient as

Vb~ Vb (Y, o, F) Vg0 @

Since the input graph is undirected, the derivative of the symmetric adjacency matrix A can be
computed as follows by applying the chain rule of a symmetric matrix [21].

Vab <+ Vab+ (Vab)" — diag (Vab) 5)

For the node feature matrix X, its derivative is equal to the partial derivative Vxb since it is often an
asymmetric matrix.

B — Graph poisoning with meta-gradient. After computing the meta-gradient of the bias function
Vb, we aim to poison the input graph guided by Vgb. We introduce two poisoning strategies: (1)
continuous poisoning and (2) discretized poisoning.

Continuous poisoning attack. The continuous poisoning attack is straightforward by reweighting
edges in the graph. We first compute the meta-gradient of the bias function V 5 b, then use it to poison
the input graph in a gradient descent-based updating rule as follows.

A A—nVab (6)

179
180

181
182

183
184
185
186
187

188
189
190

191
192

193
194
195
196
197

198
199
200
201
202
203
204

206

207

208
209

210

211
212
213
214

215
216

217
218
219
220
221
222

223
224

where 7 is a learning rate to control the magnitude of the poisoning attack. The learning rate should

satisfy n < ﬁ to ensure that constraint on the budgeted attack.

Discretized poisoning attack. The discretized poisoning attack aims to select a set of edges to be
added/deleted. It is guided by a poisoning preference matrix defined as follows.

Va = (1-2A)oVab N

where 1 is an all-one matrix with the same dimension as A and o denotes the Hadamard product.
A large positive V A [¢, j] indicates strong preference in adding an edge if nodes i and j are not
connected (i.e., positive V A b[i, j], positive (1 — 2A)[7, j]) or deleting an edge if nodes i and j are
connected (i.e., negative V 5 b[7, j], negative (1 — 2A)[i, j]). Then, a greedy selection strategy is
applied to find the set of edges Eyyack to be added/deleted.

galtack = tOPk(VA7 5) (8)

where topk(V a, d) selects § entries with highest preference score in V o . Note that, if we only want
to add edges without any deletion, all negative entries in V o b should be zeroed out before computing
Eq. (7). Likewise, if edges are only expected to be deleted, all positive entries should be zeroed out.

Remarks. Poisoning node feature matrix X follows the same steps as poisoning adjacency matrix A
without applying Eq. (5).

C - Overall framework. FATE generally works as follows. (1) We first pre-train the surrogate graph
learning model and get the corresponding learning model ©(7) as well as the learning results Y (7).
(2) Then we compute the meta gradient of the bias function using Egs. (4) and (5). (3) Finally, we
perform the discretized poisoning attack (Eqs. (7) and (8)) or continuous poisoning attack (Eq. (6)).
A detailed pseudo-code of FATE is provided in Appendix B.

D - Limitations. Since FATE leverages the meta-gradient to poison the input graph, it requires the
bias function b (Y, O, F) to be differentiable in order to calculate the meta-gradient Vgb. In
Sections 4 and 5, we present a carefully chosen bias function for FATE. And we leave it for future
work on exploring the ability of FATE in attacking other fairness definitions. Moreover, though the
meta-gradient can be efficiently computed via auto-differentiation in many deep learning packages
(e.g., PyTorch?, TensorFlow?), it requires O(n?) space complexity to store the meta-gradient when
attacking fairness via edge flipping. It is still a challenging open problem on how to cfficiently
compute the meta-gradient in terms of space. One possible remedy for discretized attack might be a
low-rank approximation on the perturbation matrix formed by E,y,cx- Since the difference between

the benign graph and poisoned graph are often small and budgeted (d (Q) 5) < B), it is likely that

the edge manipulations may be around a few set of nodes, which makes the perturbation matrix to be
an (approximately) low-rank matrix.

4 Instantiation #1: Statistical Parity on Graph Neural Networks

Here, we instantiate FATE framework by attacking statistical parity on graph neural networks in a
binary node classification problem with a binary sensitive attribute. We briefly discuss how to choose
(1) the surrogate graph learning model used by the attacker, (2) the task-specific loss function in the
lower-level optimization problem and (3) the bias function in the upper-level optimization problem.

A - Surrogate graph learning model. We assume that the surrogate model to be used by the attacker
is a 2-layer linear GCN [47] with different hidden dimensions and model parameters at initialization.

B - Lower-level loss function. We consider a semi-supervised node classification task for
the graph neural network to be attacked. Thus, the lower-level loss function is chosen as
the cross entropy between the ground-truth label and the predicted label: [(G,Y,0,0) =
m Zievm,m 25:1 Yi,; Ing; j, where Vigin is the set of training nodes with ground-truth labels
with | Viain| being its cardinality, ¢ is the number of classes, y;. 4 1s a binary indicator of whether node
i belongs to class j and ¥; ; is the prediction probability of node ¢ belonging to class j.

C - Upper-level bias function. We aim to attack statistical parity in the upper-level problem, which
asks for P [§ = 1] = P [§ = 1|s = 1]. Suppose p () is the probability density function (PDF) of 7j; 1

*https://pytorch.org/
3https://www.tensorflow.org/

225
226
227
228
229
230

231
232

234
235

236

237
238

240

241

242

243

244

245
246
247

248

249
250
251
252
253
254
255
256
257
258
259

260

261

262
263
264
265
266

for any node ¢ and p (y|s = 1) is the PDF of ¥; 1 for any node ¢ belong to the demographic group
with sensitive attribute value s = 1. We observe that P [j = 1] and P [§ = 1|s = 1] are equivalent
to the cumulative distribution functions (CDF) of p (g7 < %) and p (ﬂ < %|s = 1) , respectively. To
estimate both P [§ = 1] and P [§ = 1|s = 1] with a differentiable function, we first estimate their
probability density functions (p (¥ < 3) and p (J < %[s = 1)) with kernel density estimation (KDE,
Definition 1).

Definition 1 (Kernel density estimation [7]) Given a set of n IID samples {x1, .. .,x,} drawn from
a distribution with an unknown probability density function f, the kernel density estimation of | at

point T is defined as follows.
~ 1 & T—x;
For= o n () ©

where f is the estimated probability density function, fy, is the kernel function and a is a non-negative

bandwidth.

L . . 2
Moreover, we assume the kernel function in KDE is the Gaussian kernel fj (x) = \/%e_m /2,

However, computing the CDF of a Gaussian distribution is non-trivial. Following [9], we leverage a
tractable approximation of the Gaussian Q-function as follows.

Q(r)=Fi (1) = / fr(z)dz ~ e—aT =BTy (10)

where fi(z) == #e—rz/Q

~ = 1.1893 [30]. The overall workflow of estimating P [§ = 1] is as follows.

is a Gaussian distribution with zero mean, o = 0.4920, 8 = 0.2887,

* For any node 7, get its prediction probability ¥; ; with respect to class 1;
» Estimate the CDF P [j = 1] using a Gaussian KDE with bandwidth a by P[§=1] =

N2 N
LS exp (—a (057%) -8 (057%) - fy), where @ = 0.4920, 8 = 0.2887, v =
1.1893 and exp(z) = e*.

Note that P [§ = 1|s = 1] can be estimated with a similar procedure with minor modifications. The
only modifications needed are: (1) get the prediction probability of nodes with s = 1 and (2) compute
the CDF using the Gaussian Q-function over nodes with s = 1 rather than all nodes in the graph.

5 Instantiation #2: Individual Fairness on Graph Neural Networks

We provide another instantiation of FATE framework by attacking individual fairness on graph neural
networks. Here, we consider the same surrogate graph learning model (i.e., 2-layer linear GCN)
and the same lower-level loss function (i.e., cross entropy) as described in Section 4. To attack
individual fairness, we define the upper-level bias function following the principles in [20]: the
fairness-related auxiliary information matrix F is defined as the oracle symmetric pairwise node
similarity matrix S (i.e., F = S), where S[i, j] measures the similarity between node ¢ and node
j. Kang et al. [20] define that the overall individual bias to be Tr (YTLSY). Assuming that Y
is the output of an optimization-based graph learning model, Y can be viewed as a function with
respect to the input graph G, which makes Tr (YTLSY) differentiable with respect to G. Thus, the
bias function b(-) can be naturally defined as the overall individual bias of the input graph G, i.e.,
b(Y,0*,S)="Tr (YTLSY).

6 Experiments

6.1 Attacking Statistical Parity on Graph Neural Networks

Settings. We compare FATE with 4 baseline methods, i.e., Random, DICE [46], FA-GNN [19], under
the same setting as in Section 4. That is, (1) the fairness definition to be attacked is statistical parity;
(2) the downstream task is binary semi-supervised node classification with binary sensitive attributes.
The experiments are conducted on 3 real-world datasets, i.e., Pokec-n, Pokec-z and Bail. Similar
to existing works, we use the 50%/25%/25% splits for train/validation/test sets. For all baseline

267
268
269
270

271
272
273
274
275
276
277
278
279

281
282
283
284

285
286
287
288

290
291
292
293

Table 1: Effectiveness of attacking group fairness on GCN. FATE poisons the graph via both edge
flipping (FATE-flip) and edge addition (FATE-add) while all other baselines poison the graph via
edge addition. Higher is better (1) for micro F1 score (Micro F1) and Agp. Bold font indicates the
success of fairness attack (i.e., Agp is increased after fairness attack) with the highest micro F1 score.
Underlined cell indicates the failure of fairness attack (i.e., Asp is decreased after fairness attack).

Dataset | Ptb. Random DICE FA-GNN FaTE-flip FATE-add |
"~ [MicroFI1(T) Asp (D [MicroFI(T) Agp (D [MicroFI(f) Asp (D | MicroFI1(f) Agp () | MicroFI(T) Age (D
0.00 67.5+£0.3 71£0.4 67.5+£0.3 71+£04 67.5+0.3 71£04 67.5+0.3 71x0.4 67.5+£0.3 71£04
0.05 68.0£0.3 62408 67.6+£02 68403 67.8+0.1 33+04 67.9+0.4 93+12 67.9+04 93+12
Pokec-n 0.10 66.8 0.8 7.3£0.7 66.1+£05 66+£1.1 66.0 £0.2 11.5+0.6 | 68.2+0.6 98+15 68.2+0.6 98+15
0.15 66.7+£0.4 8.1+0.4 65.6 £0.4 77£08 | 66.0+0.4 156+30| 680+03 11.5+1.0 | 680+03 11.5=1.0
0.20 66.3£0.7 8.6 1.8 642+04 34409 | 65.8%+0.1 184+0.7| 682+05 120+1.8 | 682+05 120=1.8
0.25 66.2 £ 0.6 8.5£0.8 634+£02 63+£08 66.6 £0.2 23.3+£05| 683+04 121+21 | 683+£04 12121
0.00 68.4+£0.4 6.6 0.9 684+04 66+09| 684+04 6.6 +0.9 68.4+0.4 6.6+0.9 68.4+04 6.6+0.9
0.05 68.8+0.4 6.440.6 67.4+£05 6.6+0.3 68.1+0.3 22+04 68.7+0.4 6.7+14 68.7 0.4 6.7+14
Pokec-z 0.10 | 68.7+0.3 80+0.6 66.5+02 63+£08 67.7£0.4 13.5+0.9 | 68.7+£0.6 7.5£07 68.7+0.6 7.5+0.7
0.15 67.9+£0.3 9.1£0.8 65.9£0.8 55+1.3 66.6 +0.4 16.9+26 | 69.0+0.8 85+1.1 69.0+0.8 85+1.1
020 | 685+04 93+1.0 629+£0.7 87410 | 66.1+0.2 254+13 | 685106 88+1.1 68.5+0.6 88+1.1
0.25 68.3£0.5 7.3£0.5 639+04 60+£10| 655£0.6 22.34+£28 | 685+11 86125 68.5+1.1 8.6+25
0.00 93.1£0.2 8.0£0.2 93.1£02 80402 93.1+£0.2 8.0+0.2 93.1+£0.2 8.0£0.2 93.1+£0.2 8.0+0.2
0.05 | 92.7+02 81+0.0 91.6£0.2 8540.1 91.7£0.1 10.0+0.4 92.6 £0.1 8.6+0.1 92.5£0.1 8.6+0.1
Bail 0.10 92.2+£0.2 7.84+£0.2 90.3£0.1 8.5£0.1 90.5 £0.0 103+£04 | 924+0.1 89+01 924+0.1 8.6+0.1
0.15 91.9£0.2 7.8+0.1 89.2+0.1 7.7£0.1 90.04+0.2 84402 92.240.2 9.1+£0.1 923 +0.1 9.14+01
0.20 91.6£0.2 7.8+0.1 88.3+0.1 8.340.1 89.7£0.1 74+£04 92.2+0.2 9.3+0.1 923 +0.1 9.3+02
0.25 91.4+£0.1 8.3£0.1 878+£00 78+£0.1 89.8£0.2 52402 92.1+0.1 9.1+02 92.1+£0.1 9.1+03

methods, the victim models are set to GCN [26]. For each dataset, we use a fixed random seed to
learn the poisoned graph corresponding to each baseline method. Then we train the victim model 5
times with different random seeds. For fair comparison, we only attack the adjacency matrix in all
experiments. Please refer to Appendix C for detailed experimental settings.

Main results. For FATE, we conduct fairness attacks via both edge flipping (FATE-flip in Table 5)
and edge addition (FATE-add in Table 1). For all other baseline methods, edges are only added.
The effectiveness of fairness attacks on GCN are presented in Tables 5. From both tables, we have
the following key observations: (1) FATE-flip and FATE-add are the only methods that consistently
succeeds in fairness attacks, while all other baseline methods might fail in some cases (indicated by
the underlined Agp in both tables) because of the decrease in Agp. (2) FATE-flip and FATE-add can
not only amplify Agp consistently, but also achieve the best micro F1 score on node classification,
which makes FATE-flip and FATE-add more deceptive than all baseline methods. Notably, FATE-flip
and FATE-add are able to even increase micro F1 score on all datasets, while other baseline methods
attack the graph neural networks at the expense of utility (micro F1 score). (3) Though FA-GNN
could make the model more biased in some cases, it cannot guarantee consistent success in fairness
attacks on all three datasets as shown by the underlined Agp in both tables. All in all, our proposed
FATE framework is the framework that consistently succeeds in fairness attacks while being the most
deceptive (i.e., highest micro F1 score).

Effect of the perturbation rate. From Table 1, we have the following observations. First, Agp tends
to increase when the perturbation rate increases, which demonstrates the effectiveness of FATE-flip
and FATE-add for attacking fairness. Though in some cases Agp might have a marginal decrease,
FATE-flip and FATE-add still successfully attack the fairness compared with GCN trained on the
benign graph by being larger to the Agp when perturbation rate (Ptb.) is 0. Second, FATE-flip and
FATE-add are deceptive, meaning that the micro F1 scores is close to or even higher than the micro
F1 scores on the benign graph compared with the corresponding metrics trained . In summary, across
different perturbation rates, FATE-flip and FATE-add are both effective, i.e., amplifying more bias
with higher perturbation rate, and deceptive, i.e., achieving similar or even higher micro F1 score.

. same different = majority class minority class ~ WEE unprotected group EEE protected group
Pokec-n Pokec-z Bail Pokec-n Pokec-z Bail
08 o s 10 10 10
0s os 08
o o o
g” 8“ -gos G506 S os S os
R & e o & c
02 02 02 02 02 02
00 00 00
label sen. attr. label sen. attr. label sen. attr. SL SSA SL SSA SL SSA
(@) (b)

Figure 1: Attacking statistical parity with FATE-flip. (a) Ratios of flipped edges that connect two nodes
with same/different label or sensitive attribute (sens. attr.). (b) SL (abbreviation for same label) refers
to the ratios of flipped edges whose two endpoints are both from the same class. SSA (abbreviation
for same sensitive attribute) refers to the ratios of manipulated edges whose two endpoints are both
from the same demographic group. Majority/minority classes are determined by splitting the training
nodes based on their class labels. The protected group is the demographic group with fewer nodes.

7

294
295
296
297
298

300

301

303
304

305

306
307
308
309

311
312
313
314
315

316
317
318

320
321
322

323
324
325
326
327

329

330
331

333
334

335
336
337

Analysis on the manipulated edges. Here, we aim to characterize the properties of edges that are
flipped by FATE (i.e., FATE-flip) in attacking statistical parity. The reason to only analyze FATE-flip is
that the majority of edges manipulated by FATE-flip on all three datasets is by addition (i.e., flipping
from non-existing to existing). Figure 1b suggests that, if the two endpoints of an manipulated edge
share the same class label or same sensitive attribute value, these two endpoints are most likely from
the minority class and protected group. Combining Figures la and 1b, FATE would significantly
increase the number of edges that are incident to nodes in the minority class and/or protected group.

More experimental results. Due to the space limitation, we defer more experimental results on
attacking statistical parity on graph neural networks in Appendix D. More specifically, we present the
performance evaluation under different metrics, i.e., Macro F1 and AUC, as well as the effectiveness
of FATE with a different victim model, i.e., FairGNN [11], which ensures statistical parity.

6.2 Attacking Individual Fairness on Graph Neural Networks

Settings. To showcase the ability of FATE on attacking the individual fairness (Section 5), we further
compare FATE with the same set of baseline methods (Random, DICE [46], FA-GNN [19]) on the
same set of datasets (Pokec-n, Pokec-z, Bail). We follow the settings as in Section 5. We use the
50%/25%/25% splits for train/validation/test sets with GCN [26] being the victim model. For each
dataset, we use a fixed random seed to learn the poisoned graph corresponding to each baseline
method. Then we train the victim model 5 times with different random seeds. And each entry in the
oracle pairwise node similarity matrix is computed by the cosine similarity of the corresponding rows
in the adjacency matrix. That is, S[¢, j] = cos (A[4, :], A[J, :]), where cos () is the function to compute
cosine similarity. For fair comparison, we only attack the adjacency matrix in all experiments. Please
refer to Appendix C for detailed experimental settings.

Main results. Similarly, we test FATE with both edge flipping (FATE-flip in Table 2) and edge
addition (FATE-add in Table 2), while all other baseline methods only add edges. From Table 2, we
have two key observations. (1) FATE-flip and FATE-add are effective: they are the only methods that
could consistently attack individual fairness whereas all other baseline methods mostly fail to attack
individual fairness. (2) FATE-flip and FATE-add are deceptive: they achieve comparable or even better
utility on all datasets compared with the utility on the benign graph. Hence, FATE framework is able
to achieve effective and deceptive attacks to exacerbate individual bias.

Effect of the perturbation rate. From Table 2, we obtain similar observations as in Section 6.1 for
Bail dataset. While for Pokec-n and Pokec-z, the correlation between the perturbation rate (Ptb.) and
the individual bias is weaker. One possible reason is that: for Pokec-n and Pokec-z, the discrepancy
between the oracle pairwise node similarity matrix and the benign graph is larger. Since the individual
bias is computed using the oracle pairwise node similarity matrix rather than the benign/poisoned
adjacency matrix, higher perturbation rate to poison the adjacency matrix may have less impact on
the computation of individual bias.

B same different BN majority class minority class

10
o8

o o

=1 Sos

(] ©

@ oo+
02
00

Pokec-n Pokec-z Bail Bail Pokec-z Pokec-n
(@) (b)

Figure 2: Attacking individual fairness with FATE-flip. (a) Ratios of flipped edges that connect two
nodes with same/different label. (b) Ratios of flipped edges whose two endpoints are both from the
majority/minority class. Majority/minority classes are formed by splitting the training nodes based
on their class labels.

Analysis on the manipulated edges. Similarly, since the majority of edges manipulated by FATE-flip
is through addition, we only analyze FATE-flip here. From Figure 2, we can find out that FATE will
manipulate edges from the same class (especially from the minority class). In this way, FATE would
find edges that could increase individual bias and improve the utility of the minority class in order to
make the fairness attack deceptive.

More experimental results. Due to the space limitation, we defer more experimental results
on attacking individual fairness on graph neural networks in Appendix E. More specifically, we
present the performance evaluation under different metrics, i.e., Macro F1 and AUC, as well as

338
339

340

341
342
343
344
345
346
347
348
349
350
351

352
353
354
355
356
357
358
359
360
361
362
363
364

365

366
367
368
369

371
372
373
374

Table 2: Effectiveness of attacking individual fairness on GCN. FATE poisons the graph via both
edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines poison the graph via
edge addition. Higher is better (1) for micro F1 score (Micro F1) and InFoRM bias (Bias). Bold font
indicates the success of fairness attack (i.e., bias is increased after attack) with the highest micro F1
score. Underlined cell indicates the failure of fairness attack (i.e., Agp is decreased after attack).

Dataset | Ptb. Rand DICE FA-GNN FATE-flip FATE-add

" | MicroFI () Bias(T) | MicroF1(T) Bias(f) | MicroF1(f) Bias(f) | MicroFI1(T) Bias(f) | MicroFI1(f) Bias (])
0.00 67.5+0.3 0.9£0.2 67.5£0.3 0.9+£0.2 67.5+0.3 0.9+£0.2 67.5+£0.3 0.94+0.2 67.5+0.3 0.9£0.2
0.05 | 67.6+0.3 1.6+0.3 66.9+03 16+02| 67.8+05 1.9+02| 678+03 1.2+04 | 67.6+0.3 1.5+0.6
0.10 | 67.2+0.5 1.4£0.3 65.3+0.7 1.1+0.1 | 674+04 12+02 | 679+04 13+03| 67.7+04 1.6+0.4

Pokec-n 0.15 | 67.2+0.3 1.2+£04 63.940.6 1.1+0.2 66.1+0.3 1.5+£03 | 678404 12402 67.6+0.2 1.1+£0.3
020 | 66.6+0.3 1.1+0.2 63.840.1 0.8+0.1 65.7+ 0.6 1.5+0.3 67.34+0.4 1.1+03 | 682+10 1.7+0.8
0.25 66.7+£0.3 1.3+04 625404 0.6+£00 65.2+0.5 1.3+04 | 678408 14+07| 679+09 14+0.7
0.00 | 684404 2.6+0.7 684+04 26+07] 684+04 2.6+£0.7 684404 2.6£0.7 68.4+0.4 26£0.7
005 | 69.0+04 34+05 67.1£0.5 2.7+1.0 68.1+0.4 29403 68.74+ 0.5 2.940.5 68.7+£0.4 3.1+1.0
Pokec-z 0.10 | 68.7+0.1 24405 66.3 4+ 0.6 1.7+0.6 68.24+0.5 1.7£05 | 69.0+06 29+06 | 69.0+-05 3.0+0.6
0.15 | 67.9+0.3 2.84+0.3 65.54+0.3 1.4+0.3 67.0+0.5 1.3+0.2 68.6 + 0.5 294+0.6 | 69.0+£0.7 27+04
020 | 67.9+0.3 2.24+0.6 642404 0.7£03 66.1+0.1 1.6+05 68.8 4+ 0.4 3.0+04 | 69.2+04 29+03
025 | 676403 1.94+0.3 642403 05+0.1 65.1+0.3 1.940.6 69.14+0.3 29407 | 69.3+03 27+0.6
0.00 93.1+0.2 7.2+0.6 93.1+£02 T72+£06 93.1+0.2 72406 93.14+0.2 7.24+0.6 93.1+£02 7.2+0.6

0.05 921403 8.0+1.9 91.8+0.1 71+£1.1 91.2+0.2 56£0.7 | 93.0+£03 78+£1.0 92.9+£0.2 7TT£1.0
0.10 91.6 +0.1 73+1.2 90.34+0.1 6.1+ 0.6 90.34+0.1 514+04 | 93.0£0.1 80+0.7 92.9+£0.2 79+£0.8
0.15| 91.3£0.1 6.5+0.9 89.44+0.0 48%£0.1 89.8+0.1 5240.1 93.1+01 82+0.6 93.0+0.2 7.8+0.8
020 | 91.240.2 6.6 +0.6 88.540.1 40+04 89.3+0.1 53404 | 931+£01 794+06 | 93.1+01 82+06
025 | 90.9+£0.1 6.84+0.8 874403 36£05 88.9+0.1 54403 92.940.1 76+05 | 93.0+02 78+0.7

Bail

the effectiveness of FATE with a different victim model, i.e., InFORM-GNN [20], which mitigates
individual bias.

7 Related Work

Algorithmic fairness on graphs aims to obtain debiased graph learning results such that a pre-
defined fairness definition can be satisfied with respect to the nodes/edges in the graph. Several
definitions of the fairness has been studied so far. Group fairness in graph embedding can be
ensured via several ways, including adversarial learning-based methods [5, 11], random walk-based
methods [36, 25] and dropout-based methods [39]. Individual fairness on graphs can be ensured
via Lipschitz regularization [20] and learning-to-rank [13]. Other than the aforementioned two
fairness definitions, several other fairness definitions are studied in the context of graph learning,
including counterfactual fairness [1, 31], degree fairness [42, 24, 29], dyadic fairness [32, 27] and
max-min fairness [37, 43]. For a comprehensive review of related works, please refer to existing
surveys [50, 10, 14] and tutorials [22, 23]. It should be noted that our work aims to attack fairness
(i.e., making the model more biased) rather than ensuring fairness as in the aforementioned literature.

Adversarial attacks on graphs aim to exacerbate the utility of graph learning models by perturbing
the input graph topology and/or node features. Several approaches have been proposed to attack graph
learning models, including reinforcement learning [12], bi-level optimization [51, 52], projected
gradient descent [40, 48] and edge rewiring/flipping [4, 31]. Other than adversarial attacks that
worsen the utility of a graph learning model, a few efforts have been made to attack the fairness of a
machine learning model for IID tabular data via label flipping [33], adversarial data injection [38, 8],
adversarial sampling [44]. Different from [38, 33, 8, 44], we aim to poison the input graph via
structural modifications on the topology rather than injecting adversarial data sample(s). The most
related work to our proposed method is by Hussain et al. [19], which degrade the group fairness of
graph neural networks by randomly injecting edges for nodes in different demographic groups and
with different class labels. In contrast, our proposed method could attack any fairness definition for
any graph learning models via arbitrary edge manipulation operations, as long as the bias function
and the utility loss are differentiable.

8 Conclusion

We study the problem of fairness attacks on graph learning models, whose goal is to amplify the bias
while maintaining the utility on the downstream task. We formally define the problem as a bi-level
optimization problem, where the upper-level optimization problem maximizes the bias function with
respect to a user-defined fairness definition and the lower-level optimization problem minimizes a
task-specific loss function. We then propose a meta learning-based framework named FATE to poison
the input graph using the meta-gradient of the bias function with respect to the input graph. We
instantiate FATE by attacking statistical parity on graph neural networks in a binary node classification
problem with binary sensitive attributes. Empirical evaluation demonstrates that FATE is effective
(consistently amplifying bias) and deceptive (achieving the highest micro F1 score).

375

376
377
378

379
380
381

382
383

384
385
386

387
388

389
390
391
392

393
394

395
396

397
398

399
400

401
402
403

404
405
406

407
408
409

410
411

412
413
414

415
416
417
418

419
420
421

References

[1] Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. Towards a unified framework for
fair and stable graph representation learning. In Uncertainty in Artificial Intelligence, pages
2114-2124. PMLR, 2021.

[2] Joachim Baumann, Aniké Hanndk, and Christoph Heitz. Enforcing group fairness in algorithmic
decision making: Utility maximization under sufficiency. In 2022 ACM Conference on Fairness,
Accountability, and Transparency, pages 2315-2326, 2022.

[3] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation,
12(8):1889-1900, 2000.

[4] Aleksandar Bojchevski and Stephan Giinnemann. Adversarial attacks on node embeddings via
graph poisoning. In International Conference on Machine Learning, pages 695—-704. PMLR,
2019.

[5] Avishek Bose and William Hamilton. Compositional fairness constraints for graph embeddings.
In International Conference on Machine Learning, pages 715-724. PMLR, 2019.

[6] Consumer Financial Protection Bureau. CFPB targets unfair discrimination in
consumer finance. https://www.consumerfinance.gov/about-us/newsroom/
cfpb-targets-unfair-discrimination-in-consumer-finance/, 2022. [Online;
accessed 13-April-2023].

[7] Yen-Chi Chen. A tutorial on kernel density estimation and recent advances. Biostatistics &
Epidemiology, 1(1):161-187, 2017.

[8] Anshuman Chhabra, Adish Singla, and Prasant Mohapatra. Fairness degrading adversarial
attacks against clustering algorithms. arXiv preprint arXiv:2110.12020, 2021.

[9] Jaewoong Cho, Gyeongjo Hwang, and Changho Suh. A fair classifier using kernel density
estimation. Advances in neural information processing systems, 33:15088-15099, 2020.

[10] Manvi Choudhary, Charlotte Laclau, and Christine Largeron. A survey on fairness for machine
learning on graphs. arXiv preprint arXiv:2205.05396, 2022.

[11] Enyan Dai and Suhang Wang. Say no to the discrimination: Learning fair graph neural networks
with limited sensitive attribute information. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pages 680—688, 2021.

[12] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack
on graph structured data. In International conference on machine learning, pages 1115-1124.
PMLR, 2018.

[13] Yushun Dong, Jian Kang, Hanghang Tong, and Jundong Li. Individual fairness for graph neural
networks: A ranking based approach. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 300-310, 2021.

[14] Yushun Dong, Jing Ma, Chen Chen, and Jundong Li. Fairness in graph mining: A survey. arXiv
preprint arXiv:2204.09888, 2022.

[15] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science
conference, pages 214-226, 2012.

[16] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-
subramanian. Certifying and removing disparate impact. In proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages 259-268,
2015.

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126—1135.
PMLR, 2017.

10

422
423

424
425
426

427
428
429

430
431
432

433
434

435
436
437

438
439
440

441
442
443
444

445
446

447
448
449

450
451
452

[18] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[19] Hussain Hussain, Meng Cao, Sandipan Sikdar, Denis Helic, Elisabeth Lex, Markus Strohmaier,
and Roman Kern. Adversarial inter-group link injection degrades the fairness of graph neural
networks. arXiv preprint arXiv:2209.05957, 2022.

[20] Jian Kang, Jingrui He, Ross Maciejewski, and Hanghang Tong. Inform: Individual fairness
on graph mining. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 379-389, 2020.

[21] Jian Kang and Hanghang Tong. N2n: Network derivative mining. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, pages 861-870,
2019.

[22] Jian Kang and Hanghang Tong. Fair graph mining. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 4849-4852, 2021.

[23] Jian Kang and Hanghang Tong. Algorithmic fairness on graphs: Methods and trends. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 4798-4799, 2022.

[24] Jian Kang, Yan Zhu, Yinglong Xia, Jiebo Luo, and Hanghang Tong. Rawlsgcen: Towards
rawlsian difference principle on graph convolutional network. In Proceedings of the ACM Web
Conference 2022, pages 1214-1225, 2022.

[25] Ahmad Khajehnejad, Moein Khajehnejad, Mahmoudreza Babaei, Krishna P Gummadi, Adrian
Weller, and Baharan Mirzasoleiman. Crosswalk: Fairness-enhanced node representation learn-

ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
11963-11970, 2022.

[26] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[27] Peizhao Li, Yifei Wang, Han Zhao, Pengyu Hong, and Hongfu Liu. On dyadic fairness:
Exploring and mitigating bias in graph connections. In International Conference on Learning
Representations, 2021.

[28] Lydia T Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. Delayed impact of
fair machine learning. In International Conference on Machine Learning, pages 3150-3158.
PMLR, 2018.

[29] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. On generalized degree fairness in graph neural
networks. arXiv preprint arXiv:2302.03881, 2023.

[30] Miguel Lépez-Benitez and Fernando Casadevall. Versatile, accurate, and analytically tractable
approximation for the gaussian q-function. IEEE Transactions on Communications, 59(4):917—
922, 2011.

[31] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Graph adversarial attack via
rewiring. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1161-1169, 2021.

[32] Farzan Masrour, Tyler Wilson, Heng Yan, Pang-Ning Tan, and Abdol Esfahanian. Bursting the
filter bubble: Fairness-aware network link prediction. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 841-848, 2020.

[33] Ninareh Mehrabi, Muhammad Naveed, Fred Morstatter, and Aram Galstyan. Exacerbating
algorithmic bias through fairness attacks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 8930-8938, 2021.

[34] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

11

469
470
471

472
473
474

475
476
477

478
479
480
481

484

494

495
496
497

499
500

501
502
503
504

505
506
507

508
509
510

511
512
513
514

515

517
518

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Flavien Prost, Hai Qian, Qiuwen Chen, Ed H Chi, Jilin Chen, and Alex Beutel. Toward a better
trade-off between performance and fairness with kernel-based distribution matching. arXiv
preprint arXiv:1910.11779, 2019.

Tahleen Rahman, Bartlomiej Surma, Michael Backes, and Yang Zhang. Fairwalk: Towards
fair graph embedding. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 3289-3295, 2019.

Aida Rahmattalabi, Phebe Vayanos, Anthony Fulginiti, Eric Rice, Bryan Wilder, Amulya Yadav,
and Milind Tambe. Exploring algorithmic fairness in robust graph covering problems. Advances
in Neural Information Processing Systems, 32, 2019.

David Solans, Battista Biggio, and Carlos Castillo. Poisoning attacks on algorithmic fairness.
In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14—18, 2020, Proceedings, Part I, pages 162—177.
Springer, 2021.

Indro Spinelli, Simone Scardapane, Amir Hussain, and Aurelio Uncini. Fairdrop: Biased edge
dropout for enhancing fairness in graph representation learning. IEEE Transactions on Artificial
Intelligence, 3(3):344-354, 2021.

Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, and Dawn Song. Data poi-
soning attack against unsupervised node embedding methods. arXiv preprint arXiv:1810.12881,
2018.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of the 24th international conference on
world wide web, pages 1067-1077, 2015.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit
Mitra, and Suhang Wang. Investigating and mitigating degree-related biases in graph convolu-
tional networks. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pages 1435-1444, 2020.

Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. Group-fairness in influ-
ence maximization. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 5997-6005, 2019.

Minh-Hao Van, Wei Du, Xintao Wu, and Aidong Lu. Poisoning attacks on fair machine learning.
In International Conference on Database Systems for Advanced Applications, pages 370-386.
Springer, 2022.

Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun
Zhou, Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial fraud
detection. In 2019 IEEE International Conference on Data Mining (ICDM), pages 598—607.
IEEE, 2019.

Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal Rahwan. Hiding
individuals and communities in a social network. Nature Human Behaviour, 2(2):139-147,
2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pages 6861-6871. PMLR, 2019.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue
Lin. Topology attack and defense for graph neural networks: An optimization perspective.
In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pages
3961-3967, 2019.

Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan Davulcu, and
Hanghang Tong. Hidden: Hierarchical dense subgraph detection with application to financial
fraud detection. In Proceedings of the 2017 SIAM International Conference on Data Mining,
pages 570-578. SIAM, 2017.

12

519
520

521
522
523

524
525

[50] Wenbin Zhang, Jeremy C Weiss, Shuigeng Zhou, and Toby Walsh. Fairness amidst non-iid
graph data: A literature review. arXiv preprint arXiv:2202.07170, 2022.

[51] Daniel Ziigner, Amir Akbarnejad, and Stephan Giinnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 2847-2856, 2018.

[52] Daniel Ziigner and Stephan Giinnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations, 2019.

13

