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ABSTRACT

Despite rapid progress of large vision-language models (VLMs), their diagnos-
tic predictions in medical imaging remain brittle and often clinically inconsistent.
Inspired by how radiologists rely on prototype-based mental imagery, we pro-
pose Dual-Route Mental Imagery, the first framework that formalizes prototype-
conditioned reasoning for VLMs. Our method conditions diagnosis on (patient,
prototype) pairs, instantiating two complementary reasoning routes—healthy and
diseased—that yield interpretable reference-level traces and expose uncertainty
when the two routes conflict. On chest X-ray benchmarks, our approach deliv-
ers substantial gains: on the Kermany dataset, it achieves 92.6% accuracy, on
par with the expert-designed network LungConVT-Net, and further improves to
95.9% with uncertainty handling, while substantially outperforming single-image
VLM inference. These results demonstrate that prototype-guided dual-route men-
tal imagery not only enhances the robustness and accuracy of VLM-based di-
agnosis, but also provides a novel bridge between cognitive science and AI for
healthcare.

1 INTRODUCTION

Large vision-language models (VLMs) Wang et al. (2024) have recently demonstrated impressive
capabilities in multimodal reasoning and open-ended medical image interpretation. By combin-
ing natural language generation with visual understanding, they open new opportunities for VLM-
assisted diagnosis, particularly in chest X-ray analysis Han et al. (2024); Huang et al. (2023), where
textual reasoning can enhance transparency and clinical adoption. However, despite rapid progress,
VLMs remain brittle in chest X-ray diagnosis Li et al. (2023b): their predictions are often overcon-
fident, inconsistent with clinical reasoning, and highly sensitive to distribution shifts Ktena et al.
(2024); Guan & Liu (2022); Yang et al. (2024). These limitations significantly constrain their relia-
bility in safety-critical healthcare applications.

In contrast, radiologists rarely rely on a single image for diagnosis. Instead, they often engage
in mental imagery Azizi et al. (2023); Zhang et al. (2023): retrieving and comparing the current
case against prototypical exemplars of both healthy and diseased states. Such prototype-conditioned
reasoning helps resolve ambiguity, calibrate decisions, and provide interpretable evidence for clin-
ical judgment Nauta et al. (2023). Yet current VLMs lack mechanisms to emulate this human-like
prototype-guided comparison process, leading to limited robustness and interpretability.

To bridge this gap, we propose Dual-Route Mental Imagery, the first framework that formalizes
prototype-conditioned reasoning for VLM-based diagnosis. Specifically, we construct curated pro-
totype libraries of chest X-rays, selected through sharpness filtering and clustering-based representa-
tiveness. By conditioning on (patient, prototype) pairs, our method instantiates two complementary
reasoning routes—healthy and diseased—that yield reference-level interpretability and expose un-
certainty when the two routes strongly diverge. This dual-route mechanism moves beyond direct pat-
tern recognition in standard VLM inference, embedding a cognitively inspired recall-and-compare
process that more closely mirrors human diagnostic reasoning.

We validate our framework on standard chest X-ray benchmarks. Using Bagel as a representa-
tive VLM baseline, our method achieves 92.6% accuracy on the Kermany dataset, matching the
expert-designed network LungConVT-Net (92.6%), and further improves to 95.9% with uncertainty
handling, substantially surpassing Bagel’s single-image inference (90.1%). On the Kaggle Chest
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X-ray dataset, our approach also demonstrates strong generalization, reaching 91.3% accuracy and
93.6% with uncertainty handling, approaching expert-level performance (95.3%) while greatly out-
performing Bagel (80.5%).

Our contributions are summarized as follows:

1. Prototype-conditioned dual-route reasoning. We propose the first framework that formal-
izes radiologists’ mental imagery into VLM reasoning, linking cognitive science with the
design of VLM reasoning mechanisms.

2. A novel training paradigm. By conditioning training on balanced (patient, prototype) pairs
from curated prototype sets, we enforce a recall-and-compare process that enables VLMs
to reason by contrasting patients against representative exemplars.

3. Enhanced robustness, accuracy, and interpretability. Our method substantially outperforms
Bagel as a single-image VLM baseline in chest X-ray diagnosis, produces reference-level
reasoning traces, and introduces an uncertainty mechanism that improves safety in high-
stakes medical decisions.

In summary, prototype-guided dual-route mental imagery significantly improves the robustness and
clinical reliability of VLM-based diagnosis, providing a novel bridge between cognitive science and
AI for healthcare.

2 RELATED WORKS

2.1 VISION-LANGUAGE MODELS FOR MEDICAL IMAGE ANALYSIS.

Large vision-language models such as LLaVA Li et al. (2023a), Qwen-VL Bai et al. (2023), and
closed-source VLMs like GPT-4V and Gemini Qi et al. (2023); Huang et al. (2021); Ryu et al.
(2025) have demonstrated strong capabilities in multimodal reasoning and free-form medical image
interpretation. Their use in chest radiography has been explored for report generation Wu et al.
(2024), question answering Moor et al. (2023), and diagnosis Tiu et al. (2022). Yet, despite this
flexibility, VLMs remain brittle in clinical settings: predictions are often overconfident, sensitive
to distribution shifts Yang et al. (2024); Fehr et al. (2024); Ktena et al. (2024), and misaligned
with radiological reasoning. Expert-designed architectures such as LungConVT-Net Lasker et al.
(2026) achieve strong performance but rely on supervised training with limited adaptability and in-
terpretability. Our work diverges by enhancing VLM robustness while explicitly aligning inference
with clinical diagnostic practice.

2.2 MENTAL IMAGERY, INTERPRETABILITY, AND UNCERTAINTY IN MEDICAL AI.

Cognitive science suggests that radiologists frequently rely on mental imagery Azizi et al. (2023);
Zhang et al. (2023)—retrieving and comparing current cases with prototypical exemplars of both
healthy and diseased states—to resolve ambiguity, calibrate confidence, and justify decisions. This
contrasts sharply with current VLMs, which lack mechanisms to emulate such recall-and-compare
processes. Prior efforts toward interpretability (e.g., saliency maps, attention visualization Abdar
et al. (2021); Nehme et al. (2023)) and uncertainty estimation (e.g., Bayesian deep learning, ensem-
bles Fehr et al. (2024); Zhu et al. (2021)) provide useful but indirect signals, often disconnected from
clinicians’ reasoning. Our framework, Dual-Route Mental Imagery, bridges this gap by formaliz-
ing prototype-conditioned mental imagery within VLM inference. By instantiating complementary
”healthy” and ”diseased” reasoning routes, it generates reference-level reasoning traces and naturally
exposes uncertainty when the two routes diverge Ullah et al. (2025); Nehme et al. (2023)—thereby
grounding robustness, interpretability, and reliability in a cognitively inspired process.

2.3 CHALLENGES OF DOMAIN SHIFT AND CLINICAL ADOPTION.

A longstanding challenge in medical AI is distribution shift Guan & Liu (2022); Ktena et al. (2024);
Godau et al. (2025): diagnostic models often degrade when deployed across hospitals, imaging
devices, or patient populations that differ from the training data. Prior work has investigated do-
main adaptation Guan & Liu (2022); Azizi et al. (2021), self-supervised pretraining Huang et al.
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(2023); Han et al. (2024), and ensemble approaches Abdar et al. (2021) to improve generalization,
but robustness in real-world clinical environments remains elusive. Clinical adoption further re-
quires more than accuracy: physicians demand models that expose uncertainty Fehr et al. (2024);
Han et al. (2024), provide interpretable reasoning, and integrate seamlessly with diagnostic work-
flows Bhayana (2024). In our study, we explicitly assess generalization by validating on both the
Kermany and Kaggle Chest X-ray datasets, demonstrating that dual-route mental imagery substan-
tially improves cross-dataset robustness. By grounding predictions in prototype-based comparisons
and surfacing uncertainty when reasoning routes diverge, our framework not only strengthens gen-
eralization but also enhances transparency and reliability in a cognitively inspired manner.

Figure 1: Overview of the proposed Dual-Route Mental Imagery framework. (a) Prototype
library construction. From all chest X-rays, we filter blurred scans with Laplacian sharpness, re-
move redundant cases via perceptual hashing and embedding similarity, and apply clustering with
medoid selection to obtain compact libraries of representative healthy and pneumonia prototypes.
(b) Training with prototype pairs. The model is trained on (patient, prototype) pairs with struc-
tured prompts rather than single images, encouraging recall-and-compare reasoning and implicitly
enforcing contrastive supervision. (c) Dual-route reasoning. At inference, the patient image is
paired with top-M prototypes from both libraries to instantiate Healthy and Pneumonia routes. Each
produces analysis, similarity judgments, and predictions, which are fused with similarity-weighted
aggregation. Divergence between the routes naturally signals diagnostic uncertainty.

3 METHOD

3.1 OVERVIEW

To bridge human-like reasoning and VLM-based diagnosis, we propose the Dual-Route Mental
Imagery framework (Figure 1). It grounds predictions in structured prototype comparisons.

The pipeline begins with constructing curated prototype libraries of healthy and pneumonia exem-
plars through sharpness filtering, redundancy removal, and clustering (Fig. 1a).
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During training, the model is conditioned on (patient, prototype) pairs via structured prompts,
thereby shifting the paradigm from single-image learning to pairwise recall-and-compare reason-
ing (Fig. 1b).

At inference, two complementary routes are instantiated: the Healthy Route, which compares the
patient image against prototypical healthy references, and the Pneumonia Route, which compares
against pneumonia prototypes (Fig. 1c). Each route yields structured analyses, similarity assess-
ments, and diagnostic predictions. Their outputs are fused using similarity-based weighting, while
divergence between the two routes is explicitly surfaced as uncertainty.

This design explicitly mirrors the diagnostic strategy of radiologists—recalling and contrasting pro-
totypical cases—and grounds robustness, interpretability, and clinical reliability in a cognitively
inspired process.

3.2 PROTOTYPE LIBRARY CONSTRUCTION

To obtain compact yet representative prototype libraries for both healthy and pneumonia cases, we
design a three-stage construction framework (Fig. 1a). This procedure aims to balance diagnostic
reliability, redundancy reduction, and coverage of diverse imaging patterns.

(1) Sharpness-aware filtering. To prevent low-quality scans from compromising clinical inter-
pretability, we first assess image clarity using the variance of the Laplacian:

s(I) = Var(∇2I),

where I denotes a chest X-ray image and s(I) its sharpness score. Images with higher s(I) are
preferentially retained, while globally blurred scans are discarded, ensuring that prototypes are built
upon diagnostically reliable inputs.

(2) Multi-stage redundancy control. To avoid dominance of near-duplicates in the prototype set,
we introduce a two-level pruning strategy. Candidate duplicates are first grouped via perceptual
hashing (pHash, coarse similarity). Within each group, we compute ℓ2-normalized ResNet-50 em-
beddings f ∈ R2048 and apply cosine similarity:

cos(fi, fj) =
fi · fj

∥fi∥2∥fj∥2
.

Samples with cos(fi, fj) > τ (threshold τ ) are considered redundant, with the sharper instance
always retained. This design balances compactness and diversity.

(3) Coverage-preserving clustering. We then apply MiniBatchKMeans to partition the remaining
cases into k clusters, each representing a distinctive imaging pattern. For each cluster Cc, we select
as prototype the exemplar closest to its normalized centroid:

mc = arg max
x∈Cc

cos(fx, µ̂c), µ̂c =
µc

∥µc∥2
.

If a cluster is empty, we back-fill with cases least similar to existing prototypes, ensuring exactly k
representatives with broad coverage.

Through this three-stage process, we obtain two prototype libraries, PH (healthy) and PP (pneu-
monia). These libraries serve as cognitively inspired exemplars, supporting dual-route reasoning by
anchoring decisions on both prototypical similarity and feature-based analysis.

3.3 TRAINING WITH PROTOTYPE-BASED PAIRS

To shift the model from direct pattern recognition toward recall-and-compare reasoning, we train the
VLM on prototype pairs rather than single images (Fig. 1b). Each training instance is a structured
pair (I, p), where I is a patient image and p is a prototype drawn from the curated libraries. The pair
is encoded with prompts that explicitly instruct the model to compare the two images and reason
about their similarities and differences.

(1) Balanced pairing. For each patient image, we sample prototypes from both the healthy and
pneumonia libraries to construct positive and negative pairs. Positive pairs (I, p+) align with the
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patient’s ground-truth label (e.g., a pneumonia case with a pneumonia prototype), while negative
pairs (I, p−) come from the opposite library. This balanced design exposes the model to both
concordant and discordant exemplars, ensuring that learning is conditioned on explicit contrasts.

(2) Implicit contrastive supervision. The model is optimized with a standard cross-entropy loss on
categorical predictions (NORMAL, PNEUMONIA). Although no additional loss terms are introduced,
the balanced positive/negative sampling implicitly enforces a contrastive signal: predictions are
rewarded when aligned with matched prototypes and penalized when inconsistent with mismatched
ones. This mechanism grounds the VLM’s reasoning in prototype-based comparisons rather than
isolated visual patterns.

(3) Structured prompting effect. Because each pair is prompted to generate not only a categorical
diagnosis but also a similarity judgment and textual analysis, the supervision on the final label in-
directly regularizes these intermediate outputs. The model learns to treat prototypes as anchors for
reasoning, linking interpretable reference-level comparisons with the ultimate diagnostic decision.

In summary, training with prototype pairs instills a recall-and-compare paradigm in the VLM. This
design enforces prototype-conditioned reasoning during training and prepares the model for robust
dual-route inference.

3.4 PROTOTYPE-GUIDED DUAL-ROUTE REASONING

To emulate radiologists’ recall-and-compare diagnostic strategy, we design a dual-route prototype-
conditioned reasoning mechanism (Fig. 1c), where each route retrieves reference prototypes, condi-
tions the VLM with structured prompts, and aggregates predictions into a fused decision.

(1) Prototype retrieval. For each patient image I , we retrieve the top-M prototypes from both
libraries, denoted as {p1H , . . . , pMH } ⊂ PH and {p1P , . . . , pMP } ⊂ PP , where M controls the number
of references. Selection is based on a joint score combining embedding similarity and prototype
sharpness:

score(I, p) = λ · cos
(
f(I), f(p)

)
+ (1− λ) · z

(
s(p)

)
,

where f(·) denotes ResNet-50 embeddings, s(·) the Laplacian variance (sharpness), and z(·) the
z-scoring function. The parameter λ ∈ [0, 1] balances semantic similarity and image clarity.

(2) Route-specific reasoning. Each prototype is paired with the patient image and fed into the Bagel
VLM using structured prompts. Two complementary routes are instantiated:

• Route-H: patient vs healthy prototype,
• Route-P: patient vs pneumonia prototype.

For each pair, the model outputs: (i) a textual analysis (<analysis>), (ii) a similarity judgment
(<similarity to reference> ∈ {HIGH, MEDIUM, LOW}), and (iii) a categorical diagno-
sis (<answer> ∈ {NORMAL, PNEUMONIA}).

These structured prompts enforce contrastive reasoning, ensuring that both textual analysis and sim-
ilarity judgments contribute directly to downstream scoring.

(3) Route-level aggregation. Similarity levels are mapped to numerical weights, with higher
weights assigned to stronger matches. For Route-H, we compute weighted scores:

SH,N =

M∑
m=1

wm · 1[ŷm = NORMAL], SH,P =

M∑
m=1

wm · 1[ŷm = PNEUMONIA],

with (SP,N , SP,P ) defined analogously for Route-P.

(4) Dual-route fusion and uncertainty. The final decision is obtained via:

SN = αSH,N + βSP,N , SP = αSH,P + βSP,P ,

where α, β > 0 control the relative contributions of the two routes. The default prediction is given
by comparing SN and SP :

ŷ =

{
PNEUMONIA, SP > SN ,

NORMAL, otherwise,
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which corresponds to a deterministic tie-breaking rule (ties default to NORMAL).

Importantly, this operator is configurable: replacing the inequality with SP ≥ SN or SN ≥ SP

systematically biases the model toward higher sensitivity (favoring PNEUMONIA) or higher speci-
ficity (favoring NORMAL), without introducing additional heuristics. Moreover, ties (SP = SN ) or
contradictory predictions between Route-H and Route-P can be flagged as uncertain.

This flexibility enables the framework to adapt decision policies to clinical requirements, systemat-
ically trading off sensitivity, specificity, and uncertainty handling.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our framework on the Kermany chest X-ray dataset released by Kermany
et al. Kermany (2018). The dataset contains chest radiographs from patients aged 1–5, categorized
into NORMAL and PNEUMONIA. Following standard practice, we merge the official training and
validation sets (3883 pneumonia, 1349 normal) for training, and retain the original test split (390
pneumonia, 234 normal) for evaluation.

To construct prototype libraries, we apply the procedure in Sec. 3.2. Specifically, we select 256
NORMAL and 512 PNEUMONIA prototypes, which are then paired with patient images at training
time. At inference, we evaluate dual-route reasoning with varying numbers of retrieved prototypes
(M = 1, 2, 3).

4.2 IMPLEMENTATION DETAILS

Prototype Library Construction. All chest X-rays are preprocessed into 384 × 384 resolution
and embedded with ResNet-50 features. We apply sharpness-aware filtering, two-stage redundancy
pruning (pHash + cosine similarity with τ = 0.985), and MiniBatchKMeans clustering to obtain
compact yet diverse prototype sets. The final libraries contain 256 NORMAL and 512 PNEUMONIA
exemplars.

Training with Prototype-Based Pairs. We finetune Bagel-7B-MoT using torchrun on 2 A100
GPUs. Training runs for 750 steps with 75 warmup steps. The effective batch size is ∼16k tokens per
step (expected num tokens=16384), optimized with AdamW at a learning rate of 1 × 10−5

under a cosine scheduler. CPU offloading is enabled to improve memory efficiency.

Dual-Route Prototype-Conditioned Reasoning. At inference, each test image retrieves the top-M
prototypes (M = 1, 2, 3) per route based on a joint score of embedding similarity and sharpness
(λ = 0.85). Route-level predictions are fused via weighted aggregation with α = β = 1.0.

All experiments are implemented in Python with fixed random seeds, and no further hyperparameter
tuning is performed beyond the above settings.

4.3 EVALUATION METRICS

We evaluate our framework and baselines with standard diagnostic and selective prediction metrics.

Accuracy (Acc): overall proportion of correctly classified cases.

Sensitivity (Sens, Recall): true positive rate for pneumonia, capturing the ability to detect patho-
logical cases.

Specificity (Spec): true negative rate for normal cases, reflecting robustness against false alarms.

Balanced Accuracy (BA): average of sensitivity and specificity, accounting for class imbalance.

Macro-F1: unweighted mean of per-class F1 scores, balancing precision and recall.

For our dual-route framework, we further examine tie-breaking policies (tie→N vs. tie→P), which
determine the predicted label when the two reasoning routes disagree. These policies enable explicit
control of the sensitivity–specificity trade-off.
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Under the selective prediction setting, we report Coverage (the fraction of test cases with confident
predictions) and Acc@C / Sens@C / Spec@C / Macro-F1@C, which are computed only on the
retained subset. This reflects the practical value of abstaining on uncertain cases: higher reliability
on auto-reported predictions while deferring ambiguous cases to human experts.

4.4 MAIN RESULTS

Model Acc Sens Spec BA Macro-F1

Qwen2.5-VL-7B 0.672 0.931 0.239 0.585 0.567
LLaVA-Next-13B 0.704 0.828 0.496 0.662 0.667
Bagel (single) 0.901 0.864 0.962 0.913 0.898
LungConVT-Net 0.926 0.982 0.833 0.908 0.919
Ours (M=2, tie→P) 0.926 0.962 0.868 0.915 0.942

Table 1: Overall performance comparison on the Kermany pediatric chest X-ray dataset. Best values
in each column are highlighted in bold. Our method achieves the most balanced performance across
metrics.

Overall comparison. Table 1 compares our framework with representative VLMs (Qwen2.5-
VL-7B, LLaVA-Next-13B, Bagel) in the single-image setting, as well as the expert-designed
CNN–Transformer hybrid LungConVT-Net.

The results reveal several key findings. First, general-purpose VLMs (Qwen2.5-VL-7B and LLaVA-
Next-13B) struggle in this setting: although Qwen2.5-VL-7B achieves relatively high sensitivity
(0.931), its specificity collapses to only 0.239, highlighting severe over-diagnosis of pneumonia.
LLaVA-Next-13B improves specificity (0.496) but sacrifices sensitivity (0.828), confirming that
single-image VLM inference cannot balance pathological detection and false positive control. Sec-
ond, Bagel, a stronger medical VLM, attains 0.901 accuracy and a state-of-the-art specificity of
0.962, but its sensitivity (0.864) is markedly lower than both Qwen2.5-VL-7B and LungConVT-Net,
leading to missed pneumonia cases. Third, LungConVT-Net achieves excellent sensitivity (0.982),
consistent with its design focus on pathology detection, but at the cost of reduced specificity (0.833).

By contrast, our dual-route framework (M=2, tie→P) attains the same top accuracy as LungConVT-
Net (0.926), but substantially improves specificity (0.868 vs. 0.833) while maintaining strong sen-
sitivity (0.962). Most importantly, it achieves the highest Balanced Accuracy (0.915) and Macro-F1
(0.942) among all models. This indicates that our method delivers the most balanced diagnostic
capability, avoiding the pitfalls of both false alarms (low specificity) and missed cases (low sensi-
tivity). These improvements highlight the clinical value of grounding decisions in prototype-based
dual-route reasoning, further reflecting the advantages of simulating expert diagnostic strategies.

Ablation on prototype retrieval. We further investigate the impact of prototype retrieval count
(M ) and tie-breaking policies, as shown in Table 2.

The results show a clear trade-off between sensitivity and specificity. When ties are resolved toward
NORMAL, specificity peaks at 0.983 (M=1), but sensitivity drops sharply to 0.805. Conversely,
tie→PNEUMONIA consistently boosts sensitivity to 0.962, but lowers specificity (0.863–0.868).
This controllable behavior demonstrates that prototype-conditioned reasoning allows our method
to be tailored: prioritizing high sensitivity for safer pneumonia screening, or high specificity to
minimize false positives in low-prevalence settings.

Importantly, the best overall performance emerges with M=2 or M=3 under tie→P, both yielding
0.926 accuracy, 0.962 sensitivity, 0.868 specificity, and the highest Macro-F1 (0.942). This con-
figuration achieves a clinically desirable balance, ensuring pneumonia is rarely missed while false
positives are controlled. The stability of results across M=2–4 also suggests that our dual-route
design is robust to the choice of retrieval depth: adding more prototypes does not destabilize predic-
tions, unlike conventional k-nearest neighbor–style retrieval which may be sensitive to noise. This
robustness is an appealing property for real-world deployment, where retrieval hyperparameters
must remain simple and reliable.
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M Tie Policy Acc Sens Spec Macro-F1

1 tie→N 0.872 0.805 0.983 0.887
1 tie→P 0.925 0.962 0.863 0.941
2 tie→N 0.885 0.833 0.970 0.900
2 tie→P 0.926 0.962 0.868 0.942
3 tie→N 0.897 0.856 0.966 0.913
3 tie→P 0.926 0.962 0.868 0.942
4 tie→N 0.897 0.856 0.966 0.913
4 tie→P 0.926 0.962 0.868 0.942

Table 2: Ablation study on the number of retrieved prototypes M and tie-breaking policies. Best
values in each column are highlighted in bold.

M Coverage Acc@C Sens@C Spec@C Macro-F1@C

1 85.7% 0.964 0.954 0.981 0.971
2 88.1% 0.960 0.956 0.967 0.967
3 89.7% 0.959 0.957 0.962 0.967

Table 3: Selective prediction results on the Kermany chest X-ray dataset. Coverage denotes the
proportion of samples with confident predictions; metrics with @C are computed only on this subset.
Best values in each column are highlighted in bold.

Selective prediction. We assess the selective prediction setting, where the method abstains from
uncertain cases flagged by divergent dual-route predictions; the results are summarized in Table 3.

This evaluation simulates clinical deployment: ambiguous cases can be deferred to radiologists,
while high-confidence predictions are auto-reported. The results in Table 3 show that even with
abstention, coverage remains high: 85.7% to 89.7% of cases are classified automatically. Crucially,
performance on this confident subset is substantially boosted. For instance, with M = 1, accuracy
on certain cases reaches 0.964 and Macro-F1 climbs to 0.971, a significant improvement over overall
performance without abstention. As M increases, coverage improves monotonically (85.7% →
89.7%), while Acc@C, Sens@C, and Spec@C stabilize near 0.96–0.97, indicating both reliability
and consistency.

This result highlights a unique advantage of our framework: the abstention mechanism emerges nat-
urally from dual-route divergence, requiring no auxiliary uncertainty estimation module. It provides
a principled way to balance automation and safety—most cases can be diagnosed with near-expert
reliability, while ambiguous cases are transparently flagged for human review. Such selective pre-
diction capabilities are particularly valuable for clinical adoption, where trustworthiness and inter-
pretability are as critical as accuracy.

4.5 GENERALIZATION TO EXTERNAL DATASET

To assess robustness under distribution shift, we further evaluate on the Kaggle Chest X-ray
dataset Chowdhury et al. (2020); Rahman et al. (2021), where 200 NORMAL and 200 PNEUMONIA
images are randomly sampled. This dataset differs substantially in acquisition settings, patient de-
mographics, and clinical context, posing a challenging out-of-domain evaluation.

The results in Table 4 reveal sharp degradation for general-purpose VLMs: Qwen2.5-VL-7B retains
very high sensitivity (0.975) but its specificity collapses to only 0.360, leading to rampant over-
diagnosis of pneumonia. LLaVA-Next-13B almost fails entirely, with accuracy dropping to 0.525
and specificity to just 0.050, indicating near-random predictions on normal cases. Bagel, despite
being a stronger VLM, achieves only 0.805 accuracy and exhibits skewed class-wise recall (0.620
sensitivity vs. 0.990 specificity), showing that it tends to under-diagnose pneumonia. By contrast,
the expert-designed LungConVT-Net remains robust, reaching 0.953 accuracy and 0.952 Macro-F1,
which we use as a reference for out-of-domain evaluation.
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Model Acc Sens Spec Macro-F1 Acc@C Macro-F1@C

Qwen2.5-VL-7B 0.668 0.975 0.360 0.633 – –
LLaVA-Next-13B 0.525 1.000 0.050 0.387 – –
Bagel (single) 0.805 0.620 0.990 0.798 – –
LungConVT-Net 0.953 0.905 1.000 0.952 – –

Ours (M = 1, tie→N) 0.788 0.590 0.985 0.735 0.931 0.915
Ours (M = 1, tie→P) 0.898 0.905 0.890 0.898 – –
Ours (M = 2, tie→N) 0.813 0.640 0.985 0.773 0.933 0.921
Ours (M = 2, tie→P) 0.900 0.905 0.895 0.900 – –
Ours (M = 3, tie→N) 0.868 0.755 0.980 0.851 0.936 0.929
Ours (M = 3, tie→P) 0.913 0.905 0.920 0.912 – –
Ours (M = 4, tie→N) 0.870 0.760 0.980 0.854 0.936 0.930
Ours (M = 4, tie→P) 0.913 0.905 0.920 0.912 – –

Table 4: Cross-dataset generalization results on the Kaggle Chest X-ray dataset. Best values in each
column are highlighted in bold.

Our method demonstrates consistent advantages in this setting. Across M=1–4 under tie→N, accu-
racy improves steadily from 0.788 to 0.870 as retrieval depth increases, while specificity remains
very high (≥0.98). Under tie→P, performance peaks at 0.913 accuracy with both sensitivity and
specificity balanced at ≈0.90 for M=3–4, sharply contrasting with the skewed trade-offs of baseline
VLMs. Moreover, in the selective prediction setting, accuracy on the confident subset rises to 0.936
and Macro-F1 exceeds 0.92, while coverage stays above 93%. This indicates that our framework not
only maintains reliability across all retrieval depths but also delivers near-expert performance when
uncertainty is explicitly surfaced.

Crucially, our method does not force overconfident predictions on ambiguous cases: uncertainty
naturally emerges when the healthy and pneumonia routes diverge, aligning with human-in-the-loop
practice where straightforward cases are automated and difficult ones are deferred to radiologists.
This mirrors real diagnostic workflows, enhancing both safety and trust. Another notable strength
is that these gains are achieved without any retraining or domain adaptation. Unlike conventional
single-image VLM inference, prototype-guided dual-route reasoning provides a cognitively inspired
anchor that adapts more gracefully to distribution shifts. In summary, prototype-conditioned dual-
route reasoning is not just a technical enhancement but a principled mechanism that unifies robust-
ness, interpretability, and clinical alignment, paving the way for VLMs that remain reliable across
heterogeneous deployment environments.

5 CONCLUSION

We introduced Dual-Route Mental Imagery, the first framework that formalizes radiologists’
prototype-based mental imagery into VLM reasoning. By conditioning diagnosis on structured
(patient, prototype) pairs and instantiating dual healthy–pneumonia routes, our method enforces
recall-and-compare reasoning, produces interpretable reference-level traces, and transparently sur-
faces uncertainty when the two routes diverge. On Kermany pediatric chest X-ray dataset, it achieves
balanced accuracy superior to both single-image VLMs and expert-designed networks, while selec-
tive prediction further improves reliability by abstaining on ambiguous cases. More importantly,
cross-dataset evaluations on the Kaggle chest X-ray cohort demonstrate strong robustness under dis-
tribution shift without retraining, approaching expert-level performance. These findings not only
advance the robustness and trustworthiness of VLM-based medical diagnosis, but also demonstrate
the value of prototype-conditioned, cognitively inspired reasoning in yielding clinically aligned pre-
dictions that mirror radiologists’ diagnostic strategies.

ETHICS STATEMENT

This work leverages publicly available chest X-ray datasets (Kermany et al., Kaggle) that have been
widely used in prior research. All experiments were conducted on de-identified images, and no
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personally identifiable information was used. Our method is intended for research purposes only
and is not validated for direct clinical deployment. We emphasize that any medical use would
require rigorous regulatory approval and expert oversight.

REPRODUCIBILITY STATEMENT

We have described datasets, prototype construction, training configurations, and evaluation proto-
cols in detail throughout the Method and Experiments sections. Hyperparameters, preprocessing
steps, and model variants are explicitly reported. We will release the related code to reproduce our
experimental results, ensuring that our findings can be replicated and extended by the community.
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A APPENDIX

LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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