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Abstract—In the present paper, we analyse the approxima-
tion behaviour of generalized sampling series and Kantorovich
sampling series. First, we obtain the approximation error in-
terms of the modulus of continuity for the generalized sampling
series for functions in C(Rd). Further, for the class of log-
Hölderian functions, the order of uniform norm convergence
is discussed. Furthermore, for functions in C(Rd) and log-
Hölderian functions, we provide the approximation error for the
Kantorovich sampling series.

Index Terms—Generalized Sampling Series, Kantorovich Sam-
pling Series, Degree of Approximation, Modulus of Smoothness,
Log-Hölderian Class.

I. INTRODUCTION

The celebrated Shannon sampling theorem is one of the
fundamental theorem in Fourier analysis. This theorem can be
used to convert the analog signals into discrete sequence of
samples without loosing any information. If f is band-limited
to [−πw, πw], w > 0, then f can be completely reconstructed
by

f(t) =

∞∑
k=−∞

f

(
k

w

)
sinπ(wt− k)

π(wt− k)
, (t ∈ R).

The above sampling reconstruction formula has lot of appli-
cations in signal and image processing, information theory,
communication theory etc. The approximation results of the
above sampling series were studied by several researchers. In
particular, Lp(R) convergence for the above sampling series
was studied by Rahman and Vértesi in [17]. Further, the rate
of convergence in-terms of averaged modulus of smoothness
for the above series in Lp(R)-norm for 1 < p < ∞ for non-
smooth signals were analyzed in [5]. The approximation of
multivariate signals with respect Lp(Rn)-norm for 1 < p <∞
were analyzed in [3]. Burinska, Runovski and Schmeisser
generalized the above sampling series in [6]. The generalized
sampling series of f with respect to the kernel Fψ ∈ L1(Rd)
is given by

Sσ(f ;x) = (2π)−d
∑
k∈Zd

f

(
k

σ

)
Fψ(σx− k), (x ∈ Rd)

where F denotes the Fourier transform and ψ is compactly
supported functions satisfying some more additional condi-
tions. We note that if (2π)−dFψ(x) = sin c(x), then above

generalized sampling series reduces to the classical sampling
reconstruction formula. We further see that if (2π)−dFψ(x) =
ψ(x), then the above sampling series reduces to the sampling
series considered by Butzer and his collaborators, see [8]–[12].

Let f be a continuous function defined on Rd and let σ > 0.
Then we consider the following generalized sampling series
of f with respect to the kernel Kψ

σ by

Sσ(f ;x) = (2πσ)−d
∑
k∈Zd

f

(
k

σ

)
Kψ
σ

(
x− k

σ

)
, (x ∈ Rd)

where
Kψ
σ (x) = Fψ

( ·
σ

)
(x),

such that ψ is continuous on Rd, centrally symmetric, have
a compact support, satisfying ψ(0) = 1 and Fψ ∈ L1.
The uniform and point-wise approximation theorems and the
approximation results with respect to Lp metric for the above
generalized sampling series Sσ were discussed in [6]. The
quality of approximation by generalized sampling series in-
terms of suitable K-functional were analyzed in [7] with
respect to Lp metric. In this paper, we estimate the error
in the approximation by generalized sampling series and
Kantorovich sampling series. In order to do this, we need
certain assumptions on the kernel Kψ

σ .
In view of Lemma 3.4 [6], the kernel Kψ

σ satisfies the
following conditions:

(K1) (2πσ)−d
∑
k∈Zd

Kψ
σ

(
x− k

σ

)
= 1

(K2) M0(ψ) = sup
x∈Rd

(2πσ)−d
∑
k∈Zd

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣ <∞.

Further, we assume that Kψ
σ satisfies the following con-

dition:
(K3) For some β > 0, we have

Mβ(ψ) = sup
x∈Rd

(2πσ)−d
∑
k∈Zd

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣ ∥∥∥∥x− k

σ

∥∥∥∥β
2

<∞,

where ∥ · ∥2 denotes the usual Euclidean norm on Rd.

Remark 1. It is easy to see that if Mβ(ψ) < ∞, for some
β > 0, then we get Mν(ψ) <∞, for every 0 ≤ ν ≤ β.

Now, we shall recall the definition of modulus of continuity
for f ∈ C(Rd).



Definition 1. For f ∈ C(Rd), the modulus of continuity is
defined by
ω(f, δ) = sup

x,y∈Rd

∥x−y∥2≤δ

|f(x)− f(y)| , δ > 0.

w(f, δ) satisfies the following properties:

(i) ω(f, δ) → 0, as δ → 0.
(ii) ω(f, λδ) ≤ (λ+ 1)ω(f, δ), for every λ > 0.

(iii) |f(x)− f(y)| ≤ ω(f, δ)

(
1 +

∥x− y∥2
δ

)
.

Next, we define the Log-Hölderian class.

Definition 2. Let 0 < α ≤ 1. The log-Hölderian function of
order α is defined by

Lα := {f : Rd → R : ∃M > 0 s.t.

|f(x)− f(y)| ≤M∥x− y∥α2 , x,y ∈ Rd}.

II. DEGREE OF APPROXIMATION

In this section, we obtain the error estimates of the gener-
alized sampling series Sσ .

Theorem 1. Let f ∈ C(Rd), σ > 0 and x ∈ Rd. Suppose
that Mβ(ψ) <∞, for some β ≥ 1. Then, we have

|(Sσf)(x)− f(x)| ≤M0(ψ) ω(f, δ) +
2K

σδ
M1(ψ),

where K > 0 is a constant.

Proof. Let x ∈ Rd. By the definition of the sampling operators
Sσ and by the condition (K1), we have

|(Sσf)(x)− f(x)|

=

∣∣∣∣∣∣(2πσ)−d
∑
k∈Zd

f

(
k

σ

)
Kψ
σ

(
x− k

σ

)
− f(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣(2πσ)−d
∑
k∈Zd

f

(
k

σ

)
Kψ
σ

(
x− k

σ

)
−

(2πσ)−d
∑
k∈Zd

f(x) Kψ
σ

(
x− k

σ

)∣∣∣∣∣∣
≤ (2πσ)−d

∑
k∈Zd

∣∣∣∣f (kσ
)
− f(x)

∣∣∣∣ ∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣

= (2πσ)−d

 ∑
k∈Zd

∥ k
σ−x∥

2
≤δ

+
∑
k∈Zd

∥ k
σ−x∥

2
>δ


∣∣∣∣f (kσ

)
− f(x)

∣∣∣∣
∣∣∣∣Kψ

σ

(
x− k

σ

)∣∣∣∣
:= I1 + I2.

First, we estimate I1. Using the definition of modulus of
continuity, we obtain

I1 ≤(2πσ)−d
∑

∥ k
σ−x∥

2
≤δ

ω(f, δ)

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣
≤M0(ψ) ω(f, δ).

Using the fact that the function is bounded on Rd, we obtain

I2 ≤ 2K(2πσ)−d
∑

∥ k
σ−x∥

2
>δ

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣
≤ 2K(2πσ)−d

∑
k∈Zd

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣ ∥k − xσ∥2
δσ

≤ 2K

σδ
M1(ψ).

Combining the estimates I1 and I2, we get

|(Sσf)(x)− f(x)| ≤M0(ψ) ω(f, δ) +
2K

σδ
M1(ψ).

Thus, the proof is completed.

Remark 2. If we choose δ =
1

σ
, we obtain

|(Sσf)(x)− f(x)| ≤M0(ψ) ω

(
f,

1

σ

)
+ 2K M1(ψ).

Theorem 2. Let f ∈ C(Rd), σ > 0 and x ∈ Rd. Suppose
that Mβ(ψ) <∞, for some β ≥ 1. Then, we have

|(Sσf)(x)− f(x)| ≤ C ω

(
f,

1

σ

)
,

where C =M0(ψ) +M1(ψ).

Proof. In view of the property (iii) of the modulus of smooth-
ness, we can write

|(Sσf)(x)− f(x)|

≤ (2πσ)−d
∑
k∈Zd

∣∣∣∣f (kσ
)
− f(x)

∣∣∣∣ ∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣
≤ ω(f, δ)

(2πσ)−d
∑
k∈Zd

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣(
1 +

∥∥ k
σ − x

∥∥
2

δ

))

≤M0(ψ)ω(f, δ) +
ω(f, δ)

δ

∑
k∈Zd

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣ ∥∥∥∥kσ − x

∥∥∥∥
2

= ω(f, δ)

(
M0(ψ) +

M1(ψ)

σδ

)
.

Choosing δ =
1

σ
, we obtain

|(Sσf)(x)− f(x)| ≤ ω

(
f,

1

σ

)
(M0(ψ) +M1(ψ))

≤ C ω

(
f,

1

σ

)
.



Hence, the proof is completed.

Theorem 3. Suppose that Mβ(ψ) <∞, for some β ≥ 1. For
f ∈ Lα, we have

∥Sσf − f∥∞ ≤ KMα(ψ)

σα
,

where K > 0 is a constant.

Proof. Let f ∈ Lα. Then by the definition of sampling
operators Sσ , we have

|(Sσf)(x)− f(x))|

=

∣∣∣∣∣∣(2πσ)−d
∑
k∈Zd

f

(
k

σ

)
Kψ
σ

(
x− k

σ

)
− f(x)

∣∣∣∣∣∣
≤ (2πσ)−d

∑
k∈Zd

∣∣∣∣f (kσ
)
− f(x)

∣∣∣∣ ∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣
≤ K(2πσ)−d

∑
k∈Zd

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣ ∥∥∥∥kσ − x

∥∥∥∥α
2

≤ K(2πσ)−d
∑
k∈Zd

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣ ∥k − xσ∥α2
σα

≤ KMα(ψ)

σα
.

Since Mβ(ψ) < ∞, for some β ≥ 1, and so by the Remark
1, we have Mα(ψ) < ∞, for 0 < α ≤ 1. This completes the
proof.

III. KANTOROVICH GENERALIZED SAMPLING SERIES

In this section, we consider the Kantorovich variant of the
generalized sampling series Sσ. Let x ∈ Rd, k ∈ Zd and
σ > 0. Then, we define the Kantorovich generalized sampling
series by

(Kσf)(x) = (2πσ)−d
∑
k∈Zd

(
σd
∫
Iσk

f(u)du

)
Kψ
σ

(
x− k

σ

)
where Iσk :=

[
k1
σ ,

k1+1
σ

]
×
[
k2
σ ,

k2+1
σ

]
× ... ×

[
kd
σ ,

kd+1
σ

]
and f : Rd → R is a locally integrable function such that
above series is converges. The Kantorovich sampling series
is used to approximate the measurable, locally integrable and
not-necessarily continuous functions. These operators helps to
reduce the time-jitter errors, which frequently occurs in signal
processing. We note that if we take (2π)−dFψ(x) = ψ(x),
then the above sampling series Kσ reduces to the classical
Kantorovich sampling series which is considered by several
researchers, see [1], [2], [4], [13]–[15] etc.

Remark 3. It is easy to see that the above Kantorovich gener-
alized sampling operators are well defined for f ∈ L∞(Rd).
Indeed, in view of the condition (K2) we obtain

|(Kσf)(x)| ≤ ∥f∥∞(2πσ)−d
∑
k∈Zd

∣∣∣∣Kψ
σ

(
x− k

σ

)∣∣∣∣
≤ ∥f∥∞M0(ψ),

for every x ∈ Rd and σ > 0.

Remark 4. By the above Remark, we note that Kantorovich
generalized sampling operators is a bounded linear operators
maps L∞(Rd) into L∞(Rd).

Now we shall discuss the direct approximation results for
the Kantorovich exponential sampling operators. Since the
proof techniques are similar to the results discussed in Section
2, so omit the proof details.

Theorem 4. Let f ∈ C(Rd), σ > 0 and x ∈ Rd. Suppose
that Mβ(ψ) <∞, for some β ≥ 1. Then, we have

|(Kσf)(x)− f(x)| ≤ C ω

(
f,

1

σ

)
,

where C =M0(ψ) +M1(ψ).

Theorem 5. Let f ∈ Lα. Suppose that Mβ(ψ) <∞, for some
β ≥ 1. Then, we have

|(Kσf)(x)− f(x)| ≤ KMα(ψ)

σα
,

where K > 0 is a constant.

IV. EXAMPLES

In this section, we consider the following examples. We
construct the multivariate kernel as follows:

χ(x) :=

n∏
i=1

χi(xi), (1)

where x ∈ Rd, χi(x) denotes the uni-variate kernel.

A. Example 1

As a first example, we consider the Jackson-type kernels
(see [16]) for d = 1 as follows: Let

φ(ζ) =

{
1− |ζ|, if |ζ| ≤ 1

0, if |ζ| > 1.

The Fourier transform for φ is given by

Fφ(x) = 4sin2(x/2)

x2
.

Since Kψ
σ (x) = σFψ(σx), we obtain

Kψ
σ (x) = σ

4Nsin2N (σx/2)

(σx)2N
,

where ψ = φ ∗ φ ∗ . . . ∗ φ (N times). Clearly Kψ
σ (x) =

O(|x|−2N ), as |x| → ∞, see [16]. Thus, condition (K3) is
satisfied for N ≥ 2. Now, we define the multivariate kernel
as follows: Now by (1), we can write

Kψ
σ (x) :=

d∏
i=1

Kψ
σ (xi).

Since Kψ
σ (xi) satisfies the condition (K3), this implies that

Kψ
σ (x) also satisfies (K3) for N ≥ 2.



B. Example 2

We now consider Bochner-Riesz type kernel, see [16]. The
Kernel is defined by

KΘ
σ (x) = σFΘ(σx)

which can be expressed as

KΘ
σ (x) = σd−η−1/2 2η√

2π
Γ(η + 1)|σx|−η−1/2Jη+1/2(|σx|),

where x ∈ R, η > 0 and Jλ is the Bessel function of order λ
defined by

Jλ(x) =
1

Γ(λ+ 1/2)Γ(1/2)

(x
2

)λ ∫ 1

−1

eixu(1− u2)
λ−

1

2 du.

Here, Γ is the usual Euler gamma function. The function Θ
is given by

Θ(ζ) =

{
(1− ζ2)η, if |ζ| ≤ 1

0, if |ζ| > 1.

Clearly, we have KΘ
σ (x) = O(|x|−η−1), as |x| → ∞, see

[16]. Thus, condition (K3) is satisfied for η > 1. By the
equation (1), we have

KΘ
σ (x) :=

d∏
i=1

KΘ
σ (xi).

We know that KΘ
σ (xi) satisfies the condition (K3), this implies

that KΘ
σ (x) also satisfies the condition (K3) for η > 1.
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