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Abstract

Graph neural networks (GNNs) have been predominantly driven by message-
passing, where node representations are iteratively updated via local neighbor-
hood aggregation. Despite their success, message-passing suffers from funda-
mental limitations—including constrained expressiveness, over-smoothing, over-
squashing, and limited capacity to model long-range dependencies. These issues
hinder scalability: increasing data size or model size often fails to yield improved
performance. To this end, we explore pathways beyond message-passing and
introduce Generative Graph Pattern Machine (G2PM), a generative Transformer
pre-training framework for graphs. G2PM represents graph instances (nodes, edges,
or entire graphs) as sequences of substructures, and employs generative pre-training
over the sequences to learn generalizable and transferable representations. Em-
pirically, GZPM demonstrates strong scalability: on the ogbn-arxiv benchmark,
it continues to improve with model sizes up to 60M parameters, outperforming
prior generative approaches that plateau at significantly smaller scales (e.g., 3M).
In addition, we systematically analyze the model design space, highlighting key
architectural choices that contribute to its scalability and generalization. Across
diverse tasks—including node/link/graph classification, transfer learning, and cross-
graph pretraining—G?PM consistently outperforms strong baselines, establishing
a compelling foundation for scalable graph learning. The code and dataset are
available at https://github. com/Zehong-Wang/G2PM.
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Figure 1: Generative Transformer pre-training across modalities. (a) Textual modeling tokenizes
language into word sequences and generates next tokens or masked tokens. (b) Visual modeling slices
images into patches and models generation in raster order. (¢c) Graph modeling (ours) tokenizes graph
instances into substructure sequences using a random walk-based substructure tokenizer, and learns
to generate via masked substructure modeling, going beyond message-passing.
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Figure 2: Model scaling behavior on the
ogbn-arxiv with linear probing. G2PM con-
sistently improves as model parameters increase,
achieving 72.31% accuracy with 60M parame-
ters—surpassing the current SOTA generative
graph pre-training method [23]. In contrast,
GraphMAE [22] and BGRL [53]] exhibit perfor-
mance degradation, indicating limited scalability.
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Figure 3: Data scaling behavior on the
ogbn-arxiv and ogbn-products with linear
probing. G?PM demonstrates robust improve-
ments with more pre-training data, reflecting su-
perior scalability. In contrast, GraphMAE [22]]
and BGRL [53]] peak at small data ratios and
degrade with more data, suggesting overfitting,
poor regularization, or inefficient data utilization.

1 Introduction

Transformer architectures [S9] have emerged as the cornerstone of modern foundation models
[7, 113121 57]. Enabled by generative pre-training on massive unlabeled corpora [[7, [12]], Transformers
learn transferable representations that can be efficiently adapted to diverse downstream tasks. This
paradigm shift has redefined the landscape of machine learning, powering state-of-the-art systems
in natural language processing and computer vision. Prominent examples include large language
models (LLMs) [2,157] and Vision Transformers (ViTs) [[13]], which showcase the scalability and
generalization strength of this approach.

Despite the transformative success of generative Transformer pre-training in text and vision domains,
this paradigm has yet to bring comparable breakthroughs in the graph domain, posing a significant
barrier to the development of graph foundation models [40, 65, [67]]. Most existing approaches to
graph pre-training remain grounded in message-passing graph neural networks (MPNN5s) [33] 160} |16}
18, 139]], which are known to suffer from fundamental limitations: constrained expressive power [77]],
over-smoothing [49], over-squashing [56], and poor capacity for modeling long-range dependencies
[47]. These challenges significantly limit the scalability of MPNNs [43]], where increasing the size
of the model or training data does not reliably lead to improved performance. As a result, the
emergence of scaling laws in graph learning—a critical property in the success of foundation models
[28]—remains elusive. Moreover, current graph pre-training techniques are predominantly based on
contrastive learning [46} 83} 164, 163} 153|184} 75,76} 145l 138]], which has been shown to be less capable
of learning generalizable semantic representations compared to generative objectives [20, 12} 54}|5.7].
This reliance further compounds the scalability bottleneck of graph neural networks (GNNs).

In this work, we aim to extend the success of Transformer-based generative pre-training to the
graph domain, with the goal of enabling scalable graph representation learning. We consider the
effectiveness of Transformers stems from a common principle: Transformer-based models represent
modality-specific instances using sequences of high-level semantic tokens, and apply generative
objectives for pre-training. To realize this paradigm for graphs, we begin by identifying three
fundamental challenges that distinguish graph-structured data from Euclidean modalities such as text
and images. (1) Absence of Sequence Structure: Unlike text or images, which naturally possess
ordered or grid-like sequences compatible with Transformer training, graphs lack a sequence (no
matter ordered or unordered) for nodes, edges, or subgraphs. This complicates the adaptation of
Transformer. (2) Semantic Granularity: Graph elements—such as nodes or edges—typically encode
low-level semantics, while tokens in language (i.e., words) or vision (i.e., patches) often correspond
to higher-level concepts. It is unclear whether Transformers can effectively learn from such low-level
representations in a generative fashion. (3) Scalability Bottlenecks: Existing Graph Transformers



(GTs) [34,19,14] often treat individual nodes as tokens and focus on pairwise relationships, leading
to sequence lengths that scale with the number of nodes. Due to the quadratic time complexity of
Transformers [29]], this design choice limits scalability to large graphs, confining GTs primarily to
small graphs such as molecular graphs [47].

These challenges naturally raise a central question: how can we define sequences of high-level
semantic tokens that meaningfully represent a graph instance—whether a node, an edge, or an
entire graph? To answer this, we revisit the core objective of graph learning: understanding key
substructures that are predictive of downstream tasks. In many domains, such substructures are
inherently semantic. For instance, motifs like triangles in social networks capture stable interpersonal
relationships, while benzene rings in molecular graphs encode chemical stability—both serving
as informative building blocks for reasoning. Motivated by this intuition, we propose to represent
graph instances as sequences of meaningful substructures (Figure[I)) and introduce the Generative
Graph Pattern Machine (G2PM), a Transformer-based generative pre-training framework for graphs.
G2PM tokenizes graphs into sequences of substructures via random walks, and learns representations
by reconstructing masked substructures from context. This approach enables the design of pure
Transformer models for graphs—free from message-passing—while unlocking scalability through
increased model capacity and data volume (Figures [2]and [3). We highlight our contributions:

» We propose G?PM, a generative Transformer pre-training framework that models graph instances
as sequences of substructures, entirely eliminating the need for message passing.

* We introduce a random walk-based tokenizer that efficiently extracts semantic substructure patterns,
and pair it with a masked substructure prediction task to enable self-supervised learning.

* We conduct a comprehensive design space exploration, offering actionable insights into model
architecture and scalability.

» We demonstrate that G2PM scales effectively: increasing data or model size yields consistent
performance gains, echoing the scaling behaviors observed in other domains.

* We validate G?PM across multiple benchmarks, showing state-of-the-art performance on
node/link/graph-level tasks, along with strong generalization in cross-graph transfer tasks.

Outlook. While Transformers have redefined learning paradigms in many domains, their influence
on graph learning remains nascent. We hope this work sparks further exploration into non-message-
passing architectures, especially Transformers, as a new foundation for graph representation learning.

2 Generative Graph Pattern Machine

Let G = (V, &, X, E) denote a graph, where V is the set of nodes with [V| = N, £ CV x Vis the
set of edges with |£| = E, and X and E represent the node and edge feature matrices, respectively.
Each node v € V is associated with a feature vector x,, € R%, and each edge e € £ is associated
with a feature vector e, € R% (when applicable). As illustrated in Figure 4] G2PM is pre-trained
using a masked substructure modeling (MSM) objective in a fully self-supervised fashion.

2.1 Graph Representations

Our core idea is to represent any graph instance (node, link, or graph) as a sequence of substructures.
In natural language, sequences are constructed using a predefined vocabulary of words or subwords;
in vision, raster-scan tokenizers divide images into patch sequences. However, extending this notion
of tokenization to graphs poses two key challenges. First, it is non-trivial to define a universal
vocabulary of graph substructures, as the semantic relevance of patterns is highly domain-specific.
For example, triangle motifs are prominent in social networks, whereas ring structures are more
meaningful in molecular graphs. Second, tokenizing graphs by substructure matching incurs high
computational cost: subgraph isomorphism is NP-complete [15]], rendering it impractical for large-
scale graphs—especially when compared to the linear-time tokenization of text and images [S1} [13]].

Tokenizer. To overcome these challenges, we adopt a random walk-based tokenizer that samples
substructure patterns on the fly, bypassing the need for a predefined vocabulary. This strategy offers
an efficient and scalable tokenization mechanism [68, |81]. As illustrated in Figure b), a random
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Figure 4: Overview of G2PM pre-training. (a) Given a graph instance, we first apply a random
walk-based tokenizer to extract substructure patterns. Some patterns are randomly masked and the
visible patterns are fed into a G2PM encoder. The encoder outputs are concatenated with special
mask tokens and passed to a G2PM decoder to reconstruct the masked substructures. (b) We tokenize
substructures by performing random walks over the graph, where each walk represents a substructure,
which is proved to be effective [68]. The substructure embeddings are modeled via Transformer.

walk such as [1, 2,3, 1,4, 3] corresponds to a diamond-shaped substructure. Formally, we define an
unbiased random walk w of fixed length L as a sequence sampled from a Markov chain:

1[(vi, vit1) € €]

D) (M

P(Ui+1 |’U0,...,’Ui) =

where D(v;) denotes the degree of node v;. This transition probability enables efficient generation of
node sequences from arbitrary starting points.

For each graph instance, we sample k£ random walks to serve as substructure patterns. To balance lo-
cality and global context, we leverage unbiased sampling strategies [44,|68]. Rather than constructing
explicit subgraphs from these walks, we treat each as a node sequence and directly encode it using a
Transformer, which has been shown to effectively capture structural inductive biases in graphs [68].

Given a node sequence w = [X1, ..., X,,], we compute its embedding via a Transformer encoder f:

where p is the substructure embedding, and x; = [x;||e;] is the concatenation of node feature x; and
(optionally) edge feature e;.

Eliminating Message-Passing Bottlenecks. Our tokenizer is entirely message-passing-free, allowing
G?2PM to bypass key limitations of traditional GNNs. Notably, the random walk-based representations
in G2PM effectively capture long-range dependencies [68] 27]], exceed the expressiveness of 1-WL
tests [551 169, 42], and mitigate over-smoothing and over-squashing effects [61].

No Positional Embeddings. Unlike standard Transformers, which depend on positional encodings,
we find that adding position information to node sequences offers no consistent benefit (Table[Tb)
and incurs cubic time complexity [34]. We thus omit positional embeddings entirely, simplifying the
architecture without compromising performance.

Task-Agnostic Tokenization. Our tokenizer is applicable across graph-based tasks. For node-level
tasks, random walks originate from the target node; for edge-level tasks, from the endpoints of target
edge; and for graph-level tasks, from randomly sampled nodes in the graph. This task-agnostic design
enables G2PM to adapt seamlessly without requiring specialized modifications.



2.2 G2PM Backbone

We adopt the standard Transformer architecture [59] as the backbone for both G2PM encoder and de-
coder. The input to the Transformer is a sequence of graph substructure tokens P = [p1, p2, - .., Pn)s
where each p; denotes the embedding of a sampled substructure. A single Transformer layer operates
via a combination of self-attention and feed-forward networks, formally defined as:

T

K
P’ = FFN (P + Attn(P)), Attn(P) = softmax (Q

out
Q=PWq, K=PWg, V=PWy, “)

where W q, Wk, Wy are learnable projection matrices and d,,,; denotes the dimensionality of the
output embeddings. The FFN is implemented as a two-layer multilayer perceptron with non-linearity.
Following standard practice, we employ multi-head self-attention [59], where multiple attention
mechanisms are applied in parallel and their outputs concatenated. We stack multiple Transformer
layers to enhance model capacity. We denote the output of the final (L-th) Transformer layer as
PL = [pf,pZ, ..., pL], representing the learned contextualized embeddings of graph substructures.

) Ve Rnxd“u[, (3)

2.3 Pre-Training G?PM: Masked Substructure Modeling

To pre-train the G2PM model, we introduce a generative Transformer objective masked substructure
modeling (MSM). Given a sequence of substructures extracted from a graph, we randomly mask a
subset and train the model to reconstruct the masked substructures conditioned on the visible ones.
This process follows the conditional factorization principle used in masked language modeling [12]]:

p(xhx?»"'axn):p(x/M) Hp(xt |$/IW)7 (5)
teM

where z ), denotes the set of visible tokens and M indicates the masked positions.

The key intuition is that meaningful graph substructures exhibit strong interdependencies—such as
hierarchical relationships, functional reinforcement, or functional exclusion (Appendix [A)—allowing
certain substructures to be predictive of others. Concretely, given a tokenized substructure sequence
P = [p1,...,Pn], we randomly retain k visible tokens to form P\, while masking the remaining
n — k tokens. The visible sequence P is passed through the GZPM encoder to produce contextual
embeddings H,;;. We then insert learnable mask tokens at the masked positions to recover the full-
length sequence, and feed the sequence into the G2PM decoder for reconstruction R = [r1, ..., r,]:

R = Decoder(H), H = Addpy(Huis), Hyis = Encoder(P ;). 6)

To define the reconstruction targets, we leverage the high-level semantics of substructures. Instead
of reconstructing low-level node features or adjacency matrices, we employ an online encoder
fEMa, an exponential moving average (EMA) version of the substructure encoder, to generate target
embeddings p; = fema (w;) for each substructure walk w;. This yields the training objective:
1. 2
L= s masked(p:) - [|r; — sgBilll5,  Bi = foma(ws), (7
i=1

where is_masked(+) is an indicator function for masked positions, and sg|-] denotes the stop-gradient
operator, ensuring that targets are fixed during training.

Adapting to Downstream Task. For downstream tasks, we discard the decoder and append a
linear prediction head to the G2PM encoder. Each graph instance is tokenized into a sequence
of substructure embeddings P = [p1, p2,. .., Pn], Which is processed by the L-layer encoder to
produce contextual representations PX = [pf, ... pZ]. We then apply mean pooling followed by
the task head for final prediction y = Head (%L > pZL)

Augmenting Substructure Patterns. To improve robustness and representation quality, we adopt a
mixed augmentation strategy inspired by corruption-agnostic pre-training [20,[71]. We define four
augmentations in two categories: Feature-level—(1) feature masking (zeroing a subset of features)
and (2) node masking (masking entire nodes); and Structure-level—(3) substructure corruption
(dropping nodes within a walk) and (4) substructure injection (replacing walk nodes with random
nodes). During training, we apply one feature-level and one structure-level augmentation per instance
to promote generalization across diverse perturbations.



Dim #Params Arxiv HIV Encoder Arxiv HIV [Mask] Arxiv HIV

64 ~0.4M 68.2 69.7 Transformer 723 787 Learnable 73 78.7
128 ~1.5M 705 709 GRU 634 723 i

Fixed 71.8 76.9
256 ~6.2M 712 741 GIN 710 732 Random 67.6 716
512 ~266M 721 764 MEAN 703 704 : : '
768 ~645M 723 787 + Node PE 724 786 Sampling 67.1 740

(a) Model dimension. G2PM ex-  (b) Tokenization. Transformer is  (c) Mask token. Using a learnable
hibits strong scalability with in- the most expressive encoder for =~ mask token leads to higher accu-

creased hidden dimension sizes. modeling substructures. racy compared to other tokens.
Aug. Arxiv HIV Case Arxiv HIV « Update Every Arxiv HIV
Mixed 723 787 EMA Emb. 723 78.7 0.9 10 70.8 74.3
Feature mask p = 0.2 69.8 732 Feat. (mean) 714 735 8229 ig ;g? ;gz
Node mask p = 0.2 709 755 Feat. (concat) 71.2 64.0 . . }
Substructure corrupt p = 0.8 71.3 744 0.99 5 722 78.1
Substructure injectp = 0.8 721 72.4 L2to L1 loss 721 723 099 20 723 766
None 708 73.9 + Topo. Recon. 729 789 w/o EMA Update 252 69.1

(d) Data augmentation. Mixed (e) Reconstruction target. High- (f) Online encoder. Maintaining
augmentation significantly im- level target is more effective than ~ an EMA-updated online encoder is
proves downstream performance. feature-level reconstruction. crucial in generating targets.

Table 1: G2PM ablation experiments on ogbn-arxiv and ogbg-HIV. We report linear probe accuracy
(%) and use gray to indicate default settings. The detailed hyper-parameters are in Appendix

. . Arch. Enc. Dec. #Enc. Params #Dec. Params Arxiv HIV

3 Design Spaces and Insights MAE 1 1 M <7 71 759
MAE 2 1 ~14.2M ~7.IM 722 776

MAE 3 1 ~21.3M ~7.1M 723 787

We conduct a comprehensive ablation study to ~_MAE 32 ~2M ~14.2M 720 719
. : . : imMIM 3 1 ~21.3M ~0.6M 1.1 4.
provide more insights about the model design. ~ S™viM 3 ) T3iam oo T

(a) Model architecture. Our G>PM design (MAE-style

3.1 Model Architecture [20]) outperforms SimMIM-style [71] pre-training.

Model Dimension. We set the default hidden 2
dimension to 768, with a 3-layer encoder and g 0—g—0—0—%~0—0—""
a 1-layer decoder. As shown in Table [Ta] in- 3 4

creasing model size consistently improves per- 70 < o Masking Ratio

formance, mirroring scaling trends observed in 0% 20% 40% 60% 80%  100%
language and vision domains [[7} [13]. Unlike
message-passing models that often plateau with
scale, G2PM continues to benefit from increased
parameterization. Figure 5: More G2PM ablation experiments.

(b) Masking ratio. A large masking ratio leads to better
performance with more challenging tasks.

Model Layer. Table[5a]shows that deeper encoders enhance performance, while increasing decoder
capacity provides limited or negative returns, particularly under the MAE-style masked modeling
framework. We attribute this to the simplicity of substructure reconstruction, where expressive
decoders can lead to overfitting. Replacing the MAE-style design [20] with a SimMIM-style variant
[71] further degrades performance. This suggests that MAE-style sparsity encourages the encoder to
learn stronger context-aware representations, which better align with the inductive bias of graph data.

3.2 Reconstruction Target

Target. By default, G2PM reconstructs the semantic embedding of each masked substructure
generated by an EMA-updated encoder. As shown in Table this choice consistently yields the
strongest performance, supporting our hypothesis that substructures encode transferable semantic
information. We compare this approach to two low-level alternatives. Specifically, we represent each
substructure as a node sequence w = [z1, ..., x,], Where each z;; = [x;||e;] is the concatenation of
node and optional edge features. We experiment with (1) mean-pooling the node features over the
walk, and (2) concatenating them directly. Both approaches underperform the semantic embedding
target, suggesting that low-level supervision lacks the abstraction necessary for graph generalization.

Loss. We also evaluate the impact of loss functions. Replacing ¢5 loss with ¢; leads to a notable drop
in graph classification accuracy, suggesting that outlier-sensitive objectives better capture nuanced
substructure semantics. Additionally, we incorporate anonymous walks [24] following Wang et al.
[68], using a parallel head to reconstruct topological patterns. This auxiliary objective consistently
boosts performance, reinforcing the utility of substructures as fundamental modeling units.



Online Encoder. We ablate the momentum « and update the frequency of the EMA encoder (Table[Tf).
Our default setting (v = 0.99, update every 10 steps) performs best. Lower momentum values
degrade performance, with o = 0 (i.e., no EMA) leading to divergence and collapse, highlighting the
importance of stable, slowly evolving targets during training.

3.3 Tokenization

Substructure Encoder. To embed substructure sequences (e.g., random walks), we adopt a Trans-
former encoder, which models global dependencies among all nodes in the sequence. As shown in
Table@], Transformer outperforms alternatives such as mean pooling, GRU [11]], and GIN [73]. We
attribute this to several factors: (1) mean pooling is a restricted, less expressive form of attention in
Transformer; (2) GRUs suffer from optimization instability due to vanishing or exploding gradients
[85]; and (3) using GIN requires converting walks into subgraphs, reintroducing message-passing
and its known limitations.

Positional Embedding. We also explore adding positional embeddings (PEs) to node features—
using Laplacian PE on ogbn-arxiv and random walk PE on ogbg-HIV [47]. However, we observe no
consistent performance gain. This may be due to the tokenization scheme: since each token represents
an entire substructure, global node positions are less relevant. Moreover, computing PEs incurs cubic
time complexity in the node number [34], making them impractical for large-scale graphs.

3.4 Augmentation

Table[Id|reports the impact of various augmentation strategies. In general, augmentation improves
performance, with the mixed strategy yielding the best results, highlighting the value of combin-
ing perturbations from different perspectives. We further analyze individual augmentation types.
Among feature-level augmentations, node masking outperforms feature masking, likely because re-
constructing full-node semantics from context is more challenging—and thus more informative—than
recovering masked dimensions. For structure-level perturbations, substructure corruption performs
better on graph-level tasks (e.g., molecular graphs), while substructure injection is more effective
on node-level tasks (e.g., academic networks). This distinction stems from how each augmentation
impacts semantics: corruption distorts but retains the original context, whereas injection alters sub-
structure identity, which may hurt graph-level tasks where substructure semantics are functionally
meaningful. Notably, using only a single augmentation type yields limited improvements, reinforcing
the importance of diversity in corruption strategies for generalizable representation learning.

3.5 Masking

Masking Ratio. Figure [5b| shows that a high masking ratio consistently improves performance,
echoing trends observed in vision [20]. This is likely because random walks often produce redundant
or noisy substructures. High masking reduces such redundancy, resulting in a more challenging and
informative learning signal that encourages the model to capture high-level semantics.

Masking Token. The choice of masking token significantly affects performance (Table[Ic). By
default, we use a single learnable mask token, which outperforms alternatives. Fixed tokens degrade
performance due to their inflexibility, while random tokens or sampled embeddings from other
substructures introduce noise that confuses the model. These findings suggest that a consistent,
learnable mask token provides the strongest and cleanest supervision signal during reconstruction.

4 Comparisons to State-of-The-Art Models

Node Classification on homophily graphs. We evaluate G>PM on a suite of homophily graphs of
varying scales, including Pubmed, Photo, Computers, WikiCS, Flickr, ogbn-arxiv, and ogbn-products
(see Table [2] for dataset statistics). Pre-training is conducted on the full graph. We adopt a linear
probe setup: node embeddings are frozen after pre-training and used to train a separate classifier,
where we take 10/10/80 random split for Pubmed, Photo, and Computers, and the official split for the
remaining datasets. Accuracy is used as the evaluation metric. We compare G2PM to supervised
GAT [60], non-message-passing GPM [68]], contrastive methods (GCA [84], BGRL [53]], CCA-SSG
[78]]), and generative methods (GraphMAE [22], GraphMAE 2 [23]], S2GAE [52]], Bandana [82]).



Table 2: Node classification results on homophily graphs. Boldface and underline indicate the best
and sub-best self-supervised methods, and A.R. is the average ranking.

Pubmed Photo Computers  WikiCS Flickr Arxiv Products A.R.
# Nodes 19,717 7,650 13,752 11,701 89,250 169,343 2449029 -
# Edges 88,648 238,162 491,722 431206 899,756 2315598 123,718,024 -
Supervised  OAT [60] 83.1£03 919%05 879+05 769+08 50703 7210+0.13 7945%059 57
P GPM [68] 847+0.1 927+03 90.0£04 80204 52202 72.89+0.68 82.62%039 1.3
GCA [84] 83.3£0.5 924£02 87102 77401 490+0.1 71.23£009 7839£003 69
Contrastive BGRL [53] 83.9+£03 925+02 882%02 77.5+08 49702 70.51£003 7859£002 5.7
CCA-SSG [78] 81.8+0.5 91.8+0.6 886+03 753+08 47.5+02 7124%020 7527£005 86
GraphMAE [22]  81.0£05 920+0.3 89205 77.1+05 5050.1 7175£0.17 78.89£001 6.0
GraphMAE 2 [23] 81304 924+02 88309 77.6+04 50401 71.89+0.03 7933+001 54
Generative S2GAE 521 80.1£0.5 914%0.1 85301 753+08 481%08 67.77+036 7670+0.03 103
Bandana [82] 83.5£0.5 914%07 87702 773+03 47.9+0.6 71.09+024 77.68+0.05 8.1
G2PM w/o Pretrain  83.9£0.2 928+02 87.1£03 78504 50.7+0.1 69.64+008 7690+0.16 6.0
G2PM 84301 929+02 88803 79.0:04 51000 7231:0.07 80.56+0.01 2.0
Chameleon Pokec
(# Nodes = 2,277) # Nodes 2 ,600) (# Nodes = 1,632,803)
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Figure 6: Convergence curves Figure 7: Node classification results on heterophily graphs under
under fully finetuning on Arxiv varying receptive field sizes. For GraphMAE, the receptive field
dataset. We compare training is controlled by the number of model layers; in our method, it is
from scratch versus fine-tuning controlled by the random walk length, where a model layer of
the pre-trained model. size k corresponds to a walk length of 2%

As shown in Table G?PM outperforms all self-supervised baselines and ranks second overall—
only behind the supervised GPM—achieving an average rank of 2.0. Notably, on the large-scale
ogbn-products dataset, GZPM achieves a substantial performance gain (80.56 vs. 79.33), highlighting
its scalability. Ablation shows that on small graphs (< 100K nodes), the model performs well even
without pre-training, likely due to its sufficient capacity. However, on larger datasets like ogbn-arxiv
and ogbn-products, pre-training proves crucial for capturing fine-grained structural patterns.

Node Classification on Heterophily Graphs. We evaluate GZPM on heterophily graphs: Chameleon,
Actor, and Pokec (over 1M nodes). Results are shown in Figure[7} We compare against GraphMAE,
varying the receptive field via the number of GNN layers (for GraphMAE) and random walk length
(for G2PM ). G®PM consistently outperforms GraphMAE across datasets and benefits from increased
receptive field size, demonstrating its ability to capture non-local information critical for heterophilous
settings. On Actor, however, performance shows no clear correlation with receptive field, suggesting
that key signals in this collaboration network are primarily localized.

Link Prediction. To further demonstrate the ef-
fectiveness of our pretraining approach, we fol-
low Wang et al. [68] to show the link prediction
results. We use three datasets, including Cora, Cora Pubmed ogbl-Collab
Pubmed, and ogbl-collab, and follow a standard ~ # Nodes 2,708 19,717 235,868

Table 3: Link prediction results on three widely-
used benchmarks.

: s s 1ot # Edges 10,556 88,648 2,570,930
80/5/15 split for training, valldgtlon, and test Metric Hit@20  Hit@20 Hit@50
sets. For evaluation, we report Hit@20 on Cora GON @ 1112 851238 szld
and Pubmed, and Hit@50 on ogbl-collab. The . h\iaE 2] 87614 871+31 4654009
results are summarized in Table 3] where we  G2pm 904+08 88.0+38 47.1+06

compare our method G2PM with a basic super-
vised GCN [33] and a widely used graph pretraining method, GraphMAE [22]. As shown, GraphMAE
significantly outperforms GCN, benefiting from its ability to utilize unlabeled data during pretraining.
Notably, G2PM achieves the best performance across all datasets, likely due to its capacity to model
substructures that capture latent connectivity patterns between nodes.



Table 4: Graph classification results on molecular and social networks. Boldface and underline
indicate the best and sub-best self-supervised methods, and A.R. is the average ranking.

HIV PCBA Sider MUV ClinTox IMDB-B REDDIT-M12K A.R.
# Graphs 41,127 437,929 1,427 93,087 1,478 1,000 11,929 -
# Nodes ~25.5 ~26.0 ~33.6 ~24.2 ~26.1 ~19.8 ~391.4 -
# Edges ~27.5 ~28.1 ~70.7 ~52.6 ~55.5 ~193.1 ~913.8 -
Supervised GIN [73 758+08 703+03 57.7+08 744+09 834+0.6 733%0.5 394+14 6.3
P GPM [68] 77.0+£09 75103 59.0+0.0 746+14 824+03 827%0.5 43.1+£03 3.0
GraphCL [75] 755+£03 724+21 573+£09 683+26 829+03 71.1+04 379+24 8.0
Contrastive JOAO [76] 76.8+03 734+15 585%05 72310 822+03 702+3.1 39.9+0.6 6.0
MVGRL [19] 757+0.7 704+2.1 605+06 715+x12 83.6+x02 742+0.7 395+1.8 5.7
InfoGCL [72] 773+06 74.6+0.7 587+0.7 734+10 803+0.7 751+09 393+0.5 5.4
GraphMAE [22] 77.8+09 732+14 60.6+0.0 73.7+08 84.8+0.5 755%0.7 37.6+25 4.1
G . S2GAE [52] 75.6+08 729+0.0 580x09 71.6+08 80.6+x04 758+0.6 379+1.8 7.0
enerative
G2PM w/o Pretrain  69.8 +0.1 68.4+0.0 58.8+03 663+14 800+18 80.0+0.38 37.5+0.3 8.3
G?PM 787+0.1 75.6+01 61.2+02 757+04 86.6+08 83.0+0.8 41.8+0.3 1.0

Table 5: Cross-domain transferability perfor-
mance across diverse source and target datasets.
Parentheses indicate the performance gap com-

Table 6: Cross-domain pre-training results on
text-attributed graphs processed by [37], where
node features are aligned via a textual encoder.

pared to training from scratch on the target graph.

Pretrain Arxiv + FB15K237 + ChemBL

Source Arxiv HIV Downstream Arxiv FB15K237 HIV

Target Products HIV Arxiv PCBA (Academia) (Knowledge Graph) (Molecule)
GNN [60173 783(121) 70.1(570) 7L1(1.0L) 719167 BGRL [53 70.8£0.2 86.5+0.3 68.5+1.6
GPM [68 82.0(0.6]) 743270 714(15)) 764(131) GraphMAE [22]  70.3£0.3 87.8 0.4 64.1£0.5
BGRL [53] 78.8(0.21) 725(3.8]) 68.6(1.9]) 72.9(0.6]) OFA [37] 71.4+0.3 84713 720+ 1.6
GraphMAE [22] 77.5(1.4]) 747(3.1]) 69.9(1.9]) 73.4(0.27) GFT [65 71.9£0.1 89.3+0.2 723+2.0
G*PM 81.3(0.71) 768(19]) 72.6(031) 779237 G?PM 72.5+0.1 88.9+0.5 74113

Convergence Curves. Figure [6| compares the training dynamics of models trained from scratch
versus those finetuned from a pre-trained G2PM checkpoint on ogbn-arxiv. Pre-training leads to
consistently better performance, indicating that structural knowledge acquired during pre-training
accelerates convergence and improves generalization. As expected, accuracy improves with additional
training epochs in both settings.

Graph Classification. We evaluate G2PM on seven datasets: five molecular graphs (HIV, PCBA,
SIDER, MUYV, ClinTox) and two social networks (IMDB-B, Reddit-M12K). Dataset statistics and
results are summarized in Table ] We use public splits for molecular graphs and 80/10/10 random
splits for social networks, following a linear probe protocol. Baselines include supervised GAT [60]],
non-message-passing GPM [68]], contrastive methods (GraphCL [75], JOAO [76l], MVGRL [19],
InfoGCL [[72]]), and generative models (GraphMAE [22]], S2GAE [52]). G2PM consistently achieves
the best performance across all datasets. In contrast, the model without pre-training performs worst
on average, highlighting the importance of capturing domain-specific substructure distributions to
support discriminative generalization.

S Cross-Domain Graph Learning

Cross-Domain Transfer. We evaluate the cross-domain transferability of GZPM in Table 5| mea-
suring generalization under distribution shifts across domains and tasks. In this setting, the model
is pre-trained on a source graph and fully fine-tuned on a target graph. Since feature spaces differ
across graphs, we introduce a learnable linear projection layer before the pre-trained encoder, which
is jointly finetuned during transfer. Baselines include GNNs (GAT [60] for ogbn-arxiv and GIN [73]
for HIV), as well as GPM [68], BGRL [53]], and GraphMAE [22]]. G2PM achieves the best transfer
results, showing positive gains in 3 out of 4 setups. In contrast, message-passing methods only
transfer well across closely related domains (e.g., HIV — PCBA). We attribute this to the ability to
learn transferable structural patterns, enabling generalization even across domain and task boundaries
(e.g., Arxiv — HIV), while message-passing remains sensitive to subtle structural shifts [66]].

Cross-Domain Pre-Training. Table [6] presents results on cross-domain pre-training using three
diverse graph types: Arxiv (academic network), FB15K237 (knowledge graph), and HIV (molecular
graph) [37]]. All graphs are text-attributed; we use a shared textual encoder to project node descriptions



into a unified embedding space, enabling a single model to operate across domains. We compare
G?PM to pre-training baselines (BGRL [53], GraphMAE [22]) and graph foundation models (OFA
[37]l, GFT [65]]). G2PM achieves the best or second-best performance across all datasets, hi ghlighting
its superior ability to learn transferable substructure representations, even under significant domain
shifts—where message-passing-based methods often struggle.

6 Related Works

Graph Transformers. Inspired by the success of Transformers in vision and language [12 [7, 57, 20l
131, several works have extended this architecture to graphs [34, 14} 147, 211,19} 8} (79 80]. Typically,
graph Transformers treat nodes as tokens and apply self-attention over all pairs. However, the
quadratic complexity of node attention limits their scalability, making them impractical for large
graphs [70]. To address this, recent works propose tokenizing graphs via substructures such as random
walks or motifs [[74} 24], enabling sequence-based modeling [68| 9] 21} 30]. For example, GPM [68]
applies a ViT-style architecture over substructure sequences. Building on this idea, our work explores
generative pretraining using a Transformer over substructures, entirely removing message passing.

Generative Pretraining. Generative pretraining has driven major advances in vision and language.
These methods predict masked content from visible context, enabling learning from large-scale
unlabeled data and powering modern foundation models [57]. This paradigm has extended to
other domains (e.g., video, audio, biology), but its impact on graphs remains limited. More recent
works apply generative approaches to graphs (e.g., VGAE [32], GraphMAE [22], GraphMAE?2 [23]],
MaskGAE [35]], G2PT [10]), but focus on reconstructing low-level signals such as nodes or links, and
typically rely on message-passing GNNs, limiting their expressiveness and scalability. In contrast,
G*2PM introduces a fully Transformer-based, message-passing-free framework that models high-level
semantic substructures, unlocking better scalability and generalization.

Random Walks on Graphs. Random walks have been widely used to represent substructures,
from early unsupervised embeddings [44} |17, (74, 24] to recent deep models [68} 81} 27, 141} 155, 26,
25, 31]]. These methods have been shown to break key limitations of message passing, improving
expressiveness [[69} 42], modeling long-range dependencies [41,155], and mitigating over-smoothing
and over-squashing [62]. However, these random walk-based methods often focus on global patterns
while overlooking localized structures [55]. GZPM uses random walks to sample substructures and
design the MSM task to automatically balance the contributions between localized and globalized
substructures.

7 Conclusion

We introduce G2PM, a Transformer-based generative pretraining framework for graphs that operates
entirely without message passing. Unlike traditional GNNs, G2PM scales effectively with both data
and model size, and consistently improves performance across tasks. Through extensive ablations and
experiments, we demonstrate its expressiveness, transferability, and potential as a scalable backbone
for graph representation learning. While G2PM leverages unordered substructure sequences—suitable
for masked-token prediction—extending it to ordered sequences may enable next-token prediction,
further improving scalability. Additionally, our use of random walks as an online tokenizer opens up
future directions in designing learnable and adaptive substructure tokenizers for graphs.
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A From the Perspective of Substructure Dependencies

To understand how G2PM work, we take a functional correlations among substructures to inform
both model design and training strategies.

Hierarchical Dependencies. Substructures often compose one another hierarchically. For example,
a triangle (3-cycle) may serve as a fundamental building block for larger cliques, while a square
(4-cycle) can be part of more complex motifs such as diamonds. This compositionality implies that
the presence of smaller motifs potentially offer predictive signals for larger structures—and vice
versa. From a modeling perspective, this hierarchical property allows the model to infer partially
masked substructures based on their visible tokens.

Functional Reinforcement. Certain substructures statistically co-occur due to the generative pro-
cesses underlying different graph types [48]]. For instance, in social and citation networks, a high
density of triangles often correlates with the existence of higher-order cliques [6} 4]. Similarly, the
frequent appearance of short chains may indicate the potential for longer cycle [36, 50]. We refer
to this pattern as functional reinforcement, where the presence of one motif increases the likelihood
of encountering another. This mutual reinforcement reflects domain structural priors and can be
leveraged during pre-training to build a predictive inductive bias across motifs.

Functional Exclusion. Conversely, some substructures exhibit negative correlations, reflecting
competition for structural space within the graph. We term this phenomenon functional exclusion. For
example, a node embedded within multiple triangle-like motifs is likely part of a densely connected
community, making it less probable to support hub-like star patterns [3}58]]. Likewise, graphs with
tree-like branches typically lack the density required to support large cliques [1]]. Understanding
such exclusion enables the model to refine its prediction space: it can down-weight structurally
incompatible or redundant patterns during reconstruction.

These inter-substructure dependencies serve dual purposes. On one hand, they enrich the predictive
landscape by offering complementary structural cues; on the other hand, they enable the model to
disambiguate noisy or redundant substructure tokens by reasoning over motif co-occurrence patterns.
By explicitly modeling these dependencies, we endow the system with the capacity to generalize
from partial observations and regularize against overfitting to spurious or dataset-specific artifacts.

B Implementation Details

B.1 Environments

Most experiments are conducted on Linux servers equipped with four Nvidia A40 GPUs. The models
are implemented using PyTorch 2.4.0, PyTorch Geometric 2.6.1, and PyTorch Cluster 1.6.3, with
CUDA 12.1 and Python 3.9.

B.2 Training Details

Table 7: Default hyper-parameter settings.

Hyper-parameter Value \ Hyper-parameter Value
Batch Size 256 | Gradient Clip 1
Hidden Dimension 768 | Optimizer Beta 1 0.9
Number of Heads 12 Optimizer Beta 2 0.005
Number of Encoder Layers 3 Min LR le-07
Number of Decoder Layers 1 Warmup LR 1e-07
EMA Momumtum 0.99 | Scheduler Cosine
EMA Update Every 10 Warmup Epochs 1
Dropout 0.3 Linear Probe LR 0.01
Weight Decay 0.05 | Linear Probe Weight Decay  0.001

In our setup, we use the AdamW optimizer with weight decay and set the number of epochs as 100.
All experiments are conducted five times with different random seeds. The batch size is set to 256 by
default. We present detailed default setup in Table
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B.3 Model Configurations

We perform hyperparameter

{le—3,7e—4,5e—4,3e—4,1le—4, 7e—5,5e—5,3e—5, le—5}, pattern size {4,8,16},

tuning

over

the following

ranges:

learning rate
feature

augmentation ratio pge, € [0.0,0.9], and substructure augmentation ratio py,, € [0.0,0.9]. The final
selected hyper-parameters are reported in Table

Table 8: Dataset-specific hyper-parameter settings.

Pubmed Photo Computers WikiCS  Flickr Arxiv Products
LR 3e-5 le-5 7e-5 le-5 5e-5 3e-4 3e-4
Feature Aug. pyeat 0.7 0.6 0.2 0.9 0.5 0.0 0.0
Substructure Aug. pstryct 0.3 0.8 0.3 0.9 0.1 0.8 0.8
Pattern Size 8 8 8 8 6 8 8
HIV PCBA Sider MUV  ClinTox IMDB-B REDDIT-M12K

LR 3e-5 le-5 le-4 5e-5 5e-5 Se-4 3e-4
Feature Aug. pyeat 0.1 0.0 0.0 0.0 0.0 0.3 0.0
Substructure Aug. pstryct 0.3 0.8 0.7 0.2 0.0 0.3 0.6
Pattern Size 8 16 8 4 4 8 8
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution is about the scalability, which has been clearly stated in
the abstract and introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: As discussed in the conclusion, we discuss the limitations and the potential
improvements.

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical part in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide essential reproducibility resources in the appendix. And we
definitely will release the code upon acceptance.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See attachment.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide comprehensive training setup in the experiments and appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide it on the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We strictly follow the NeurIPS guidance.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our method is a pure machine learning model without using large language
models. There are no societal concerns from the technical perspective.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not available.

Guidelines:
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12.

13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all of essential tools and papers.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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16.

Justification: No human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not relevant to our work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: The role of LLMs in this paper is only related to polish.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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