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ABSTRACT

The advancement of Large Language Model (LLM)-powered agents has enabled
automated task processing through reasoning and tool invocation capabilities.
However, existing frameworks often operate under the idealized assumption that
tool executions are invariably successful, relying solely on textual descriptions
that fail to distinguish precise performance boundaries and cannot adapt to itera-
tive tool updates. This gap introduces uncertainty in planning and execution, par-
ticularly in domains like visual content generation (AIGC), where nuanced tool
performance significantly impacts outcomes. To address this, we propose Perf-
Guard, a performance-aware agent framework for visual content generation that
systematically models tool performance boundaries and integrates them into task
planning and scheduling. Our framework introduces three core mechanisms: (1)
Performance-Aware Selection Modeling (PASM), which replaces generic tool de-
scriptions with a multi-dimensional scoring system based on fine-grained perfor-
mance evaluations; (2) Adaptive Preference Update (APU), which dynamically
optimizes tool selection by comparing theoretical rankings with actual execu-
tion rankings; and (3) Capability-Aligned Planning Optimization (CAPO), which
guides the planner to generate subtasks aligned with performance-aware strate-
gies. Experimental comparisons against state-of-the-art methods demonstrate Per-
fGuard’s advantages in tool selection accuracy, execution reliability, and align-
ment with user intent, validating its robustness and practical utility for complex
AIGC tasks.

1 INTRODUCTION

In recent years, with the continuous advancement of Large Language Model (LLM) technology
(Guo et al., 2025; Yang et al., 2025a; Fang et al., 2025b), agent-based automated task processing
has become an important research direction across various fields (Curtarolo et al., 2012; Gao et al.,
2024; Wang et al., 2024b; Agashe et al., 2025). By constructing system frameworks with logical
reasoning capabilities and equipping agents with the ability to invoke external tools, researchers
aim to achieve the decomposition, reasoning, and autonomous execution of complex tasks, thereby
surpassing the limitations of traditional single tools or rule-based systems. Most existing research
focuses on the task planning and tool scheduling strategies of agents, emphasizing the rationality of
the planning process (Agashe et al., 2025; Zhang et al., 2025a; Hong et al., 2024a). However, these
studies generally operate under the ideal assumption that “tool invocations are always successful,”
lacking systematic evaluation of the actual success rate of tool execution. Against this backdrop, how
tool selection and their actual execution outcomes impact the overall accuracy of agent planning and
decision-making remains a critical issue that has not been fully explored.

In current research, the description of tool capabilities often relies on general textual descriptions,
which are difficult to accurately reflect their true performance boundaries. This issue is particu-
larly prominent in the field of visual content generation (AIGC). Although existing systems (such
as CompAgent (Wang et al., 2024c), GenArtist (Wang et al., 2024b), etc.) can enhance genera-
tion outcomes through task decomposition and multi-model scheduling, their descriptions of tool
capabilities remain relatively coarse. These descriptions fail to clearly distinguish the specialized
capabilities and applicable scenarios of different tools. Taking text-to-image generation as an ex-
ample, common tool descriptions such as “capable of generating images aligned with the semantics
of the input text” neither reflect the performance differences between various models nor support
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Figure 1: PerfGuard decomposes user requests into subtasks for iterative visual content generation.
By modeling tool performance boundaries via PASM, it selects the most suitable tool in each round
to ensure precise alignment between planning, execution, and user intent.

precise tool matching by agents in complex tasks, thereby introducing uncertainty into the planning
and execution processes .

To address the aforementioned challenges, this paper introduces PerfGuard, a performance-aware
agent framework for visual content generation. The framework aims to explore methods for model-
ing tool performance boundaries and leverage their impact on task planning and scheduling mech-
anisms. In response to the limitations posed by ambiguous tool capability descriptions, we pro-
pose Performance-Aware Selection Modeling (PASM), which replaces traditional textual descrip-
tions with a multi-dimensional scoring mechanism based on fine-grained performance evaluation.
Within this mechanism, the Worker dynamically selects the tool that best meets the performance
requirements of the subtask generated by the Planner, thereby enhancing the accuracy and efficiency
of task execution at the underlying scheduling level.

Acknowledging that preset performance boundaries (often derived from benchmark test results)
may deviate from actual task execution outcomes, we further introduce an Adaptive Preference
Updating (APU) method. This method continuously optimizes the performance boundary matrix
by comparing the theoretical ranking of candidate tools with their observed performance during
real task execution. This improves the accuracy of task-tool matching and enhances the system’s
adaptability to real-world scenarios.

To better align the task planning process with tool performance, we propose a Capability-Aligned
Planning Optimization (CAPO) mechanism. This enables the Planner to generate high-quality task
plans under the guidance of the performance-driven selection strategy facilitated by PASM. In each
planning iteration, the Planner generates multiple candidate subtask plans and improves planning
accuracy by comparing their output results. Through step-by-step supervision, the Planner learns
to form planning patterns consistent with the performance-aware strategy, thereby systematically
enhancing the robustness of the reasoning process .

To validate the effectiveness of PerfGuard, we conducted comparative experiments with existing
representative visual content generation methods. In various tasks such as image generation and
editing, PerfGuard demonstrated advantages in tool selection accuracy, task execution reliability, and
alignment with user intent. The results confirm the robustness and practical value of our framework.

2 RELATIVE WORKS

Recent advances in visual content generation have significantly improved controllability and seman-
tic alignment. Models like FLUX (Labs, 2024), Stable Diffusion3 (Esser et al., 2024), and DALL·E3
(Betker et al., 2023) generate images from textual prompts, while ControlNet (Zhang et al., 2023),
T2I-Adapter (Mou et al., 2024), and InstanceDiffusion (Wang et al., 2024a) incorporate multimodal
signals to better match user intent. To support fine-grained control, LayoutGPT (Feng et al., 2023),
RPG (Yang et al., 2024b), GoT (Fang et al., 2025a), and T2I-R1 (Jiang et al., 2025) leverage LLMs
to decompose prompts into region-specific semantics. Systems like CompAgent (Wang et al., 2024c)
and GenArtist (Wang et al., 2024b) coordinate generation and editing tools, while MCCD (Li et al.,
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Figure 2: PerfGuard models tool performance boundaries via PASM to match the most suitable tool
for each subtask, maximizing decision efficiency. It further integrates Adaptive Preference Updating
to enhance real-world adaptability, and applies CAPO to align planning with performance-aware
strategies.

2025) and T2I-Copilot (Chen et al., 2025) improve performance through model cooperation. How-
ever, most approaches assume reliable tool execution and overlook how performance boundaries
affect planning accuracy. PerfGuard addresses this gap by explicitly modeling tool capabilities and
execution feedback.

3 PRELIMINARY

Standardized Agent System Standardized agent systems typically consist of four core roles
(Agashe et al., 2025; Hong et al., 2024b): Analyst, Planner, Worker, and Self-Evaluator. These roles
handle task interpretation, planning, execution, and feedback respectively, enabling stepwise execu-
tion with continuous refinement. Building on this architecture, PerfGuard introduces Performance-
Aware Selection Modeling to optimize tool selection for the Worker, ensuring better alignment with
task requirements and improved execution performance.

Step-aware Preference Optimization (SPO) In the visual domain, aligning image generation
outputs with human aesthetic preferences has been a key challenge. Inspired by Direct Preference
Optimization (DPO) (Rafailov et al., 2023) for aligning language model outputs with human prefer-
ences, researchers proposed Diffusion-DPO (Wallace et al., 2024) and D3PO (Yang et al., 2024a),
which utilize a trained reward model to evaluate multiple random samples from a diffusion model
and identify winning samples xw and losing samples xl. To further improve the aesthetic quality of
each intermediate step in the diffusion process, SPO (Liang et al., 2024) introduces a Step-Aware
Preference Model (SPM) that evaluates and optimizes intermediate outputs at every step, ensuring
that candidate samples are aligned with the optimal sample. The optimization objective is defined
as:

L(θ) =− Exw
t ,xl

t∼pθ(xi|xt+1,c,t+1)[
log σ

(
α
(
log

pθ(x
w
t | xw

t+1, c, t+ 1)

pref(xw
t | xw

t+1, c, t+ 1)
− log

pθ(x
l
t | xl

t+1, c, t+ 1)

pref(xl
t | xl

t+1, c, t+ 1)

))] (1)

where σ denotes the sigmoid function, c represents the input condition, α is a regularization hyper-
parameter, pref refers to the reference probability from the fixed initial denoising model pθ, and θ
denotes the model parameters to be updated.
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Motivated by SPO, we extend its methodology and apply the principle of stepwise intermediate
output optimization to better align the Planner’s decision-making and tool execution with optimal
performance.

4 METHODOLOGY

Within the PerfGuard framework, we build on the standardized agent system to enable structured,
stepwise planning and execution of visual generation tasks, as illustrated in Fig. 2. (1) Upon receiv-
ing multimodal inputs such as images or textual instructions, the Analyst parses the information to
produce a task summary τ∗, target image semantics s∗, and evaluation goals g. (2) The Planner uses
τ∗, s∗, and tool performance profiles B to decompose the task into subtasks ut, which are executed
by the Worker. Evaluation results et from each stage are fed back to guide subsequent decisions
ut+1, enabling iterative refinement. (3) The Worker selects appropriate tools from the library to
execute each ut and generate image outputs ot. (4) Each output ot is assessed by the Self-Evaluator
across multiple visual dimensions to measure alignment with goals g, providing feedback for contin-
uous improvement. The definitions of agent roles and the tool library are provided in Appendix A.

4.1 PERFORMANCE-AWARE SELECTION MODELING

To rigorously define fine-grained tool performance boundaries, we propose the Performance-Aware
Selection Modeling strategy. This method systematically aligns the Planner’s subtasks with the most
appropriate tools according to user-specified capability preference dimensions, thereby mitigating
planning errors arising from ambiguous definitions of tool capabilities.

Tool Performance Boundaries Precise performance-aware scheduling begins with fine-grained
performance boundary definition. We construct a multi-dimensional scoring system to evaluate tools
in the library. Specifically, we design the performance boundary dimensions of tools by referring
to authoritative benchmarks in image generation and editing. For image generation tools, semantic
accuracy is assessed across seven dimensions including color, shape, texture, 2D spatial, 3D spatial,
non-spatial semantics, and numeracy, based on T2I-compbench (Huang et al., 2023). For image
editing tools, effectiveness is evaluated across seven dimensions including addition, removal, re-
placement, attribute alteration, motion change, style transfer, and background change, following the
evaluation criteria defined in ImgEdit-Bench (Ye et al., 2025).

This multi-dimensional scoring framework enables flexible modeling across domains using stan-
dardized metrics from large-scale datasets to ensure fairness and objectivity. It supports accurate
performance profiling and evolves with new tools and benchmarks. To reduce evaluation costs, we
directly adopt scores from T2I-compbench and ImgEdit-Bench as the performance boundary matri-
ces for generation and editing tools. A detailed description of the performance boundary dimensions
and their design rationale is provided in Appendix A.3.

Performance-Driven Selection The Worker πWorker leverages predefined tool performance
boundary dimensions D to select the most suitable tool for a sub-task ut provided by the Plan-
ner. For each ut, the Worker leverages tool performance profiles to generate a preference weight
Wtask ∈ R1×d, where d denotes the number of performance dimensions. This vector captures the
relative importance of each dimension according to the characteristics of ut. Task suitability scores
Stools for all tools are then computed by combining Wtask with the tool performance boundary
matrix Mp ∈ Rd×l (where l tools have similar functionalities), enabling performance-driven tool
selection. Formally, the computation is expressed as:

Wtask = πWorker(ut,B,D)

Stools = Wtask · Normalize(Mp)
⊤

R = argsort(Stools, descending)
(2)

Here, Normalize(·) normalizes tool scores across all tools for each performance dimension. Stools ∈
R1×l represents the weighted suitability of all tools for ut, and R provides their descending ranking.
B denotes the information of the tool library This approach allows the system to automatically
select tools based on their intrinsic performance characteristics, without requiring users to define
task-specific preferences.
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4.2 ADAPTIVE PREFERENCE UPDATING

In practice, tool performance boundaries may originate from benchmarks or expert-like evalua-
tions based on prior tool usage. These boundaries can contain inaccuracies due to differences in
task-relevant dimensions or subjective biases. To enhance the accuracy of tool performance bound-
ary scores, we propose an Adaptive Preference Updating mechanism that iteratively adjusts the
scores based on actual tool usage. Specifically, during candidate tool selection, we implement an
exploration-exploitation strategy: the top m tools with the highest weighted preference scores are
selected from the library, while n additional tools are randomly sampled from the remaining ones
to increase the likelihood of selecting potentially high-performing tools. This mechanism ensures
that the tool performance boundary matrix Mp more accurately reflects actual task requirements,
enabling adaptive iterative updates:

Rtheory = topm(Stools) ∪ randn(Stools[m+ 1 : l])

M new
p = Normalize

(
Mp +Wtask · η ·∆

)
∆ =

Rtheory −Ractual

m+ n

(3)

Here, ∆ represents the direction coefficient, reflecting the difference between the theoretical ranking
Rtheory and the actual usage ranking Ractual, and η denotes the update step size. When a tool’s actual
usage rank surpasses its theoretical rank, its performance boundary score is increased according to
the weighted preferences and the distribution of task-specific emphasis across dimensions; other-
wise, it is decreased. Ractual is derived from comparative evaluations of multiple candidate outputs
conducted by a multimodal large model, with the evaluation procedure detailed in Appendix A.4.
For newly added tools lacking sufficient usage experience or benchmark results, we initialize their
scores using the average performance boundary scores of similar tools in the corresponding dimen-
sions within the current library, ensuring that their potential is not overlooked in subsequent tool
usage and iterative updates.

4.3 CAPABILITY-ALIGNED PLANNING OPTIMIZATION

To further enhance the Planner’s stepwise decision-making and provide indirect feedback on the
execution effectiveness of tools selected via Performance-Aware Selection Modeling in PerfGuard,
we extend Step-aware Preference Optimization (SPO) Liang et al. (2024) and propose Capability-
Aligned Planning Optimization (CAPO) for the Planner’s autoregressive planning process.

Decision Performance Estimator To evaluate the effectiveness of the Planner’s output at each
step t, we adopt the Self-Evaluator πEvaluator as the Planner’s Decision Performance Estimator. For
each sub-task execution result ot, the Self-Evaluator assesses it based on the corresponding evalua-
tion goals g across multiple semantic dimensions:

et =

L∑
i=0

γlocal
i πEvaluator(ot, g

local
i ) + γglobalπEvaluator(ot, g

global) (4)

Here, the evaluation goals consist of global semantics gglobal and local semantics glocali , weighted
by γ. L is the number of local dimensions, and et denotes the Planner’s decision evaluation at step
t.

Stepwise Planning Optimization At each step t, the Planner generates k candidate sub-tasks
{u1

t , u
2
t , . . . , u

k
t }. Each sub-task produces a corresponding output {o1t , o2t , . . . , okt }, which is evalu-

ated by the Self-Evaluator. The sub-task with the highest evaluation score is selected as the winning
sample uw

t , and the lowest-scoring sub-task as the losing sample ul
t. Accordingly, the planner’s

optimization objective function can be changed from Eq. 1 to:

L(θ) =− Et∼U [1,T ], uw
t ,ul

t∼πPlanner(τ∗,s∗,B,ht−1)[
log σ

(
α
(
log

pθ(u
w
t | τ∗, s∗,B, ht−1)

pref(uw
t | τ∗, s∗,B, ht−1)

− log
pθ(u

l
t | τ∗, s∗,B, ht−1)

pref(ul
t | τ∗, s∗,B, ht−1)

))] (5)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Im
ag

e 
G

en
er

at
io

n

An astronaut cat wearing a spacesuit with a white oxygen tank is fishing on a
rubble-covered asteroid. A star-shaped bait dangles from the fishing line
as glowing blue space fish swim through a cosmic backdrop of spiral galaxies and
shimmering stars. Beside the cat sits a small bucket filled with freshly caught
glowing fish. A tiny UFO watches from the upper right corner.

A serene tennis court scene: A smooth wooden rocking chair is placed beside the
green mesh fence, with a corgi wearing green glasses sitting peacefully on it. The
court features a vibrant blue surface with crisp white boundary lines, and a lone
tennis ball rests on the left side.

Ours OursOthers Others

T2I-R1SD3FLUX T2I-R1FLUX

GoT GenArtist T2I-Copoilt

SD3
Im

ag
e 

Ed
it

in
g

Prompt: Place a blue spoon to the right of the cookie, decorate with a mint leaf
next to the stemless strawberries, and position the entire dessert on a marble
countertop.

Ours

Prompt: Please change the image to this scene: A child walks through a grassy
field, holding a dragon-shaped kite. The child wears a deep red sweater. Mountains
rise in the background, and a rainbow arcs across the sky.

Others Others Ours

ICEdit

GenArtist OmniGen

AnySD

OmniGen

AnySD

GenArtist

ICEdit

Step1X_Edit

Original
image

GoT T2I-CopoiltGenArtist

Original
image

Step1X_Edit

Figure 3: Comparison of PerfGuard’s visual results across tasks. Top: visualization for complex
text-to-image generation. Bottom: visualization for multi-round image editing.

here, ht−1 = {(u0, e0), . . . , (ut−1, et−1)} denotes the history of sub-task executions and corre-
sponding outputs evaluations up to timestep t− 1.

CAPO enables the Planner to iteratively align sub-task decisions with feedback from the Self-
Evaluator, enhancing its awareness of tool execution performance and thereby supporting more
accurate and effective task planning.

To improve efficiency in trajectory data collection, a memory retrieval mechanism is integrated.
Optimal sub-task sequences from previously successful tasks are stored as reusable experiences.
During the generation of new candidate sub-tasks, an exploration–exploitation strategy is applied:
among k candidates, βk are retrieved using CLIP Radford et al. (2021) similarity scores with the
current task as the query, selecting the top-5 most similar sequences as contextual guidance, while
the remaining (1− β)k candidates are generated randomly by the Planner.

5 EXPERIMENTS

We conducted both qualitative and quantitative comparisons of PerfGuard against various image
generation and editing models. The evaluation spans three benchmarks covering different task types:
basic image generation (T2I-CompBench (Huang et al., 2023)), advanced image generation (OneIG-
Bench (Chang et al., 2025)), and complex image editing (Complex-Edit (Yang et al., 2025b)). De-
tailed experimental settings, descriptions of baseline methods, agent prompts and instructions, as
well as additional results and visualizations, are provided in the supplementary material A.6..

5.1 QUALITATIVE RESULTS AND ANALYSIS

We compared the proposed PerfGuard with several existing methods on text-to-image generation
and image editing tasks. The visualization results reveal three key observations: i) In text-to-image
generation, traditional diffusion models struggle with complex prompts involving multiple entities
and detailed attributes. Their limited language understanding leads to poor semantic alignment.
For example, FLUX (Labs, 2024) and SD3 (Esser et al., 2024) fail to generate a cat in a space-
suit. CoT-based methods like T2I-R1 (Jiang et al., 2025) and GoT (Fang et al., 2025a) incorpo-
rate LLMs, but due to reliance on a single-generation tool, they still miss key elements or actions,
such as GoT omitting the fishing pose and several specified objects. Agent-based methods show
improvement in semantic parsing and tool orchestration. However, GenArtist (Wang et al., 2024b)

6
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Table 1: Basic Image Generation Comparison on T2I-CompBench (Huang et al., 2023)

Model Attribute Binding Object Relationship Complex ↑Color ↑ Shape ↑ Texture ↑ Spatial ↑ Non-Spatial ↑
FLUX (Labs, 2024) 0.7407 0.5718 0.6922 0.2863 0.3127 0.3771
SD3 (Esser et al., 2024) 0.8132 0.5885 0.7334 0.3200 0.3140 0.3703
GoT (Fang et al., 2025a) 0.4793 0.3668 0.4327 0.2238 0.3053 0.3255
T2I-R1 (Jiang et al., 2025) 0.8130 0.5852 0.7243 0.3378 0.3090 0.3993
GenArtist (Wang et al., 2024b) 0.8482 0.6948 0.7709 0.5437 0.3346 0.4499
T2I-Copilot (Chen et al., 2025) 0.8039 0.6120 0.7604 0.3228 0.3379 0.3985
Ours (PerfGuard) 0.8753 0.7366 0.8148 0.6120 0.3754 0.5007

Table 2: Advanced Image Generation Comparison on OneIG-Bench (Chang et al., 2025)

Method Type Alignment ↑ Text ↑ Reasoning ↑ Style ↑
FLUX (Labs, 2024) Diffusion 0.786 0.523 0.253 0.368
SD3 (Esser et al., 2024) Diffusion 0.801 0.648 0.279 0.361
GoT (Fang et al., 2025a) CoT 0.767 0.504 0.290 0.369
T2I-R1 (Jiang et al., 2025) CoT 0.793 0.662 0.297 0.370
GenArtist (Wang et al., 2024b) Agent 0.747 0.501 0.285 0.352
T2I-Copilot (Chen et al., 2025) Agent 0.821 0.679 0.318 0.386
Ours (PerfGuard) Agent 0.834 0.684 0.350 0.395

lacks a performance-aware tool selection strategy, resulting in planning errors and missing elements.
T2I-Copilot (Chen et al., 2025) performs better through multi-module semantic decomposition, but
its limited tool diversity still leads to omissions, such as spiral galaxies and green glasses. ii) In
multi-round editing tasks, traditional methods like ICEdit (Zhang et al., 2025c) and AnySD (Yu
et al., 2025) deliver the weakest results. GenArtist, despite using multiple tools, suffers from poor
capability matching, leading to suboptimal edits. Step1X Edit (Liu et al., 2025) benefits from LLM-
enhanced understanding of long instructions, but without intelligent planning and execution, it fails
to capture key details—for example, the kite does not transform into a dragon. iii) Across both
generation and editing tasks, PerfGuard consistently achieves the most accurate and visually aligned
outputs. This demonstrates that its performance-guided tool selection enhances single-step execu-
tion accuracy and improves overall task planning.

5.2 QUANTITATIVE RESULTS AND ANALYSIS

To comprehensively validate the effectiveness of PerfGuard, we utilize three distinct benchmarks,
namely T2I-CompBench (Huang et al., 2023), OneIG-Bench (Chang et al., 2025), and Complex-
Edit (Yang et al., 2025b), to objectively evaluate its visual reasoning performance across both image
generation and editing tasks from multiple perspectives.

Basic Image Generation Comparison We compare the proposed PerfGuard with various image
generation methods on basic tasks, as shown in Tab 1. T2I-CompBench evaluates images in terms of
attribute binding and object relationships. From the table: (i) Traditional models like FLUX and SD3
remain competitive, with texture, non-spatial, and complexity metrics approaching or surpassing
CoT-based methods (T2I-R1, GoT). (ii) CoT-based methods rely on LLM fine-tuning, limiting them
to certain tasks; simple prompts may yield overly complex interpretations and inaccurate images.
(iii) Agent-based methods (GenArtist, T2I-Copilot) use self-correction to regenerate low-quality
outputs, improving reliability. (iv) PerfGuard adapts capabilities to match the best-suited model for
different tasks, achieving optimal performance across all dimensions.

Advanced Image Generation Comparison To further assess the effectiveness of our proposed
method in visual reasoning, we evaluated various approaches on OneIG-Bench across diverse sce-
narios and complex text prompts, as shown in Tab. 2. (i) For more complex generation tasks, FLUX
and SD3 show notably lower performance on reasoning metrics, highlighting that integrating LLMs
improves the ability to handle complex information. (ii) Regarding alignment accuracy, GoT and
GenArtist perform worse than other methods, indicating that a single large model has limited capac-
ity for complex tasks. (iii) T2I-Copilot and PerfGuard (Ours), leveraging multi-agent collaboration,
can plan each step of visual reasoning more precisely when handling cross-domain information,

7
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Table 3: Complex Image Editing Comparison

Method IF ↑ PQ ↑ IP ↑ O ↑
AnySD 4.13 7.14 9.08 6.78
Step1X Edit 7.95 8.66 7.70 8.10
GenArtist 6.14 7.24 6.19 6.52
OmniGen 7.52 8.86 8.01 8.13
Ours (PerfGuard) 8.95 9.02 8.56 8.84

Table 4: Ablation Study on Design

Method Color ↑ Spatial ↑ Complex ↑
GenArtist 0.8482 0.5437 0.4499
Baseline 0.8239 0.5600 0.4327
+PASM 0.8521 0.5919 0.4412
+APU 0.8596 0.6005 0.4738
+CAPO (Full) 0.8753 0.6120 0.5030
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Figure 4: Comparison of capability matching
methods. Our method substantially reduces tool
selection errors.
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Figure 5: Ablation on η in Eq. 3. When
η = 0.13, the error rate reaches its minimum
of 14.2% at step 800.

achieving optimal results in both alignment and reasoning metrics. (iv) PerfGuard does not show a
large margin over other methods in alignment and text metrics due to toolset limitations, which cap
its generation capabilities. However, its performance-aware tool selection enables smarter planning,
leading to clear advantages in reasoning.

Complex Image Editing Comparison We evaluated complex editing performance on the Level-
3 subset of Complex-Edit (Yang et al., 2025b) to assess scalability and effectiveness, as shown in
Tab. 3. Our method selects the best-performing tools based on task-specific capability matching,
enabling precise execution across diverse editing types. As a result, it achieves the highest scores
in Instruction Following (IF) and Perceptual Quality (PQ). AnySD scores highest in Identity Preser-
vation (IP) due to minimal edits in many Level-3 samples, which also leads to a lower IF score.
Overall, our approach outperforms all baselines, demonstrating strong generalization across visual
reasoning and generation tasks.

5.3 ABLATION STUDY

Ablation on Design We performed ablation experiments on the key modules of PerfGuard
(Tab. 4), with the results summarized as follows: i) Relying solely on conventional text de-
scriptions for tool capabilities often leads to misselection, forcing the Worker to perform near-
exhaustive attempts, with performance comparable to or slightly below GenArtist. ii) Introducing
the Performance-Aware Selection Modeling mechanism significantly improves some metrics, with
the color dimension increasing by 3.42% and the texture dimension by 5.7%. iii) Further apply-
ing Adaptive Preference Updating fine-tunes preference scores for Planner-generated sub-tasks, en-
hancing tool selection precision and raising the complex dimension from 0.4412 to 0.4738. iv) The
Capability-Aligned Planning Optimization mechanism ensures that each decision step aligns with
evaluation, effectively preventing errors in reasoning trajectories and substantially boosting overall
performance.

Capability Matching Method Ablation. We conducted a systematic evaluation of tool invoca-
tion error rates for different capability-matching strategies on the “complex vel” subset of T2I-
CompBench (Fig. 4). The results indicate that relying solely on textual descriptions with QWen3-
14B (Yang et al., 2025a) (orange bar) results in a high error rate of 77.8%, due to the presence of
similar tools with differing capability focuses, which makes text-based selection unreliable. Even
when assisted by the state-of-the-art large language model GPT-4o (Fang et al., 2025b) (yellow bar),

8
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W/O VSPL

W VSPL

A B C D

E F G H

Help me turn this image into a
cozy festive winter scene: the
background becomes snowy, the
fruit bowl is replaced with a
wreath basket full of ornaments
and pinecones, a candle glows
beside the glass, and the
orange juice turns into hot
chocolate with a candy cane.

User Input

Operations of Planner: A: Replace the background with a snowy scene. B: Change the fruit bowl to a festive wreath basket
with ornaments and pinecones. C: Place a lit candle beside the glass on the table. D: Change the drink to hot chocolate,
with a candy cane in place of the straw. E: Swap the fruit bowl for a festive basket of pinecones and decorations. F: Place a
candle beside the glass, softly glowing. G: Replace the orange juice with hot chocolate and substitute the straw with a
festive candy cane. H: Change the background to a snowy Christmas setting.

Figure 6: Visualization of the ablation results for CAPO. Operations of Planner: A: Replace the
background with a snowy scene. B: Change the fruit bowl to a festive wreath basket with ornaments
and pinecones. C: Place a lit candle beside the glass on the table. D: Change the drink to hot
chocolate, with a candy cane in place of the straw. E: Swap the fruit bowl for a festive basket
of pinecones and decorations. F: Place a candle beside the glass, softly glowing. G: Replace the
orange juice with hot chocolate and substitute the straw with a festive candy cane. H: Change the
background to a snowy Christmas setting.

the error rate remains high at 72.2%, highlighting the limitations of LLMs in interpreting capability
descriptions alone. Incorporating an external experience module with QWen3-14B (green bar) re-
duces the error rate to 68.1% by storing and retrieving historical successful experiences, though the
effectiveness is still constrained by retrieval reliability and differences in tool capabilities. Lever-
aging a benchmark-initialized performance score matrix with QWen3-14B (blue bar) to perform
task-specific capability matching significantly lowers the error rate to 30.5%. Further applying the
Preference Updating mechanism (purple bar) optimizes the error rate to 14.2%, demonstrating that
capability-aware matching combined with adaptive optimization can effectively enhance the accu-
racy and robustness of tool selection.

Ablation on Update Step Size To validate the effectiveness of the Adaptive Preference Updating
method, as shown in Fig. 5, we studied the impact of different η values in Eq. 3 on tool selection
error rate using the same dataset as in Fig. 4. Ablation experiments with η set to 0.1, 0.13, and
0.15 show that a small η (0.1) results in slow error reduction, while a large η (0.15) accelerates
initial convergence but causes severe oscillations in later stages. In contrast, η = 0.13 achieves
a more efficient and stable decrease, reaching the optimal error rate of 14.2% at step 800. These
results indicate that η = 0.13 provides a balanced trade-off between convergence speed and stability,
effectively optimizing tool selection under the current experimental setup.

Ablation on Capability-Aligned Planning Optimization We conducted a visual ablation study on
the CAPO to examine the impact of Planner training, as shown in Fig. 6. For fair comparison, we
retained only Step1X Edit in the toolset and removed visual supervision from the Self-Evaluator.
Results show that a trained Planner can perceive tool performance boundaries and understand how
operation order affects outcomes. For instance, in Fig. 6, editing the background first reduces the
success rate of later steps, as Step1X may introduce inaccuracies that affect other entities like the
table. This also suggests that tool limitations can inversely influence planning accuracy.

6 CONCLUSION

In this work, we address a key challenge in agent-based visual content generation: the lack of precise
modeling of tool performance boundaries, which often leads to unreliable planning and inconsistent
execution. By incorporating performance-aware mechanisms and feedback-driven refinement, our
framework improves decision reliability and strengthens alignment with user-defined goals. These
results highlight the importance of bridging tool capability understanding with planning logic. Fu-
ture efforts will focus on dynamic tool integration and expanding to multimodal tasks to further
enhance adaptability and generalization.

9
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A APPENDIX

A.1 USE OF LLMS

We use LLMs for research ideation. Details are described in A.2.

A.2 EXPERIMENTAL SETUP

Large Language Model Configuration PerfGuard employs vLLM (Kwon et al., 2023) as its
large language model inference engine and adopts MetaGPT (Hong et al., 2024b) as its underlying
framework. For agents responsible for multimodal analysis (Analyst and Evaluator), we use GPT-
4o (2024-08-01-preview) (Hurst et al., 2024), whereas agents dedicated to visual reasoning (Planner
and Worker) use QWen3-14B (Yang et al., 2025a) for trajectory data collection. The collected
trajectories are then used to train QWen3-8B through Capability-Aligned Planning Optimization.
During later testing and inference, we replace the Planner’s language model with QWen3-8B.

Tool Library Configuration To ensure PerfGuard possesses sufficient visual reasoning capabili-
ties, we configure three types of visual reasoning models in the tool library to validate our approach:
“text-to-image tools,” “image editing tools,” and “customized generation tools.” The “text-to-image
tools” include FLUX (Labs, 2024), SD3 (Esser et al., 2024), PixArt- (Chen et al., 2023), and SDXL
(Podell et al., 2023); the “image editing tools” include AnySD (Yu et al., 2025), UltraEdit (Zhao
et al., 2024), ICEdit (Zhang et al., 2025c), and Step1X Edit (Liu et al., 2025); the “customized gen-
eration tools” include DreamO (Mou et al., 2025), EasyControl (Zhang et al., 2025b), and IPAdapter-
Plus (Ye et al., 2023).

Hyperparameter Configuration For Adaptive Preference Updating (Eq. 3), we set the number
of candidate tools to 3, selecting the top 2 tools by score (m = 2) and randomly selecting 1 tool
(n = 1), with a update step size η = 0.13. For Capability-Aligned Planning Optimization (Eq. 5),
the number of sampled candidate sub-tasks is k = 5, and the proportion of experience-based sub-
tasks is β = 0.4.

Competitors i) For the image generation task, we systematically compared three categories of
methods: diffusion model-based approaches (e.g., FLUX (Labs, 2024), SD3 (Esser et al., 2024)),
Chain-of-Thought (CoT)-based approaches (e.g., GoT (Fang et al., 2025a), T2I-R1 (Jiang et al.,
2025)), and agent-based approaches (e.g., GenArtist (Wang et al., 2024b), T2I-Copilot (Chen et al.,
2025)). By contrasting these strategies, we aim to analyze how different visual reasoning mecha-
nisms impact the semantic accuracy of generated images. ii) For the image editing task, we evaluated
not only pure diffusion-based methods (e.g., ICEdit (Zhang et al., 2025c), AnySD (Yu et al., 2025))
but also Step1X Edit (Liu et al., 2025), which integrates large language model (LLM) techniques. To
ensure a fair comparison, we additionally included general-purpose models capable of both image
generation and editing (e.g., GenArtist and OmniGen (Xiao et al., 2025)).
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A.3 DESIGN AND SPECIFICATION OF PERFORMANCE BOUNDARIES IN PERFGUAR

We initialize tool performance boundaries by leveraging existing multi-dimensional evaluation
benchmarks conducted on large-scale datasets. Specifically, we adopt the evaluation dimensions
from t2i-compbench (Huang et al., 2023) and ImgEdit-Bench (Ye et al., 2025) as the performance
boundary dimensions for image generation and editing tools in the library, respectively. The detailed
definitions are as follows:

Image generation performance boundary dimensions:

• color: indicates the accuracy of the object’s color in the generated image.

• shape: indicates the accuracy of the object’s shape in the generated image.

• texture: indicates the accuracy of the object’s material or surface quality in the generated
image, such as “wooden”, “metallic”, etc.

• 2D-spatial: indicates the accuracy of the 2D spatial relationships between objects in the
generated image, such as “on the side of”, “on the left”, “on the top of”, “next to”, etc.

• 3D-spatial: indicates the accuracy of the 3D spatial relationships between objects in the
generated image, such as “behind”, “hidden by”, “in front of”, etc.

• numeracy: indicates the accuracy of the number of objects in the generated image.

• non-spatial: indicates the accuracy of non-spatial relationships between objects in the gen-
erated image, such as “A is holding B”, “C is looking at D”, “E is sitting on F”, etc.

Image editing performance boundary dimensions:

• addition: indicates the accuracy of adding objects to the image.

• removement: indicates the accuracy of removing objects from the image.

• replacement: indicates the accuracy of replacing objects in the image.

• attribute-alter: indicates the accuracy of modifying the attributes of objects in the image.

• motion-change: indicates the accuracy of modifying the actions, movements, or spatial
positions of objects in the image.

• style-transfer: indicates the accuracy of modifying the overall style of the image.

• background-change: indicates the accuracy of modifying the background of the image.

A.4 DEFINITION OF RACTUAL IN ADAPTIVE PREFERENCE UPDATING

For the actual usage ranking Ractual in Eq.3, we employ GPT-4o to directly compare the outputs of
multiple candidate tools and evaluate their effectiveness in executing the given subtask. The prompt
is configured as follows:

Prompt Engineering of Actual Usage Ranking

task: task
Multiple output images are generated after executing the task. Please compare ONLY these
output images and analyze to provide their ranking from best to worst.
Do not include any images outside of this list in your analysis or ranking.
If multiple images meet the task criteria equally well, prioritize the image that appears most
natural and visually coherent.

A.5 PROMPT ENGINEERING

The agent system designed in this work consists of four roles: Analyst, Planner, Worker, and Self-
Evaluator. Their prompt engineering strategies will be presented in this subsection.
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Prompt Engineering of Analyst

1. Please analyze the user’s needs based on the provided content and summarize their re-
quirements.
If a specific image is referenced, the path to the reference image must be specified.
**No assumptions are allowed about the user-provided information; the output must closely
align with the user’s given information.**
**The output must be derived through precise and correct reasoning, rather than copying the
user’s input.**
Transform the user input into concrete visual elements for the final image, avoiding overly
simple or abstract terms.
The output task must be **precise and concise, within 20 tokens**.
Output the task in the format: <task>Your summary task </task>.
2. Please provide the semantics of the final output image (i.e., what the final rendered image
looks like) in textual form.
The output semantic should be described in terms of key objects in the image, their at-
tributes (numeracy, categories, color, texture, etc.), spatial relationships, background, and
image style, etc..
The output semantic must be **precise and concise, within 20 tokens**.
Output the semantic in the format: <semantic>Textual semantic information of the target
image. </semantic>.

Prompt Engineering of Planner

Task:
Current image semantics:
Target image semantics:
==================================================
Available features:
1. Image generation: Create an image strictly matching the target semantics. Specify only
required dimensions: quantity (use ”exactly” if needed), position, attributes, material, color,
style, lighting, or semantic relationships.
2. Image editing: Modify an existing image to gradually match target semantics. Adjust only
necessary dimensions; do not add unrelated objects. Regeneration of the whole image is not
allowed.
Instructions:
- Analyze the target image semantics, task requirements, and historical operation infor-
mation (if available).
- Provide the next processing step to gradually meet the final task requirements through
subsequent multi-round interactions.
- Each operation should be concise (less 30 words) while retaining essential elements.
- Use precise instructions (e.g., ”remove the apple on the far right”), avoiding vague expres-
sions.
- Preferably output a single most effective operation per round; if the task is complex and
model capability allows, multiple operations can be included in one round.
- For generation tasks, output images should be natural and harmonious.
- For editing tasks, do not regenerate images arbitrarily; only modify necessary parts.
- If multiple operations can achieve the task, select the one with the highest success rate.
- Specify dependencies clearly: <depend>None</depend> if independent, or
<depend>round X</depend> if based on a previous round.

Prompt Engineering of Worker

Task:
1. You have two types of tools to choose from: text2image-generation tool, image-editing
tool. Please choose the appropriate tool-type based on the task requirements. Output in XML
format:
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<category>your select tools-type</category>
2. If you choose the text2image-generation tool category, analyze the task and
assign weights for the following preferences:
’color’, ’shape’, ’texture’, ’2D-spatial’, ’3D-spatial’,
’numeracy’, ’non-spatial’

• color: object’s color requirement
• shape: object’s shape requirement
• texture: material/surface quality (e.g., wooden, metallic)
• 2D-spatial: 2D spatial relationships (e.g., on the left, next to)
• 3D-spatial: 3D spatial relationships (e.g., behind, in front of)
• numeracy: number of objects
• non-spatial: non-spatial relationships (e.g., A is holding B)

3. If you choose the image-editing tool category, analyze the task and assign weights
for:
’addition’, ’removement’, ’replacement’, ’attribute-alter’,
’motion-change’, ’style-transfer’, ’background-change’

• addition: adding objects
• removement: removing objects
• replacement: replacing objects
• attribute-alter: modifying object attributes
• motion-change: changing actions or positions
• style-transfer: modifying image style
• background-change: modifying background

Notes:
• Weights range from 0 to 1; higher values indicate greater importance.
• The sum of all weights must be 1.
• Assign very low values (even 0) to unimportant dimensions.
• Ensure weights strictly reflect task requirements.
• Do not confuse preferences between the two tool types.

A.6 MORE VISUALIZATION RESULTS

We conducted extensive visualizations of PerfGuard across various image-related tasks. Fig. 7
presents multiple examples from the image editing task, Fig. 8 showcases several cases from the
text-to-image generation task, Fig. 9 illustrates a range of customized image generation results, and
Fig. 10 depicts multiple instances of PerfGuard’s error correction workflow during image generation.
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Replace the platter 
with polished marble.

Remove the 
middle fork.

Lighten the cupcake 
to caramel.

Change clothing to 
denim texture.

Replace background 
with concert stage.

Update guitar color 
to vibrant green.

Age the fire hydrant 
with rust.

Change the woman's 
shirt to soft-blue.

Replace the background 
with a cityscape.

Recolor the cake 
to blue.

Remove the 
background flags.

Add a bouquet and 
falling confetti.

Redesign the fire 
hydrant with a 
star pattern.

Replace the ground with 
green grass and

add a white rabbit.

Change the time 
of day to dusk.

Modify the original image by switching the wooden platter to one with a polished marble finish, 
removing the middle fork, and changing the chocolate cupcake to a lighter caramel color.

Edit the original image by changing the clothing to a denim jacket texture, replacing the 
background with a concert stage, and updating the guitar body to a vibrant green.

Original image

Original image

Modify the original image to make the fire hydrant appear aged with rust, change the woman's 
shirt to a soft-blue color, and set the scene against a cityscape background.

Edit the original image by changing the chocolate cake to blue, removing the background flags, 
and adding a flower bouquet with falling confetti.

Edit the original image by redesigning the fire hydrant with a star pattern, replacing the ground 
with lush green grass where a white rabbit sits, and setting the scene at dusk.

Original image

Original image

Original image

Figure 7: Visualization examples of the image editing task

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A woman in a yellow 
hat and dress sits on 

a stone bench in a garden, 
holding a basket of roses.

Change the roses in the 
basket to red roses.

Cover the bench 
with ivy.

Add a white wrought-iron 
arch and a fountain 
to the background.

A rustic wooden wall with 
weathered planks, visible 

wood grain, knots, 
and warm brown tones.

Mount two vintage metal 
hooks on the left 

and hang a woven straw 
hat below them.

Add trailing ivy growing 
from the right-side 

gap of the wall.

Include subtle water 
stain marks along 

the top edge of the wall.

A serene landscape with 
vibrant magenta flowers, 

trees, nestled red-
roofed houses, distant hazy 

mountains, and a blue sky.

Change season 
to autumn.

Add a winding
 stone path.

An elderly person is 
working in a field 
near the houses.

A tranquil night scene of a 
room with a deep blue backpack 

and a toothbrush on a night-
stand,  by a large window.

Change the toothbrush 
color to a soft pink.

Add a glowing smart-
phone on the nightstand.

Replace the starry 
sky with a rainy 

window view.

Create an image of a woman in a yellow hat and dress sitting on a garden bench, holding a 
basket of red roses. The scene should have a classic, romantic ambiance.

Create a detailed close-up image of a rustic, weathered wooden wall that showcases its 
grain and knots. The image should convey a sense of authenticity and being well-used, 
with faint water stains along the top indicating its age and the effects of the elements.

Generate a serene landscape painting. The scene should feature a winding stone path leading 
through foreground flowers towards cozy red-roofed houses nestled among trees, with hazy 
mountains in the distance. An elderly person should be seen working in a field nearby.

Generate a tranquil, atmospheric night scene of a modern bedroom. The composition should 
focus on a nightstand by a large window, holding a deep blue backpack, a soft pink 
toothbrush, and a glowing smartphone. Outside the window, show a rainy night view.

Figure 8: Visualization examples of the text to image generation task
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Generate an image in this style, 
A cat wearing a colorful hat 

by a riverbank with flowers on 
the shore and sparkling water.

A toy is exploring on 
the ocean floor. Remove the child. Add some schools 

of fish above the toy.

This toy is searching 
for treasures on 
the ocean floor.

Add treasures.

A cat near the river.
Make the lake 
water show a 

sparkling effect.

Add several blooming 
flowers by the river.

Make the river 
water show a 

sparkling effect.

Turn this cat into 
a red-furred，

beret-wearing tiger 
that is roaring.

Replace the cat 
with a tiger.

Turn the tiger red. Wear a beret.

There are five pianos 
on the stage, surrounded 

by some walnuts and 
fresh flowers, and 

the stage lights shine 
on the pianos.

Generate five pianos. Add some walnuts. ERROR:There are six 
pianos in the image 

instead of five.

Erase a piano.Increase the stage 
lighting effects.Add fresh flowers

Figure 9: Visualization examples of the customized image generation task
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There are five pianos 
on the stage, surrounded 

by some walnuts and 
fresh flowers, and 

the stage lights shine 
on the pianos.

Generate five pianos. Add some walnuts. ERROR:There are six 
pianos in the image 

instead of five.

Erase a piano.Increase the stage 
lighting effects.Add fresh flowers

A cyberpunk-style city 
street scene, with a focus 

on a speeding motorcycle that 
leaves a long trail of light 

behind, set against a backdrop 
of huge holographic billboards.

ERROR:The motor-
cycle is stationary 

and missing a 
huge billboard.

Add light trails 
and billboards.

ERROR:The motor-
cycle is still 

stationary and the 
overall picture 

is not harmonious.

ERROR:The cat 
is not in the air.

Place the cat 
in mid-air.

ERROR:The cat's 
body is severely 

distorted.

A cat wearing a magic 
hat is floating in mid-

air, with twinkling stars 
constantly falling down.

Rich and more detailed characterization prompts：
Generate a vibrant, neon-drenched cyberpunk city street at 

night. A futuristic motorcycle speeds down the street, 
leaving bright light trails behind it. In the background, massive, 

glowing holographic advertisements dominate the skyline.

Rich and more detailed characterization prompts：
An elegant cat floating effortlessly in mid-air, donning 

a starry wizard hat. The cat sits in a cross-legged, 
weightless pose as a river of twinkling stars flows from 

the hat's brim, surrounded by soft, luminous clouds.

Figure 10: Visualization examples of multiple instances of PerfGuard’s error correction workflow
during image generation
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