PERFGUARD: A PERFORMANCE-AWARE AGENT FOR VISUAL CONTENT GENERATION

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028

029

031

032033034

035

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

The advancement of Large Language Model (LLM)-powered agents has enabled automated task processing through reasoning and tool invocation capabilities. However, existing frameworks often operate under the idealized assumption that tool executions are invariably successful, relying solely on textual descriptions that fail to distinguish precise performance boundaries and cannot adapt to iterative tool updates. This gap introduces uncertainty in planning and execution, particularly in domains like visual content generation (AIGC), where nuanced tool performance significantly impacts outcomes. To address this, we propose Perf-Guard, a performance-aware agent framework for visual content generation that systematically models tool performance boundaries and integrates them into task planning and scheduling. Our framework introduces three core mechanisms: (1) Performance-Aware Selection Modeling (PASM), which replaces generic tool descriptions with a multi-dimensional scoring system based on fine-grained performance evaluations; (2) Adaptive Preference Update (APU), which dynamically optimizes tool selection by comparing theoretical rankings with actual execution rankings; and (3) Capability-Aligned Planning Optimization (CAPO), which guides the planner to generate subtasks aligned with performance-aware strategies. Experimental comparisons against state-of-the-art methods demonstrate PerfGuard's advantages in tool selection accuracy, execution reliability, and alignment with user intent, validating its robustness and practical utility for complex AIGC tasks.

1 Introduction

In recent years, with the continuous advancement of Large Language Model (LLM) technology (Guo et al., 2025; Yang et al., 2025a; Fang et al., 2025b), agent-based automated task processing has become an important research direction across various fields (Curtarolo et al., 2012; Gao et al., 2024; Wang et al., 2024b; Agashe et al., 2025). By constructing system frameworks with logical reasoning capabilities and equipping agents with the ability to invoke external tools, researchers aim to achieve the decomposition, reasoning, and autonomous execution of complex tasks, thereby surpassing the limitations of traditional single tools or rule-based systems. Most existing research focuses on the task planning and tool scheduling strategies of agents, emphasizing the rationality of the planning process (Agashe et al., 2025; Zhang et al., 2025a; Hong et al., 2024a). However, these studies generally operate under the ideal assumption that "tool invocations are always successful," lacking systematic evaluation of the actual success rate of tool execution. Against this backdrop, how tool selection and their actual execution outcomes impact the overall accuracy of agent planning and decision-making remains a critical issue that has not been fully explored.

In current research, the description of tool capabilities often relies on general textual descriptions, which are difficult to accurately reflect their true performance boundaries. This issue is particularly prominent in the field of visual content generation (AIGC). Although existing systems (such as CompAgent (Wang et al., 2024c), GenArtist (Wang et al., 2024b), etc.) can enhance generation outcomes through task decomposition and multi-model scheduling, their descriptions of tool capabilities remain relatively coarse. These descriptions fail to clearly distinguish the specialized capabilities and applicable scenarios of different tools. Taking text-to-image generation as an example, common tool descriptions such as "capable of generating images aligned with the semantics of the input text" neither reflect the performance differences between various models nor support

Figure 1: PerfGuard decomposes user requests into subtasks for iterative visual content generation. By modeling tool performance boundaries via PASM, it selects the most suitable tool in each round to ensure precise alignment between planning, execution, and user intent.

precise tool matching by agents in complex tasks, thereby introducing uncertainty into the planning and execution processes .

To address the aforementioned challenges, this paper introduces PerfGuard, a performance-aware agent framework for visual content generation. The framework aims to explore methods for modeling tool performance boundaries and leverage their impact on task planning and scheduling mechanisms. In response to the limitations posed by ambiguous tool capability descriptions, we propose Performance-Aware Selection Modeling (PASM), which replaces traditional textual descriptions with a multi-dimensional scoring mechanism based on fine-grained performance evaluation. Within this mechanism, the Worker dynamically selects the tool that best meets the performance requirements of the subtask generated by the Planner, thereby enhancing the accuracy and efficiency of task execution at the underlying scheduling level.

Acknowledging that preset performance boundaries (often derived from benchmark test results) may deviate from actual task execution outcomes, we further introduce an Adaptive Preference Updating (APU) method. This method continuously optimizes the performance boundary matrix by comparing the theoretical ranking of candidate tools with their observed performance during real task execution. This improves the accuracy of task-tool matching and enhances the system's adaptability to real-world scenarios.

To better align the task planning process with tool performance, we propose a Capability-Aligned Planning Optimization (CAPO) mechanism. This enables the Planner to generate high-quality task plans under the guidance of the performance-driven selection strategy facilitated by PASM. In each planning iteration, the Planner generates multiple candidate subtask plans and improves planning accuracy by comparing their output results. Through step-by-step supervision, the Planner learns to form planning patterns consistent with the performance-aware strategy, thereby systematically enhancing the robustness of the reasoning process .

To validate the effectiveness of PerfGuard, we conducted comparative experiments with existing representative visual content generation methods. In various tasks such as image generation and editing, PerfGuard demonstrated advantages in tool selection accuracy, task execution reliability, and alignment with user intent. The results confirm the robustness and practical value of our framework.

2 RELATIVE WORKS

Recent advances in visual content generation have significantly improved controllability and semantic alignment. Models like FLUX (Labs, 2024), Stable Diffusion3 (Esser et al., 2024), and DALL·E3 (Betker et al., 2023) generate images from textual prompts, while ControlNet (Zhang et al., 2023), T2I-Adapter (Mou et al., 2024), and InstanceDiffusion (Wang et al., 2024a) incorporate multimodal signals to better match user intent. To support fine-grained control, LayoutGPT (Feng et al., 2023), RPG (Yang et al., 2024b), GoT (Fang et al., 2025a), and T2I-R1 (Jiang et al., 2025) leverage LLMs to decompose prompts into region-specific semantics. Systems like CompAgent (Wang et al., 2024c) and GenArtist (Wang et al., 2024b) coordinate generation and editing tools, while MCCD (Li et al.,

Figure 2: PerfGuard models tool performance boundaries via PASM to match the most suitable tool for each subtask, maximizing decision efficiency. It further integrates Adaptive Preference Updating to enhance real-world adaptability, and applies CAPO to align planning with performance-aware strategies.

2025) and T2I-Copilot (Chen et al., 2025) improve performance through model cooperation. However, most approaches assume reliable tool execution and overlook how performance boundaries affect planning accuracy. PerfGuard addresses this gap by explicitly modeling tool capabilities and execution feedback.

3 Preliminary

Standardized Agent System Standardized agent systems typically consist of four core roles (Agashe et al., 2025; Hong et al., 2024b): Analyst, Planner, Worker, and Self-Evaluator. These roles handle task interpretation, planning, execution, and feedback respectively, enabling stepwise execution with continuous refinement. Building on this architecture, PerfGuard introduces Performance-Aware Selection Modeling to optimize tool selection for the Worker, ensuring better alignment with task requirements and improved execution performance.

Step-aware Preference Optimization (SPO) In the visual domain, aligning image generation outputs with human aesthetic preferences has been a key challenge. Inspired by Direct Preference Optimization (DPO) (Rafailov et al., 2023) for aligning language model outputs with human preferences, researchers proposed Diffusion-DPO (Wallace et al., 2024) and D3PO (Yang et al., 2024a), which utilize a trained reward model to evaluate multiple random samples from a diffusion model and identify winning samples x^w and losing samples x^l . To further improve the aesthetic quality of each intermediate step in the diffusion process, SPO (Liang et al., 2024) introduces a Step-Aware Preference Model (SPM) that evaluates and optimizes intermediate outputs at every step, ensuring that candidate samples are aligned with the optimal sample. The optimization objective is defined as:

$$\mathcal{L}(\theta) = -\mathbb{E}_{x_t^w, x_t^l \sim p_{\theta}(x_i \mid x_{t+1}, c, t+1)} \left[\log \sigma \left(\alpha \left(\log \frac{p_{\theta}(x_t^w \mid x_{t+1}^w, c, t+1)}{p_{\text{ref}}(x_t^w \mid x_{t+1}^w, c, t+1)} - \log \frac{p_{\theta}(x_t^l \mid x_{t+1}^l, c, t+1)}{p_{\text{ref}}(x_t^l \mid x_{t+1}^l, c, t+1)} \right) \right]$$
(1)

where σ denotes the sigmoid function, c represents the input condition, α is a regularization hyperparameter, p_{ref} refers to the reference probability from the fixed initial denoising model p_{θ} , and θ denotes the model parameters to be updated.

Motivated by SPO, we extend its methodology and apply the principle of stepwise intermediate output optimization to better align the Planner's decision-making and tool execution with optimal performance.

4 METHODOLOGY

Within the PerfGuard framework, we build on the standardized agent system to enable structured, stepwise planning and execution of visual generation tasks, as illustrated in Fig. 2. (1) Upon receiving multimodal inputs such as images or textual instructions, the Analyst parses the information to produce a task summary τ^* , target image semantics s^* , and evaluation goals g. (2) The Planner uses τ^* , s^* , and tool performance profiles $\mathcal B$ to decompose the task into subtasks u_t , which are executed by the Worker. Evaluation results e_t from each stage are fed back to guide subsequent decisions u_{t+1} , enabling iterative refinement. (3) The Worker selects appropriate tools from the library to execute each u_t and generate image outputs o_t . (4) Each output o_t is assessed by the Self-Evaluator across multiple visual dimensions to measure alignment with goals g, providing feedback for continuous improvement. The definitions of agent roles and the tool library are provided in Appendix A.

4.1 Performance-Aware Selection Modeling

To rigorously define fine-grained tool performance boundaries, we propose the Performance-Aware Selection Modeling strategy. This method systematically aligns the Planner's subtasks with the most appropriate tools according to user-specified capability preference dimensions, thereby mitigating planning errors arising from ambiguous definitions of tool capabilities.

Tool Performance Boundaries Precise performance-aware scheduling begins with fine-grained performance boundary definition. We construct a multi-dimensional scoring system to evaluate tools in the library. Specifically, we design the performance boundary dimensions of tools by referring to authoritative benchmarks in image generation and editing. For image generation tools, semantic accuracy is assessed across seven dimensions including color, shape, texture, 2D spatial, 3D spatial, non-spatial semantics, and numeracy, based on T2I-compbench (Huang et al., 2023). For image editing tools, effectiveness is evaluated across seven dimensions including addition, removal, replacement, attribute alteration, motion change, style transfer, and background change, following the evaluation criteria defined in ImgEdit-Bench (Ye et al., 2025).

This multi-dimensional scoring framework enables flexible modeling across domains using standardized metrics from large-scale datasets to ensure fairness and objectivity. It supports accurate performance profiling and evolves with new tools and benchmarks. To reduce evaluation costs, we directly adopt scores from T2I-compbench and ImgEdit-Bench as the performance boundary matrices for generation and editing tools. A detailed description of the performance boundary dimensions and their design rationale is provided in Appendix A.3.

Performance-Driven Selection The Worker π_{Worker} leverages predefined tool performance boundary dimensions \mathcal{D} to select the most suitable tool for a sub-task u_t provided by the Planner. For each u_t , the Worker leverages tool performance profiles to generate a preference weight $\mathcal{W}_{task} \in \mathbb{R}^{1 \times d}$, where d denotes the number of performance dimensions. This vector captures the relative importance of each dimension according to the characteristics of u_t . Task suitability scores S_{tools} for all tools are then computed by combining \mathcal{W}_{task} with the tool performance boundary matrix $M_p \in \mathbb{R}^{d \times l}$ (where l tools have similar functionalities), enabling performance-driven tool selection. Formally, the computation is expressed as:

$$\mathcal{W}_{task} = \pi_{\text{Worker}}(u_t, \mathcal{B}, \mathcal{D})$$

$$S_{tools} = \mathcal{W}_{task} \cdot \text{Normalize}(M_p)^{\top}$$

$$\mathcal{R} = \operatorname{argsort}(S_{tools}, \operatorname{descending})$$
(2)

Here, Normalize(·) normalizes tool scores across all tools for each performance dimension. $S_{tools} \in \mathbb{R}^{1 \times l}$ represents the weighted suitability of all tools for u_t , and \mathcal{R} provides their descending ranking. \mathcal{B} denotes the information of the tool library This approach allows the system to automatically select tools based on their intrinsic performance characteristics, without requiring users to define task-specific preferences.

4.2 Adaptive Preference Updating

In practice, tool performance boundaries may originate from benchmarks or expert-like evaluations based on prior tool usage. These boundaries can contain inaccuracies due to differences in task-relevant dimensions or subjective biases. To enhance the accuracy of tool performance boundary scores, we propose an Adaptive Preference Updating mechanism that iteratively adjusts the scores based on actual tool usage. Specifically, during candidate tool selection, we implement an exploration-exploitation strategy: the top m tools with the highest weighted preference scores are selected from the library, while n additional tools are randomly sampled from the remaining ones to increase the likelihood of selecting potentially high-performing tools. This mechanism ensures that the tool performance boundary matrix M_p more accurately reflects actual task requirements, enabling adaptive iterative updates:

$$\mathcal{R}_{theory} = top_{m}(S_{tools}) \cup rand_{n}(S_{tools}[m+1:l])
M_{p}^{new} = Normalize(M_{p} + \mathcal{W}_{task} \cdot \eta \cdot \Delta)
\Delta = \frac{\mathcal{R}_{theory} - \mathcal{R}_{actual}}{m+n}$$
(3)

Here, Δ represents the direction coefficient, reflecting the difference between the theoretical ranking \mathcal{R}_{theory} and the actual usage ranking \mathcal{R}_{actual} , and η denotes the update step size. When a tool's actual usage rank surpasses its theoretical rank, its performance boundary score is increased according to the weighted preferences and the distribution of task-specific emphasis across dimensions; otherwise, it is decreased. \mathcal{R}_{actual} is derived from comparative evaluations of multiple candidate outputs conducted by a multimodal large model, with the evaluation procedure detailed in Appendix A.4. For newly added tools lacking sufficient usage experience or benchmark results, we initialize their scores using the average performance boundary scores of similar tools in the corresponding dimensions within the current library, ensuring that their potential is not overlooked in subsequent tool usage and iterative updates.

4.3 CAPABILITY-ALIGNED PLANNING OPTIMIZATION

To further enhance the Planner's stepwise decision-making and provide indirect feedback on the execution effectiveness of tools selected via Performance-Aware Selection Modeling in PerfGuard, we extend Step-aware Preference Optimization (SPO) Liang et al. (2024) and propose Capability-Aligned Planning Optimization (CAPO) for the Planner's autoregressive planning process.

Decision Performance Estimator To evaluate the effectiveness of the Planner's output at each step t, we adopt the Self-Evaluator $\pi_{\text{Evaluator}}$ as the Planner's Decision Performance Estimator. For each sub-task execution result o_t , the Self-Evaluator assesses it based on the corresponding evaluation goals g across multiple semantic dimensions:

$$e_{t} = \sum_{i=0}^{L} \gamma_{i}^{local} \pi_{\text{Evaluator}}(o_{t}, g_{i}^{local}) + \gamma^{global} \pi_{\text{Evaluator}}(o_{t}, g^{global})$$
(4)

Here, the evaluation goals consist of global semantics g^{global} and local semantics g_i^{local} , weighted by γ . L is the number of local dimensions, and e_t denotes the Planner's decision evaluation at step t.

Stepwise Planning Optimization At each step t, the Planner generates k candidate sub-tasks $\{u_t^1, u_t^2, \ldots, u_t^k\}$. Each sub-task produces a corresponding output $\{o_t^1, o_t^2, \ldots, o_t^k\}$, which is evaluated by the Self-Evaluator. The sub-task with the highest evaluation score is selected as the winning sample u_t^w , and the lowest-scoring sub-task as the losing sample u_t^l . Accordingly, the planner's optimization objective function can be changed from Eq. 1 to:

$$\mathcal{L}(\theta) = -\mathbb{E}_{t \sim \mathcal{U}[1,T], \ u_t^w, u_t^l \sim \pi_{\text{Planner}}(\tau^*, s^*, \mathcal{B}, h_{t-1})} \\ \left[\log \sigma \left(\alpha \left(\log \frac{p_{\theta}(u_t^w \mid \tau^*, s^*, \mathcal{B}, h_{t-1})}{p_{\text{ref}}(u_t^w \mid \tau^*, s^*, \mathcal{B}, h_{t-1})} - \log \frac{p_{\theta}(u_t^l \mid \tau^*, s^*, \mathcal{B}, h_{t-1})}{p_{\text{ref}}(u_t^l \mid \tau^*, s^*, \mathcal{B}, h_{t-1})} \right) \right) \right]$$
(5)

Figure 3: Comparison of PerfGuard's visual results across tasks. Top: visualization for complex text-to-image generation. Bottom: visualization for multi-round image editing.

here, $h_{t-1} = \{(u_0, e_0), \dots, (u_{t-1}, e_{t-1})\}$ denotes the history of sub-task executions and corresponding outputs evaluations up to timestep t-1.

CAPO enables the Planner to iteratively align sub-task decisions with feedback from the Self-Evaluator, enhancing its awareness of tool execution performance and thereby supporting more accurate and effective task planning.

To improve efficiency in trajectory data collection, a memory retrieval mechanism is integrated. Optimal sub-task sequences from previously successful tasks are stored as reusable experiences. During the generation of new candidate sub-tasks, an exploration–exploitation strategy is applied: among k candidates, βk are retrieved using CLIP Radford et al. (2021) similarity scores with the current task as the query, selecting the top-5 most similar sequences as contextual guidance, while the remaining $(1-\beta)k$ candidates are generated randomly by the Planner.

5 EXPERIMENTS

We conducted both qualitative and quantitative comparisons of PerfGuard against various image generation and editing models. The evaluation spans three benchmarks covering different task types: basic image generation (T2I-CompBench (Huang et al., 2023)), advanced image generation (OneIG-Bench (Chang et al., 2025)), and complex image editing (Complex-Edit (Yang et al., 2025b)). Detailed experimental settings, descriptions of baseline methods, agent prompts and instructions, as well as additional results and visualizations, are provided in the supplementary material A.6..

5.1 QUALITATIVE RESULTS AND ANALYSIS

We compared the proposed PerfGuard with several existing methods on text-to-image generation and image editing tasks. The visualization results reveal three key observations: i) In text-to-image generation, traditional diffusion models struggle with complex prompts involving multiple entities and detailed attributes. Their limited language understanding leads to poor semantic alignment. For example, FLUX (Labs, 2024) and SD3 (Esser et al., 2024) fail to generate a cat in a space-suit. CoT-based methods like T2I-R1 (Jiang et al., 2025) and GoT (Fang et al., 2025a) incorporate LLMs, but due to reliance on a single-generation tool, they still miss key elements or actions, such as GoT omitting the fishing pose and several specified objects. Agent-based methods show improvement in semantic parsing and tool orchestration. However, GenArtist (Wang et al., 2024b)

Table 1: Basic Image Generation Comparison on T2I-CompBench (Huang et al., 2023)

Model	Attribute Binding			Object Relationship		Complex ↑	
Model	Color ↑ S	hape 🕆 '	Texture ↑	Spatial ↑ I	Non-Spatial ↑	Complex	
FLUX (Labs, 2024)	0.7407 (0.5718	0.6922	0.2863	0.3127	0.3771	
SD3 (Esser et al., 2024)	0.8132 (0.5885	0.7334	0.3200	0.3140	0.3703	
GoT (Fang et al., 2025a)	0.4793 (0.3668	0.4327	0.2238	0.3053	0.3255	
T2I-R1 (Jiang et al., 2025)	0.8130 (0.5852	0.7243	0.3378	0.3090	0.3993	
GenArtist (Wang et al., 2024b)	0.8482 (0.6948	0.7709	0.5437	0.3346	0.4499	
T2I-Copilot (Chen et al., 2025)	0.8039 (0.6120	0.7604	0.3228	0.3379	0.3985	
Ours (PerfGuard)	0.8753	0.7366	0.8148	0.6120	0.3754	0.5007	

Table 2: Advanced Image Generation Comparison on OneIG-Bench (Chang et al., 2025)

Method	Type	Alignment ↑	Text ↑	Reasoning ↑	Style ↑
FLUX (Labs, 2024)	Diffusion	0.786	0.523	0.253	0.368
SD3 (Esser et al., 2024)	Diffusion	0.801	0.648	0.279	0.361
GoT (Fang et al., 2025a)	CoT	0.767	0.504	0.290	0.369
T2I-R1 (Jiang et al., 2025)	CoT	0.793	0.662	0.297	0.370
GenArtist (Wang et al., 2024b)	Agent	0.747	0.501	0.285	0.352
T2I-Copilot (Chen et al., 2025)	Agent	0.821	0.679	0.318	0.386
Ours (PerfGuard)	Agent	0.834	0.684	0.350	0.395

lacks a performance-aware tool selection strategy, resulting in planning errors and missing elements. T2I-Copilot (Chen et al., 2025) performs better through multi-module semantic decomposition, but its limited tool diversity still leads to omissions, such as spiral galaxies and green glasses. ii) In multi-round editing tasks, traditional methods like ICEdit (Zhang et al., 2025c) and AnySD (Yu et al., 2025) deliver the weakest results. GenArtist, despite using multiple tools, suffers from poor capability matching, leading to suboptimal edits. Step1X_Edit (Liu et al., 2025) benefits from LLM-enhanced understanding of long instructions, but without intelligent planning and execution, it fails to capture key details—for example, the kite does not transform into a dragon. iii) Across both generation and editing tasks, PerfGuard consistently achieves the most accurate and visually aligned outputs. This demonstrates that its performance-guided tool selection enhances single-step execution accuracy and improves overall task planning.

5.2 QUANTITATIVE RESULTS AND ANALYSIS

To comprehensively validate the effectiveness of PerfGuard, we utilize three distinct benchmarks, namely T2I-CompBench (Huang et al., 2023), OneIG-Bench (Chang et al., 2025), and Complex-Edit (Yang et al., 2025b), to objectively evaluate its visual reasoning performance across both image generation and editing tasks from multiple perspectives.

Basic Image Generation Comparison We compare the proposed PerfGuard with various image generation methods on basic tasks, as shown in Tab 1. T2I-CompBench evaluates images in terms of attribute binding and object relationships. From the table: (i) Traditional models like FLUX and SD3 remain competitive, with texture, non-spatial, and complexity metrics approaching or surpassing CoT-based methods (T2I-R1, GoT). (ii) CoT-based methods rely on LLM fine-tuning, limiting them to certain tasks; simple prompts may yield overly complex interpretations and inaccurate images. (iii) Agent-based methods (GenArtist, T2I-Copilot) use self-correction to regenerate low-quality outputs, improving reliability. (iv) PerfGuard adapts capabilities to match the best-suited model for different tasks, achieving optimal performance across all dimensions.

Advanced Image Generation Comparison To further assess the effectiveness of our proposed method in visual reasoning, we evaluated various approaches on OneIG-Bench across diverse scenarios and complex text prompts, as shown in Tab. 2. (i) For more complex generation tasks, FLUX and SD3 show notably lower performance on reasoning metrics, highlighting that integrating LLMs improves the ability to handle complex information. (ii) Regarding alignment accuracy, GoT and GenArtist perform worse than other methods, indicating that a single large model has limited capacity for complex tasks. (iii) T2I-Copilot and PerfGuard (Ours), leveraging multi-agent collaboration, can plan each step of visual reasoning more precisely when handling cross-domain information,

Table 3: Complex Image Editing Comparison

Method	IF ↑	PQ ↑	IP ↑	O ↑
AnySD	4.13	7.14	9.08	6.78
Step1X_Edit	7.95	8.66	7.70	8.10
GenArtist	6.14	7.24	6.19	6.52
OmniGen	7.52	8.86	8.01	8.13
Ours (PerfGuard)	8.95	9.02	8.56	8.84

Table 4:	Ablation	Study	on L	Design

Method	Color ↑	Spatial ↑	Complex ↑
GenArtist	0.8482	0.5437	0.4499
Baseline	0.8239	0.5600	0.4327
+PASM	0.8521	0.5919	0.4412
+APU	0.8596	0.6005	0.4738
+CAPO (Full)	0.8753	0.6120	0.5030

Figure 4: Comparison of capability matching methods. Our method substantially reduces tool selection errors.

Figure 5: Ablation on η in Eq. 3. When $\eta = 0.13$, the error rate reaches its minimum of 14.2% at step 800.

achieving optimal results in both alignment and reasoning metrics. (iv) PerfGuard does not show a large margin over other methods in alignment and text metrics due to toolset limitations, which cap its generation capabilities. However, its performance-aware tool selection enables smarter planning, leading to clear advantages in reasoning.

Complex Image Editing Comparison We evaluated complex editing performance on the Level-3 subset of Complex-Edit (Yang et al., 2025b) to assess scalability and effectiveness, as shown in Tab. 3. Our method selects the best-performing tools based on task-specific capability matching, enabling precise execution across diverse editing types. As a result, it achieves the highest scores in Instruction Following (IF) and Perceptual Quality (PQ). AnySD scores highest in Identity Preservation (IP) due to minimal edits in many Level-3 samples, which also leads to a lower IF score. Overall, our approach outperforms all baselines, demonstrating strong generalization across visual reasoning and generation tasks.

5.3 ABLATION STUDY

Ablation on Design We performed ablation experiments on the key modules of PerfGuard (Tab. 4), with the results summarized as follows: i) Relying solely on conventional text descriptions for tool capabilities often leads to misselection, forcing the Worker to perform near-exhaustive attempts, with performance comparable to or slightly below GenArtist. ii) Introducing the Performance-Aware Selection Modeling mechanism significantly improves some metrics, with the color dimension increasing by 3.42% and the texture dimension by 5.7%. iii) Further applying Adaptive Preference Updating fine-tunes preference scores for Planner-generated sub-tasks, enhancing tool selection precision and raising the complex dimension from 0.4412 to 0.4738. iv) The Capability-Aligned Planning Optimization mechanism ensures that each decision step aligns with evaluation, effectively preventing errors in reasoning trajectories and substantially boosting overall performance.

Capability Matching Method Ablation. We conducted a systematic evaluation of tool invocation error rates for different capability-matching strategies on the "complex_vel" subset of T2I-CompBench (Fig. 4). The results indicate that relying solely on textual descriptions with QWen3-14B (Yang et al., 2025a) (orange bar) results in a high error rate of 77.8%, due to the presence of similar tools with differing capability focuses, which makes text-based selection unreliable. Even when assisted by the state-of-the-art large language model GPT-40 (Fang et al., 2025b) (yellow bar),

Figure 6: Visualization of the ablation results for CAPO. Operations of Planner: A: Replace the background with a snowy scene. B: Change the fruit bowl to a festive wreath basket with ornaments and pinecones. C: Place a lit candle beside the glass on the table. D: Change the drink to hot chocolate, with a candy cane in place of the straw. E: Swap the fruit bowl for a festive basket of pinecones and decorations. F: Place a candle beside the glass, softly glowing. G: Replace the orange juice with hot chocolate and substitute the straw with a festive candy cane. H: Change the background to a snowy Christmas setting.

the error rate remains high at 72.2%, highlighting the limitations of LLMs in interpreting capability descriptions alone. Incorporating an external experience module with QWen3-14B (green bar) reduces the error rate to 68.1% by storing and retrieving historical successful experiences, though the effectiveness is still constrained by retrieval reliability and differences in tool capabilities. Leveraging a benchmark-initialized performance score matrix with QWen3-14B (blue bar) to perform task-specific capability matching significantly lowers the error rate to 30.5%. Further applying the Preference Updating mechanism (purple bar) optimizes the error rate to 14.2%, demonstrating that capability-aware matching combined with adaptive optimization can effectively enhance the accuracy and robustness of tool selection.

Ablation on Update Step Size To validate the effectiveness of the Adaptive Preference Updating method, as shown in Fig. 5, we studied the impact of different η values in Eq. 3 on tool selection error rate using the same dataset as in Fig. 4. Ablation experiments with η set to 0.1, 0.13, and 0.15 show that a small η (0.1) results in slow error reduction, while a large η (0.15) accelerates initial convergence but causes severe oscillations in later stages. In contrast, $\eta=0.13$ achieves a more efficient and stable decrease, reaching the optimal error rate of 14.2% at step 800. These results indicate that $\eta=0.13$ provides a balanced trade-off between convergence speed and stability, effectively optimizing tool selection under the current experimental setup.

Ablation on Capability-Aligned Planning Optimization We conducted a visual ablation study on the CAPO to examine the impact of Planner training, as shown in Fig. 6. For fair comparison, we retained only Step1X.Edit in the toolset and removed visual supervision from the Self-Evaluator. Results show that a trained Planner can perceive tool performance boundaries and understand how operation order affects outcomes. For instance, in Fig. 6, editing the background first reduces the success rate of later steps, as Step1X may introduce inaccuracies that affect other entities like the table. This also suggests that tool limitations can inversely influence planning accuracy.

6 CONCLUSION

In this work, we address a key challenge in agent-based visual content generation: the lack of precise modeling of tool performance boundaries, which often leads to unreliable planning and inconsistent execution. By incorporating performance-aware mechanisms and feedback-driven refinement, our framework improves decision reliability and strengthens alignment with user-defined goals. These results highlight the importance of bridging tool capability understanding with planning logic. Future efforts will focus on dynamic tool integration and expanding to multimodal tasks to further enhance adaptability and generalization.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics). Our study does not involve human subjects, sensitive personal data, or any form of biometric information. All datasets used are publicly available and widely adopted in the research community. We have taken care to avoid generating or reinforcing harmful content, stereotypes, or biases in both model design and evaluation. No proprietary or confidential data was used. There are no known conflicts of interest or external sponsorship that could influence the outcomes of this research. We acknowledge the importance of ethical considerations in AI research and have made efforts to ensure transparency, reproducibility, and fairness throughout the development of our framework.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To facilitate this, we have provided comprehensive implementation details, experimental settings, and evaluation protocols in the main paper and appendix. All datasets used in our experiments are publicly available, and we include detailed data preprocessing steps in the supplementary materials. For our proposed framework and algorithms, we have submitted an anonymous source code repository as part of the supplementary materials, which includes scripts for training, evaluation, and visualization. The repository is available at https://anonymous.4open.science/status/99887766. We also provide ablation studies and hyperparameter configurations to support reproducibility. We encourage readers and reviewers to refer to the appendix and supplementary files for further details.

REFERENCES

- Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2: A compositional generalist-specialist framework for computer use agents. *arXiv preprint arXiv:2504.00906*, 2025.
- James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf*, 2(3):8, 2023.
- Jingjing Chang, Yixiao Fang, Peng Xing, Shuhan Wu, Wei Cheng, Rui Wang, Xianfang Zeng, Gang Yu, and Hai-Bao Chen. Oneig-bench: Omni-dimensional nuanced evaluation for image generation. *arXiv preprint arXiv:2506.07977*, 2025.
- Chieh-Yun Chen, Min Shi, Gong Zhang, and Humphrey Shi. T2i-copilot: A training-free multiagent text-to-image system for enhanced prompt interpretation and interactive generation. *arXiv* preprint arXiv:2507.20536, 2025.
- Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis, 2023. URL https://arxiv.org/abs/2310.00426.
- Stefano Curtarolo, Wahyu Setyawan, Gus LW Hart, Michal Jahnatek, Roman V Chepulskii, Richard H Taylor, Shidong Wang, Junkai Xue, Kesong Yang, Ohad Levy, et al. Aflow: An automatic framework for high-throughput materials discovery. *Computational Materials Science*, 58:218–226, 2012.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
- Rongyao Fang, Chengqi Duan, Kun Wang, Linjiang Huang, Hao Li, Shilin Yan, Hao Tian, Xingyu Zeng, Rui Zhao, Jifeng Dai, et al. Got: Unleashing reasoning capability of multimodal large language model for visual generation and editing. *arXiv preprint arXiv:2503.10639*, 2025a.

- Yi Fang, Bowen Jin, Jiacheng Shen, Sirui Ding, Qiaoyu Tan, and Jiawei Han. Graphgpt-o: Synergistic multimodal comprehension and generation on graphs. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 19467–19476, 2025b.
 - Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Arjun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and William Yang Wang. Layoutgpt: Compositional visual planning and generation with large language models. *Advances in Neural Information Processing Systems*, 36: 18225–18250, 2023.
 - Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaojian Ma, Tao Yuan, Yue Fan, Yuwei Wu, Yunde Jia, Song-Chun Zhu, and Qing Li. Multi-modal agent tuning: Building a vlm-driven agent for efficient tool usage. *arXiv preprint arXiv:2412.15606*, 2024.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv* preprint arXiv:2501.12948, 2025.
 - Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei, Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. *arXiv* preprint arXiv:2402.18679, 2024a.
 - Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a multi-agent collaborative framework. International Conference on Learning Representations, ICLR, 2024b.
 - Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive benchmark for open-world compositional text-to-image generation. *Advances in Neural Information Processing Systems*, 36:78723–78747, 2023.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level and token-level cot. *arXiv preprint arXiv:2505.00703*, 2025.
 - Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pp. 611–626, 2023.
 - B.F. Labs. Flux, 2024. URL https://github.com/black-forest-labs/flux.
 - Mingcheng Li, Xiaolu Hou, Ziyang Liu, Dingkang Yang, Ziyun Qian, Jiawei Chen, Jinjie Wei, Yue Jiang, Qingyao Xu, and Lihua Zhang. Mccd: Multi-agent collaboration-based compositional diffusion for complex text-to-image generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 13263–13272, 2025.
 - Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiankai Hang, Ji Li, and Liang Zheng. Step-aware preference optimization: Aligning preference with denoising performance at each step. *arXiv preprint arXiv:2406.04314*, 2(5):7, 2024.
 - Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming Wang, Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image editing. *arXiv preprint arXiv:2504.17761*, 2025.
- Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 4296–4304, 2024.

- Chong Mou, Yanze Wu, Wenxu Wu, Zinan Guo, Pengze Zhang, Yufeng Cheng, Yiming Luo, Fei Ding, Shiwen Zhang, Xinghui Li, et al. Dreamo: A unified framework for image customization. *arXiv preprint arXiv:2504.16915*, 2025.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv preprint arXiv:2307.01952*, 2023.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in neural information processing systems*, 36:53728–53741, 2023.
 - Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8228–8238, 2024.
 - Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instancediffusion: Instance-level control for image generation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6232–6242, 2024a.
 - Zhenyu Wang, Aoxue Li, Zhenguo Li, and Xihui Liu. Genartist: Multimodal Ilm as an agent for unified image generation and editing. *Advances in Neural Information Processing Systems*, 37: 128374–128395, 2024b.
 - Zhenyu Wang, Enze Xie, Aoxue Li, Zhongdao Wang, Xihui Liu, and Zhenguo Li. Divide and conquer: Language models can plan and self-correct for compositional text-to-image generation. *arXiv* preprint arXiv:2401.15688, 2024c.
 - Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li, Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 13294–13304, 2025.
 - An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025a.
 - Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu Li. Using human feedback to fine-tune diffusion models without any reward model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8941–8951, 2024a.
 - Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering text-to-image diffusion: Recaptioning, planning, and generating with multimodal llms. In *Forty-first International Conference on Machine Learning*, 2024b.
 - Siwei Yang, Mude Hui, Bingchen Zhao, Yuyin Zhou, Nataniel Ruiz, and Cihang Xie. Complex-Edit: Cot-like instruction generation for complexity-controllable image editing benchmark. *arXiv preprint arXiv:2504.13143*, 2025b.
 - Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.
 - Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan. Imgedit: A unified image editing dataset and benchmark. *arXiv preprint arXiv:2505.20275*, 2025.
 - Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang Tang, Hanwang Zhang, and Yueting Zhuang. Anyedit: Mastering unified high-quality image editing for any idea. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26125–26135, 2025.

Lymin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3836–3847, 2023.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and autonomous multi-agent system for web task execution with strategic exploration. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 23378–23386, 2025a.

Yuxuan Zhang, Yirui Yuan, Yiren Song, Haofan Wang, and Jiaming Liu. Easycontrol: Adding efficient and flexible control for diffusion transformer. *arXiv preprint arXiv:2503.07027*, 2025b.

Zechuan Zhang, Ji Xie, Yu Lu, Zongxin Yang, and Yi Yang. In-context edit: Enabling instructional image editing with in-context generation in large scale diffusion transformer. *arXiv* preprint *arXiv*:2504.20690, 2025c.

Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image editing at scale, 2024. URL https://arxiv.org/abs/2407.05282.

A APPENDIX

A.1 USE OF LLMS

We use LLMs for research ideation. Details are described in A.2.

A.2 EXPERIMENTAL SETUP

Large Language Model Configuration PerfGuard employs vLLM (Kwon et al., 2023) as its large language model inference engine and adopts MetaGPT (Hong et al., 2024b) as its underlying framework. For agents responsible for multimodal analysis (Analyst and Evaluator), we use GPT-40 (2024-08-01-preview) (Hurst et al., 2024), whereas agents dedicated to visual reasoning (Planner and Worker) use QWen3-14B (Yang et al., 2025a) for trajectory data collection. The collected trajectories are then used to train QWen3-8B through Capability-Aligned Planning Optimization. During later testing and inference, we replace the Planner's language model with QWen3-8B.

Tool Library Configuration To ensure PerfGuard possesses sufficient visual reasoning capabilities, we configure three types of visual reasoning models in the tool library to validate our approach: "text-to-image tools," "image editing tools," and "customized generation tools." The "text-to-image tools" include FLUX (Labs, 2024), SD3 (Esser et al., 2024), PixArt- (Chen et al., 2023), and SDXL (Podell et al., 2023); the "image editing tools" include AnySD (Yu et al., 2025), UltraEdit (Zhao et al., 2024), ICEdit (Zhang et al., 2025c), and Step1X_Edit (Liu et al., 2025); the "customized generation tools" include DreamO (Mou et al., 2025), EasyControl (Zhang et al., 2025b), and IPAdapter-Plus (Ye et al., 2023).

Hyperparameter Configuration For Adaptive Preference Updating (Eq. 3), we set the number of candidate tools to 3, selecting the top 2 tools by score (m=2) and randomly selecting 1 tool (n=1), with a update step size $\eta=0.13$. For Capability-Aligned Planning Optimization (Eq. 5), the number of sampled candidate sub-tasks is k=5, and the proportion of experience-based subtasks is $\beta=0.4$.

Competitors i) For the image generation task, we systematically compared three categories of methods: diffusion model-based approaches (e.g., FLUX (Labs, 2024), SD3 (Esser et al., 2024)), Chain-of-Thought (CoT)-based approaches (e.g., GoT (Fang et al., 2025a), T2I-R1 (Jiang et al., 2025)), and agent-based approaches (e.g., GenArtist (Wang et al., 2024b), T2I-Copilot (Chen et al., 2025)). By contrasting these strategies, we aim to analyze how different visual reasoning mechanisms impact the semantic accuracy of generated images. ii) For the image editing task, we evaluated not only pure diffusion-based methods (e.g., ICEdit (Zhang et al., 2025c), AnySD (Yu et al., 2025)) but also Step1X_Edit (Liu et al., 2025), which integrates large language model (LLM) techniques. To ensure a fair comparison, we additionally included general-purpose models capable of both image generation and editing (e.g., GenArtist and OmniGen (Xiao et al., 2025)).

A.3 DESIGN AND SPECIFICATION OF PERFORMANCE BOUNDARIES IN PERFGUAR

We initialize tool performance boundaries by leveraging existing multi-dimensional evaluation benchmarks conducted on large-scale datasets. Specifically, we adopt the evaluation dimensions from t2i-compbench (Huang et al., 2023) and ImgEdit-Bench (Ye et al., 2025) as the performance boundary dimensions for image generation and editing tools in the library, respectively. The detailed definitions are as follows:

Image generation performance boundary dimensions:

- color: indicates the accuracy of the object's color in the generated image.
- shape: indicates the accuracy of the object's shape in the generated image.
- **texture**: indicates the accuracy of the object's material or surface quality in the generated image, such as "wooden", "metallic", etc.
- **2D-spatial**: indicates the accuracy of the 2D spatial relationships between objects in the generated image, such as "on the side of", "on the left", "on the top of", "next to", etc.
- **3D-spatial**: indicates the accuracy of the 3D spatial relationships between objects in the generated image, such as "behind", "hidden by", "in front of", etc.
- numeracy: indicates the accuracy of the number of objects in the generated image.
- non-spatial: indicates the accuracy of non-spatial relationships between objects in the generated image, such as "A is holding B", "C is looking at D", "E is sitting on F", etc.

Image editing performance boundary dimensions:

- addition: indicates the accuracy of adding objects to the image.
- removement: indicates the accuracy of removing objects from the image.
- replacement: indicates the accuracy of replacing objects in the image.
- attribute-alter: indicates the accuracy of modifying the attributes of objects in the image.
- motion-change: indicates the accuracy of modifying the actions, movements, or spatial
 positions of objects in the image.
- **style-transfer**: indicates the accuracy of modifying the overall style of the image.
- background-change: indicates the accuracy of modifying the background of the image.

A.4 Definition of $\mathcal{R}_{\text{actual}}$ in Adaptive Preference Updating

For the actual usage ranking \mathcal{R}_{actual} in Eq.3, we employ GPT-40 to directly compare the outputs of multiple candidate tools and evaluate their effectiveness in executing the given subtask. The prompt is configured as follows:

Prompt Engineering of Actual Usage Ranking

task: task

Multiple output images are generated after executing the task. Please compare ONLY these output images and analyze to provide their ranking from best to worst.

Do not include any images outside of this list in your analysis or ranking.

If multiple images meet the task criteria equally well, prioritize the image that appears most natural and visually coherent.

A.5 PROMPT ENGINEERING

The agent system designed in this work consists of four roles: Analyst, Planner, Worker, and Self-Evaluator. Their prompt engineering strategies will be presented in this subsection.

761

762

763

764

765

766

768

769

770

771

772

773

774

758 759 760

1. Please analyze the user's needs based on the provided content and summarize their re-

If a specific image is referenced, the path to the reference image must be specified.

No assumptions are allowed about the user-provided information; the output must closely align with the user's given information.

The output must be derived through precise and correct reasoning, rather than copying the user's input.

Transform the user input into concrete visual elements for the final image, avoiding overly simple or abstract terms.

The output task must be **precise and concise, within 20 tokens**.

Output the task in the format: <task>Your summary task </task>.

2. Please provide the semantics of the final output image (i.e., what the final rendered image looks like) in textual form.

The output semantic should be described in terms of key objects in the image, their attributes (numeracy, categories, color, texture, etc.), spatial relationships, background, and image style, etc..

The output semantic must be **precise and concise, within 20 tokens**.

Output the semantic in the format: <semantic>Textual semantic information of the target image. </semantic>.

775 776 777

781 782

783

784

785

786

787

788

789

791

792

793

794

796

797

798

799

800

801

802

Prompt Engineering of Planner

778 779 Task:

Current image semantics:

Target image semantics:

Available features:

- 1. Image generation: Create an image strictly matching the target semantics. Specify only required dimensions: quantity (use "exactly" if needed), position, attributes, material, color, style, lighting, or semantic relationships.
- 2. Image editing: Modify an existing image to gradually match target semantics. Adjust only necessary dimensions; do not add unrelated objects. Regeneration of the whole image is not allowed.

Instructions:

- Analyze the target image semantics, task requirements, and historical operation information (if available).
- Provide the next processing step to gradually meet the final task requirements through subsequent multi-round interactions.
- Each operation should be concise (less 30 words) while retaining essential elements.
- Use precise instructions (e.g., "remove the apple on the far right"), avoiding vague expressions.
- Preferably output a single most effective operation per round; if the task is complex and model capability allows, multiple operations can be included in one round.
- For generation tasks, output images should be natural and harmonious.
- For editing tasks, do not regenerate images arbitrarily; only modify necessary parts.
- If multiple operations can achieve the task, select the one with the highest success rate.
- Specify dependencies clearly: <depend>None</depend> if independent, or <depend>round X</depend> if based on a previous round.

804 805

807

Prompt Engineering of Worker

Task:

1. You have two types of tools to choose from: text2image-generation tool, image-editing tool. Please choose the appropriate tool-type based on the task requirements. Output in XML format:

```
810
           <category>your select tools-type</category>
811
           2. If you choose the text2image-generation tool category, analyze the task and
812
           assign weights for the following preferences:
813
           'color', 'shape', 'texture', '2D-spatial', '3D-spatial',
814
           'numeracy', 'non-spatial'
815
                 • color: object's color requirement
816
817

    shape: object's shape requirement

818
                 • texture: material/surface quality (e.g., wooden, metallic)
819
                 • 2D-spatial: 2D spatial relationships (e.g., on the left, next to)
820
                 • 3D-spatial: 3D spatial relationships (e.g., behind, in front of)
821
822
                 • numeracy: number of objects
823
                 • non-spatial: non-spatial relationships (e.g., A is holding B)
824
           3. If you choose the image-editing tool category, analyze the task and assign weights
825
826
           'addition', 'removement', 'replacement', 'attribute-alter',
827
           'motion-change', 'style-transfer', 'background-change'
828

    addition: adding objects

829
                 • removement: removing objects
830
831
                 • replacement: replacing objects
832
                 • attribute-alter: modifying object attributes
833
                 • motion-change: changing actions or positions
834
                 • style-transfer: modifying image style
835
836
                 • background-change: modifying background
837
           Notes:
838
                 • Weights range from 0 to 1; higher values indicate greater importance.
839
840
                 • The sum of all weights must be 1.
841
                 • Assign very low values (even 0) to unimportant dimensions.
                 • Ensure weights strictly reflect task requirements.
843
                 • Do not confuse preferences between the two tool types.
844
```

A.6 MORE VISUALIZATION RESULTS

We conducted extensive visualizations of PerfGuard across various image-related tasks. Fig. 7 presents multiple examples from the image editing task, Fig. 8 showcases several cases from the text-to-image generation task, Fig. 9 illustrates a range of customized image generation results, and Fig. 10 depicts multiple instances of PerfGuard's error correction workflow during image generation.

866

867 868

870 871 872

873

874 875

877 878 879

881

883

885

893

894 895

903

904

905

913

914

915 916

917

Modify the original image by switching the wooden platter to one with a polished marble finish, removing the middle fork, and changing the chocolate cupcake to a lighter caramel color. Original image Replace the platter Remove the Lighten the cupcake middle fork. with polished marble. to caramel. Edit the original image by changing the clothing to a denim jacket texture, replacing the background with a concert stage, and updating the guitar body to a vibrant green Change clothing to Replace background Update guitar color Original image denim texture. with concert stage. to vibrant green. Modify the original image to make the fire hydrant appear aged with rust, change the woman's shirt to a soft-blue color, and set the scene against a cityscape background. Age the fire hydrant Change the woman's Replace the background Original image with rust. shirt to soft-blue. with a cityscape. Edit the original image by changing the chocolate cake to blue, removing the background flags, and adding a flower bouquet with falling confetti. Recolor the cake Remove the Add a bouquet and Original image to blue. background flags. falling confetti. Edit the original image by redesigning the fire hydrant with a star pattern, replacing the ground with lush green grass where a white rabbit sits, and setting the scene at dusk. Original image Redesign the fire Replace the ground with Change the time green grass and of day to dusk. hydrant with a add a white rabbit. star pattern.

Figure 7: Visualization examples of the image editing task

921

922923924925926927

928

929

930

931

933

941

942

943 944

945

951 952

953

954

955

956 957

958

959960961962963964965

966

967

968 969

970 971

Create an image of a woman in a yellow hat and dress sitting on a garden bench, holding a basket of red roses. The scene should have a classic, romantic ambiance. A woman in a yellow Add a white wrought-iron Change the roses in the Cover the bench hat and dress sits on arch and a fountain basket to red roses. with ivy a stone bench in a garden, to the background. holding a basket of roses. Create a detailed close-up image of a rustic, weathered wooden wall that showcases its grain and knots. The image should convey a sense of authenticity and being well-used with faint water stains along the top indicating its age and the effects of the elements. A rustic wooden wall with Mount two vintage metal Add trailing ivy growing Include subtle water weathered planks, visible hooks on the left from the right-side stain marks along wood grain, knots, and hang a woven straw the top edge of the wall. gap of the wall. and warm brown tones. hat below them. Generate a serene landscape painting. The scene should feature a winding stone path leading through foreground flowers towards cozy red-roofed houses nestled among trees, with hazy mountains in the distance. An elderly person should be seen working in a field nearby. A serene landscape with Add a winding Change season An elderly person is vibrant magenta flowers, to autumn. stone path. working in a field trees, nestled rednear the houses. roofed houses, distant hazy mountains, and a blue sky. Generate a tranquil, atmospheric night scene of a modern bedroom. The composition should focus on a nightstand by a large window, holding a deep blue backpack, a soft pink toothbrush, and a glowing smartphone. Outside the window, show a rainy night view. A tranquil night scene of a room with a deep blue backpack Change the toothbrush Add a glowing smart-Replace the starry sky with a rainy color to a soft pink. phone on the nightstand. and a toothbrush on a nightwindow view. stand, by a large window.

Figure 8: Visualization examples of the text to image generation task

Figure 9: Visualization examples of the customized image generation task

Figure 10: Visualization examples of multiple instances of PerfGuard's error correction workflow during image generation