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Abstract—In recent years, the emergence of large language
models (LLMs) has revolutionized the field of artificial intelli-
gence, showcasing remarkable proficiency in natural language
understanding and generation. This advancement has spurred
a growing research area focused on the development of LLM-
based autonomous agents, aiming to achieve human-like decision-
making capabilities. This Position Paper provides an overview
of current research areas and breakthroughs in LLM-based AI
agents. We highlight key advancements and discuss limitations
within each area. Furthermore, we identify opportunities for
future research to accelerate progress towards realizing more
capable versions of AI agents.

I. INTRODUCTION

Autonomous agents have long represented a cornerstone in
the pursuit of artificial intelligence, embodying the capacity
for independent decision-making and action execution. Over
recent years, the emergence of large language models (LLMs)
has ushered in a new era of AI capabilities. These LLMs,
powered by vast datasets and advanced deep learning archi-
tectures, have showcased remarkable proficiency in natural
language understanding and generation, approaching human-
like levels of intelligence. Capitalizing on the capabilities of
LLMs, researchers have ventured into a burgeoning research
area: the development of LLM-based autonomous agents. By
employing LLMs as central controllers, these agents aim to
achieve human-like decision-making capabilities, navigating
complex environments and interacting with users in natural
language. This convergence of LLMs and autonomous agents
marks a significant milestone in AI research, opening up
new avenues for the creation of intelligent systems capable
of understanding and engaging with humans in meaningful
ways.Various definitions of AI Agents exist. For example,
according to [16] an artificial intelligence (AI) agent is a dis-
cerning entity capable of sensory perception, decision-making,
and undertaking actions to fulfill predetermined objectives.
Distinct from an autonomous agent, which operates within the
perceive-decide-act cycle sans human guidance, an intelligent
agent possesses the supplementary capacity to enhance its
functionality through the assimilation of new information [15].
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This paper is meant to serve as a Position Paper as opposed
to a technical nor scholarly paper in the traditional sense. Our
contribution is three fold.

1) First, we provide an overview of the current major
research areas of LLM based AI agents and highlights
key research breakthroughs from the recent literature.

2) Second, we outline limitations in each of these research
areas.

3) Finally, we outline opportunities for new research that
the broader community might pursue to accelerate
towards realizing ever more capable versions of AI
Agents.

II. RESEARCH AREAS & LIMITATIONS

A. Memory

Memory is a critical aspect of Language and Learning
Models (LLMs), influencing their ability to process and
understand input data effectively. In this section, we delve
into the various dimensions of memory-related methods and
categorizations within the current landscape of LLM research,
drawing insights from recent studies and advancements.

1) Understanding Memory in LLMs: A significant chal-
lenge facing many LLM-based systems is their limited capa-
bility to process exceptionally lengthy inputs, often referred to
as Memory in the context of LLM systems [7]. This limitation
impedes broader generalization and hinders the performance
of these models.

Memory-related methods in LLMs have been categorized
into several distinct types, offering unique approaches to
address memory limitations and enhance model performance.

1) Short and Long-Term Memory: One common catego-
rization distinguishes between short and long-term mem-
ory mechanisms. Short-term memory methods, such as
Context Learning and Prompt Engineering, primarily
focus on immediate context processing. In contrast,
long-term memory involves accessing external stores
or databases during query time [21]. Recent research
has explored integrating long-term memory directly into
LLMs, as demonstrated by the LONGMEM framework,
which enables LLMs to memorize extensive historical
contexts effectively [18].



2) Internal vs External Memory Based Methods: An-
other useful categorization divides memory mechanisms
into internal and external memory-based methods. In-
ternal memory methods aim to optimize computational
efficiency by leveraging specialized positional encoding
techniques to handle longer input sequences [4]. In con-
trast, external memory-based methods utilize physical
memory caches to store historical information, enabling
seamless augmentation of LLMs without memory con-
straints [18].

2) Advancements in Memory-Augmented Networks
(MANNs): Memory-augmented networks (MANNs), such
as Neural Turing Machines (NTMs), represent a promising
avenue for enhancing memory capabilities in LLMs [8].
These networks utilize external memory caches to store and
manipulate information, facilitating tasks requiring long-
term context interactions. Recent studies have focused on
leveraging MANNs for long-term conversations, introducing
datasets and mechanisms inspired by cognitive psychology
principles [27].

3) Working Memory Enhancements: Enabling ”Working
Memory” in LLMs has been explored to enhance their ar-
chitecture and improve contextual reasoning during complex
tasks and collaborative scenarios [5]. Efforts have been made
to address the low controllability and robustness of out-of-the-
box models with regards to working memory, with proposed
solutions such as knowledge-aware fine-tuning methods [6].

4) Challenges and Future Directions: Despite significant
advancements, several challenges remain in developing reli-
able and adaptable long-term memory mechanisms for LLMs.
Existing methods often require repeated reasoning over stored
histories and suffer from computational inefficiencies in re-
calling relevant information [23]. Future research directions
may involve exploring more efficient memory retrieval mech-
anisms, integrating cognitive psychology principles, and op-
timizing memory-augmented networks to further enhance
LLMs’ memory capabilities.

Memory plays a crucial role in the effectiveness and gen-
eralization abilities of LLM-based AI agents. By understand-
ing and advancing memory-related methods, researchers can
unlock new potentials for these agents in handling complex
language tasks and real-world applications.

B. Decision Making and Reasoning

LLMs are known to hallucinate and struggle with tasks
that require extensive reasoning. To deal with this issue,
researchers have explored prompting techniques that guide
the LLM through the reasoning steps and neuro-symbolic
methods that combine LLMs with classical AI planners for
better performance on long-horizon planning tasks.

1) Prompting Strategies: For example, Wei et al. prompts
the LLM by showing exemplar chains of thought i.e. series
of intermediate reasoning steps that solve complex problems
[20]. The LLM emulates this process and generates a chain
of thought for every problem that’s prompted with chain-
of-thought prompting, significantly increasing its accuracy to

solve problems that require reasoning. Yao et al. generalize
over chain of thought and introduces Tree of Thought. Tree
of Thought is a framework that allows the LLM to explore
different chains of thought using traditional breadth-first search
or depth-first search [24]. Tree of thought significantly im-
proves the LLM’s problem solving ability on planning or
search tasks. Yao et al. introduces an approach named ReAct
in which the reasoning steps and acting steps are interleaved
[25]. Prior to ReAct, reasoning and action plan generation
have been studied mostly as separate topics. ReAct prompts
the model to generate a sequence of reasoning steps, followed
by an action. This approach is showcased across a variety of
tasks, including multi-hop question-answering, fact-checking,
and interactive decision-making. The method aims to produce
more interpretable, diagnosable, and controllable task-solving
trajectories than previous methods.

2) Neuro-symbolic Strategies: To utilize LLM’s ability to
understand natural language descriptions of tasks and classical
AI planners’ ability to solve complex planning tasks, some
researchers have looked into using LLM as a translator to
translate natural language description of tasks into a syntax
that classical AI planners can use. Liu et al. connects LLMs
with AI planners by using the LLM to turn the natural
language description of a robot planning problem into a
planning domain definition language (PDDL) that classical AI
planners are able to parse [1]. The output from the planner
is translated back into natural language by the LLM. This
approach significantly augments the LLM’s ability, leveraging
both the natural language understanding capability of the LLM
and the search and plan capability of AI planners.

3) Challenges and Future Directions: LLM generated plans
still suffer from hallucinations in long horizon tasks. There-
fore, connecting LLMs with planners capable of structured
planning seems to be a promising direction worth more
exploration. On the other hand, we posit that relying on
natural language for solving complex planning problems has
its limitations due to its limited sequence-to-sequence nature.
Promising approaches to solving long horizon planning tasks
pair LLMs with symbolic AI planners, essentially prompting
the LLM to translate natural language description of the
problem into non-human language [22]. Therefore, a future
direction could be to explore other representations of thinking
and reasoning. Raw internal model states is one potential
representation.

C. Tool Use

Modifying or augmenting LLMs to allow for the use of tools
is one of the major ways that researchers have addressed some
of the limitations of LLMs. For example, retrieval of external
data, lookup of updated information, arithmetic, etc. are all
tasks that are important for AI agents, but that LLMs struggle
with (e.g. arithmetic) or are entirely incapable of natively (e.g.
lookup of updated information).

Tool use is a very broad concept which takes many dif-
ferent forms. We propose breaking tool-use down into a few
categories:



1) Lookup of static information
Example: LOOKUP(‘capital of France’)

2) Lookup of Dynamic information
Example: LOOKUP(‘weather in Boston’)

3) Stateless function invocation
Example: MULTIPLY(256, 172)

4) Stateful function invocation
Example: SET(‘current state’, ‘success’)

5) World interaction
Example: UBEREATS(‘order’, ‘burger’)

Breaking down “tool-use” into these categories is important
as many current works that fall under the header of “tool-
use” will focus on some subset (or even just one) of these
categories. But all are important for the successful integration
of tools into LLM-based agents. Furthermore, each of these
categories deserves to be considered conceptually distinct,
even if their invocation syntax is often congruent, because their
patterns of interaction are fundamentally different in ways that
are specific to each category.

For example, an LLM fine-tuned for lookup of static in-
formation may not understand that subsequent queries for the
weather in Boston may give different results. An LLM fine-
tuned for the dynamic case may not understand that subsequent
queries for the capital of France are extremely unlikely to yield
any new information. Neither may understand that stateful
function invocation may not return any result at all. Similarly,
a tool-use agent trained to make calls to stateless functions
may fail to understand the concept of stateful interaction.

1) Recent Work on Tool-Use: TALM: Tool Augmented
Language Models stands as an important starting point for
understanding tool-use strategies in modern language models
and ultimately offers an important conceptual step forward
in the development of LLM-based agents [9]. The technique
involves augmenting language models with the ability to
invoke non-differentiable tool APIs along with a method for
updating models for tool-use via iterative self-play. Tool-use
has become more sophisticated in many ways since TALM,
but it proved that tool-use was possible and effective. And it
ultimately sets the backdrop for discussion about the further
development of tool use in AI agents. Schick et al. introduces
a very similar concept in Toolformer [12]. The broader goal
here is generally the same–imbue a language model with the
capacity for tool-use, with specific focuses on generality and
self-supervision, with the methodological distinction between
these two techniques largely boiling down to implementation
strategy.

Shen et al. builds upon these ideas in HuggingGPT, showing
that LLMs can be used as high-level controllers to solve
multi-modal tasks by leveraging machine learning APIs [13].
HuggingGPT also further augments the tool use idea by
integrating a system for planning, taking inspiration from

chain of thought prompting [20]. HuggingGPT is as much
an experiment in multimodality as it is a demonstration of
tool use. In fact, it is likely best understood as multimodality
via tool-use. In other words, HuggingGPT moves away from
the generality that TALM and Toolformer make a priority and
instead places its emphasis on leveraging relatively few, but
high-impact, machine learning based tools.

Patil et al. develops Gorilla to further extend the theme
of API calling, specifically focusing on compatibility with a
large number of machine learning APIs such as HuggingFace,
TorchHub, and TensorHub [10]. If HuggingGPT showed that
it was possible to train a model to leverage machine learning
APIs, Gorilla showed that it was possible at scale by increasing
the number of APIs that the model is able to call.

A common theme among all of these attempts at build-
ing tool-use capabale LLMs and LLM-based agents it self-
supervision, and in particular, the Self-Instruct process of
semi-supervised instruction tuning proposed by Wang. et al.
[19]. Self-Instruct stands at the center of many important
tool-use examples. It provides a significant head start by
allowing for self-supervised instruction data to drive fine-
tuning, but it has significant limitations which these tool-
use demonstrations inherit, including the reliance on language
generation as the mechanism for generation of self-supervised
tool-use examples.

Some of the most interesting successes in the world of tool-
use have been in its application to domain specific problems.
Bran et al. demonstrates this in the chemistry domain by
developing ChemCrow [2]. In this case, and unlike above, the
focus here is not breadth, but rather hand-crafting specific tools
designed by experts which are then coordinated using ReAct-
style prompting [25]. Interestingly, ChemCrow demonstrates
superior performance to GPT-4 on novel or less well-known
problems, while lagging behind on problems involving rote
memorization [2].

The successes of tool-use agents in reasoning over domain-
specific applications shows that the benefits of tool-use are
not limited to trivial extensions of LLMs; it is not simply ad-
vantageous in extending or updating the knowledge available
to an LLM. Instead, tool-use appears capable of legitimately
enhancing the reasoning capacity of intelligent agents. All
of these capabilities taken together point strongly to tool-use
being one of the most important directions forward in the field
of AI agent research.

2) Challenges and Limitations: While current SOTA tool-
use demonstrations have good coverage of the first four
proposed tool-use categories, it is much harder to find robust
examples of the last two. This is likely because stateful
function invocation and world interaction both require an LLM
to maintain an internal representation of an external system,
making these two categories harder, and arguably even, a
different problem entirely. Nevertheless, tackling these two
cases is critical for the maturation of tool-use agents.

We also identify the reliance on language as a potential
weak point of current tool-use methods. Training LLMs to
produce the correct utterance in order to invoke a tool can be



effective in simple cases, but the inherently sequential nature
of this strategy may be insufficient for more challenging tool-
use cases. On top of this, tools may deal with multimodal data
processing that language models will naturally have challenges
in dealing with.

D. Learning

One characteristic that distinguishes intelligent agents from
autonomous agents is their capacity for continuous learning.
Intelligent agents possess the capability to not merely engage
with their environment but also to observe the effects of their
engagement and adapt accordingly. A clear challenge between
modern LLM based agents and this pattern of learning is that
large models are effectively frozen: their weights do not adapt
as agents interact with their environment. This is a notable
challenge that has yet to be circumvented in most LLM Agent
research.

1) Learning and Memory: One approach to learning is to
learn persistent memories to affect future decision-making.
This approach is demonstrated by Shinn et al., who propose
Reflexion - a framework for language-based agents, that
converts binary or scalar feedback from the environment that
the agent interacts with, into verbal feedback in the form
of a textual summary. This framework aims to reinforce the
language agents without updating weights. The agents that
are augmented with the Reflexion framework, reflect on their
task’s feedback signals and maintain a verbal feedback version
of the signals in an episodic memory buffer, which is then used
to improve decision making in subsequent trials [14]. Zhao
et al. showcase an agent that is able to autonomously gather
experiences and extract knowledge using natural language
from a collection of training tasks [26]. At inference, the
agent recalls its extracted insights and past experiences to
make informed decisions. The agent gathers diverse experi-
ences though Reflexion mentioned earlier and continuously
retrying tasks until success. The agent implements a form of
retrospective learning similar to Reflexion.

2) Tasks: Another approach is to learn tasks directly. While
many agents use modular tools that are assumed to complete
the tasks assigned to them reliably and optimally, there are
many tasks that have no such guarantees. Tasks that use
reinforcement learning (RL) often require a complicated and
extensive series of actions to be successfully completed. More
formally, they display high sparseness, which measures the
average number of steps needed, when executing random
actions sampled from a uniform distribution, to solve the given
task and receive reward. Di Palo, Norman, et al. demonstrate
the utility of LLMs and vision language models (VLM)–which
together they term foundation models–towards learning RL
tasks, as well as transferring learned experiences and skills
towards new tasks [3]. Regarding exploring new tasks, the
foundation models allow for the agent’s number of steps
needed to achieve a certain success rate (or its learning rate) to
grow more slowly than the sparseness of the task. The models
accomplish this by decomposing tasks into subtasks, so while
the overall task may show exponentially increasing sparseness,

the subtasks themselves do not (when completed in order)
and are relatively attainable by the RL agent. Task transfer
learning is brought into play by storing policies learned for
given subtasks–or skills–into memory, then allowing for the
foundation models to decompose a task into subtasks for which
there are corresponding skills. If the agent has learned the
relevant skill, then it executes it. This can be done for wholly
new problems, if the problem can be decomposed into tasks
and skills that the agent has already learned.

Wang, Guanzhi, et al. take a similar approach with an em-
bodied agent that navigates the Minecraft virtual world [17].
The Voyager agent uses LLM-prompted automatic curriculum
to generate attainable tasks, and a skill library for storing and
retrieving complex behaviors. Additionally, the agent uses an
iterative prompting mechanism to generate executable code for
embodied control.

While many agents rely on a LLM-based planner to choose
actions and tools to execute those actions, these two agents
demonstrate methods by which the action-space can be more
thoroughly explored, and learned skills can be more effectively
leveraged. The potential is there for agents to learn through
experimentation how best to leverage the tools at their disposal
or even to create new ones, rather than relying on the planner
to dictate actions. However, both agents assume the knowledge
available to the LLM will be sufficient to direct tasking. As
mentioned earlier, moving beyond a traditionally language
only paradigm for planning may also be beneficial to planning.

3) External Data Stores: While most agents rely on LLMs
for planning and knowledge retrieval, retrieval learning has
played a significant role in agent success and capacity to
learn before the outbreak of LLM approaches. XiaoIce is a
social chatbot intended to facilitate the formation of long-
term emotional connections from its users towards itself [28].
It is designed with over two hundred task-solving skills
(considered to emulate ”IQ”) as well as components that
gauge emotional content (”EQ”) of its users’ and its own
responses, all constrained by the need to maintain a consistent
personality. XiaoIce models its hierarchical decision-making
processes as Markov Decision Processes (MDP), where each
turn in dialogue is a state and a skill or a response represents
an action to be taken at that state. Of especial note is its Core
Chat component, which combines a retrieval-based generator
(which enables XiaoIce to consistently plagiarize itself as its
continued usage leads produces more and more data) for high-
quality responses to popular topics, with a complementary
GRU- RNN model-backed neural response generator for ro-
bustness and high coverage. This retrieval system distinguishes
it from its LLM-backed peers in that it allows for XiaoIce to
retrieve data from dynamic sources, while LLMs are frozen.
While it may not be wholly fair to consider changing data as
learning, the effect is still similar in that the system can stay
abreast of recent developments in topics of interest.



III. MOVING BEYOND LANGUAGE PRESENTED
OPPORTUNITIES FOR AI AGENTS

In this paper, we have explored some of the major trends in
LLM-based agent research and highlighted some limitations
of this kind of agent. We propose that AI agents may need to
move beyond language and autoregressive token generation to
more fully realize the reasoning potential of these agents and
to address these limitations.

Recent trends in LLM-based agent research illuminate the
inadequacies of language as the sole modality for internal rea-
soning. Techniques such as chain-of-thought or tree-of-thought
exemplify innovative strategies to navigate beyond language’s
linear constraints, aiming to mimic more complex reasoning
pathways that are not inherently sequential or symbolic.

Moreover, the application of LLMs to generate outputs
beyond the realm of language—such as sequences that
invoke tool-use systems or sequences for planning algo-
rithms—underscores that researchers are increasingly lever-
aging LLMs to produce outputs that, while originated from
language models, serve as inputs for non-linguistic process-
ing. This transition from generating purely linguistic content
to creating information that aligns more closely with other
computational paradigms signals a recognition of language’s
limitations.

Furthermore, the transition towards multimodality in LLMs
and LLM-based agents signifies more than the integration of
diverse sensory inputs; it signifies a fundamental transforma-
tion in AI reasoning and problem-solving. This shift is crucial
not because it simply adds a variety of data inputs but because
it fundamentally enhances the AI’s reasoning capabilities. The
true value of multimodality lies not in the individual modalities
themselves but in the enhanced reasoning ability that emerges
when these modalities are combined [11]. A generalist model
trained across action spaces, language, video, code, etc. gains
its most interesting advantage not from the depth of knowledge
in each modality but from the enriched reasoning capacity
enabled by their integration. Embracing multimodality thus
represents a critical evolution in AI agent development in that
it demonstrates a shift away from language as the internal
mechanism for reasoning.

We suggest that a further departure from autoregressive
token generation–as is usually the technique employed by
even generalist models–may be necessary to fully realize the
reasoning potential of AI agents. The process of reasoning,
we assert, is not adequately expressed by low bandwidth
and linearly sequential language generation. And this idea
is underscored by techniques that augment LLMs in ways
that attempt to break them free of these constraints. Tree-
of-thought attempts to break out of linear sequence genera-
tion. And the successful generalization across modalities of
multimodel agents, as demonstrated by projects like GATO,
demonstrate the criticality of moving beyond language itself.

IV. CONCLUSION

In this paper, we have explored recent trends in LLM-based
agent research, highlighting key aspects such as memory, tool-

use, and decision-making and reasoning. Despite advance-
ments, we identify significant limitations, many of which
arise from the reliance on language and autoregressive token
generation for internal reasoning. In light of these limitations,
we suggest that to enhance the reasoning capabilities of AI
agents, a shift away from traditional language-based and linear
sequential processing methods is necessary.

In conclusion, we propose a future research direction that
transcends the conventional frameworks, advocating for AI
agents to adopt more advanced, less sequential approaches to
harness their full reasoning potential. This shift is crucial for
overcoming the existing barriers and unlocking new possibil-
ities in AI and LLM-based agent research.
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