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ABSTRACT

Detection transformers (DETR) have emerged as powerful end-to-end learning
frameworks for object detection, directly regressing detection parameters as point
estimates. However, these networks often lack the ability to express any uncer-
tainty within their estimates. In this work, we replace the regression of point esti-
mates with the direct learning of the posterior distribution in a sampling-free man-
ner by leveraging deep evidential learning, complementing the end-to-end DETR
architecture. We present an instance-aware uncertainty framework by extending
evidential deep learning with an IoU-aware loss, jointly modelling both classifica-
tion and localization uncertainties. Furthermore, we enable the model to leverage
its uncertainty for self-calibration, aligning the predicted probabilities with the
true likelihood of outcomes, and effectively apply evidential deep learning for
the task of imbalanced dense object detection. Our approach is easily extensi-
ble and requires only fine-tuning, thus leveraging the pre-training of transformers
on large datasets. We conduct extensive experiments on two in-domain and three
out-of-domain datasets, demonstrating impressive improvements in generalization
performance, especially when fine-tuning on heavily imbalanced datasets charac-
terized by data scarcity.

1 INTRODUCTION

Object detection is a fundamental aspect of machine vision, including in safety-critical applications
such as perception in autonomous vehicles (Balasubramaniam & Pasricha, 2022). While detection
accuracy is crucial, it is equally important to quantify the uncertainty associated with the detection
estimates. However, state-of-the-art object detection networks predominantly rely on deep neu-
ral networks, which are often viewed as black-box models (Liang et al., 2021). This presents a
significant challenge as it becomes difficult to assess the trustworthiness of these networks and to
understand their decision-making processes. Despite notable advancements in deep learning and
computer vision over the past decade, there remains a significant gap in research in understanding
and quantifying the uncertainty associated with the outputs of such object detection networks.

Addressing uncertainty in object detection is particularly challenging because it must account for
both localization and classification uncertainties (Feng et al., 2021). Localization uncertainty in-
volves the accuracy of predicted bounding boxes, which can be affected by factors such as occlu-
sions and complex backgrounds. Meanwhile, classification uncertainty pertains to the confidence
in the predicted class labels, often influenced by ambiguous visual features and out-of-distribution
data. The need to jointly model these uncertainties complicates the development of effective de-
tection systems, as traditional methods often treat them separately, as a multi-task problem (Oksuz
et al., 2020). This separation can hinder the ability to provide a comprehensive understanding of the
overall uncertainty associated with each detection.

Previous studies addressing uncertainty in object detection for autonomous vehicles have typically
relied on sampling-based methods, such as Bayesian neural networks and Monte Carlo dropout
(Gawlikowski et al., 2023). While these methods are effective in quantifying uncertainty, they are
computationally expensive, require multiple runs to sample different results, and often result in re-
duced overall accuracy due to factors such as biased sampling, improper weighting, and the removal
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of parameters caused by dropout in Monte Carlo methods (Feng et al., 2021). Ever since the emer-
gence of evidential deep learning (Sensoy et al., 2018; Amini et al., 2020), there has been increased
interest in leveraging evidence theory for object detection (Park et al., 2023; Nallapareddy et al.,
2023), estimating uncertainty by predicting prior distributions of posterior models in a sampling-
free manner. However, the existing object detection networks required various post-processing
techniques to derive the final object estimates, and incorporating evidential learning necessitated
sophisticated modifications to the base detection networks requiring significant pre-training.

Moreover, evidential deep learning is not without its challenges, particularly concerning biases that
can arise in the context of object detection. One significant issue is class imbalance (Xia et al.,
2022), which is prevalent in real-world driving scenarios due to the varying densities of objects in
each frame. When certain object classes are observed significantly more frequently than others,
the evidential model may develop a bias towards these dominant classes. This bias can lead to
overconfidence in predictions for the more common classes while underestimating uncertainty for
less frequent classes, resulting in poor performance in detecting under-sampled objects.

Another approach is to focus on model calibration (Pathiraja et al., 2023; Kuzucu et al., 2024; Munir
et al., 2024) which aims to align the predicted class probabilities and bounding box localization with
the true likelihood of outcomes. By refining both the confidence scores and the spatial accuracy of
bounding boxes produced by object detection models, calibration techniques can also provide more
reliable estimates without the need for multiple forward passes through the network.

Recently, Carion et al. (2020) demonstrated that detection transformers (DETR) can be effectively
used for end-to-end object detection, by framing it as a sequence-to-sequence problem, regressing
detection estimates as an unordered sequence i.e. as a set prediction problem. Their approach elimi-
nates the need for hand-crafted components such as Non-Maximum Suppression (NMS) and anchor
formulation. In this paper, we extend DETR with evidential deep learning to incorporate uncertainty
estimation, enabling the direct output of detection estimates and their associated uncertainties in an
end-to-end, sampling-free manner.

1.1 PROBLEM FORMULATION AND CONTRIBUTIONS

In this work, we address multiple challenges:

1. Evidential deep learning is typically ill-posed for object detection due to the significant
class imbalance between foreground and background objects, as well as their varying den-
sities from frame to frame. In this work, we address class imbalance and adapt evidential
deep learning for object detection. Furthermore, we leverage model uncertainty during
training to implicitly self-calibrate model confidence to align with the true likelihood of
outcomes, using the model calibration error to modulate uncertainty regularization.

2. Existing methods address localization and classification uncertainty in object detection as
independent tasks within a multi-task framework. We present an instance-aware uncer-
tainty framework by extending evidential deep learning with an IoU-aware loss, enabling
the joint modelling of both localization and classification uncertainties.

3. Previous works in the literature that incorporated evidential deep learning in object detec-
tion required sophisticated transforms to their base object detection networks. In this pa-
per, we propose a simple, easily extensible, end-to-end approach for integrating evidential
learning into object detection using DETR. To the best of our knowledge, this represents
the first adaptation of DETR to incorporate evidence theory within its learning framework
for supervised learning. Our approach is easily extensible and can be applied to any DETR
architecture. Our method does not require any pre-training, i.e. it can be implemented
using only fine-tuning.

4. DETR supervises one-to-one matching and utilizes a non-differentiable bipartite graph
matching for ranking object queries, which can lead to training instability due to stochastic
optimization. We incorporate uncertainty estimates during the matching process, provid-
ing a probabilistic framework for informed decision-making in the assignment of object
queries to ground truth instances. This approach not only improves generalization but also
reduces the model variations observed across multiple training sessions.
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2 BACKGROUND AND RELATED WORK

Prior research employing evidential deep learning in the context of supervised object detection is
quite limited. This includes Park et al. (2023), who argued that evidential deep learning (Sensoy
et al., 2018) couldn’t be directly applied to traditional object detection networks such as Faster R-
CNN (Girshick, 2015) and SSD (Liu et al., 2016). They noted that learning the parameters of a
posterior Dirichlet distribution (Jsang, 2018) for dense object detection, as opposed to simple clas-
sification, lead to training instability and overly uncertain predictions. To address the limitations
associated with learning a Dirichlet distribution as originally proposed by Sensoy et al. (2018), they
augmented the learning framework and introduced a new Model Evidence Head module to effec-
tively harness evidential learning for object detection. However, networks like Faster R-CNN and
SSD still require significant overhead, including anchor formulation and non-maximum suppression
(NMS).

Additionally, Nallapareddy et al. (2023) proposed an extension to CenterNet (Zhou et al., 2019) and
modelled uncertainty as Gaussian heatmaps utilizing 3D convolutional layers to estimate objectness
uncertainty as a binary value. However, their method was inherently conditioned on the compute-
intensive operation of estimating high-resolution heatmaps, and required additional regularization
parameters for accurate localization of object centeredness. While CenterNet is more efficient com-
pared to traditional detection models, it still necessitates post-processing to derive final predictions
from Gaussian heatmaps.

In contrast, our approach, based on the DETR framework (Carion et al., 2020), simplifies the train-
ing process by eliminating the need for anchor boxes and NMS, which are common complications
in traditional object detection methods. Traditional models often struggle with the design and tuning
of anchor boxes, which can lead to suboptimal performance if not carefully calibrated. Furthermore,
the reliance on post-processing techniques like NMS can introduce additional computational over-
head and potential errors in object localization. Our method, being highly generalizable, can be
seamlessly applied to any DETR model.

3 UNCERTAINTY ESTIMATION

Typically, neural networks are trained to generate predictions by minimizing a loss function that
quantifies an error between the predicted outcomes and the actual results. However, these networks
often lack a mechanism to express the level of confidence associated with their predictions. More-
over, in object detection, biases such as class imbalance can hinder a model’s ability to learn accurate
representations of real-world scenarios, as underrepresented classes may not be adequately captured
during training, leading to biased predictions and a failure to generalize effectively.

To address these challenges, we employ evidential deep learning in conjunction with an instance-
aware class balancing loss. Evidential deep learning (Sensoy et al., 2018; Amini et al., 2020) is a
framework that extends traditional neural networks by modelling uncertainty in predictions through
the use of evidence theory or the Dempster–Shafer Theory of Evidence (Dempster, 1968).

3.1 INSTANCE AWARE UNCERTAINTY ESTIMATION IN OBJECT CLASSIFICATION

In a classification task, the final layer of a neural network often uses an activation function like
softmax. The softmax function converts the raw output scores (logits) from the previous layer into
probabilities that sum to 1. This means that for a multi-class classification problem with K classes,
the output can be represented as:

pk =
ezk∑K
j=1 e

zj
, (1)

where zk are the logits for class k.

The softmax function provides a point estimate for class probabilities but does not inherently quan-
tify uncertainty. For instance, if the softmax outputs probabilities of [0.7, 0.2, 0.1], it indicates a
strong belief in the first class, but it does not express how confident the model is in that estimate or
how much it might vary with noisier inputs.
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Figure 1: Network architecture: We replace the conventional approach of learning point estimates
with the direct estimation of posterior distributions. For bounding boxes, we learn the Normal
Inverse Gamma (NIG) distribution for each parameter. Each decoder layer regresses estimates for the
target bounding box parameters sampling from a common distribution, the distribution parameters
are iteratively refined every layer. For classification, each decoder layer learns a Beta distribution
for all classes. We aggregate the outputs from all layers to quantify both aleatoric and epistemic
uncertainties.

To address this limitation, we aim to represent class confidence as a probability distribution rather
than as a single-point estimate. Typically, this is achieved by capturing the posterior distribution
through sampling from multiple runs. Utilizing the posterior distribution allows us to reflect the
likelihood of various outcomes and to better understand the uncertainty associated with predictions.
However, Sensoy et al. (2018) demonstrated that deep neural networks can directly estimate the
posterior distribution in a sampling-free manner by learning the parameters of a Dirichlet distribution
(Jsang, 2018), providing an end-to-end approach eliminating the redundant computational overhead.

The Dirichlet distribution is parameterized by a vector of positive reals, often referred to as pseudo-
counts, denoted as α = [α1, α2, . . . , αK ], where K is the number of classes and αk represents the
belief for the kth class. The probability density function of the Dirichlet distribution is given by:

D(p|α) =
1

B(α)

K∏
k=1

pαk−1
k , (2)

where p = [p1, p2, . . . , pK ] is a vector of probabilities such that pk ≥ 0 and
∑K

k=1 pk = 1. Here,
B(α) is the normalization constant, known as the K-dimensional multinomial beta function (Kotz
et al., 2019).

However, the number of samples, i.e., the frequency per class, can significantly impact the estimation
of parameters for the Dirichlet distribution. Class imbalance can substantially affect the performance
of models, leading to an overestimation of the likelihood for the majority class while underestimating
that of minority classes (Cui et al., 2019). This issue is particularly pronounced in object detection
scenarios, where class imbalance is challenging to address due to the varying densities of objects
present in each frame.

To address the challenges posed by class imbalance, RetinaNet (Lin et al., 2017) introduced the
focal loss for Faster R-CNN, specifically designed for dense object detection. The focal loss is an
adaptation of the standard cross-entropy loss that adds a modulating factor to the loss function, and
for a binary class can be represented as:

FL(p, y) =

{
−κ(1− p)γ log(p) if y = 1

−(1− κ)pγ log(1− p) otherwise,
(3)

where y ∈ [0, 1] denotes the class label, p ∈ [0, 1] the predicted class probability, κ a balancing
factor to address class imbalance, and γ a focusing parameter that adjusts the rate at which easy
examples are down-weighted. A higher value of γ puts more focus on hard-to-classify examples.

As explored by Mukhoti et al. (2020), the focal loss effectively self-calibrates the learned model
by minimizing a regularized Kullback-Leibler (KL) divergence between the predicted and target
distributions. This approach not only reduces the KL divergence but also enhances the entropy of
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the predicted distribution, thereby mitigating the risk of the model becoming overconfident in its
predictions.

Building on this, VFNet (Zhang et al., 2021) introduced the varifocal loss, which also incorporated
localization by integrating an Intersection over Union (IoU)-aware Classification Score (IACS). The
score could serve as a joint representation of both object presence confidence and localization accu-
racy, further refining the model’s ability to handle class imbalance in dense object detection scenar-
ios. The varifocal loss can be defined as:

VFL(p, q) =

{
−q(qlog(p) + (1− q)log(1− p)) q > 0

−κpγ log(1− p) q = 0,
(4)

where p is the predicted IACS score and q denotes the target score. The value of q is determined by
the IoU between the predicted bounding box and the ground truth.

Instance-aware uncertainty estimation In light of these insights, we present a new instance-
aware uncertainty estimation scheme. Instead of employing a multivariate Dirichlet distribution, we
learn the parameters of a univariate Beta distribution (Forbes et al., 2011) and individually model
and modulate uncertainty for each class, and overcome class imbalance.

The Beta distribution is characterized by two positive parameters, α and β. Here, α represents the
evidence supporting that an object belongs to the class, while β reflects the evidence indicating that
the object is not of that class, and is part of the background respective to the class. The problem
can also be framed as learning the ‘objectness‘ of feature representations for that class. For each
class, we gather evidence of whether the detected feature representation is an object or not an object.
From Equation (2), the probability density function of the Beta distribution for a binary class can be
defined as:

B(p|α, β) = pα−1(1− p)β−1

B(α, β)
. (5)

The probability p and uncertainty u for a binary class can be computed as:

p =
α

α+ β
, u =

2

α+ β
. (6)

We also introduce a few changes to the sum of squares loss proposed by (Sensoy et al., 2018) for
uncertainty estimation. Unlike Sensoy et al. (2018), we apply an exponent rather than the ReLU
function to derive our evidence, as empirically it performs better. Given a sample i, let f(xi|Θ) de-
note the evidence vector predicted by the network for classification, where Θ represents the network
parameters. As illustrated in Fig 1, for each class k, the network outputs parameters αik and βik

for its corresponding Beta distribution, where αik = exp(zαk) + 1, βik = exp(zβk) + 1, and zαk,
zβk are the output logits. Let yi be a one-hot vector encoding the ground-truth class of observation
xi and yik = 0 for all k ̸= j. We can plug in the parameters into the sum of squares evidential
classification loss proposed by (Sensoy et al., 2018) where:

Li(Θ) =

K∑
j=1

(yij − pij)
2 +

pij(1− pij)

αij + βij + 1
. (7)

Then, we introduce IoU scores to integrate localization accuracy and compute instance-aware class
weights, which can be applied as:

WIoUi
=

K∑
j=1

κjp
γj

ij (1− yij) + qij , (8)

where κj is the class balancing factor, γj class-specific focusing parameter, yij a binary label, and
qij the IoU between the predicted bounding box and the ground truth. The class confidence is
down-weighted for samples with a lower IoU score.

“I don’t know” regularization A Beta distribution with no evidence is equivalent to a uniform
distribution, implying all outcomes are equally unlikely. To maintain predictions in line with this
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notion of uncertainty, characterized by “I don’t know,” Sensoy et al. (2018) added an adversarial
KL divergence term to the loss function. This term ensures that predictions remain conservative
and do not become overly confident in situations where there is insufficient information about the
outcomes.

However, in the context of object detection, the adversarial regularization hinders learning and
causes training instability, as the background uncertain predictions heavily outnumber the limited
instances of foreground classes. For object classification, Sensoy et al. (2018) proposed an annealing
loss to prevent premature convergence to the uniform distribution for misclassified samples, which
could potentially be classified correctly in later epochs.

Uncertainty aware self-calibration To alleviate the adversarial interaction, we let the model be
self-aware of its uncertainty and introduce self-calibration regularization. Our method not only
stabilizes training but implicitly calibrates the model. The evidence is dynamically weighed based on
the confidence of the predictions. When the predicted probability deviates from the actual outcome,
the regularization term is increased, thereby reducing the accumulated evidence and forcing the
distribution towards a state of maximum uncertainty. Conversely, when the predicted probability
aligns closely with the actual outcome, the regularization term is decreased, allowing the model to
accumulate more evidence, and reinforcing the learned distribution. This approach ensures that the
model remains adaptable, penalizing overconfident predictions that are incorrect while encouraging
exploration of the parameter space when uncertainty is high.

We extend the standard evidential loss by incorporating the model calibration error to dynamically
modulate uncertainty regularization. The loss is then weighted with the IoU score for instance-aware
uncertainty estimates. The overall calibrated evidential classification loss function can be defined
as:

Lclass(Θ) =

L(Θ) + λann |y − p|︸ ︷︷ ︸
Model Calibration Error

LKL

⊙ WIoU︸ ︷︷ ︸
Instance-Aware Weight

, (9)

where LKL is the adversarial KL divergence loss and λann is the annealing regularization coeffi-
cient.

3.2 UNCERTAINTY AWARE OBJECT LOCALISATION

In a typical bounding box regression task, the objective is to learn a function f(x;Θ) that can accu-
rately estimate the average correct output for a given input. This is usually achieved by minimizing
the mean squared error loss, defined as:

Li(Θ) =
1

2
||yi − f(xi; Θ)||2. (10)

While this formulation effectively trains the model to approximate the expected bounding box coor-
dinates, it does not account for its prediction uncertainty. Specifically, it lacks any explicit represen-
tation of the underlying noise or variability in the data during the estimation process.

Amini et al. (2020) explain how the Dirichlet distribution can be further exploited for the task of
learning the epistemic and aleatoric uncertainty in regression. The Dirichlet distribution is typically
well-suited for modelling uncertainty in scenarios with categorical outcomes. However, by treating
multiple detections of the same object as samples from a distribution, we can leverage the Dirichlet
distribution to capture the variability in localisation predictions.

We assume the target bounding boxes parameters—specifically, the center coordinates cx, cy and the
dimensions w (width) and h (height)—as being drawn from their respective Gaussian distributions.
Each of these parameters is characterized by an unknown mean µ and an unknown variance σ2. For
each bounding box parameter, we aim to estimate the Gaussian prior for the unknown mean and the
Inverse-Gamma prior for the unknown variance,

(y1, ..., yN )t ∼ N (µt, σ
2
t ), for t ∈ {cx, cy, w, h}, (11)

µt ∼ N (γt, σ
2
t v

−1
t ), σ2

t ∼ Γ−1(αt, βt),

where Γ(.) is the gamma function, m = (γ, v, α, β), and γ ∈ R, v > 0, α > 1, β > 0.
For every bounding box parameter, our aim is to estimate a posterior distribution q(µ, σ2) =

6
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p(µ, σ2|y1, ..., yN ) which we can approximate as the Gaussian conjugate prior, i.e., the Normal
Inverse Gamma (NIG) Amini et al. (2020) as follows:

p(µ, σ2︸ ︷︷ ︸
θ

| γ, υ, α, β︸ ︷︷ ︸
m

) =
βα

√
υ

Γ(α)
√
2πσ2

(
1

σ2

)α+1

exp

{
−2β + υ(γ − µ)2

2σ2

}
. (12)

The evidential regression loss, proposed by Amini et al. (2020), can be defined as:

LNLL
i (Θ) = 1

2 log
(
π
υ

)
− α log(Ω) +

(
α+ 1

2

)
log((yi − γ)2υ +Ω) + log

(
Γ(αt)

Γ(α+ 1
2 )

)
, (13)

LR
i (Θ) = |yi − γ| · (2υ + α), (14)

Li(Θ) = LNLL
i (Θ) + λLR

i (Θ), (15)

where Ωt = 2βt(1 + υt). The bounding box then can be parameterized by the mean of the NIG

distribution as b̂ = {γcx, γcy, γw, γh}. To account for different bounding box scales, we also incor-
porated a generalized IoU loss Liou(., .) (Rezatofighi et al., 2019) that is scale-invariant. The overall
evidential bounding box regression loss can be formulated as:

Lbbox =

N∑
i=1

(
Li(Θ) + λIoULIoU(bi, b̂i)

)
, (16)

where bi is the ground truth bounding box.

3.3 UNCERTAINTY AWARE OBJECT DETECTION

We extend DETR (Carion et al., 2020), a transformer-based object detection network, into an
uncertainty-aware framework by integrating evidential deep learning into its architecture. How-
ever, our approach is easily extensible and can be applied to any subsequent DETR iterations (Zhu
et al., 2020; Zhao et al., 2024). DETR models leverage the attention mechanisms in the encoder-
decoder architecture of transformers for the task of detection, treating it as an unordered sequence,
i.e. a set prediction problem, rather than relying on traditional methods that involve region proposal
networks and non-maximum suppression.

Fig 1 illustrates our network architecture. The transformer decoder consists of multiple decoder
layers where each layer outputs an estimation. Each decoder layer contributes to progressively
refining the object query, allowing the model to better manifest the relationships between objects
and their contexts in the image.

For localization, our aim is to learn the parameters of the higher-order, evidential distribution. We
assume the estimates are drawn from the same Gaussian, and as we gather more evidence over
multiple layers, for every layer, we iteratively refine the parameters of the Normal Inverse-Gamma
distribution (NIG). For bounding box estimates given a NIG distribution, we can compute the pre-
diction, aleatoric, and epistemic uncertainty as follows:

E[µ] = γ︸ ︷︷ ︸
prediction

, E[σ2] = β
α−1︸ ︷︷ ︸

aleatoric

, Var[µ] = β
υ(α−1)︸ ︷︷ ︸

epistemic

. (17)

For classification, the aleatoric uncertainty can be defined as the variance of the beta distribution
which can be calculated as follows:

Var(θk) =
αkβk

(αk + βk)2(αk + βk + 1)
. (18)

To quantify epistemic uncertainty, we consider the ensemble of predictions from multiple decoder
layers. Each layer provides an estimate of the class probabilities, which can be treated as samples
from a distribution of possible models. We compute the mutual information between the predictions
and the model parameters (Steuer et al., 2002).
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Table 1: In-Domain object detection performance and Detection-Expected Calibration Error (D-
ECE) on the KITTI detection benchmark.

Model Car ↑ Pedestrian ↑ Cyclist ↑ D-ECE ↓

Baseline Easy Medium Hard Easy Medium Hard Easy Medium Hard

CenterNet 95.2 87.3 79.0 76.6 61.1 52.5 73.5 54.4 48.6 5.8
DETR 6.2 11.6 14.8 14.0 18.4 17.8 10.0 8.0 8.2 87.0
D-DETR 93.6 84.2 77.4 70.0 60.2 54.0 66.0 47.4 44.8 9.4
RT-DETR 95.9 92.6 88.3 84.9 77.5 71.7 82.5 65.3 62.5 8.3

Evidential Deep Learning

EvCenterNet 96.1 88.0 86.5 74.9 66.0 58.0 82.1 63.4 58.1 4.5

Instance-Aware (Ours)

DETR (+EDL) 94.3 84.0 77.3 78.0 69.5 63.0 66.5 50.3 48.4 7.9
D-DETR (+EDL) 95.8 85.1 79.2 76.5 65.3 58.5 68.9 52.0 47.2 4.6
RT-DETR (+EDL) 97.0 93.9 89.8 88.1 80.4 74.0 85.3 68.3 65.8 2.7

Uncertainty-aware ranking DETR establishes a one-to-one correspondence and addresses a
global optimization problem utilizing self-attention to generate a distinct bounding box for each
prediction. During training, DETR employs Hungarian matching (Kuhn, 1955) which guarantees
that each predicted object has a unique match with a ground truth label. However, this results in
training instability and slow convergence. DETR operates with a fixed set of predetermined queries,
which necessitates careful selection of a subset of these queries to ensure effective performance.

Several solutions have been proposed to address these challenges. Deformable DETR (D-DETR)
(Zhu et al., 2020) introduced a multi-scale deformable attention mechanism, which enables the net-
work to dynamically sample locations based on the input features. RT-DETR (Zhao et al., 2024)
further iterates the approach by incorporating query denoising techniques and implementing an
uncertainty-minimal query selection scheme.

In this work, we present a probabilistic framework for Hungarian matching. In situations where
multiple predictions may correspond to a single ground truth, evidential learning aids in resolving
ambiguities by offering a probabilistic approach. The model evaluates the likelihood of each po-
tential match, enabling it to make more informed decisions regarding the association of predictions
with ground truths. By providing richer information about uncertainty, evidential learning enhances
the training signals, leading to improved convergence and performance in the matching process.
Consequently, the model becomes more adept at distinguishing between confident and uncertain
predictions

4 EVALUATION

We incorporate our instance-aware uncertainty framework into DETR (Carion et al., 2020),
Deformable-DETR (Zhu et al., 2020), and RT-DETR (Zhao et al., 2024). We use EvCenterNet
(Nallapareddy et al., 2023) as our evidential deep learning baseline, along with Cal-DETR (Munir
et al., 2024) and BPC (Munir et al., 2023) as our calibration baselines.

Datasets The networks are trained on KITTI (Geiger et al., 2012) and Cityscapes (Cordts et al.,
2016). To demonstrate their generalization, out-of-domain evaluation is conducted on BDD100K
(Yu et al., 2020), nuImages (Caesar et al., 2020), and Foggy Cityscapes (Sakaridis et al., 2018). The
KITTI dataset consists of 3,712 images for training and 3,769 for evaluation and includes 3 classes:
car, pedestrian, and cyclist. The Cityscapes dataset consists of 2,975 training images and 500
validation images, including 8 classes: person, rider, car, truck, bus, train, motorbike, and bicycle.
BDD100K includes 10,000 images for the validation set and features the same classes as Cityscapes.
Foggy Cityscapes is a foggy version of Cityscapes, which includes 500 validation images simulated
with severe fog, used for evaluation in an out-of-domain scenario. The nuImages validation set is
composed of 3,249 images, and the car and pedestrian classes are used for evaluation.
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Table 2: Out-Domain object detection performance trained on KITTI and evaluated on BDD100k
and nuImages demonstrating improved generalization on COCO AP50 metric.

Model BDD100k (AP50) nuImages (AP50) Model BDD100k (AP50) nuImages (AP50)

Baseline Car ↑ Pedestrian ↑ Car ↑ Pedestrian ↑ Evidential Deep Learning Car ↑ Pedestrian ↑ Car ↑ Pedestrian ↑

CenterNet 30.8 19.2 44.3 23.7 EvCenterNet 33.4 23.3 46.5 26.3
DETR 8.0 3.1 12.3 4.2 DETR (+EDL) 35.7 17.9 44.8 24.6
D-DETR 31.6 23.1 40.6 23.4 D-DETR (+EDL) 37.2 28.6 47.3 27.9
RT-DETR 41.6 30.9 48.7 30.5 RT-DETR (+EDL) 43.6 36.0 54.2 38.2

Table 3: Object detection and calibration performance against baseline calibration methods on
Deformable-DETR (D-DETR) measured against D-ECE and COCO AP.

Model In-Domain (Cityscapes) Out-Domain (Foggy Cityscapes) Out-Domain (BDD100k)

D-ECE ↓ mAP ↑ mAP50 ↑ D-ECE ↓ mAP ↑ mAP50 ↑ D-ECE ↓ mAP ↑ mAP50 ↑

D-DETR 13.8 26.8 49.5 19.5 17.3 29.3 11.7 10.2 21.9
BPC 9.9 26.8 48.7 12.5 17.7 30.2 10.6 11 23.6
Cal-DETR 8.4 28.4 51.4 11.9 17.6 29.8 11.4 11.1 23.9
D-DETR (+EDL) 9.1 35.7 56.8 10.2 26.9 40.7 10.7 18.3 32.9

Evaluation metrics We utilize the KITTI evaluation benchmark to assess in-domain object detec-
tion performance on the KITTI dataset, and we use the COCO Average Precision (mAP) (Lin et al.,
2014) for other datasets. Additionally, we employ detection expected calibration error (D-ECE)
(Kuppers et al., 2020) to evaluate network precision error.

4.1 QUANTITATIVE RESULTS

Our uncertainty-aware network improves upon the baseline methods and effectively generalizes to
more diverse and imbalanced datasets. In Table 1, the KITTI benchmark differentiates between
’easy’ detections and more challenging detections that involve heavy occlusions and varying light-
ing conditions. Our instance-aware framework demonstrates a substantially lower D-ECE error,
indicating that the network is both accurate and more confident in its predictions and can better
navigate the challenges posed in real-world driving scenarios. DETR relies on the computation-
ally expensive operation of self-attention in transformers and has necessitated various optimization
techniques, such as multi-scale inputs, deformable attention and query denoising in subsequent iter-
ations. Our efforts show that incorporating a self-calibrating probabilistic framework during training
helps modulate self-attention within transformer networks and has the potential to be expanded to
other attention-based networks.

Table 2 demonstrates that our instance-aware uncertainty framework can generalize effectively, even
when fine-tuned on only a few thousand images. Compared to the previous evidential deep learning
baseline, EvCenterNet, our method incorporates uncertainty within transformer networks, and our
instance-aware weighting scheme shows a clear improvement for the underrepresented Pedestrian
class, which had a heavily imbalanced training dataset with 10,608 instances of cars and only 1,654
instances of pedestrians.

In Table 3, we train on Cityscapes and evaluate on Foggy Cityscapes and BDD100K. All datasets
share the same overall classes. Both BPC (Munir et al., 2023) and Cal-DETR (Munir et al., 2024)
leverage train-time calibration losses and rely on a large amount of data to effectively improve
detection performance. By comparison, our method significantly improves generalization and de-
tection performance. We achieve a higher detection performance and the drop when moving from
Cityscapes to Foggy Cityscapes is comparable to similar methods and our method generalizes much
better when evaluated on BDD100K.

Ablation and analysis In Table 4, we conduct an ablation study on the novel components in-
troduced in the paper. The original implementation proposed by Sensoy et al. (2018) cannot be
easily extended to dense object detection, and the evidential framework fails against the overwhelm-
ing class-imbalanced datasets. Our IoU-aware weighing mechanism modulates the foreground-
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Table 4: Ablation study on Deformable DETR on the various components introduced in the paper
against D-ECE and COCO AP. The networks were trained for 12 epochs.

Model Cityscapes Cityscapes → BDD100k KITTI KITTI → BDD100k [Car Only]

D-ECE ↓ AP ↑ D-ECE ↓ AP ↑ D-ECE ↓ AP ↑ D-ECE ↓ AP ↑

D-DETR 16.3 21.7 12.6 6.4 11.4 31.2 13.7 21.4
D-DETR + Standard EDL 78.3 2.4 83.6 0.8 82.6 11.4 23.7 4.2
D-DETR + IoU Aware Weights 13.6 27.4 14.2 10.6 9.6 38.3 10.4 23.4
D-DETR + Self-Calibration Regularization 9.6 30.5 11.7 14.3 4.9 43.2 5.3 26.9
D-DETR + Hungarian Matching 9.5 30.9 11.7 14.4 4.9 43.1 5.2 27.1

Figure 2: Qualitative results from Deformable-DETR on BDD100K, KITTI, and Foggy Cityscapes,
in that order. The top figures represent the baseline D-DETR, while the bottom figures incorporate
our uncertainty framework. The green lines indicate the mean, while the blue lines represent uncer-
tainty within the width and height at different confidence thresholds. The centers are kept at their
mean values without applying uncertainty estimates.

background imbalance and evidential deep learning is very effective in improving generalization
of detection performance. However, the adversarial nature of forcing the model to remain uncertain
diminishes the true potential of the evidential framework. By enabling the model to be self-aware
of its uncertainty, it is able to implicitly calibrate its performance and improve confidence in its pre-
dictions. Finally, we integrate the estimated uncertainties as an application within the network itself
and utilize them to address the global optimization problem for DETR models, which are designed
to learn one-to-one correspondences for detections.

4.2 QUALITATIVE RESULTS

In Figure 2, the qualitative results demonstrate that, compared to the baseline D-DETR, our
uncertainty-aware model exhibits significantly greater confidence in its predictions, particularly for
occluded and partially out-of-view vehicles. Furthermore, we can predict distributions of bounding
boxes and learn their variance to effectively model uncertainty for downstream applications. Never-
theless, due to our IoU-aware weighting scheme, confidence and IoU are correlated; generally, only
bounding boxes with high IoU and low variance will exhibit high confidence.

5 CONCLUSIONS

The results are quite impressive and highly applicable to many real-world scenarios where pre-
trained networks are fine-tuned on datasets with limited samples, particularly in safety-critical ap-
plications. The calibration performance is comparable to that of other state-of-the-art methods,
while our approach also improves detection performance.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

Datasets and metric The network was trained on KITTI and Cityscapes and evaluated on
KITTI, Cityscapes, Foggy Cityscapes, BDD100K, nuImages. For evaluation, Cityscape and Foggy
Cityscapes were resized to [1024, 512] from [2048, 1024], and BDD100K and nuImages to a res-
olution of [896, 512] from [1280, 720] and [1600, 900] respectively. We used the official KITTI
benchmark, pycocotools, and netcal for evaluating KITTI metrics, COCO metrics and D-ECE. D-
ECE was evaluated using a bin size of 10, IoU threshold of 0.5, and score threshold of 0.3.

The network was trained on a single GPU with 24GB VRAM.

All baseline models followed their respective training schemes. All Evidential DETR models fol-
lowed a common training scheme unless stated otherwise so they could also be directly compared
against each other.

Implementation details We used Resnet-50 backbone for all the different DETR models and
used the default COCO weights the models were originally trained on. The default architecture
parameters were used and the following is a list of shared hyperparameters.

Table 5: E-DETR shared parameters.

Item Value

epochs 24
optimizer AdamW

base learning rate 1e-4
backbone learning rate 1e-5

freezing BN True
weight decay 1e-3

clip gradient norm 0.1
λann start 0.0
λann end 0.1

λann linear decay steps 7420
lr decay rate 0.1
lr step size 7420

cudnn benchmark True
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A.2 EXTRA EVALUATIONS

Table 6: COCO vs Corrupted COCO on E-DETR (D-DETR) trained for 12 epochs measured against
D-ECE and COCO AP.

COCO Corrupted COCO
D-ECE ↓ mAP ↑ D-ECE ↓ mAP ↑

10.3 38.3 10.7 14.7

Table 7: Cityscapes vs Corrupted Cityscapes on E-DETR (D-DETR) trained for 12 epochs measured
against D-ECE and COCO AP.

Cityscapes Corrupted Cityscapes
D-ECE ↓ mAP ↑ D-ECE ↓ mAP ↑

9.6 30.5 9.9 12.6

Table 8: Sim10K vs BDD100K (Car) on E-DETR (D-DETR) trained for 12 epochs measured against
D-ECE and COCO AP.

Sim10K BDD100K
Model D-ECE ↓ AP ↑ D-ECE ↓ AP ↑

BCH 6.1 65.4 6.3 23.4
Cal-DETR 6.2 65.9 6.3 23.8
E-DETR 7.4 61.3 7.2 20.6
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