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Abstract
Filtering data, especially when the data has001
been scraped from the Internet, has long been002
known to improve model performance. Re-003
cently, it has been shown that an effective filter004
can be created by using large language mod-005
els (LLMs) to create synthetic labels, which006
are then used to train a smaller neural model.007
However, this approach has mainly been tested008
in English. Our paper extends this approach009
to languages beyond English, including lan-010
guages not officially supported by LLMs. We011
validate our results on the downstream task of012
NMT and demonstrate that our approach is ef-013
fective at both filtering parallel text for transla-014
tion quality and filtering for domain specificity.015
Additionally, we find that using a classification016
objective is more performant and robust than017
a regression objective at low data thresholds018
when training our filtering models.019

1 Introduction020

Increasing model scale and larger pre-training021

datasets have fueled recent advances in the world of022

LLMs. Beyond scale, other pre-training data char-023

acteristics also significantly impact downstream024

tasks, such as de-duplication and removing low-025

quality examples (Touvron et al., 2023; Young026

et al., 2024). An interesting approach that has re-027

cently been proposed is training filtering models028

on synthetic labels, which are generated by prompt-029

ing LLMs (Grattafiori et al., 2024; Abdin et al.,030

2024; Penedo et al., 2024a; Lozhkov et al., 2024).031

Such filtering models can be efficiently run on very032

large corpora, such as pre-training data, to select033

the most appropriate examples for training. Due to034

the flexibility of designing prompts, this pipeline is035

especially appealing, enabling data to be filtered on036

criteria beyond quality without requiring labelled037

data and thereby tailoring the selected pre-training038

data to the eventual downstream task.039

The FineWeb project by Penedo et al. (2024a)040

observed that by filtering pre-training data towards041

educational content, they were able to not only 042

obtain a 4% improvement on the MMLU bench- 043

mark (Hendrycks et al., 2021) but also to converge 044

quicker when compared to non-filtered baseline. 045

The educational content filter was a classifier based 046

on synthetic LLM-labeled data, and the approach 047

was validated via training a 1.71B model on 350 048

billion tokens; however, the study was centred on 049

enhancing performance exclusively in English. Al- 050

though the experiment validates the methodology’s 051

effectiveness for English downstream tasks, the 052

technique could also be beneficial for other lan- 053

guages, where data quality is even more crucial 054

given the overall scarcity of resources. This work 055

attempts to unravel one unexplored axis of syn- 056

thetic filtering: the method’s efficacy beyond En- 057

glish. From here on, we refer to this approach 058

as MDFS (Multilingual Data Filtering using Syn- 059

thetic Data). 060

We investigate and evaluate MDFS via the Neu- 061

ral Machine Translation (NMT) task. NMT is an 062

excellent downstream task for a series of reasons. 063

First, it has an established history of a range of data 064

filtering WMT shared tasks (Conference on Ma- 065

chine Translation, Koehn et al., 2018, 2019, 2020). 066

Secondly, NMT models are reasonably cheap to 067

train compared to LLMs, allowing us to run a suite 068

of experiments investigating different setups for fil- 069

tering multilingual data using MDFS, which would 070

be prohibitively expensive if done with LLMs. Ad- 071

ditionally, NMT has a history of neural QE (Qual- 072

ity Estimation) metrics such as COMET-KIWI or 073

BLEURT (Rei et al., 2022; Sellam et al., 2020), 074

which are effective at filtering training data (Peter 075

et al., 2023). Hence, we can employ such QE mod- 076

els trained on hand-made, high-quality annotations 077

as a robust filtering baseline. We use MDFS as 078

an instance of a synthetic, LLM-labeled quality es- 079

timator and validate the approach under different 080

NMT setups that range from general translation 081

tasks to domain adaptation in various languages. 082
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As we initially stated, the most significant appeal083

of MDFS is the flexibility to filter based on any cri-084

teria simply by adjusting the prompt. We, therefore,085

run two sets of experiments to establish the efficacy086

of MDFS for non-English languages. Firstly, we087

train En→De and En→Ar NMT systems filtered088

only for translation quality to analyse the MDFS089

pipeline for non-English languages when compared090

to QE filtering using models trained on human an-091

notations. Secondly, we train En→Ar and En→Ro092

NMT systems which are trained with data filtered093

for medical content.094

We summarise our contributions as follows:095

• We explore LLM-based data filtering tech-096

niques for multiple languages and validate097

them on machine translation - showing that098

they work for both filtering on the source and099

target sides.100

• We show that LLM-based filtering is effective101

beyond pure quality filtering by allowing us to102

filter for domain. We show that LLM filtering103

has benefits over baseline keyword filtering.104

• We explore filtering the LLM scores as classes105

or regression models. We find that classifica-106

tion is superior as it is more robust for non-107

English languages at very small cutoff thresh-108

solds.109

2 Related Work110

Penedo et al. (2024a) introduce FineWeb-Edu,111

and demonstrate a 4% increase on MMLU and112

a 11% increase on the ARC benchmark (Clark113

et al., 2018). Similar approaches were also used114

when training the Llama and Phi family models115

(Grattafiori et al., 2024; Abdin et al., 2024). Our116

work also experiments with filtering models trained117

from synthetic labels. However, unlike these works,118

we investigate filtering in non-English contexts and119

experiment with different approaches for the filter-120

ing models.121

Since the advent of NMT, it has been known122

that low amounts of noise in the training data can123

lead to erroneous translations (Koehn et al., 2018).124

As such, NMT has a history of data filtering, es-125

pecially for scraped corpora such as ParaCrawl126

(Bañón et al., 2020). A series of cleaning tasks127

for parallel data (Koehn et al., 2018, 2019, 2020)128

resulted in the development of several cleaning129

models for NMT, including LASER (Schwenk130

and Douze, 2017) embedding based models and131

BICLEANER (Sánchez-Cartagena et al., 2018; 132

Ramírez-Sánchez et al., 2020). Later Zaragoza- 133

Bernabeu et al. (2022) released an updated BI- 134

CLEANER that incorporates a neural model. BI- 135

CLEANER is used to filter public corpora such as 136

ParaCrawl. Compared to our work, these models 137

all focus on removing training examples that are 138

not mutual translations of each other rather than 139

picking the best translations and can only filter for 140

quality. 141

Peter et al. (2023) compare filtering training data 142

using BICLEANER (Zaragoza-Bernabeu et al., 143

2022) to filtering using COMET-KIWI, a QE model 144

for NMT. The authors filter 50% the WMT 23 145

(Kocmi et al., 2023) training data for three language 146

pairs and show that filtering with COMET-KIWI 147

leads to improved COMET scores. They highlight 148

that filtering with QE metrics discriminates in a 149

more fine-grained manner. Our approach can also 150

be used to filter for criteria beyond quality and can 151

also be used to filter only monolingual data. Addi- 152

tionally, we experimented with filtering at different 153

thresholds. 154

3 Filtering Pipeline 155

We begin by describing the outline of the MDFS 156

pipeline in the context of both the translation qual- 157

ity and medical domain NMT experiments before 158

discussing each pipeline stage in more detail. 159

3.1 MDFS 160

We adopt the pipeline introduced by Penedo et al. 161

(2024a), which consists of three stages. First, we 162

use an LLM to score approximately 500,000 sen- 163

tences based on the task criteria. Similarly to 164

Penedo et al. (2024a), we follow Yuan et al. (2024) 165

and use an additive prompt. The filtering crite- 166

ria are divided into a 5-point scale, and the LLM 167

is instructed to determine a score on a point-by- 168

point basis; the total score is the sum of the points 169

awarded. The translation quality and medical do- 170

main task prompts are given in Appendix A. We 171

use Llama-3.1-70B-Instruct1 to generate the synthetic 172

labels. As the primary benefit of this approach 173

is using out-of-the-box LLMs to create synthetic 174

training data, we avoid using specifically multi- 175

lingual LLMs such as Tower (Alves et al., 2024), 176

which are trained on human-labelled DA (Direct 177

Assessment) and MQM (Multidimensional Quality 178

1
https://huggingface.co/meta-llama/Meta-Llama-3.

1-70B-Instruct
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Metrics) data.179

The next step is training our MDFS filtering180

models using the synthetic labels generated from181

the LLM. The lightweight models are based on182

pre-trained encoder models, specifically XLMR183

(Conneau et al., 2020). Our experiments explore184

training the models with either linear regression185

or classification as an objective. During training,186

we finetune all model parameters with a classifica-187

tion or regression head architecture similar to the188

COMET models (Rei et al., 2020).189

Finally, we filter our NMT training data with190

the filtering models trained in stage two. In or-191

der to evaluate the performance, we threshold our192

training set according to the number of sentences193

used to train the NMT models. For each threshold,194

we then select the best sentences according to the195

scores assigned by the filtering model. We use the196

continuous scores for models trained with a lin-197

ear objective function to select the best sentences.198

As the classification objective function only gives199

us a categorical ranking, we select categories of200

sentences until we exceed the threshold; when we201

exceed the threshold, we use a random sample of202

the current category to make up the training data.203

3.2 Translation Quality204

These experiments aim to understand the best205

pipeline for filtering multilingual data. Using par-206

allel data, we train the MDFS filtering models207

by concatenating the source and target sentences.208

Therefore, the model can access both English and209

non-English sentences when scoring an example.210

We select one high-resource language pair, En-De,211

which Llama-3.1-70B-Instruct fully supports and is212

also part of the human-labeled DA data used to213

train COMET-KIWI. En-Ar is not officially sup-214

ported by Llama-3.1-70B-Instruct or in the COMET-215

KIWI training and in a non-Latin script.216

3.3 Medical Domain217

Unlike the translation quality experiments, we filter218

only the source or the target side, the reasons for219

which are twofold. Firstly, this makes the setup220

more comparable to filtering LLM training data221

for task-specific monolingual data. Secondly, it al-222

lows us to evaluate the differences observed when223

filtering on the English and the non-English side.224

We select En→Ar and En→Ro as both target lan-225

guages are not supported by Llama-31-70B-Instruct226

and have available medical data to evaluate the227

NMT models. As we can directly compare it to228

filtering the English sentences, we did not include 229

another officially supported language. 230

4 MDFS MODELS 231

All of our experiments use NMT as a downstream 232

task; however, the specific setup varies for the trans- 233

lation quality and medical domain experiments. 234

4.1 Training Data 235

All experiments start with a set of training data of 236

which a small portion is removed to train an MDFS 237

filtering model for the given downstream task. For 238

the En→De translation quality experiments, we use 239

ParaCrawl data used in the WMT23 campaign as 240

training data (Kocmi et al., 2023; Esplà et al., 2019). 241

For the En→Ar translation quality experiments, we 242

use the CCMatrix dataset (Schwenk et al., 2021). 243

For En→Ar we use CCMatrix and ELRC 244

Wikipedia-Health2 corpus comprising of 15,130 245

sentences. For En→Ro, we combine CCMatrix, 246

ParaCrawl and 783,742 sentences from ELRC- 247

EMEA.3 All the training data was downloaded 248

from OPUS (Tiedemann, 2012). 249

4.2 LLM Labeling 250

In order to train our filtering models, we la- 251

bel a small subset of our training datasets with 252

Llama-3.1-70B-Instruct. We randomly remove a 253

small amount of the parallel training data for the 254

translation quality experiments, which the LLM 255

then labels. Randomly selecting from the entire 256

training data for the domain filtering task is prob- 257

lematic as the medical sentences constitute only a 258

small proportion of the training data. Hence, the 259

sampled data would be significantly unbalanced. 260

For En→Ar, we realistically address this by filter- 261

ing the datasets using a curated list of 30 English 262

medical keywords (Appendix B). We then sample 263

50%. 264

4.3 Filtering Models 265

Having obtained synthetic labels for 400,000- 266

500,000 sentences, we use 1000 sentences as a 267

validation set and 10,000 sentences as a test set for 268

each experiment, with the rest being used to train 269

the MDFS models. We also removed all sentences 270

for which the LLM either did not generate a score, 271

or the score was in the wrong format. Based on 272

higher validation F1-scores for the translation qual- 273

ity task, we run all further experiments with full 274

2https://elrc-share.eu/elrc-wikipedia-health
3https://elrc-share.eu/elrc-emea

3

https://elrc-share.eu/repository/browse/covid-19-health-wikipedia-dataset-bilingual-en-ar/f9019bde8de811ea913100155d026706d2e1ada233b5473f826a75d404c09c5f
https://elrc-share.eu/repository/browse/bilingual-corpus-made-out-of-pdf-documents-from-the-european-medicines-agency-emea-httpswwwemaeuropaeu-february-2020-en-mt/388ebb0e862511ea913100155d02670638ea7d4577004c97a1862ed7066fbf5f/


pre-training and first expand the hidden dimension275

in the classification head similar to the COMET276

models. We report results for both a linear regres-277

sion and a classification objective function. As the278

test set is created with labels from the LLM, we are279

only evaluating how well our filtering models can280

replicate the scores generated by the LLM; in the281

case of linear regression, we follow the Fine-Web282

Edu authors (Penedo et al., 2024a) and truncate283

and round the continuous scores to obtain ordinal284

scores. We train for 20 epochs and select the best285

model using the macro-averaged F1-score on the286

validation set. We base our hyper-parameter selec-287

tion on the COMET-KIWI paper (Rei et al., 2022).288

All models are trained with data mixed from both289

scoring directions, resulting in bidirectional scor-290

ing models.291

4.4 Filtering Approaches292

We compare the following approaches to filtering293

the NMT training set.294

RANDOM: Our first baseline randomly selects295

sentences from the training data for filtering.296

297

COMET-KIWI: Our second baseline uses298

COMET-KIWI scores to filter the data. COMET-299

KIWI is a QE model trained on human direct300

assessment data, which has been shown to improve301

NMT metrics when used for filtering training data302

(Peter et al., 2023). Additionally, COMET-KIWI303

is a compelling baseline because it uses the same304

pre-trained model as our MDFS models, XLMR.305

We only use this baseline for the translation quality306

experiments where we filter on bilingual text.307

308

KEYWORDS: For the medical domain experi-309

ments, our second baseline filters the English side310

of the training corpus with a curated list of 30311

medical keywords. Keywords are a quick and312

simple method for filtering domain-specific data313

but could be less effective in morphologically314

richer languages than English.315

316

MDFS-LINEAR: Linear refers to our filtering317

model trained on the synthetic LLM labels by318

finetuning all parameters and training with a linear319

regression objective function.320

321

MDFS-CLASSIFICATION: Classification refers322

to our filtering model trained on the synthetic LLM323

labels by finetuning all parameters and training324

with a classification objective function. 325

4.5 MDFS Results 326

Table 1 and 2 give the F1-scores evaluated on the 327

LLM labelled test set for the MDFS models. Re- 328

sults are given when thresholding at scores of 3, 329

4 and 5, where the linear scores are clipped and 330

rounded to obtain ordinal values. Hence, F1-scores 331

show how well the MDFS models can replicate the 332

labels generated by LLM. 333

Model MDFS-LINEAR MDFS-CLASS

Thresh 3 4 5 3 4 5

En→De 0.908 0.777 0.640 0.908 0.782 0.644
De→En 0.920 0.673 0.381 0.890 0.670 0.430

En→Ar 0.920 0.757 0.398 0.918 0.745 0.385
Ar→En 0.934 0.804 0.570 0.929 0.791 0.571

Table 1: F1-scores for MDFS-LINEAR and MDFS-
CLASS for the translation quality experiments. Bold
numbers indicate the higher F1-score when compar-
ing MDFS-LINEAR and MDFS-CLASS for the same
threshold and scoring direction.

When thresholding at 3, the lowest F1-score 334

observed for either experiment is 0.890, for the 335

De→En translation quality classification model. 336

Demonstrating that in our approach, the MDFS 337

models can reproduce the distribution of scores 338

generated by Llama-3.1-70B-Instruct to a sufficient 339

level to differentiate between "good" and "bad" 340

examples. We take this as evidence that MDFS 341

models are able to filter for the same criteria as 342

the Llama-3.1-70B-Instruct in non-English via trans- 343

fer learning using synthetic labels. Additionally, 344

we observe that, even though filtering for the qual- 345

ity of translation using parallel data results in lower 346

F1-scores when compared to the monolingual do- 347

main filtering results, our method is robust across 348

different filtering requirements and inputs. The 349

lowest F1-scores in Table 1, (0.381 for De→En 350

and 0.385 for En→Ar) occur at a threshold of 5, in- 351

dicating that whilst MDFS models effectively dis- 352

tinguish between high and low scores, they struggle 353

to rank the best examples accurately. 354

Table 2 demonstrates that filtering the non- 355

English side of the translation results in compa- 356

rable F1-scores to filtering the English sentences. 357

When thresholding at 3, the F1-scores for both Ara- 358

bic and Romanian are higher, with the former be- 359

ing 0.038 higher than the English MDFS-LINEAR 360

model. However, both Arabic and Romanian fall 361

short of filtering the English when selecting the 362
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Model MDFS-LINEAR MDFS-CLASS

Thresh 3 4 5 3 4 5

Ar 0.950 0.854 0.658 0.947 0.853 0.670
En 0.912 0.853 0.744 0.917 0.870 0.734

Ro 0.974 0.948 0.754 0.976 0.952 0.779
En 0.964 0.938 0.812 0.964 0.938 0.826

Table 2: F1-scores for MDFS-LINEAR and MDFS-
CLASS for the medical domain experiments. Bold
numbers indicate the higher F1-score when compar-
ing MDFS-LINEAR and MDFS-CLASS for the same
threshold and scoring direction.

highest quality sentences, suggesting that there is363

an element of degradation when trying to identify364

the best sentences in a non-English language.365

4.6 Domain Filtering Analysis366

We focus on the medical domain experiments to367

analyse the properties of the filtered datasets as368

they enable a more direct comparison between En-369

glish and non-English languages. Table 3 shows370

the percentage of medical sentences in the NMT371

training data, where we take all sentences with a372

score greater or equal to 3 as having a degree of373

medical content.374

Medical Percentage
Arabic Romanian

KEYWORD 4.35 4.52
MDFS-CLASS (En) 4.54 8.32
MDFS-CLASS 7.12 10.54
MDFS-LINEAR (En)* 4.68 8.75
MDFS-LINEAR* 7.56 11.04

Table 3: percentage of medical sentences in the training
data. Medical sentences for MDFS models are taken as
those with a score greater than 3.*LINEAR scores are
clipped and rounded.

For En→Ar, we obtain a similar number of med-375

ical sentences when filtering on the English side376

and when compared to the KEYWORD baseline. In377

contrast, for En→Ro, filtering in either language378

identifies a larger proportion of medical sentences379

than KEYWORD. Across both experiments, MDFS380

models predict a greater number of medical sen-381

tences when using non-English than English. The382

overall low number of medical sentences is due to383

the corpora we are filtering, which consists largely384

of data scraped from the internet and hence has a385

low proportion of medical content.386

In order to analyse the diversity of the filtered387

Arabic Romanian
Unique 1-gram Length Unique 1-gram Length

RANDOM 32319 27 36455 21
KEYWORD 24125 37 31409 32
MDFS-CLASS (En) 21779 39 29672 39
MDFS-CLASS 20953 44 29638 36
MDFS-LINEAR (En) 21643 40 27898 43
MDFS-LINEAR 20688 45 26779 44

Table 4: Unique token 1-grams and median sentence
lengths for the first 1M tokens at a threshold of 1M
sentences for Arabic and Romanian.

NMT datasets, we adopt an n-gram-based approach 388

introduced by (Li et al., 2016). First, we tokenise 389

the 1M threshold datasets using the XLMR to- 390

keniser before counting the unique token 1-grams 391

in the first 1M tokens to measure the lexical di- 392

versity in each filtered dataset. Table 4 demon- 393

strates that filtering for medical data leads to re- 394

duced lexical data and increased sentence length. 395

Datasets created with MDFS exhibit a lower lexi- 396

cal diversity than the KEYWORD baseline; we pro- 397

pose this is due to keyword filtering selecting a 398

larger proportion of sentences outside the medical 399

domain. Furthermore, when filtering En→Ro, we 400

note that MDFS-LINEAR results in a lower lex- 401

ical diversity and longer sentences compared to 402

MDFS-CLASS. Finally, filtering the non-English 403

side of the datasets results in lower lexical diversity, 404

especially for the En→Ar data. 405

5 Machine Translation as a Downstream 406

Task 407

In all NMT experiments, we translate from En- 408

glish. We train encoder-decoder standard trans- 409

former models with ∼63M parameters. All models 410

are trained for 100,000 updates using FAIRSEQ 411

(Ott et al., 2019). For the translation quality 412

experiments, we evaluate on the FLORES-200 413

(NLLB Team, 2022; Goyal et al., 2022) test set 414

comprising 1,007 sentences. The En→Ar medi- 415

cal domain experiments use the TICO-19 (Anas- 416

tasopoulos et al., 2020) dataset; we use 1,000 sen- 417

tences as the validation set and the remaining 2,701 418

as the test set. Finally, for the En→Ro experiments, 419

we use the HIML4 (Health in My Language) and 420

WMT18 (Bojar et al., 2018) Biomedical test sets. 421

We take 500 sentences of the HIML NHS 24 data 422

as the validation set and combine the 467 Cochrane 423

sentences with the 278 WMT18 biomedical sen- 424

tences as the test data. 425

4
https://www.himl.eu/test-sets

5

https://www.himl.eu/test-sets


Figure 1: Left: Mean chrf++ scores En→De. Right: Mean chrf++ scores En→Ar. Results are reported on the
Flores-200 test set using three different random seeds. The dashed horizontal line represents the result when running
on the entire training data. The errors are calculated using the Standard Error of the Mean.

We train the NMT models using the training data426

outlined in Section 4.1 with the MDFS training427

data removed. For the translation quality experi-428

ments, we filter to thresholds of 1%, 10%, 25% and429

50% of the original training dataset size. Mean-430

while, we have a threshold of 1, 2.5, 5, and 10 mil-431

lion sentences for the medical domain experiments.432

Unless otherwise stated, all results are generated433

using beam search with a beam size of 5. We re-434

port chrf++ (Popović, 2015), a lexical metric as435

neural metrics have been shown to be less sensitive436

to wrongly named entities, insertions and deletions437

(Amrhein and Sennrich, 2022; Alves et al., 2022).438

As medical content often focuses on a small num-439

ber of technical terms surrounded by more general440

language, we believe a lexical metric is more ap-441

propriate. We ran each experiment three times with442

random seeds of 42, 962 and 2025 and reported443

mean metrics, estimating error using the Standard444

Error of the Mean. For data filtering techniques445

that involve random sampling, we also generate446

three data sets with different seeds.447

5.1 Translation Quality Results448

Figure 1 presents the mean chrf++ scores from449

three different random seeds thresholding at 1%,450

10%, 25% and 50% of the total training data for451

the translation quality experiments. Apart from the452

1% threshold for En→Ar MDFS results in higher453

mean chrf++ scores compared to the RANDOM454

baseline. The largest improvement for En→De455

over the best RANDOM result is 1.4 chrf++ for456

MDFS-LINEAR using 25% of the training data,457

with a 2.8 chrf++ improvement compared to train- 458

ing with the entire dataset. The maximal improve- 459

ment over RANDOM for En→Ar is lower at 0.7 460

chrf++ by MDFS-LINEAR at 25% and MDFS- 461

CLASS at 50% of the training data. We hypoth- 462

esise that this lower improvement is due to the 463

pre-filtered dataset having a large proportion of 464

high-quality sentences, as evidenced by the compa- 465

rable chrf++ score achieved when training on the 466

entire dataset. These results support that MDFS 467

models effectively filter the training data and, by 468

extension, that the filtering pipeline is effective for 469

non-English languages. 470

The mean chrf++ scores for MDFS-LINEAR 471

and MDFS-CLASS do not show much variation 472

with a largest observed difference of 0.4 chrf++ for 473

En→De whilst retaining 10% of the total training 474

data, which is also supported by the comparable 475

F1-scores for En→De and En→Ar in Table 1. 476

Both En→De and En→Ar demonstrate that 477

COMET-KIWI results in worse translations at 478

1%, and for En→Ar, this also holds true at 10%. 479

For En→De MDFS performs worse than COMET- 480

KIWI for the other thresholds, whereas for En→Ar 481

it achieves comparable chrf++ scores at 25% and 482

50% of the data. This result is likely due to the fact 483

that COMET-KIWI has been trained with human 484

DA data for En→De but not for En→Ar. Overall, 485

the results suggest that MDFS is better at selecting 486

small amounts of data, whereas COMET-KIWI 487

improves with the size of the filtered dataset. 488
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Figure 2: Left: Mean chrf++ scores En→Ar. Right: Mean chrf++ scores En→Ro. Results are reported on the
TICO-19 test set for En→Ar and a combination of HIML and WMT18 data for En→Ro using three random seeds.
Errors are calculated using the Standard Error of the Mean.

5.2 Medical Domain Results489

Figure 2 shows the mean chrf++ plotted against the490

threshold. In comparison to RANDOM, all MDFS491

models achieve a higher chrf++ apart from the Ro-492

manian MDFS-LINEAR dataset containing 1M493

sentences. For En→Ar, Arabic Classification is494

the strongest MDFS model according to the chrf++495

scores. This is true especially when training with496

only 1M sentences where Arabic MDFS-CLASS497

scores 0.7 chrf++ higher than any other MDFS498

model and 2.2 chrf++ higher than RANDOM. The499

strongest En→Ro model according to the chrf++500

scores in Figure 2 is the MDFS-CLASS English501

model, resulting in the joint highest chrf++ at all502

thresholds. However, English MDFS-LINEAR503

equals the chrf++ scores for the three lowest thresh-504

olds, and Romanian MDFS-LINEAR does so for505

the two largest thresholds. Compared to the best506

score for RANDOM (at 10M sentences), both En-507

glish MDFS methods improve by 1.3 chrf++ when508

trained with 2.5M million sentences.509

Overall, we find further evidence that the MDFS510

pipeline achieves comparable results when applied511

to non-English and English languages. The major512

exception to this observation is for MDFS-LINEAR513

Romanian, which has lower chrf++ scores than the514

other MDFS models at 1M and 2.5M sentences.515

Romanian MDFS’s chrf++ score at 1M is compa-516

rable to the RANDOM baseline. We suggest that the517

low score is related to the lower lexical diversity518

exhibited by the MDFS-LINEAR model in Roma-519

nian at low thresholds rather than the LLM labels520

as MDFS-CLASS obtains a chrf++ of 60.0 at 1M521

sentences. 522

The KEYWORD baseline is competitive with 523

all non-English MDFS baselines at the lower 524

thresholds, whereas it achieves slightly lower 525

chrf++ scores at higher thresholds. All keyword- 526

containing data has been selected at higher thresh- 527

olds and must be supplemented with a random se- 528

lection. The strong chrf++ score for KEYWORD 529

filtering demonstrates the effectiveness of hand- 530

written rules, especially for terminology-heavy 531

fields such as medicine. Additionally, as we are 532

training models from scratch, the higher lexical 533

diversity will likely lead to stronger translation sys- 534

tems when it comes to non-medical content.

Figure 3: Mean chrf++ scores En→Ro reported on
1,000 best sentences according to COMET from the
held-out test set labelled with Llama-3.1-70B-Instruct us-
ing three different random seeds. The errors are calcu-
lated using the Standard Error of the Mean.

535
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Figure 4: Win rates % of models in terms of terminology
translation. Comparison of models trained with differ-
ent filtering in terms of capability to correctly translate
domain-specific terms.

We also construct an additional test set for536

En→Ro from the 10,000 sentence test set (orig-537

inally extracted from the training data) labelled538

with the LLM and used to evaluate the MDFS fil-539

tering models. Similar to results in Section 4.5,540

we use this test set to see if our filtering pipeline541

improves the translation of those sentences that the542

LLM labels as being of high quality. We create543

the test set by taking all sentences that receive a544

score of 4 or higher from the LLM in the En→Ro545

direction and selecting the top 1,000 according to546

COMET. The chrf++ scores for these are given in547

Figure 3. The results evidence a larger improve-548

ment of the MDFS methods, with English MDFS-549

LINEAR improving the chrf++ by 1.2 and Roma-550

nian MDFS-CLASS improving by 0.4 compared551

to the KEYWORD baseline at 2.5M sentences.552

5.3 Domain-specific terminology evaluation553

The filtering techniques in our experiments select554

different subsets of parallel corpora that may cause555

a downstream model to exhibit patterns that we are556

unable to capture via a system-level metric. There-557

fore, given a medical domain adaptation task, we558

decided to focus on an important aspect of domain559

adaptation - terminology translation. Given the560

flexibility of our approach, we decided to check if561

the filtering is robust compared to baselines and562

whether our approach translates into the capability563

to focus on domain nuances.564

We set up our experiment as follows. Given our565

medical evaluation dataset for En→Ro, we sample566

100 examples using the subset2evaluate5 library567

5Used parameters: method="diversity", metric="lm"

(Zouhar et al., 2025) to establish the most efficient 568

evaluation subset. Afterwards, we employ LLM- 569

based evaluation (Qian et al., 2024) to assess NMT 570

systems pair-wise, i.e. a baseline against MDFS. 571

Rather than focus on overall translation quality, we 572

rank the systems based on the accurate translation 573

of medical terminology, as judged by the LLM. We 574

provide this experiment’s prompt and more details 575

in Appendix C. 576

The evaluation results are presented in Figure 4. 577

Although the chosen evaluation data point (i.e. the 578

threshold of 2.5, see Figure 3) did not indicate 579

a substantial difference between KEYWORD and 580

MDFS in system-level metric, in terms of termi- 581

nology translation, MDFS denotes 16 percentage 582

points more wins, which showcases the robustness 583

of the approach over hand-written rules. Compared 584

to the random baseline, MDFS provides even more 585

benefits, reaching 54% wins overall. 586

6 Conclusion 587

We trained classification and linear regression 588

data filtering models from labels generated by 589

Llama-3.1-70B-Instruct to filter NMT data based on 590

translation quality and medical relevance. Our find- 591

ings show that such a filtering pipeline extends be- 592

yond English languages, effectively filtering data. 593

For our medical domain experiments, we report 594

comparable NMT results when filtering English 595

or non-English data. Furthermore, these findings 596

support that LLMs can effectively generate labels 597

for languages they do not officially support, even 598

when compared to a model like COMET-KIWI, 599

which was trained using manually annotated data. 600

We find that training with a classification objec- 601

tive is preferable when filtering data for low cutoffs 602

and in non-English languages, whereas linear re- 603

gression might perform slightly better at larger data 604

sizes. We make this observation, not only base on 605

the low chrf++ scores of En→Ro but also the fact 606

that the Arabic MDFS-CLASS model is the best at 607

lower thresholds. We suggest this indicates that the 608

continuous ranking of sentences provided by the 609

linear regression models is not effective at selecting 610

the very best sentences, possibly due to the inabil- 611

ity of the MDFS models to correctly distinguish 612

between "good" and "excellent" sentences. Hence, 613

such filtering models may not be suitable for se- 614

lecting the best examples available in a dataset for 615

annealing LLMs, but they may be better suited for 616

pre-training. 617
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Limitations618

A natural extension to our work would be to eval-619

uate multilingual filtering on a large-scale LLM620

pre-training dataset such as FineWeb 2 (Penedo621

et al., 2024b). Whilst such an experiment is more622

directly related to pre-training multilingual LLMs,623

it also comes at a much more significant compu-624

tational cost. Additionally, focusing on parallel625

data in NMT allows a more direct comparison of626

filtering the same data in different languages.627

As we actively chose to select languages628

for the medical domain experiments that629

Llama-3.1-70B-Instruct does not officially support,630

we did not have much choice regarding available631

test sets. Those that are available tend to use more632

general language than scientific medical writing.633

Hence, the results may be slightly different634

scientific translations. We also acknowledge that635

both translation pairs for the medical domain exper-636

iments are unsupported by Llama-3.1-70B-Instruct,637

but we argue that we are comparing our method to638

filtering the English side, which is supported.639

All our experiments focus on training small640

NMT models from scratch rather than finetuning641

larger models. Our reasoning is that our work is642

most applicable to filtering large amounts of pre-643

training data rather than selecting the best examples644

from a smaller subset of data for pre-training. How-645

ever, to address this shortcoming, we present the646

results of finetuning nllb-600 and nllb-1.3B (Team647

et al., 2022) in Appendix E.648

The major risk for filtering data using neural649

models may lead to the reinforcement of biases in650

the filtering training data. This is especially true651

of linear regression models that exhibit the lowest652

lexical diversity after filtering. Such bias may also653

be exacerbated by a distribution shift between the654

data used to train the filtering model and the data655

to which the filtering model is applied.656

Lastly, we would like to point out that the prompt657

used to generate the LLM scores for the translation658

quality experiments has some minor spelling mis-659

takes.660
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Ondřej Bojar, Christian Federmann, Mark Fishel, Yvette 712
Graham, Barry Haddow, Matthias Huck, Philipp 713
Koehn, and Christof Monz. 2018. Findings of the 714
2018 conference on machine translation (WMT18). 715
In Proceedings of the Third Conference on Machine 716
Translation: Shared Task Papers, pages 272–303, 717
Belgium, Brussels. Association for Computational 718
Linguistics. 719

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 720
Ashish Sabharwal, Carissa Schoenick, and Oyvind 721
Tafjord. 2018. Think you have solved question 722
answering? try arc, the ai2 reasoning challenge. 723
Preprint, arXiv:1803.05457. 724

9

https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2404.14219
https://doi.org/10.48550/arXiv.2404.14219
https://aclanthology.org/2022.wmt-1.43
https://aclanthology.org/2022.wmt-1.43
https://aclanthology.org/2022.wmt-1.43
https://aclanthology.org/2022.wmt-1.43
https://aclanthology.org/2022.wmt-1.43
https://arxiv.org/abs/2402.17733
https://arxiv.org/abs/2402.17733
https://arxiv.org/abs/2402.17733
https://doi.org/10.18653/v1/2022.aacl-main.83
https://doi.org/10.18653/v1/2022.aacl-main.83
https://doi.org/10.18653/v1/2022.aacl-main.83
https://doi.org/10.18653/v1/2022.aacl-main.83
https://doi.org/10.18653/v1/2022.aacl-main.83
https://doi.org/10.18653/v1/2022.aacl-main.83
https://doi.org/10.18653/v1/2022.aacl-main.83
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/W18-6401
https://doi.org/10.18653/v1/W18-6401
https://doi.org/10.18653/v1/W18-6401
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457


Alexis Conneau, Kartikay Khandelwal, Naman Goyal,725
Vishrav Chaudhary, Guillaume Wenzek, Francisco726
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-727
moyer, and Veselin Stoyanov. 2020. Unsupervised728
cross-lingual representation learning at scale. In Pro-729
ceedings of the 58th Annual Meeting of the Asso-730
ciation for Computational Linguistics, pages 8440–731
8451, Online. Association for Computational Lin-732
guistics.733

Miquel Esplà, Mikel Forcada, Gema Ramírez-Sánchez,734
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral-735
lel corpora for the languages of the EU. In Proceed-736
ings of Machine Translation Summit XVII: Translator,737
Project and User Tracks, pages 118–119, Dublin, Ire-738
land. European Association for Machine Translation.739

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-740
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-741
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,742
and Angela Fan. 2022. The Flores-101 evaluation743
benchmark for low-resource and multilingual ma-744
chine translation. Transactions of the Association for745
Computational Linguistics, 10:522–538.746

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,747
Abhinav Pandey, Abhishek Kadian, Ahmad Al-748
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-749
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh750
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-751
tra, Archie Sravankumar, Artem Korenev, Arthur752
Hinsvark, and 542 others. 2024. The llama 3 herd of753
models. Preprint, arXiv:2407.21783.754

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,755
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.756
2021. Measuring massive multitask language under-757
standing. Preprint, arXiv:2009.03300.758

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan759
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and760
Weizhu Chen. 2022. LoRA: Low-rank adaptation of761
large language models. In International Conference762
on Learning Representations.763

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,764
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A LLM Prompts955

Evaluate the quality of the translation using the additive 5-point scoring system described below.

Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the both the source sentence and the translation are fluent well formed sentences.

- Add 1 point if the translation is a feasible translation of the sentence. The translation may be

suboptimal but should still convey the basic sense of the orginal sentence.

- Add 1 point if the translation adequately conveys the entire meaning of the original sentence. Such

a translation should not have any errors, but does not need to be completely unambigous or natural.

- Add 1 point if the translation contains the exact same information as the original sentence. Such

translations should be of professional standard and entail the same information as the original

sentence.

- Add 1 point if the translation quality is extremly high, the translation accuralety conveys the tone

of the original sentence or the translation accounts for cultural differences between the languages.

Below is an {SRC_LANGUAGE} sentence and a translation into {TGT_LANGUAGE}.

The sentence: {SRC}

The translation: {TGT}

After examining the extract:

- Briefly justify each point on the 5-point scoring system, up to 100 words.

- Conclude with the score using the format: “Translation score: <total points>"

Figure 5: Template prompt used for scoring data with Llama-3.1-70B-Instruct for translation quality.

Evaluate whether the sentence below is from the medical domain and could be helpful in a medical,

biological or public health context using the additive 5-point scoring system described below. Points

are accumulated based on the satisfaction of each criterion:

- Add 1 point if the sentence contains any information related to the medical domain.

- Add 1 point if the medical content is clear and presented in an organised manner.

- Add 1 point if the sentences only contain medical, biological or public health content.

- Add 1 point if the sentence is highly relevant and beneficial for medical, biological or public

health purposes whilst exhibiting a clear and consistent writing style.

- Add 1 point if the sentence is an outstanding example of scientific medical or biological content.

Below is an {SRC_LANGUAGE} sentence.

The sentence: {SRC}

After examining the sentence:

- Briefly justify each point on the 5-point scoring system, up to 100 words.

- Conclude with the score using the format: Medical score: <total points>"

Figure 6: Template prompt used for scoring data with Llama-3.1-70B-Instruct for medical content.
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B Keywords956

Table 5 gives the 30 keywords that are used to filter957

for medical sentences on the English side of the958

parallel data as described in Section 3.3. They959

were manually selected to be as unambiguous as960

possible.961

vaccine drug health infect doctor patient
disease innoculate liver bone illness injury
treatment injection medicine symptom tissue infection
surgery aorta therapy hospital pancreas blood
cancer influenza protein dental pregnant virus

Table 5: List of the English medical keywords used to
filter for medical sentences for the KEYWORD baseline.

C Domain-specific terminology962

evaluation details963

We present the evaluation prompt in Figure 7. Fol-964

lowing the findings of Qian et al. (2024), we in-965

clude a chain of thought to the prompt to improve966

the LLM evaluation. The experiment was done967

using gpt-4o-mini as a judge.968

The terminology evaluation experiment uses the969

2.5 million threshold systems from the experiment970

depicted in Figure 3 and described in Section 5.2.971

As a representative of MDFS, we employ MDFS-972

CLASS (English).973

Please find the medical word pairs in the source and

target language sentences. Refer to the above word

pairs to count the disambiguation accuracy in the

generated sentences of System A and System B.

Think step by step and produce a final score: 0 if

System A produced a better translation, 1 if it is a

tie, 2 if System B produced a better translation.

Source: "{source}"

Target: "{target}"

System A: "{system_a}"

System B: "{system_b}"

Figure 7: Template prompt used for medical terminol-
ogy LLM-based evaluation.

D NMT Results 974

Further to the chrf++ scores given in 5 we report 975

spBLEU, chrf++ and COMET in the tables below. 976

Tables 6 and 7 give the results for the translation 977

quality experiments and Tables 8 and 9 give the 978

results for the medical domain experiments. 979
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Threshold Method spBLEU chrf++ COMET

1%

RANDOM 32.1 ± 0.2 54.7 ± 0.2 0.783 ± 0.001
COMET-KIWI 32.0 ± 0.3 54.8 ± 0.2 0.763 ± 0.003
MDFS-LINEAR 34.6 ± 0.1 56.5 ± 0.1 0.800 ± 0.001
MDFS-CLASS 34.7 ± 0.1 56.7 ± 0.1 0.801 ± 0.001

10%

RANDOM 37.8 ± 0.2 59.0 ± 0.1 0.833 ± 0.001
COMET-KIWI 40.8 ± 0.2 61.0 ± 0.1 0.848 ± 0.000
MDFS-LINEAR 40.3 ± 0.2 60.6 ± 0.1 0.845 ± 0.001
MDFS-CLASS 39.6 ± 0.3 60.2 ± 0.2 0.844 ± 0.000

25%

RANDOM 38.0 ± 0.2 59.2 ± 0.1 0.835 ± 0.001
COMET-KIWI 41.0 ± 0.1 61.1 ± 0.1 0.852 ± 0.000
MDFS-LINEAR 40.4 ± 0.2 60.7 ± 0.1 0.847 ± 0.001
MDFS-CLASS 39.8 ± 0.1 60.4 ± 0.1 0.847 ± 0.001

50%

RANDOM 38.3 ± 0.2 59.3 ± 0.1 0.836 ± 0.001
COMET-KIWI 40.3 ± 0.2 60.6 ± 0.1 0.849 ± 0.001
MDFS-LINEAR 39.7 ± 0.2 60.3 ± 0.1 0.847 ± 0.000
MDFS-CLASS 39.7 ± 0.2 60.3 ± 0.1 0.846 ± 0.001

Table 6: Mean spBLEU, chrf++ and COMET scores for the En→De translation quality experiments. The mean is
take from three runs with different random seeds and the errors are the Standard Error of the Mean.

Threshold Method spBLEU chrf++ COMET

1%

RANDOM 28.8 ± 0.2 49.7 ± 0.1 0.803 ± 0.001
COMET-KIWI 24.4 ± 0.1 45.2 ± 0.0 0.749 ± 0.001
MDFS-LINEAR 28.6 ± 0.1 48.3 ± 0.0 0.789 ± 0.000
MDFS-CLASS 28.5 ± 0.1 48.2 ± 0.0 0.792 ± 0.001

10%

RANDOM 35.2 ± 0.1 55.0 ± 0.1 0.846 ± 0.001
COMET-KIWI 35.0 ± 0.1 54.8 ± 0.1 0.846 ± 0.000
MDFS-LINEAR 36.6 ± 0.2 55.5 ± 0.1 0.852 ± 0.001
MDFS-CLASS 36.8 ± 0.1 55.5 ± 0.0 0.854 ± 0.000

25%

RANDOM 35.5 ± 0.1 55.5 ± 0.1 0.849 ± 0.000
COMET-KIWI 36.1 ± 0.1 55.9 ± 0.1 0.856 ± 0.000
MDFS-LINEAR 36.8 ± 0.3 56.2 ± 0.2 0.856 ± 0.000
MDFS-CLASS 36.6 ± 0.1 56.0 ± 0.1 0.856 ± 0.001

50%

RANDOM 35.5 ± 0.1 55.3 ± 0.1 0.849 ± 0.001
COMET-KIWI 36.3 ± 0.1 56.1 ± 0.1 0.858 ± 0.000
MDFS-LINEAR 36.2 ± 0.2 56.0 ± 0.2 0.856 ± 0.001
MDFS-CLASS 36.3 ± 0.1 56.2 ± 0.1 0.858 ± 0.001

Table 7: Mean spBLEU, chrf++ and COMET scores for the En→Ar translation quality experiments. The mean is
take from three runs with different random seeds and the errors are the Standard Error of the Mean.
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Threshold Method spBLEU chrf++ COMET

1.0

RANDOM 34.5 ± 0.2 54.6 ± 0.2 0.832 ± 0.001
KEYWORD 37.4 ± 0.1 56.8 ± 0.2 0.846 ± 0.001
MDFS-LINEAR (EN) 35.8 ± 0.1 55.7 ± 0.1 0.835 ± 0.001
MDFS-CLASS (EN) 35.9 ± 0.2 55.7 ± 0.2 0.836 ± 0.001
MDFS-LINEAR 36.8 ± 0.2 56.1 ± 0.1 0.840 ± 0.001
MDFS-CLASS 37.4 ± 0.1 56.8 ± 0.1 0.844 ± 0.000

2.5

RANDOM 35.9 ± 0.2 55.5 ± 0.2 0.840 ± 0.001
KEYWORD 38.1 ± 0.2 57.4 ± 0.1 0.848 ± 0.001
MDFS-LINEAR (EN) 37.3 ± 0.3 57.0 ± 0.1 0.845 ± 0.001
MDFS-CLASS (EN) 37.6 ± 0.1 57.1 ± 0.1 0.847 ± 0.001
MDFS-LINEAR 37.9 ± 0.2 57.3 ± 0.1 0.849 ± 0.000
MDFS-CLASS 38.1 ± 0.3 57.5 ± 0.2 0.850 ± 0.001

5.0

RANDOM 36.3 ± 0.2 56.0 ± 0.2 0.840 ± 0.001
KEYWORD 37.9 ± 0.3 57.2 ± 0.1 0.848 ± 0.001
MDFS-LINEAR (EN) 37.9 ± 0.1 57.5 ± 0.1 0.849 ± 0.001
MDFS-CLASS (EN) 38.0 ± 0.1 57.5 ± 0.1 0.848 ± 0.001
MDFS-LINEAR 38.2 ± 0.1 57.6 ± 0.0 0.850 ± 0.000
MDFS-CLASS 38.0 ± 0.2 57.6 ± 0.1 0.850 ± 0.001

10.0

RANDOM 36.0 ± 0.0 56.0 ± 0.2 0.841 ± 0.000
KEYWORD 37.5 ± 0.2 56.9 ± 0.2 0.846 ± 0.001
MDFS-LINEAR (EN) 37.9 ± 0.1 57.5 ± 0.2 0.850 ± 0.001
MDFS-CLASS (EN) 38.3 ± 0.2 57.6 ± 0.1 0.850 ± 0.000
MDFS-LINEAR 38.0 ± 0.0 57.6 ± 0.0 0.849 ± 0.000
MDFS-CLASS 37.9 ± 0.1 57.4 ± 0.0 0.849 ± 0.001

Table 8: Mean spBLEU, chrf++ and COMET scores for the En→De medical domain experiments. The mean is
take from three runs with different random seeds and the errors are the Standard Error of the Mean. The threshold is
millions of sentences.

Threshold Method spBLEU chrf++ COMET

1.0

RANDOM 39.2 ± 0.2 58.3 ± 0.1 0.864 ± 0.001
KEYWORD 41.8 ± 0.3 60.0 ± 0.1 0.878 ± 0.001
MDFS-LINEAR (EN) 42.8 ± 0.1 60.6 ± 0.1 0.877 ± 0.000
MDFS-CLASS (EN) 42.7 ± 0.3 60.6 ± 0.2 0.878 ± 0.000
MDFS-LINEAR 39.9 ± 1.2 58.2 ± 0.5 0.837 ± 0.007
MDFS-CLASS 42.0 ± 0.2 60.0 ± 0.1 0.873 ± 0.002

2.5

RANDOM 40.0 ± 0.2 58.9 ± 0.2 0.870 ± 0.001
KEYWORD 42.5 ± 0.2 60.5 ± 0.1 0.880 ± 0.000
MDFS-LINEAR (EN) 43.0 ± 0.2 60.7 ± 0.1 0.880 ± 0.001
MDFS-CLASS (EN) 42.9 ± 0.3 60.7 ± 0.2 0.881 ± 0.001
MDFS-LINEAR 42.1 ± 0.4 60.1 ± 0.2 0.874 ± 0.001
MDFS-CLASS 42.7 ± 0.1 60.5 ± 0.1 0.875 ± 0.002

5.0

RANDOM 40.5 ± 0.2 59.1 ± 0.2 0.872 ± 0.000
KEYWORD 42.1 ± 0.1 60.3 ± 0.1 0.878 ± 0.000
MDFS-LINEAR (EN) 42.7 ± 0.2 60.6 ± 0.1 0.881 ± 0.000
MDFS-CLASS (EN) 42.8 ± 0.2 60.6 ± 0.1 0.881 ± 0.000
MDFS-LINEAR 42.8 ± 0.3 60.6 ± 0.2 0.881 ± 0.001
MDFS-CLASS 42.3 ± 0.1 60.4 ± 0.1 0.881 ± 0.000

10.0

RANDOM 40.8 ± 0.1 59.4 ± 0.1 0.872 ± 0.001
KEYWORD 41.8 ± 0.1 60.1 ± 0.1 0.877 ± 0.001
MDFS-LINEAR (EN) 41.8 ± 0.1 60.0 ± 0.0 0.879 ± 0.000
MDFS-CLASS (EN) 42.1 ± 0.0 60.3 ± 0.0 0.879 ± 0.000
MDFS-LINEAR 42.2 ± 0.2 60.3 ± 0.1 0.879 ± 0.000
MDFS-CLASS 42.1 ± 0.2 60.3 ± 0.1 0.880 ± 0.001

Table 9: Mean spBLEU, chrf++ and COMET scores for the En→Ro medical domain experiments. The mean is
take from three runs with different random seeds and the errors are the Standard Error of the Mean. The threshold is
millions of sentences.
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E NLLB Finetuning980

In order to evaluate how filtered data performs at981

finetuning, we train nllb-600 and nllb-1.3B for one982

epoch using 1M sentences of En→Ro data. The983

nllb-1.3B is finetuned using LoRA (Hu et al., 2022),984

whereas for nllb-600, we update all parameters. The985

results demonstrate that MDFS improves medi-986

cal domain translation over the RANDOM base-987

line. When using LoRA MDFS-LINEAR, Roma-988

nian results in comparable chrf++ to other mod-989

els, whereas the full finetuning using the nllb-600990

model results in reduced scores compared to the991

other models.

nllb-600M nllb-1.3B
BASELINE 55.8 58.1
RANDOM 58.2 59.0
KEYWORD 59.3 59.6
MDFS-CLASS (En) 59.5 59.7
MDFS-LINEAR (En) 59.6 59.7
MDFS-CLASS 59.5 59.7
MDFS-LINEAR 58.5 59.6

Table 10: chrf++ scores for finetuning nllb-600 and
nllb-1.3B using 1M sentences of En→Ro data. Both
models are trained for 1 epoch, nllb-1.3B is trained using
LoRA.

992

F GPU Hours993

Labelling datasets with Llama-3.1-70B-Instruct was994

run on a single A100-80GB GPU. We labelled four995

datasets, each running taking around ∼ 70 hours.996

Training MDFS models took ∼ 10 hours on997

either one A100-40GB GPU or two RTX 3900 GPUs.998

Labelling the NMT data takes ∼ 24 hours, again999

run on either A100-40GB GPU or two RTX 3900 GPUs.1000

We train and predict twice for each language pair1001

and task for a total of 8 runs.1002

NMT training and evaluation is run on either one1003

A100-40GB GPU or one RTX 3900, with each run and1004

evaluation taking ∼ 4 hours; we train 240 NMT1005

models.1006
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