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Abstract

Filtering data, especially when the data has
been scraped from the Internet, has long been
known to improve model performance. Re-
cently, it has been shown that an effective filter
can be created by using large language mod-
els (LLMs) to create synthetic labels, which
are then used to train a smaller neural model.
However, this approach has mainly been tested
in English. Our paper extends this approach
to languages beyond English, including lan-
guages not officially supported by LLMs. We
validate our results on the downstream task of
NMT and demonstrate that our approach is ef-
fective at both filtering parallel text for transla-
tion quality and filtering for domain specificity.
Additionally, we find that using a classification
objective is more performant and robust than
a regression objective at low data thresholds
when training our filtering models.

1 Introduction

Increasing model scale and larger pre-training
datasets have fueled recent advances in the world of
LLMs. Beyond scale, other pre-training data char-
acteristics also significantly impact downstream
tasks, such as de-duplication and removing low-
quality examples (Touvron et al., 2023; Young
et al., 2024). An interesting approach that has re-
cently been proposed is training filtering models
on synthetic labels, which are generated by prompt-
ing LLMs (Grattafiori et al., 2024; Abdin et al.,
2024; Penedo et al., 2024a; Lozhkov et al., 2024).
Such filtering models can be efficiently run on very
large corpora, such as pre-training data, to select
the most appropriate examples for training. Due to
the flexibility of designing prompts, this pipeline is
especially appealing, enabling data to be filtered on
criteria beyond quality without requiring labelled
data and thereby tailoring the selected pre-training
data to the eventual downstream task.

The FineWeb project by Penedo et al. (2024a)
observed that by filtering pre-training data towards

educational content, they were able to not only
obtain a 4% improvement on the MMLU bench-
mark (Hendrycks et al., 2021) but also to converge
quicker when compared to non-filtered baseline.
The educational content filter was a classifier based
on synthetic LLLM-labeled data, and the approach
was validated via training a 1.71B model on 350
billion tokens; however, the study was centred on
enhancing performance exclusively in English. Al-
though the experiment validates the methodology’s
effectiveness for English downstream tasks, the
technique could also be beneficial for other lan-
guages, where data quality is even more crucial
given the overall scarcity of resources. This work
attempts to unravel one unexplored axis of syn-
thetic filtering: the method’s efficacy beyond En-
glish. From here on, we refer to this approach
as MDFS (Multilingual Data Filtering using Syn-
thetic Data).

We investigate and evaluate MDES via the Neu-
ral Machine Translation (NMT) task. NMT is an
excellent downstream task for a series of reasons.
First, it has an established history of a range of data
filtering WMT shared tasks (Conference on Ma-
chine Translation, Koehn et al., 2018, 2019, 2020).
Secondly, NMT models are reasonably cheap to
train compared to LLMs, allowing us to run a suite
of experiments investigating different setups for fil-
tering multilingual data using MDFS, which would
be prohibitively expensive if done with LLMs. Ad-
ditionally, NMT has a history of neural QE (Qual-
ity Estimation) metrics such as COMET-KIWI or
BLEURT (Rei et al., 2022; Sellam et al., 2020),
which are effective at filtering training data (Peter
et al., 2023). Hence, we can employ such QE mod-
els trained on hand-made, high-quality annotations
as a robust filtering baseline. We use MDEFS as
an instance of a synthetic, LLM-labeled quality es-
timator and validate the approach under different
NMT setups that range from general translation
tasks to domain adaptation in various languages.



As we initially stated, the most significant appeal
of MDFS is the flexibility to filter based on any cri-
teria simply by adjusting the prompt. We, therefore,
run two sets of experiments to establish the efficacy
of MDEFS for non-English languages. Firstly, we
train En—De and En—Ar NMT systems filtered
only for translation quality to analyse the MDFS
pipeline for non-English languages when compared
to QE filtering using models trained on human an-
notations. Secondly, we train En—Ar and En—Ro
NMT systems which are trained with data filtered
for medical content.

We summarise our contributions as follows:

* We explore LLM-based data filtering tech-
niques for multiple languages and validate
them on machine translation - showing that
they work for both filtering on the source and
target sides.

* We show that LLM-based filtering is effective
beyond pure quality filtering by allowing us to
filter for domain. We show that LLM filtering
has benefits over baseline keyword filtering.

* We explore filtering the LLM scores as classes
or regression models. We find that classifica-
tion is superior as it is more robust for non-
English languages at very small cutoff thresh-
solds.

2 Related Work

Penedo et al. (2024a) introduce FineWeb-Edu,
and demonstrate a 4% increase on MMLU and
a 11% increase on the ARC benchmark (Clark
et al., 2018). Similar approaches were also used
when training the Llama and Phi family models
(Grattafiori et al., 2024; Abdin et al., 2024). Our
work also experiments with filtering models trained
from synthetic labels. However, unlike these works,
we investigate filtering in non-English contexts and
experiment with different approaches for the filter-
ing models.

Since the advent of NMT, it has been known
that low amounts of noise in the training data can
lead to erroneous translations (Koehn et al., 2018).
As such, NMT has a history of data filtering, es-
pecially for scraped corpora such as ParaCrawl
(Bafién et al., 2020). A series of cleaning tasks
for parallel data (Koehn et al., 2018, 2019, 2020)
resulted in the development of several cleaning
models for NMT, including LASER (Schwenk
and Douze, 2017) embedding based models and

BICLEANER (Sanchez-Cartagena et al., 2018;
Ramirez-Sanchez et al., 2020). Later Zaragoza-
Bernabeu et al. (2022) released an updated BI-
CLEANER that incorporates a neural model. BI-
CLEANER is used to filter public corpora such as
ParaCrawl. Compared to our work, these models
all focus on removing training examples that are
not mutual translations of each other rather than
picking the best translations and can only filter for
quality.

Peter et al. (2023) compare filtering training data
using BICLEANER (Zaragoza-Bernabeu et al.,
2022) to filtering using COMET-KIWI, a QE model
for NMT. The authors filter 50% the WMT 23
(Kocmi et al., 2023) training data for three language
pairs and show that filtering with COMET-KIWI
leads to improved COMET scores. They highlight
that filtering with QE metrics discriminates in a
more fine-grained manner. Our approach can also
be used to filter for criteria beyond quality and can
also be used to filter only monolingual data. Addi-
tionally, we experimented with filtering at different
thresholds.

3 Filtering Pipeline

We begin by describing the outline of the MDFS
pipeline in the context of both the translation qual-
ity and medical domain NMT experiments before
discussing each pipeline stage in more detail.

3.1 MDFS

We adopt the pipeline introduced by Penedo et al.
(2024a), which consists of three stages. First, we
use an LLM to score approximately 500,000 sen-
tences based on the task criteria. Similarly to
Penedo et al. (2024a), we follow Yuan et al. (2024)
and use an additive prompt. The filtering crite-
ria are divided into a 5-point scale, and the LLM
is instructed to determine a score on a point-by-
point basis; the total score is the sum of the points
awarded. The translation quality and medical do-
main task prompts are given in Appendix A. We
use Llama-3.1-768-Instruct! to generate the synthetic
labels. As the primary benefit of this approach
is using out-of-the-box LLMs to create synthetic
training data, we avoid using specifically multi-
lingual LLMs such as Tower (Alves et al., 2024),
which are trained on human-labelled DA (Direct
Assessment) and MQM (Multidimensional Quality

! https://huggingface.co/meta-1lama/Meta-Llama-3.
1-70B-Instruct
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Metrics) data.

The next step is training our MDEFS filtering
models using the synthetic labels generated from
the LLM. The lightweight models are based on
pre-trained encoder models, specifically XLMR
(Conneau et al., 2020). Our experiments explore
training the models with either linear regression
or classification as an objective. During training,
we finetune all model parameters with a classifica-
tion or regression head architecture similar to the
COMET models (Rei et al., 2020).

Finally, we filter our NMT training data with
the filtering models trained in stage two. In or-
der to evaluate the performance, we threshold our
training set according to the number of sentences
used to train the NMT models. For each threshold,
we then select the best sentences according to the
scores assigned by the filtering model. We use the
continuous scores for models trained with a lin-
ear objective function to select the best sentences.
As the classification objective function only gives
us a categorical ranking, we select categories of
sentences until we exceed the threshold; when we
exceed the threshold, we use a random sample of
the current category to make up the training data.

3.2 Translation Quality

These experiments aim to understand the best
pipeline for filtering multilingual data. Using par-
allel data, we train the MDFS filtering models
by concatenating the source and target sentences.
Therefore, the model can access both English and
non-English sentences when scoring an example.
We select one high-resource language pair, En-De,
which Llama-3.1-708-Instruct fully supports and is
also part of the human-labeled DA data used to
train COMET-KIWI. En-Ar is not officially sup-
ported by Llama-3.1-70B-Instruct or in the COMET-
KIWI training and in a non-Latin script.

3.3 Medical Domain

Unlike the translation quality experiments, we filter
only the source or the target side, the reasons for
which are twofold. Firstly, this makes the setup
more comparable to filtering LLM training data
for task-specific monolingual data. Secondly, it al-
lows us to evaluate the differences observed when
filtering on the English and the non-English side.
We select En—Ar and En—Ro as both target lan-
guages are not supported by Llama-31-70B-Instruct
and have available medical data to evaluate the
NMT models. As we can directly compare it to

filtering the English sentences, we did not include
another officially supported language.

4 MDFS MODELS

All of our experiments use NMT as a downstream
task; however, the specific setup varies for the trans-
lation quality and medical domain experiments.

4.1 Training Data

All experiments start with a set of training data of
which a small portion is removed to train an MDFS
filtering model for the given downstream task. For
the En—De translation quality experiments, we use
ParaCrawl data used in the WMT23 campaign as
training data (Kocmi et al., 2023; Espla et al., 2019).
For the En— Ar translation quality experiments, we
use the CCMatrix dataset (Schwenk et al., 2021).

For En—Ar we use CCMatrix and ELRC
Wikipedia-Health? corpus comprising of 15,130
sentences. For En—Ro, we combine CCMatrix,
ParaCrawl and 783,742 sentences from ELRC-
EMEA.? All the training data was downloaded
from OPUS (Tiedemann, 2012).

4.2 LLM Labeling

In order to train our filtering models, we la-
bel a small subset of our training datasets with
Llama-3.1-70B-Instruct. ~We randomly remove a
small amount of the parallel training data for the
translation quality experiments, which the LLM
then labels. Randomly selecting from the entire
training data for the domain filtering task is prob-
lematic as the medical sentences constitute only a
small proportion of the training data. Hence, the
sampled data would be significantly unbalanced.
For En— Ar, we realistically address this by filter-
ing the datasets using a curated list of 30 English
medical keywords (Appendix B). We then sample
50%.

4.3 Filtering Models

Having obtained synthetic labels for 400,000-
500,000 sentences, we use 1000 sentences as a
validation set and 10,000 sentences as a test set for
each experiment, with the rest being used to train
the MDFS models. We also removed all sentences
for which the LLM either did not generate a score,
or the score was in the wrong format. Based on
higher validation F1-scores for the translation qual-
ity task, we run all further experiments with full

“https://elrc-share.eu/elrc-wikipedia-health
Shttps://elrc-share.eu/elrc-emea
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pre-training and first expand the hidden dimension
in the classification head similar to the COMET
models. We report results for both a linear regres-
sion and a classification objective function. As the
test set is created with labels from the LLM, we are
only evaluating how well our filtering models can
replicate the scores generated by the LLM; in the
case of linear regression, we follow the Fine-Web
Edu authors (Penedo et al., 2024a) and truncate
and round the continuous scores to obtain ordinal
scores. We train for 20 epochs and select the best
model using the macro-averaged F1-score on the
validation set. We base our hyper-parameter selec-
tion on the COMET-KIWI paper (Rei et al., 2022).
All models are trained with data mixed from both
scoring directions, resulting in bidirectional scor-
ing models.

4.4 Filtering Approaches

We compare the following approaches to filtering
the NMT training set.

RANDOM: Our first baseline randomly selects
sentences from the training data for filtering.

COMET-KIWI: Our second baseline uses
COMET-KIWI scores to filter the data. COMET-
KIWI is a QE model trained on human direct
assessment data, which has been shown to improve
NMT metrics when used for filtering training data
(Peter et al., 2023). Additionally, COMET-KIWI
is a compelling baseline because it uses the same
pre-trained model as our MDFS models, XLMR.
We only use this baseline for the translation quality
experiments where we filter on bilingual text.

KEYWORDS: For the medical domain experi-
ments, our second baseline filters the English side
of the training corpus with a curated list of 30
medical keywords. Keywords are a quick and
simple method for filtering domain-specific data
but could be less effective in morphologically
richer languages than English.

MDFS-LINEAR: Linear refers to our filtering
model trained on the synthetic LLM labels by
finetuning all parameters and training with a linear
regression objective function.

MDFS-CLASSIFICATION: Classification refers
to our filtering model trained on the synthetic LLM
labels by finetuning all parameters and training

with a classification objective function.

4.5 MDFS Results

Table 1 and 2 give the F1-scores evaluated on the
LLM labelled test set for the MDFS models. Re-
sults are given when thresholding at scores of 3,
4 and 5, where the linear scores are clipped and
rounded to obtain ordinal values. Hence, F1-scores
show how well the MDFS models can replicate the

labels generated by LLM.

Model MDFS-LINEAR MDFS-CLASS
Thresh 3 4 5 3 4 5
En—De 0.908 0.777 0.640 0908 0.782 0.644
De—En 0920 0.673 0.381 0.890 0.670 0.430
En—Ar 0.920 0.757 0.398 0918 0.745 0.385
Ar—En 0934 0.804 0.570 0929 0.791 0.571

Table 1: Fl-scores for MDFS-LINEAR and MDFS-
CLASS for the translation quality experiments. Bold
numbers indicate the higher Fl-score when compar-
ing MDFS-LINEAR and MDFS-CLASS for the same
threshold and scoring direction.

When thresholding at 3, the lowest F1-score
observed for either experiment is 0.890, for the
De—En translation quality classification model.
Demonstrating that in our approach, the MDFS
models can reproduce the distribution of scores
generated by Llama-3.1-7eB-Instruct to a sufficient
level to differentiate between "good" and "bad"
examples. We take this as evidence that MDFS
models are able to filter for the same criteria as
the Llama-3.1-70B-Instruct in non-English via trans-
fer learning using synthetic labels. Additionally,
we observe that, even though filtering for the qual-
ity of translation using parallel data results in lower
F1-scores when compared to the monolingual do-
main filtering results, our method is robust across
different filtering requirements and inputs. The
lowest F1-scores in Table 1, (0.381 for De—En
and 0.385 for En—Ar) occur at a threshold of 5, in-
dicating that whilst MDFS models effectively dis-
tinguish between high and low scores, they struggle
to rank the best examples accurately.

Table 2 demonstrates that filtering the non-
English side of the translation results in compa-
rable F1-scores to filtering the English sentences.
When thresholding at 3, the F1-scores for both Ara-
bic and Romanian are higher, with the former be-
ing 0.038 higher than the English MDFS-LINEAR
model. However, both Arabic and Romanian fall
short of filtering the English when selecting the



Model MDFS-LINEAR MDFS-CLASS

Thresh 3 4 5 3 4 5
Ar 0.950 0.854 0.658 0947 0.853 0.670
En 0912 0.853 0.744 0917 0.870 0.734
Ro 0.974 0948 0.754 0976 0.952 0.779
En 0964 0938 0.812 0.964 0.938 0.826

Table 2: Fl-scores for MDFS-LINEAR and MDFS-
CLASS for the medical domain experiments. Bold
numbers indicate the higher F1-score when compar-
ing MDFS-LINEAR and MDFS-CLASS for the same
threshold and scoring direction.

highest quality sentences, suggesting that there is
an element of degradation when trying to identify
the best sentences in a non-English language.

4.6 Domain Filtering Analysis

We focus on the medical domain experiments to
analyse the properties of the filtered datasets as
they enable a more direct comparison between En-
glish and non-English languages. Table 3 shows
the percentage of medical sentences in the NMT
training data, where we take all sentences with a
score greater or equal to 3 as having a degree of
medical content.

Medical Percentage

Arabic Romanian
KEYWORD 4.35 4.52
MDEFS-CLASS (En) 4.54 8.32
MDFS-CLASS 7.12 10.54
MDFS-LINEAR (En)* 4.68 8.75
MDFS-LINEAR* 7.56 11.04

Table 3: percentage of medical sentences in the training
data. Medical sentences for MDFS models are taken as
those with a score greater than 3.*LINEAR scores are
clipped and rounded.

For En—Ar, we obtain a similar number of med-
ical sentences when filtering on the English side
and when compared to the KEYWORD baseline. In
contrast, for En—Ro, filtering in either language
identifies a larger proportion of medical sentences
than KEYWORD. Across both experiments, MDFS
models predict a greater number of medical sen-
tences when using non-English than English. The
overall low number of medical sentences is due to
the corpora we are filtering, which consists largely
of data scraped from the internet and hence has a
low proportion of medical content.

In order to analyse the diversity of the filtered

Arabic Romanian
Unique 1-gram Length Unique 1-gram Length
RANDOM 32319 27 36455 21
KEYWORD 24125 37 31409 32
MDEFS-CLASS (En) 21779 39 29672 39
MDFS-CLASS 20953 44 29638 36
MDFS-LINEAR (En) 21643 40 27898 43
MDFS-LINEAR 20688 45 26779 44

Table 4: Unique token 1-grams and median sentence
lengths for the first 1M tokens at a threshold of 1M
sentences for Arabic and Romanian.

NMT datasets, we adopt an n-gram-based approach
introduced by (Li et al., 2016). First, we tokenise
the 1M threshold datasets using the XLMR to-
keniser before counting the unique token 1-grams
in the first 1M tokens to measure the lexical di-
versity in each filtered dataset. Table 4 demon-
strates that filtering for medical data leads to re-
duced lexical data and increased sentence length.
Datasets created with MDFS exhibit a lower lexi-
cal diversity than the KEYWORD baseline; we pro-
pose this is due to keyword filtering selecting a
larger proportion of sentences outside the medical
domain. Furthermore, when filtering En—Ro, we
note that MDFS-LINEAR results in a lower lex-
ical diversity and longer sentences compared to
MDEFS-CLASS. Finally, filtering the non-English
side of the datasets results in lower lexical diversity,
especially for the En— Ar data.

5 Machine Translation as a Downstream
Task

In all NMT experiments, we translate from En-
glish. We train encoder-decoder standard trans-
former models with ~63M parameters. All models
are trained for 100,000 updates using FAIRSEQ
(Ott et al., 2019). For the translation quality
experiments, we evaluate on the FLORES-200
(NLLB Team, 2022; Goyal et al., 2022) test set
comprising 1,007 sentences. The En—Ar medi-
cal domain experiments use the TICO-19 (Anas-
tasopoulos et al., 2020) dataset; we use 1,000 sen-
tences as the validation set and the remaining 2,701
as the test set. Finally, for the En—Ro experiments,
we use the HIML* (Health in My Language) and
WMT18 (Bojar et al., 2018) Biomedical test sets.
We take 500 sentences of the HIML NHS 24 data
as the validation set and combine the 467 Cochrane
sentences with the 278 WMT18 biomedical sen-
tences as the test data.

4https ://www.himl.eu/test-sets
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Figure 1: Left: Mean chrf++ scores En—De. Right: Mean chrf++ scores En—Ar. Results are reported on the
Flores-200 test set using three different random seeds. The dashed horizontal line represents the result when running
on the entire training data. The errors are calculated using the Standard Error of the Mean.

We train the NMT models using the training data
outlined in Section 4.1 with the MDFS training
data removed. For the translation quality experi-
ments, we filter to thresholds of 1%, 10%, 25% and
50% of the original training dataset size. Mean-
while, we have a threshold of 1, 2.5, 5, and 10 mil-
lion sentences for the medical domain experiments.
Unless otherwise stated, all results are generated
using beam search with a beam size of 5. We re-
port chrf++ (Popovié, 2015), a lexical metric as
neural metrics have been shown to be less sensitive
to wrongly named entities, insertions and deletions
(Amrhein and Sennrich, 2022; Alves et al., 2022).
As medical content often focuses on a small num-
ber of technical terms surrounded by more general
language, we believe a lexical metric is more ap-
propriate. We ran each experiment three times with
random seeds of 42, 962 and 2025 and reported
mean metrics, estimating error using the Standard
Error of the Mean. For data filtering techniques
that involve random sampling, we also generate
three data sets with different seeds.

5.1 Translation Quality Results

Figure 1 presents the mean chrf++ scores from
three different random seeds thresholding at 1%,
10%, 25% and 50% of the total training data for
the translation quality experiments. Apart from the
1% threshold for En—Ar MDEFS results in higher
mean chrf++ scores compared to the RANDOM
baseline. The largest improvement for En—De
over the best RANDOM result is 1.4 chrf++ for
MDFS-LINEAR using 25% of the training data,

with a 2.8 chrf++ improvement compared to train-
ing with the entire dataset. The maximal improve-
ment over RANDOM for En—Ar is lower at 0.7
chrf++ by MDFS-LINEAR at 25% and MDFS-
CLASS at 50% of the training data. We hypoth-
esise that this lower improvement is due to the
pre-filtered dataset having a large proportion of
high-quality sentences, as evidenced by the compa-
rable chrf++ score achieved when training on the
entire dataset. These results support that MDFS
models effectively filter the training data and, by
extension, that the filtering pipeline is effective for
non-English languages.

The mean chrf++ scores for MDFS-LINEAR
and MDFS-CLASS do not show much variation
with a largest observed difference of 0.4 chrf++ for
En—De whilst retaining 10% of the total training
data, which is also supported by the comparable
F1-scores for En—De and En—Ar in Table 1.

Both En—De and En—Ar demonstrate that
COMET-KIWTI results in worse translations at
1%, and for En— A, this also holds true at 10%.
For En—De MDFS performs worse than COMET-
KIWI for the other thresholds, whereas for En— Ar
it achieves comparable chrf++ scores at 25% and
50% of the data. This result is likely due to the fact
that COMET-KIWI has been trained with human
DA data for En—De but not for En—Ar. Overall,
the results suggest that MDFS is better at selecting
small amounts of data, whereas COMET-KIWI
improves with the size of the filtered dataset.
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Figure 2: Left: Mean chrf++ scores En—Ar. Right: Mean chrf++ scores En—Ro. Results are reported on the
TICO-109 test set for En— Ar and a combination of HIML and WMT18 data for En—Ro using three random seeds.
Errors are calculated using the Standard Error of the Mean.

5.2 Medical Domain Results

Figure 2 shows the mean chrf++ plotted against the
threshold. In comparison to RANDOM, all MDFS
models achieve a higher chrf++ apart from the Ro-
manian MDFS-LINEAR dataset containing 1M
sentences. For En—Ar, Arabic Classification is
the strongest MDFS model according to the chrf++
scores. This is true especially when training with
only 1M sentences where Arabic MDFS-CLASS
scores 0.7 chrf++ higher than any other MDFS
model and 2.2 chrf++ higher than RANDOM. The
strongest En—Ro model according to the chrf++
scores in Figure 2 is the MDFS-CLASS English
model, resulting in the joint highest chrf++ at all
thresholds. However, English MDFS-LINEAR
equals the chrf++ scores for the three lowest thresh-
olds, and Romanian MDFS-LINEAR does so for
the two largest thresholds. Compared to the best
score for RANDOM (at 10M sentences), both En-
glish MDFS methods improve by 1.3 chrf++ when
trained with 2.5M million sentences.

Overall, we find further evidence that the MDFS
pipeline achieves comparable results when applied
to non-English and English languages. The major
exception to this observation is for MDFS-LINEAR
Romanian, which has lower chrf++ scores than the
other MDFS models at 1M and 2.5M sentences.
Romanian MDFS’s chrf++ score at 1M is compa-
rable to the RANDOM baseline. We suggest that the
low score is related to the lower lexical diversity
exhibited by the MDFS-LINEAR model in Roma-
nian at low thresholds rather than the LLLM labels
as MDFS-CLASS obtains a chrf++ of 60.0 at IM

sentences.

The KEYWORD baseline is competitive with
all non-English MDEFS baselines at the lower
thresholds, whereas it achieves slightly lower
chrf++ scores at higher thresholds. All keyword-
containing data has been selected at higher thresh-
olds and must be supplemented with a random se-
lection. The strong chrf++ score for KEYWORD
filtering demonstrates the effectiveness of hand-
written rules, especially for terminology-heavy
fields such as medicine. Additionally, as we are
training models from scratch, the higher lexical
diversity will likely lead to stronger translation sys-
tems when it comes to non-medical content.

74
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Figure 3: Mean chrf++ scores En—Ro reported on
1,000 best sentences according to COMET from the
held-out test set labelled with L1ama-3.1-708-Instruct us-
ing three different random seeds. The errors are calcu-
lated using the Standard Error of the Mean.
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We also construct an additional test set for
En—Ro from the 10,000 sentence test set (orig-
inally extracted from the training data) labelled
with the LLM and used to evaluate the MDFS fil-
tering models. Similar to results in Section 4.5,
we use this test set to see if our filtering pipeline
improves the translation of those sentences that the
LLM labels as being of high quality. We create
the test set by taking all sentences that receive a
score of 4 or higher from the LLM in the En—Ro
direction and selecting the top 1,000 according to
COMET. The chrf++ scores for these are given in
Figure 3. The results evidence a larger improve-
ment of the MDFS methods, with English MDFS-
LINEAR improving the chrf++ by 1.2 and Roma-
nian MDFS-CLASS improving by 0.4 compared
to the KEYWORD baseline at 2.5M sentences.

5.3 Domain-specific terminology evaluation

The filtering techniques in our experiments select
different subsets of parallel corpora that may cause
a downstream model to exhibit patterns that we are
unable to capture via a system-level metric. There-
fore, given a medical domain adaptation task, we
decided to focus on an important aspect of domain
adaptation - terminology translation. Given the
flexibility of our approach, we decided to check if
the filtering is robust compared to baselines and
whether our approach translates into the capability
to focus on domain nuances.

We set up our experiment as follows. Given our
medical evaluation dataset for En—Ro, we sample
100 examples using the subset2evaluate® library

SUsed parameters: method="diversity", metric="lm"

(Zouhar et al., 2025) to establish the most efficient
evaluation subset. Afterwards, we employ LLM-
based evaluation (Qian et al., 2024) to assess NMT
systems pair-wise, i.e. a baseline against MDFS.
Rather than focus on overall translation quality, we
rank the systems based on the accurate translation
of medical terminology, as judged by the LLM. We
provide this experiment’s prompt and more details
in Appendix C.

The evaluation results are presented in Figure 4.
Although the chosen evaluation data point (i.e. the
threshold of 2.5, see Figure 3) did not indicate
a substantial difference between KEYWORD and
MDFS in system-level metric, in terms of termi-
nology translation, MDFS denotes 16 percentage
points more wins, which showcases the robustness
of the approach over hand-written rules. Compared
to the random baseline, MDFS provides even more
benefits, reaching 54% wins overall.

6 Conclusion

We trained classification and linear regression
data filtering models from labels generated by
Llama-3.1-7eB-Instruct to filter NMT data based on
translation quality and medical relevance. Our find-
ings show that such a filtering pipeline extends be-
yond English languages, effectively filtering data.
For our medical domain experiments, we report
comparable NMT results when filtering English
or non-English data. Furthermore, these findings
support that LLMs can effectively generate labels
for languages they do not officially support, even
when compared to a model like COMET-KIWI,
which was trained using manually annotated data.

We find that training with a classification objec-
tive is preferable when filtering data for low cutoffs
and in non-English languages, whereas linear re-
gression might perform slightly better at larger data
sizes. We make this observation, not only base on
the low chrf++ scores of En—Ro but also the fact
that the Arabic MDFS-CLASS model is the best at
lower thresholds. We suggest this indicates that the
continuous ranking of sentences provided by the
linear regression models is not effective at selecting
the very best sentences, possibly due to the inabil-
ity of the MDFS models to correctly distinguish
between "good" and "excellent" sentences. Hence,
such filtering models may not be suitable for se-
lecting the best examples available in a dataset for
annealing LLMs, but they may be better suited for
pre-training.



Limitations

A natural extension to our work would be to eval-
vate multilingual filtering on a large-scale LLM
pre-training dataset such as FineWeb 2 (Penedo
et al., 2024b). Whilst such an experiment is more
directly related to pre-training multilingual LLMs,
it also comes at a much more significant compu-
tational cost. Additionally, focusing on parallel
data in NMT allows a more direct comparison of
filtering the same data in different languages.

As we actively chose to select languages
for the medical domain experiments that
Llama-3.1-70B-Instruct does not officially support,
we did not have much choice regarding available
test sets. Those that are available tend to use more
general language than scientific medical writing.
Hence, the results may be slightly different
scientific translations. We also acknowledge that
both translation pairs for the medical domain exper-
iments are unsupported by Llama-3.1-70B-Instruct,
but we argue that we are comparing our method to
filtering the English side, which is supported.

All our experiments focus on training small
NMT models from scratch rather than finetuning
larger models. Our reasoning is that our work is
most applicable to filtering large amounts of pre-
training data rather than selecting the best examples
from a smaller subset of data for pre-training. How-
ever, to address this shortcoming, we present the
results of finetuning n1lb-60e and nllb-1.38 (Team
et al., 2022) in Appendix E.

The major risk for filtering data using neural
models may lead to the reinforcement of biases in
the filtering training data. This is especially true
of linear regression models that exhibit the lowest
lexical diversity after filtering. Such bias may also
be exacerbated by a distribution shift between the
data used to train the filtering model and the data
to which the filtering model is applied.

Lastly, we would like to point out that the prompt
used to generate the LLM scores for the translation
quality experiments has some minor spelling mis-
takes.
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A LLM Prompts

Evaluate the quality of the translation using the additive 5-point scoring system described below.
Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the both the source sentence and the translation are fluent well formed sentences.
- Add 1 point if the translation is a feasible translation of the sentence. The translation may be
suboptimal but should still convey the basic sense of the orginal sentence.

- Add 1 point if the translation adequately conveys the entire meaning of the original sentence. Such
a translation should not have any errors, but does not need to be completely unambigous or natural.
- Add 1 point if the translation contains the exact same information as the original sentence. Such
translations should be of professional standard and entail the same information as the original
sentence.

- Add 1 point if the translation quality is extremly high, the translation accuralety conveys the tone
of the original sentence or the translation accounts for cultural differences between the languages.
Below is an {SRC_LANGUAGE} sentence and a translation into {TGT_LANGUAGE}.

The sentence: {SRC}

The translation: {TGT}

After examining the extract:

- Briefly justify each point on the 5-point scoring system, up to 100 words.

- Conclude with the score using the format: “Translation score: <total points>"

Figure 5: Template prompt used for scoring data with L1ama-3.1-7e8-Instruct for translation quality.

Evaluate whether the sentence below is from the medical domain and could be helpful in a medical,
biological or public health context using the additive 5-point scoring system described below. Points
are accumulated based on the satisfaction of each criterion:

- Add 1 point if the sentence contains any information related to the medical domain.

- Add 1 point if the medical content is clear and presented in an organised manner.

- Add 1 point if the sentences only contain medical, biological or public health content.

- Add 1 point if the sentence is highly relevant and beneficial for medical, biological or public
health purposes whilst exhibiting a clear and consistent writing style.

- Add 1 point if the sentence is an outstanding example of scientific medical or biological content.
Below is an {SRC_LANGUAGE} sentence.

The sentence: {SRC}

After examining the sentence:

- Briefly justify each point on the 5-point scoring system, up to 100 words.

- Conclude with the score using the format: Medical score: <total points>"

Figure 6: Template prompt used for scoring data with L1ama-3.1-7e8-Instruct for medical content.
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B Keywords

Table 5 gives the 30 keywords that are used to filter
for medical sentences on the English side of the
parallel data as described in Section 3.3. They
were manually selected to be as unambiguous as
possible.

vaccine drug health infect doctor patient
disease innoculate liver bone illness injury
treatment  injection medicine symptom tissue infection
surgery aorta therapy  hospital  pancreas blood
cancer influenza  protein dental pregnant  virus

Table 5: List of the English medical keywords used to
filter for medical sentences for the KEYWORD baseline.

C Domain-specific terminology
evaluation details

We present the evaluation prompt in Figure 7. Fol-
lowing the findings of Qian et al. (2024), we in-
clude a chain of thought to the prompt to improve
the LLM evaluation. The experiment was done
using gpt-4o-mini as a judge.

The terminology evaluation experiment uses the
2.5 million threshold systems from the experiment
depicted in Figure 3 and described in Section 5.2.
As a representative of MDFS, we employ MDFS-
CLASS (English).

Please find the medical word pairs in the source and
target language sentences. Refer to the above word
pairs to count the disambiguation accuracy in the
generated sentences of System A and System B.

Think step by step and produce a final score: @ if
System A produced a better translation, 1 if it is a

tie, 2 if System B produced a better translation.

Source: "{source}"
Target: "{target}"
System A: "{system_a}"
System B: "{system_b}"

Figure 7: Template prompt used for medical terminol-
ogy LLM-based evaluation.
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D NMT Results

Further to the chrf++ scores given in 5 we report
spBLEU, chrf++ and COMET in the tables below.
Tables 6 and 7 give the results for the translation
quality experiments and Tables 8 and 9 give the
results for the medical domain experiments.



Threshold Method spBLEU  chrf++ COMET

MDEFS-LINEAR  39.7+02 60.3+01 0.847 +0.000
MDFS-CLASS 39.7+02 60.3+01 0.846 +0.001

RANDOM 32.1+02  54.7+02 0.783 +0.001
1% COMET-KIWI 32.0+03 54.8+02 0.763 +0.003
MDFS-LINEAR  34.6+0.1 56.5+01 0.800 +0.001
MDFS-CLASS 347 +01  56.7+01 0.801 +0.001
RANDOM 37.8+02 59.0+01 0.833 +0.001
10% COMET-KIWI 408 +02 61.0+0.1 0.848 +0.000
MDFS-LINEAR  40.3+02 60.6+01 0.845 +0.001
MDFS-CLASS 39.6+03 60.2+02 0.844 +0.000
RANDOM 38.0+02 592+01 0.835+0.001
25% COMET-KIWI 41.0+0.1 61.1+0.1  0.852 +0.000
MDFS-LINEAR 404 +02 60.7+01 0.847 +0.001
MDFS-CLASS 39.8+01 604 =+01 0.847 +0.001
RANDOM 383+02 593+01 0.836+0.001
COMET-KIWI 403 +02 60.6 0.1 0.849 +0.001
50% ]
)

Table 6: Mean spBLEU, chrf++ and COMET scores for the En—De translation quality experiments. The mean is
take from three runs with different random seeds and the errors are the Standard Error of the Mean.

Threshold Method spBLEU  chrf++ COMET
RANDOM 28.8+02 49.7+0.1  0.803 +0.001
1% COMET-KIWI 244 +01 452+00 0.749 +0.001
(

MDFS-LINEAR  28.6+0.1 483 +00 0.789 +0.000
MDFS-CLASS 28.5+01 482+00 0.792 +0.001
RANDOM 352 +0.1  55.0=+01 0.846 +0.001
COMET-KIWI 35.0=+0.1 54.8+0.1 0.846 +0.000

MDEFS-LINEAR 362+02 56.0+02 0.856 +0.001
MDFS-CLASS 36.3+01  56.2+01 0.858 +0.001

)
10% MDFS-LINEAR  36.6+02 555+01 0.852 +0.001
MDFS-CLASS 36.8+01 555+00 0.854 +0.000
RANDOM 35.5+01  555=+01  0.849 +0.000
25% COMET-KIWI 36.1+01 559=+01 0.856 +0.000
MDEFS-LINEAR 36.8+03 56.2+02 0.856 +0.000
MDFS-CLASS 36.6+0.1  56.0+01 0.856+0.001
RANDOM 35.5+01  553+01  0.849 +0.001
COMET-KIWI 363 +01 56.1+01 0.858 +0.000
50% :
)

Table 7: Mean spBLEU, chrf++ and COMET scores for the En— Ar translation quality experiments. The mean is
take from three runs with different random seeds and the errors are the Standard Error of the Mean.
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Threshold Method spBLEU  chrf++ COMET

2 546+02 0.832+0001
56.8 02 0.846 +0.001
55.7+0.1  0.835+0.001

RANDOM 345 +
KEYWORD 374 +0.
MDFS-LINEAR (EN)  35.8 0.

1
1.0 :

’ MDEFS-CLASS (EN) 359+02 557=+02 0.836+0.001
MDFS-LINEAR 36.8+02 56.1+01 0.840 +0.001
MDFS-CLASS 37401  56.8+01 0.844 +0.000
RANDOM 359+02 555+02 0.840 +0.001
KEYWORD 38.1+02 574+01 0.848 +0.001

25 MDEFS-LINEAR (EN) 37.3+03 57.0+0.1  0.845 +0.001

’ MDFS-CLASS (EN) 37.6 01  57.1+01 0.847 +0.001
MDEFS-LINEAR 37.9+02 573+01  0.849 +0.000
MDFS-CLASS 38.1+03 57.5=+02 0.850=+0.001
RANDOM 36.3+02 56.0+02 0.840 +0.001
KEYWORD 37.9+03 572+01 0.848 +0.001

50 MDEFS-LINEAR (EN)  37.9+0.1 57.5+01 0.849 +0.001

’ MDFS-CLASS (EN) 380+01  575=+01 0.848 +0.001
MDFS-LINEAR 38.2+01  57.6+00 0.850 +0.000
MDFS-CLASS 38002 57.6=01 0.850=0.001
RANDOM 36.0+00 56.0+02 0.841 +0.000
KEYWORD 37.5+02 56.9+02 0.846 +0.001

10.0 MDFS-LINEAR (EN)  37.9+01 57.5+02 0.850 +0.001
: MDFS-CLASS (EN) 383+02 57.6+01 0.850 +0.000
MDFS-LINEAR 38.0+00 57.6+00 0.849 +0.000
MDFS-CLASS 37.9+01  574+00 0.849 +0.001

Table 8: Mean spBLEU, chrf++ and COMET scores for the En—De medical domain experiments. The mean is
take from three runs with different random seeds and the errors are the Standard Error of the Mean. The threshold is
millions of sentences.

Threshold Method spBLEU  chrf++ COMET
RANDOM 392+02 583+01 0.864 +0.001
KEYWORD 41.8+03 60.0+01  0.878 +0.001

MDEFS-LINEAR (EN) 42801  60.6=0.1 0.877 +0.000

10 MDFS-CLASS (EN) 42.77+03  60.6 02 0.878 +0.000
MDES-LINEAR 399+12 582+05 0.837 +0.007
MDFS-CLASS 42.0+02 60.0+0.1  0.873 +0.002
RANDOM 40.0+02 58.9=+02 0.870 +0.001
KEYWORD 42.5+02  60.5+01  0.880 +0.000

25 MDEFS-LINEAR (EN) 43.0:02  60.7=0.1  0.880 +0.001

’ MDFS-CLASS (EN) 429 +03  60.7+02 0.881 +0.001
MDEFES-LINEAR 42.1+04  60.1 02 0.874 +0.001
MDFS-CLASS 427701 60.5+01  0.875+0.002
RANDOM 40.5+02 59.1 +02  0.872 +0.000
KEYWORD 42.1+01 603 +0.1  0.878 +0.000

50 MDFS-LINEAR (EN) 427 <02 60.6+0.1 0.881 +0.000

’ MDFS-CLASS (EN) 42802 60.6+0.1  0.881 +0.000
MDFS-LINEAR 428 +03 60.6+02 0.881 +0.001
MDFS-CLASS 42301 604 =01  0.881 +0.000
RANDOM 40.8 0.1 594 +01  0.872 +0.001
KEYWORD 41.8 0.1 60.1 =01  0.877 +0.001

10.0 MDFS-LINEAR (EN) 41.8+01 60.0+00 0.879 +0.000

’ MDFS-CLASS (EN) 42.1+00 603 +00 0.879 +0.000
MDFS-LINEAR 422 +02  60.3+01  0.879 +0.000
MDFS-CLASS 42.1+02 60.3+01  0.880 +0.001

Table 9: Mean spBLEU, chrf++ and COMET scores for the En—Ro medical domain experiments. The mean is
take from three runs with different random seeds and the errors are the Standard Error of the Mean. The threshold is
millions of sentences.
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E NLLB Finetuning

In order to evaluate how filtered data performs at
finetuning, we train nllb-6ee and nllb-1.38 for one
epoch using 1M sentences of En—Ro data. The
nllb-1.38 is finetuned using LoRA (Hu et al., 2022),
whereas for n11b-60e, we update all parameters. The
results demonstrate that MDFS improves medi-
cal domain translation over the RANDOM base-
line. When using LoORA MDFS-LINEAR, Roma-
nian results in comparable chrf++ to other mod-
els, whereas the full finetuning using the n11b-6ee
model results in reduced scores compared to the
other models.

nllb-600M nllb-1.3B

BASELINE 55.8 58.1
RANDOM 58.2 59.0
KEYWORD 59.3 59.6
MDFS-CLASS (En) 59.5 59.7
MDFS-LINEAR (En) 59.6 59.7
MDFS-CLASS 59.5 59.7
MDEFS-LINEAR 58.5 59.6

Table 10: chrf++ scores for finetuning niib-6ee and
nllb-1.38 using 1M sentences of En—Ro data. Both
models are trained for 1 epoch, n11b-1.38 is trained using
LoRA.

F GPU Hours

Labelling datasets with Llama-3.1-70B-Instruct was
run on a single atee-8ece GPU. We labelled four
datasets, each running taking around ~ 70 hours.

Training MDFS models took ~ 10 hours on
either one a1e0-4068 GPU or two rTx 3900 GPUs.
Labelling the NMT data takes ~ 24 hours, again
run on either a1ee-4e68 GPU or two RrTx 3900 GPUs.
We train and predict twice for each language pair
and task for a total of 8 runs.

NMT training and evaluation is run on either one
atee-4068 GPU or one RTx 3900, with each run and
evaluation taking ~ 4 hours; we train 240 NMT
models.
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