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ABSTRACT

Dual encoder (DE) models, where a pair of matching query and document are
embedded into similar vector representations, are widely used in information re-
trieval due to their efficiency and scalability. However, DEs are known to have a
limited expressive power due to the Euclidean geometry of the embedding space,
which may compromise their quality. This paper investigate such limitations in
the context of hierarchical retrieval, the task where the document set has a hier-
archical structure and the matching documents for a query are all of its ancestor
nodes. We first prove the feasibility of representing hierarchical structures within
the Euclidean embedding space by providing a constructive algorithm for gener-
ating effective embeddings from a given hierarchy. Then we study the problem of
learning such embeddings when the hierarchy is unknown, which is often the case
in practice where only samples of matching query and document pairs are avail-
able during training. Our experiments reveal a “lost in the long distance” phe-
nomenon, where retrieval accuracy degrades for documents further away in the
hierarchy. To address this, we introduce a pretrain-finetune approach that signifi-
cantly improves long-distance retrieval without sacrificing performance on closer
documents. Finally, we validate our findings on a realistic hierarchy from Word-
Net, demonstrating the effectiveness of our approach in retrieving documents at
various levels of abstraction.

1 INTRODUCTION

Information retrieval (Mitra et al., 2018) systems aim to find the most relevant documents within
a large database in response to a user query. A common example is an internet search engine that,
for instance, sifts through all available products and returns those that are the most relevant to a
customer’s search terms. Dual encoder (DE) is one of the most commonly used models for infor-
mation retrieval due to their simplicity and scalability. DEs function by encoding both queries and
documents by vector representations, often using deep neural networks (Guo et al., 2016; Chang
et al., 2020; Zhao et al., 2024). Then, similarity between a query and a document is calculated using
their Euclidean distance or inner product, enabling scalable retrieval through approximate nearest
neighbor search (Johnson et al., 2019; Guo et al., 2020; Chern et al., 2022).

This paper focuses on a specific case of information retrieval where the underlying database exhibits
a hierarchical structure. In particular, we consider databases with an organization that can be rep-
resented as a directed acyclic graph (DAG), where each node corresponds to a document and each
edge represents a directional relationship between a pair of documents (see Figure 1). This hierar-
chical organization, prevalent in many real-world systems (Ravasz & Barabási, 2003; Adcock et al.,
2013), leads to the challenge of hierarchical retrieval. In this context, relevant responses to a query
include not only the “same meaning” document but also its ancestors in the hierarchy. For instance,
consider the task of keyword targeting where advertisers build a keyword list for their products so
that their ads surface if a user query is relevant to keywords in the list. A particular way of doing
this1 is that an advertiser puts a general keyword, e.g., “Sport shoes”, which is to be retrieved not

1https://support.google.com/google-ads/answer/11586965?hl=en#:˜:text=A%
20keyword%20match%20type%20that,specific%20form%20of%20the%20meaning

1

https://support.google.com/google-ads/answer/11586965?hl=en#:~:text=A%20keyword%20match%20type%20that,specific%20form%20of%20the%20meaning
https://support.google.com/google-ads/answer/11586965?hl=en#:~:text=A%20keyword%20match%20type%20that,specific%20form%20of%20the%20meaning
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only when the user query means the same as this particular keyword, but also when the query is more
specific, e.g., “Kid’s running shoes” (see Figure 1). Meanwhile, user queries that are not considered
more specific, e.g. “Kid’s shoes” for the keyword “Sport shoes”, should not retrieve the keyword.

Footwear

Sports 
shoes

Running 
shoes

Kid’s 
shoesSandals

Kid’s running 
shoes

Kid’s 
sandals

Figure 1: Illustration of the hierarchical re-
trieval task. Documents form a hierarchy.
Given a query, e.g. “Kid’s sandals” (circled
in red), the task is to retrieve all its ancester
nodes in the hierarchy (shown in blue).

DEs is a tempting choices for solving hierarchical re-
trieval tasks due to their widespread use for retrieval.
However, DEs have known limitations in representa-
tion capacity due to the Euclidean geometry of the
embedding space (Menon et al., 2022). Such limi-
tations may be particularly problematic for the hier-
archical retrieval tasks. For instance, to effectively
retrieve both “Kid’s shoes” and “Running shoes” for
a query “Kid’s running shoes” (see Figure 1), a DE
would need to place the document embeddings of
these two parent documents in close proximity to
each other as they need to be both close to the em-
bedding of the query. However, this proximity can
lead to unintended consequences. If a user searches
for “Running shoes”, the model might incorrectly re-
trieve “Kid’s shoes” which is irrelevant to the query.
One approach to address this shortcoming is to con-
sider alternative measures of similarities beyond Eu-
clidean distance, such as the hyperbolic geometry (Nickel & Kiela, 2017; Tifrea et al., 2018; Ganea
et al., 2018). Another approach in the literature is to use region instead of point based embed-
dings, such as Order Embeddings (Vendrov et al., 2015) and Box embeddings (Vilnis et al., 2018;
Chheda et al., 2021). While these methods demonstrate superior performance in handling hierarchi-
cal structures, they are no longer amenable to nearest neighbor search hence not suited for retrieval
applications with a large set of documents.

Contributions. This paper explores DEs for hierarchical retrieval, aiming at understanding their
capabilities and limitations and developing practical algorithms for improving their quality.

Firstly, given the constraints of the Euclidean geometry and the asymmetric nature of hierachical
retrieval, it is unclear whether it is even possible to accurately represent a hierarchical similarity
structure via Euclidean embeddings. Moreover, even if such a representation does exist, a priori it
may require very large dimensionality, possibly scaling with the number of points in the dataset. In
Section 3, we resolve this uncertainty with an optimistic answer to the question. Specifically, we
present a constructive algorithm which, given a hierarchical structure, generates a set of embeddings
in RM which solve the hierarchical retrieval task on that structure. Moreover, the dimension of the
embeddings is at most O(h log n), where n is the number of points in the dataset and h is the depth
of the hierarchy.

The constructive algorithm in Section 3 requires precise knowledge of the document hierarchy. In
practice, this hierarchy is often unknown and the embeddings need to be learned from a training
dataset composed of matching query and document pairs. Hence, it is unclear if learning on such
data is able to find good representations even though they exist. Section 4 explores this learning
process by experimenting with a synthetic tree-structured hierarchy. By controlled experiments
with varying the depth and width of the tree, we show that the learning process not only finds
good representations but can achieve this with dimensions much less than those required in the
constructive algorithm, for a wide range of hierarchies.

Continuing on the study of learned embeddings, in Section 5 we provide a fine-grained analysis that
reveals a “lost in the long distance” phenomenon, which severely compromise their quality. This
refers to the behavior that documents with longer distances from the query becomes increasingly
more difficult to retrieve. Towards mitigating the issue, we first demonstrate the inadequacy of
naively upsampling of such pairs, which exhibits a quality tradeoff between short distance and long
distance pairs. We then present a pretrain-finetune recipe, where a DE is first pretrained on a regular
data and then finetuned on a dataset focusing solely on pairs with queries and their long-distance
ancestors. Finally, this approach is validated in Section 6 on a realistic graph from the WordNet, a
large lexical database of English. On this dataset, we show that given a specific query e.g. “cat”, the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

learned embeddings using our pretrain-finetune approach can retrieve documents that are at different
levels of abstraction from the query, e.g., “cat”, “feline”, “carnivore”, “placental”, etc.

2 HIERARCHICAL RETRIEVAL AND DUAL ENCODERS

LetQ = {qi}ni=1 andD = {dj}mj=1 be a collection of n queries and m documents, respectively. For
each i ∈ {1, . . . , n}, let S(qi) ⊆ D be a set that contains documents that are the most relevant to the
query qi. The goal of information retrieval is to return a ranked list of the documents in D for each
qi, with the top ones being those in S(qi). In this section, we formally define hierarchical retrieval
as a particular case of this information retrieval problem. We then discuss dual encoders (DEs) and
set a roadmap on studying their effectiveness for hierarchical retrieval.

2.1 HIERARCHICAL RETRIEVAL

In hierarchical retrieval, we assume that the document set D has a hierarchical structure described
by a directed acyclic graph (DAG), which recall is a directed graph with no directed cycles. Let
G = (V, E) be a DAG associated with the set of document D, where V = D, i.e. each vertex
corresponds to a document, and E = D ×D are directional edges between pairs of documents. For
hierarchical retrieval we assume the following: if any document dj ∈ D is defined as relevant for a
given query qi, i.e., dj ∈ S(qi), then any document dj′ ∈ D for which there is a path in G that goes
from dj to dj′ is also considered relevant to qi, i.e., dj′ ∈ S(qi).

2.2 DUAL ENCODERS

DEs are asymmetric embedding models composed of a query encoder fq(·,θq) : Q → RM and a
document encoder fd(·,θd) : D → RM , which map all the queries and documents into the same
embedding space RM . Here, θq and θd are parameters of DE that can be learned from a training
dataset. Once learned, the top-k matching documents for a query qi ∈ Q can be obtained by
computing the inner product score between its query embedding fq(qi,θq) and all the document
embeddings, i.e., {fd(dj ,θd)}Mj=1, followed by filtering out those with the k largest scores.

When training a DE, we assume the availability of a dataset containing pairs of matching query and
document pairs. Let {(ik, jk)}Bk=1 ⊆ {1, . . . ,m}×{1, . . . , n} be a batch of such data, where ik and
jk are indices of the query and document, respectively. Then, a DE may be trained by minimizing
the following batch softmax loss:

L(θq,θd) =
1

B

B∑
k=1

cross-entropy

(
softmax

(
D(θd)

> · fq(qik ,θq)
T

)
, 1k

)
,

whereD(θd) = [fd(dj1 ,θd), . . . , fd(djB ,θd)] ∈ RM×B . (1)

In above, 1k ∈ RB is a vector with the k-th entry being 1 and all other entries being 0, and T is a
hyper-parameter that we fix to be 20 unless specified otherwise. This loss comes from casting the
retrieval as a classification task, where each document in the batch is treated as a class and the class
label for the query ik is k.

In the rest of the paper, we study the effectiveness of DE trained with minimizing the loss in Eq. (1)
for hierarchical retrieval. This problem is challenging as the solution to Eq. (1) depends on multiple
factors, including the structure of the hierarchy, the architecture of the encoder models, and the
optimization process, etc. Hence, we consider simplifications that makes the analysis tractable:

• In Section 3, we focus on the purely geometric question: Given the hierarchy G, does there exist
a collection of query and document embeddings that solves the hierarchical retrieval problem?
This is equivalent to making a strong assumption that we can freely put the query and document
embeddings anywhere, irrespective of the learning process, and that the networks fq and fd are
sufficiently expressive to produce any collection of embeddings.

3
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• In Section 4, we study learned embeddings from minimizing the following loss function

L({qi}ni=1, {ki}mi=1) =
1

B

B∑
k=1

cross-entropy

(
softmax

(
[dj1 , . . . ,djB ]

> · qik)
T

)
, 1k

)
, (2)

That is, we consider the query and document embeddings, i.e., {qi}ni=1 ⊆ RM and {ki}mi=1 ⊆
RM , as free optimization variables that do not depend on the network parameters θq and θd.
Equivalently, this is assuming that the networks fq and fd are implemented as lookup tables with
one embedding associated with each q ∈ Q and d ∈ D, respectively. Such a simplification
enables us to focus on the effect of the hierarchy on the properties of the learned embeddings,
without dealing with a complicated deep network.

3 THE GEOMETRY OF HIERARCHICAL RETRIEVAL

In this section, we present an algorithm for constructing a collection of query and document embed-
dings that solves the hierarchical retrieval task. In fact, our construction will work for a much more
general task, where the document structure may not be hierarchical.

Consider a query set Q = {qi}ni=1 and a document set D = {dj}mj=1. For each i ∈ {1, . . . , n},
let S(qi) ⊆ D be a set that contains documents that are relevant to the query qi. We assume that
|S(qi)| ≤ s for all i ∈ [n]. Our goal is to construct M -dimensional embeddings for the n queries
and m documents such that every query is close to each of its relevant documents, and not similar to
any other document. Formally, the objective is to find unit vectors q1, . . . , qn,d1, . . . ,dm ∈ RM ,
along with a threshold r ∈ [−1, 1], such that for all i ∈ [n] and j ∈ [m] the following holds:

• Case 1: If j ∈ S(qi), then 〈qi,dj〉 ≥ r + ε.

• Case 2: If j /∈ S(qi), then 〈qi,dj〉 < r − ε

A constructive algorithm. Our constructive algorithm is the following.

Algorithm 1 A constructive algorithm for hierarchical retrieval

Input: Query set Q = {qi}ni=1, document set D = {dj}mj=1, and {S(qi) ⊆ D}mi=1

1: Take {dj = d̂j

‖d̂j‖2
}nj=1, where {d̂j}nj=1 ⊆ RM are drawn i.i.d. from standard Gaussian.

2: For each i, take qi = q̂i

‖q̂i‖2 , where q̂i =
∑
j∈S(qi) d̂j

Output: Query emebeddings {qi} and document embeddings {dj}.

In words, the algorithm simply involves taking the document embeddings as random Gaussian vec-
tors, then setting each query embedding as the sum of the document embeddings of its relevant
documents. Then, both embeddings are normalized to have unit `2 norm.

Correctness of the constructive algorithm. We will parameterize our bounds in terms of the
quantities n, ε, s. For simplicity, we will assume that n = m in our analysis. Note that this can be
achieved WLOG by padding the smaller of the two quantities with dummy queries (or documents).
The goal is to minimize the dimension M .

Our main theoretical result is the following which shows that such embeddings can be created with
dimension linear in the parameter s. Observe that for the case of the hierarchical retrieval problem,
s is at most the number of ancestors of a given node i in the graph. If the DAG is in fact a tree, then
s is at most the height of the tree.

Theorem 1. For any input sets S(q1), . . . , S(qn) ⊂ [n] satisfying |S(qi)| ≤ s for all i ∈ [n], one
can construct vectors solving the dual-encoder embedding construction task with parameter ε in
dimension M = O(max{s log n, 1

ε2 log n}).

4
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(a) Varying H for W = 2 (b) Varying W for H = 4

Figure 2: Comparison of learned DE and handcrafted DE for hierarchical retrieval with a tree-
structure of degree W and height H . For Handcrafted, we generate embeddings according to Al-
gorithm 1. For Learned, we learn embeddings by minimizing the loss in Eq. (1) using randomly
sampled data of a sufficient amount until convergence. In both cases, we experiment with an in-
creasing sequence of embedding dimensions M until the retrieval is successful, and report that
dimension on the y-axis. Successful retrieval means that the averaged recall@k is above 95% for
each of 5 independent trials on a test set of 10k matching pairs, where k is the number of relevant
documents for each test query. Dotted lines are least squares fittings of the Handcrafted. The left
figure uses log-log scale and the right figure uses log scale on x-axis.

4 LEARNING A DUAL ENCODER FOR HIERARCHICAL RETRIEVAL

While the construction algorithm in Section 3 provides a solution that solves the hierarchical re-
trieval problem with provable guarantees, it requires knowing the hierarchical structure a priori.
In this section, we study embeddings learned from minimizing the objective in Eq. (2), aiming at
understanding if it is possible to learn such good embeddings in practice.

Experimental setup. Towards that, we consider a particular kind of hierarchical structures repre-
sented by perfect W -trees, where each node has W child nodes and all leaf nodes of the tree are at
the same level. A perfect W -tree is described by two parameters, namely W which we refer to as
the degree, and H which is the number of levels and we refer to as the height.

For the purpose of hierarchical retrieval, we take the query set Q and the document set D to both
be the set of nodes of a W -tree (excluding the root). For each query q ∈ Q, we assume that its
matching document set S(q) ⊆ D contains d = q, as well as all the ancestors of d. In other words,
the tree is interpreted as encoding a hierarchy of the documents with edges pointing from each child
node to its parent node.

We use the following procedure to sample training and evaluation datasets, unless specified other-
wise. First, a query is sampled by drawing a node with equal probabilities from all nodes of the tree.
Then, we sample a node with equal probabilities from the set of documents that match q. Training
is conducted by optimizing Eq. (2) with gradient descent. For evaluation we use recall@k, i.e., the
percentage of (q, d) pairs in the evaluation set for which d is one of the k documents that have the
largest inner product score with q, with k being the total number of relevant documents for q.

Learned vs constructed embeddings. Recall that Algorithm 1 provides a construction of query
and document embeddings which solve the hierarchical retrieval if the dimension of the embedding
space satisfies M = O(s log n). For a tree-structured hierarchy that we consider here, s and n in
this formula are given by s = H and n = O(WH−1). Hence a M = O(H2 logW ) is needed
for successful retrieval by this construction. This section compares this with that of the learned
embeddings, by learning embeddings on trees with varying H and W .

In Figure 2, we report the dimension of the embedding space (i.e., M ) that is needed to achieve suc-
cessful hierarchical retrieval, as a function of H on the left and W on the right. First, the curves for
handcrafted embeddings align well with the theoretical result that M = O(H2 logW ) is sufficient.
For example, in Figure 2a we perform a line fitting in the log-log space and obtain a slope of 2.29,
whereas from M = O(H2 logW ) we can derive a slope of 2. In Figure 2b we perform a line fitting

5
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(a) Regular sampling of train data (b) Re-balanced train data (c) Pretraining-finetuning

Figure 3: Recall on test sets with varying distances ∈ {0, 1, 2} between query and document (i.e.,
qd dist in the legend), for embeddings ofM = 3 dimensions learned on a tree ofH = 4 andW = 5.
(a) For embeddings trained on data sampled by a default sampling procedure, the recall for (q, d)
pairs with a distance of 1 or 2 are low. (b) By training on re-balanced data, where (q, d) pairs with
a distance of 1 or 2 are up-sampled, the recall for pairs with a distance of 1 and 2 are significantly
improved at the cost of a drastic decrease in recall for pairs with distance 0. (c) With a pretraining-
finetuning procedure described in Section 5.2, recalls at all distances are close to 100% near 15000
steps. In particular, the overall recall (i.e., weighted average of recall at all 3 distances) improves to
97%, compared to 66% in (a) and 70% in (b).

in the space of log(W ) and obtains a slope of 16.5, which aligns well with a slope of H2 = 16
obtained from M = O(H2 logW ).

In comparing handcrafted with learned embeddings, we see from Figure 2 that the latter obtains
successful retrieval with a much smaller M . This result demonstrates that learning is able to find
embeddings that are even better than the handcrafted ones.

5 IMPROVING HIERARCHICAL RETRIEVAL VIA PRETRAIN-FINETUNE

Here we provide a fine-grained analysis of the embeddings learned on tree-structured hierarchies
that are considered in Section 4 and identify a “lost in the long distance” phenomenon. We then
present a recipe for addressing this problem which leads to better quality embeddings.

5.1 LOST IN THE LONG DISTANCE

We provide an analysis of the retrieval quality by evaluating for pairs at varying distances. Here, the
distance between a matching (q, d) pairs is defined as the difference between the level of the node q
and the level of the node d. For example, a distance of 0 means that q and d correspond to the same
node, and a distance of 1 means that d corresponds to the parent node of q.

Towards that, we consider a tree of H = 4 and W = 5, and fix an embedding dimension of M = 3.
In this case, for a query at level 4, the matching document could be from levels 2, 3, or 4 which
correspond to a distance of 2, 1, and 0, respectively (recall that the root node does not correspond
to any query or document). Likewise, queries at level 3 have matching documents with distance
0 and 1, and queries at level 2 have matching documents of distance 0 only. To evaluate recall at
different distances, we sample an evaluation dataset and split it to three parts, which contain pairs
with distance 0, 1, and 2, respectively. We then calculate recall on these three parts separately
and report the results in Figure 3a. It can be seen that the learned embeddings can almost retrieve
perfectly for pairs with a distance 0. However, the embeddings do not work well for distance 1, and
perform poorly for distance 2. In other words, learned embeddings do not work well for pairs where
the document is distant away from the query.

A straightforward idea for addressing this problem is to re-balance the training dataset, so that it
contains more pairs of longer distances. To test this idea, we consider the following two sampling
strategies:

• Regular sampling. This refers to the sampling procedure described in Section 4. With H = 4
and W = 5, it can be calculated that pairs with distances 0, 1, and 2 are sampled with probability
38%, 35%, and 27%, respectively.

6
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• Heavy-Tail sampling. This refers to a sampling strategy where pairs with distances 0, 1, and 2 are
sampled with probability 0%, 50%, and 50%, respectively.

We then create a re-balanced dataset by mixing data from regular and heavy-tail sampling above
with a ratio of p : 1 − p. Figure 3b shows results with p = 0.03. It can be observed that recalls for
pairs with distance 1 and 2 are significantly improved and reaches a level of beyond 80% towards
the end of training. However, we also observe that this comes at the cost of a significantly reduced
recall on pairs with distance 0. Finally, we tune p with varying values in {0.01, 0.1, 0.3} and report
the results in Figure 6 (see Appendix). The results confirm that re-balancing training data cannot
effectively solve the issue of lost in long distance.

5.2 A PRETRAIN-FINETUNE RECIPE

We present a pretrain-finetune recipe to address the issue of lost in the long distance. This recipe
simply requires first doing a pretraining on data from the regular sampling, then finetune the em-
beddings on the heavy-tail distribution using a much smaller learning rate (we used 0.05×). Here,
regular and heavy-tail distributions refer to those described in Section 5.1.

The results of this recipe is reported in Figure 3c, where the pretraining stage and the finetuning
stage take place in the first and second 10,000 training steps, respectively. We observe that in the
finetuning stage, the retrieval quality for pairs with distance 1 and 2 quickly picks up and reach a
level of close to 100%. After that, the model exhibits an overfitting since the quality for pairs with
distance 0 starts to decrease. This overfitting may be expected since the finetuning stage does not
have any training data with distance 0. In practice, one may apply an early stopping by monitoring
recall on a heldout set, which will enable us to obtain good quality embeddings for hierarchical
retrieval. In particular, the peaking overall recall (i.e., averaged over pairs of all distances) reaches
97% which is a huge improvement over using the default data sampling (which gives 66% recall)
and over using re-balanced training data (which gives 70% at peak performance near 17000 steps).

6 EXPERIMENTS ON REAL DATA

In this section, we demonstrate the effectiveness of the pretrain-finetune recipe in Section 5 on data
with a realistic hierarchical structure. Specifically, we use WordNet (Miller, 1995), a large lexical
database of English where the nouns, verbs, adjectives, and adverbs are grouped into synsets that
represent synonyms. The set of synsets is equipped a binary hypernym relation, e.g., “chair” is the
hypernym of “armchair”. This relation may be described by a DAG with nodes corresponding to
synsets and edges pointing from a synset to another one that is its hypernym.

For our experiments, we use the 82,115 noun synsets from WordNet. Then, the query and document
sets, i.e., Q and D, are taken to be those synsets. For each query q ∈ Q, the matching documents
S(q) are synsets for which there is an edge that points from q to it in the graph of the transitive closure
of the DAG associated with the hypernym relation. For example, the set of matching documents for
the query “cat” includes “cat”, “feline”, “carnivore”, “placental”, etc. In practice, we make a slight
modification to this definition by restricting to (q, d) pairs with a distance of at most 8, so that the
learning task is easier. Here, distance between two synsets is defined as the length of the shortest
path that connects them in the hypernym DAG.

Lost in the long distance. As a baseline, we assume that there is a regular sampling procedure
which we can use for generating matching pairs from WordNet. This procedure is described as
follows. First, a query q is sampled uniformly at random from all 82,115 synsets. Then, a document
is sampled uniformly at random from the set of all matching documents to q. In our experiment, we
sample 10M such pairs as the training dataset, and optimize the objective in Eq. (2) using SGD with
a learning rate of 0.5, momentum of 0.9, batch size of 4096, for 50k iterations (i.e., 20 epochs).

To evaluate the quality of the learned embeddings, we use a test set of size 10k generated in the same
way, and report recall@k as the quality metric, where k is the total number of relevant document for
a query. In particular, we report recall@k averaged over all samples in the test set, reported as the
column “Overall” in Table 1, and slices with different distances (i.e., 0, 1, ..., 8) between query and
document. Finally, we pick the checkpoint that achieves the best overall recall on a validation set of
size 10k as the final output.
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Table 1: Quality of learned embeddings for hierarchical retrieval on WordNet. Regular sampling
refers to first sampling a query then a document uniformly at random from the set of all matching
documents. Rebalanced means a mixture of data from regular sampling with a proportion p and a
heavy-tail data of proportion 1−p where long-distance pairs are upsampled. Pretrain-finetune is the
method of first pretraining on regular sampling data then finetuning on heavy-tail data. Quality is
measured by averaged recall@k on a test set. Our method (i.e., pretrain-finetune) enables good
retrieval quality for query-document pairs at all distances.

Query-document distance
Method 0 1 2 3 4 5 6 7 8 Min Overall

Embedding dimension = 16:
Regular sampling 100.0 62.8 46.6 33.9 20.9 11.9 7.2 2.9 1.0 1.0 43.0
Pretrain-finetune 100.0 57.1 46.4 47.9 50.2 53.6 53.1 47.3 32.0 32.0 60.1

Embedding dimension = 32:
Regular sampling 100.0 90.8 79.2 62.3 46.4 31.8 20.1 14.8 8.4 8.4 61.8
Pretrain-finetune 100.0 77.3 76.5 80.4 83.5 84.2 84.3 80.1 67.3 67.3 87.3

Embedding dimension = 64:
Regular sampling 100.0 93.9 86.9 76.8 60.2 46.8 36.1 28.8 19.4 19.4 71.4
Rebalanced (p=0.01) 0.6 46.9 69.7 67.2 56.3 44.7 39.4 34.9 36.6 0.6 41.8
Rebalanced (p=0.03) 2.8 49.6 69.4 64.2 52.1 43.2 37.7 31.8 32.7 2.8 40.7
Pretrain-finetune 100.0 90.8 91.6 92.7 92.6 91.8 90.9 87.3 75.7 75.7 92.3

Table 2: Retrieved synsets for selected queries with 64-dimensional embeddings. For each of the
three queries considered here, we list the relevant documents in the row “Groundtruth” with an
ascending order in their distance to the query. For “Regular sampling” and “Pretrain-finetune”, we
list retrieved top-k documents in an ascending order of k. Undescored documents are those retrieved
but not in the groundtruth.

Query = “cat”
Groundtruth cat feline carnivore placental mammal vertebrate chordate animal organism
Regular sampling cat feline carnivore placental mammal wildcat domestic cat vertebrate canine
Pretrain-finetune cat feline chordate vertebrate animal placental mammal carnivore wildcat

Query = “recliner”
Groundtruth recliner armchair chair seat furniture furnishing instrumentality artifact whole
Regular sampling recliner armchair seat chair furnishing furniture article ware toy dog
Pretrain-finetune recliner armchair seat chair furnishing furniture instrumentality artifact cleaning pad

Query = “motorist”
Groundtruth motorist driver operator causal agent physical entity
Regular sampling motorist operator driver floridian foe
Pretrain-finetune motorist operator driver physical entity causal agent

In Table 1, we report the results with a varying dimension of embedding space in {16, 32, 64}. In all
the cases we observe that quality degrades rapidly with the distance between query and document.

Figure 4: Distribution of regular
sampling and heavy-tail data over
varying query-document distances.

Rebalanced data sampling is insufficient. The lost-in-the-
long distance phenomenon may be explained by the distribu-
tion of the regular sampling training data, which is heavily bi-
ased towards query-document pairs with very short distances
(see Figure 4). To explore the effect of data distribution, we
assume the availability of a Heavy-Tail training dataset gener-
ated as follows. First, a query q is sampled in the same way as
in the normal sampling. Then, the matching document for q
is sampled with a probability proportional to the distance be-
tween the document and q (instead of uniform sampling). In
our experiment, we sample 1M such heavy-tail pairs. Then,
we create a rebalanced dataset where each batch has p×4096
pairs from regular sampling data and (1 − p) × 4096 from
heavy-tailed data. Results with p = 0.01 or p = 0.03 for
embedding dimension 64 are reported in Table 1. It can be seen that rebalanced data improves the
retrieval quality on long distance pairs but at a large cost of hurting quality on short distance pairs.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Spearman correlation score on Hyperlex for embeddings trained on WordNet with the
normal sampling procedure (i.e. “Normal sampling”) vs embeddings further finetuned on heavy-
tail data (i.e., “Pretrain-finetune”). We used 5-dimensional embeddings to be consistent with prior
work. Among comparing methods, the results for Order Embedding and WN-Basic are taken from
Vulić et al. (2017). WN-Euclidean represents 5-dimensional embeddings trained on WordNet using
Euclidean distance and the result is taken from Nickel & Kiela (2017).

Method OrderEmbed WN-Basic WN-Euclidean Regular sampling Pretrain-finetune

ρ 0.195 0.240 0.389 0.350 0.415

Pretrain-finetune offers a solution. We evaluate the pretrain-finetune method, where the em-
beddings are first pretrained on the normal sampling data for 50k iterations, then finetuned on the
heavy-tail dataset only, i.e, not mixed with normal sampling data, for 20k more iterations. Dur-
ing finetuning, the only changes we make are to reduce learning rate to 1,000 smaller and to use a
temperature of 500 in lieu of 20 (see Eq. (2)). The results, presented in Table 1, demonstrate a sig-
nificant retrieval quality improvement for long distance document, leading to a much higher overall
recall. In Table 2, we further provide a visualization of the retrieved documents for three selected
queries. These examples show that normal sampling tends to miss the long distance pairs and the
pretrain-finetune recipe is effective in fixing many of such errors.

Hypernymy evaluation. We further evaluate the learned embeddings on HyperLex (Vulić et al.,
2017), a dataset for evaluating how well a model captures the hyponymy-hypernymy relation be-
tween concept pairs. Towards that, we train 5-dimensional embeddings on the nouns of WordNet
using pairs generated from regular sampling as before, and report the result in Table 3 under the
entry “Regular sampling”. This method is similar to WN-Euclidean reported in Nickel & Kiela
(2017), which also trains 5-dimension embeddings on WordNet using the Euclidean distance, and
hence the quality of these two entries are similar. Finally, we test our pretrain-finetune recipe by
doing a finetuning the embeddings trained on regular sampling data using the heavy tail data. The
result shows a large improvement over regular sampling and also surpasses the previous result of
WN-Euclidean.

Figure 5: Retrieval quality of hyper-
bolic embeddings at varying query-
document distances.

Comparison with hyperbolic embeddings. Document
embedding using a hyperbolic space is a popular approach
for addressing the shortcomings of embedding with the Eu-
clidean space and have demonstrated successes for hierar-
chical structures. As we explain in the related work, hy-
perbolic embeddings cannot solve the hierarchical retrieval
problem as the embeddings are not amenable to approxi-
mate k nearest neighbor search algorithms. Here we further
provide empirical evidence that hyperbolic embeddings are
also insufficient in their retrieval capabilities.

Towards that, we train 64 dimensional hyperbolic embed-
dings on the same 10M normal sampling data as before and
report the recall for query-document pairs at different dis-
tances in Figure 52. It can be seen that hyperbolic embed-
dings struggle to obtain a good balance between pairs with
short vs long distances. Specifically, the model first learns
to retrieve pairs with short distances, i.e. with distance 0 and 2. As it starts to be able to retrieve
longer distance pairs, the quality on the short distance pairs begin to drop very quickly.
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A APPENDIX

A.1 PROOF OF THEOREM 1

We now present the proof of our construction of embeddings that solves the dual encoder embedding
construction task. For notation, in what follows, we write a = x ± y to indicate the containment
a ∈ [x− y, x+ y]

Proof of Theorem 1. We begin by drawing random Gaussian vectors x1, . . . , xn in Rd (we will later
normalize them). Next, we set qi = 1√

|Si|

∑
j∈Si

xj . Note that, by stability of Gaussian random

variables and independence of the xj’s, it follows that each coordinate of qi is distributed indepen-
dently as a standard normal distributed (i.e. N (0, 1)). Thus, by standard χ2 concentration (e.g.
Lemma 1 Laurent & Massart (2000)), for any fixed i ∈ [n] and value λ > 0, if g ∼ N (0, Id) is a
vector of i.i.d. standard Gaussian variables, we have ‖g‖22 = d + 2

√
dλ + 2λ with probability at

least 1− 2−λ. Setting λ = 4 log n and taking d larger than some constant, we have

Pr
[∣∣‖g‖22 − d∣∣ ≤ 5

√
d log n

]
≥ 1− n−4

We can thus condition on ‖xi‖22 = d ± 5
√
d log n and ‖qi‖22 = d ± 5

√
d log n occurring for all

i ∈ [n], which holds with probability 1−2n−3 by a union bound over the 2n vectors. Call this event
E1.

To analyze this construction, first define the event E2 that for all (i, j) /∈ E, we have |〈qi, xj〉| ≤
100
√
d log n. Also define on the event E3 that for all (i, j) ∈ E we have |〈

∑
t∈Si\j xt, xj〉| <

100
√
ds log n.

We first analyze Pr [E2]. If (i, j) /∈ E, then qi, xj are independent Gaussian vectors, thus by
Gaussian stability we have

|〈qi, xj〉| ∼ |g| · ‖xj‖2 ≤ |g|
√
d

(
1 + 5

√
log(n)

d

)1/2

≤ |g|
√
d(1± 1/100)

where g ∼ N (0, 1) and we took d larger than some constant. Via the density function of a Gaussian,
we have Pr

[
|g| · ‖xj‖2 > 100

√
d log n

]
< 1/n4. Thus, by a union bound over at most n2 pairs,

we have Pr [E2] > 1/n2. For E3, note that for any i ∈ [n] with j ∈ Si, the vector
∑
t∈Si\j xt

is distributed like N (0,
√
|Si| − 1 · Id); namely each coordinate is i.i.d. Gaussian distributed with

variance |Si| − 1. Thus∣∣∣∣∣∣
〈 ∑
t∈Si\j

xt, xj

〉∣∣∣∣∣∣ ∼√|Si| − 1 · |g| · ‖xj‖2 < |g|
√
sd(1 + 1/100)

where again g ∼ N (0, 1). Following the same argument as above yields Pr [E3] > 1− n−2.

Conditioned on E1, E2, E3, we claim that the vectors q1/‖q1‖2, . . . , qn/‖qn‖2, x1/‖x1‖2, . . . , xn/‖xn‖2
satisfy the desired properties with r = 1

4
√
λ

. In what follows, let λ = 10 · max{s, 1
ε2 }. For case

one, if j ∈ Si we have〈
qi
‖qi‖2

,
xj
‖xj‖2

〉
=

1

‖qi‖2‖xj‖2
√
|Si|

‖xj‖22 +
〈 ∑
t∈Si\j

xt, xj

〉
≥ 2

3d
√
λ

(
2

3
d− 100

√
ds log n

)
>

4

9
√
λ
− 200

3
·
√

log n

d

≥ 1

3
√
λ

(3)
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(a) p = 0.01 (b) p = 0.1 (c) p = 0.3

Figure 6: Effect of re-balanced training data with a varying ratio p between the regular and the
heavy-tail data on retrieval quality.

Where we used that d ≥ Cλ log n for a sufficiently large constant C. Next, for case two, when
j /∈ Si, we have

〈
qi
‖qi‖2

,
xj
‖xj‖2

〉
<

3

2d

〈 ∑
t∈Si\j

xt, xj

〉
≤ 3

2
√
d
· 100

√
log n ≤ 1

5
√
λ

(4)

Using that d ≥ Cmax{1/ε2, s} log n, we have that 1
5
√
λ
+ ε < 1

4
√
λ
< 1

3
√
λ
− ε, which completes

the proof.

B ADDITIONAL EXPERIMENTS

In Figure 6, we provide additional results complementing Figure 3b in showing that rebalanced
sampling cannot effectively solve the lost in the long distance problem.
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