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Abstract—Model-free reinforcement learning has emerged as
a powerful method for developing robust robot control policies
capable of navigating through complex and unstructured environ-
ments. The effectiveness of these methods hinges on two essential
elements: (1) the use of massively parallel physics simulations to
expedite policy training, and (2) an environment generator tasked
with crafting sufficiently challenging yet attainable environments
to facilitate continuous policy improvement. Existing methods
of outdoor environment generation often rely on heuristics con-
strained by a set of parameters, limiting the diversity and realism.
In this work, we introduce ADEPT, a novel Adaptive Diffusion
Environment for Policy Transfer in the zero-shot sim-to-real
fashion that leverages Denoising Diffusion Probabilistic Models
to dynamically expand existing training environments by adding
more diverse and complex environments adaptive to the current
policy. ADEPT guides the diffusion model’s generation process
through initial noise optimization, blending noise-corrupted en-
vironments from existing training environments weighted by
the policy’s performance in each corresponding environment.
By manipulating the noise corruption level, ADEPT seamlessly
transitions between generating similar environments for policy
fine-tuning and novel ones to expand training diversity. To
benchmark ADEPT in off-road navigation, we propose a fast and
effective multi-layer map representation for wild environment
generation. Our experiments show that the policy trained by
ADEPT outperforms both procedural generated and natural
environments, along with popular navigation methods.

I. INTRODUCTION

Autonomous navigation across unstructured complex envi-
ronments necessitates the development of control policies that
exhibit both robustness and smooth interactions within these
challenging environments [31, 44, 74]. In this work, we target
the training of a control policy that allows robots to adeptly
navigate through diverse environments, such as unstructured
indoor-outdoor environments and complex off-road terrains.

Recent advancements in reinforcement learning (RL) have
shown great promise in enhancing autonomous robot navi-
gation in challenging scenarios [71, 45, 1]. While an ideal
case involves training an RL policy to operate seamlessly
in all possible environments, the complexity of real-world
scenarios makes it impractical to enumerate the entire spec-
trum of possibilities. Popular methods, including curriculum
learning in simulation [34] and fine-tuning in real world [62],
and imitation learning using real-world collected data [73]
encounter limitations in terms of training data diversity and
the human efforts required. Recently, the real-to-sim-to-real
paradigm [13] features multi-modal information through ra-
diance field rendering [36] real-world environments in the

simulation. However, without sufficient data and training, the
application of learned policies to dissimilar scenarios be-
comes challenging, thereby hindering efforts to bridge the out-
of-distribution gap. Additionally, existing solutions, such as
traversability estimation [53, 64] for motion sampling [18, 72]
and optimization methods [59, 79], may exhibit fragility due
to sensor noise and complex characteristics of vehicle-terrain
interactions.

To tackle this challenge, we propose ADEPT, an Adaptive
Diffusion Environment generator for Policy Transfer in the
zero-shot sim-to-real fashion. ADEPT is designed to co-evolve
with the policy, producing new environments that effectively
push the boundaries of the policy’s capabilities. Starting with
an initial environment dataset, which may be from existing
data or environments generated by generative models, ADEPT
is capable of expanding it into new and diverse environments.
The significant contributions include:

• Adjustable Generation Difficulty: ADEPT dynamically
modulates the complexity of generated environments by
optimizing the initial noise (latent variable) of the diffu-
sion model. It blends noise-corrupted environments from
the training environments, guided by weights derived
from the current policy’s performance. As a result, the
reverse diffusion process, starting at the optimized initial
noise, can synthesize environments that offer the right
level of challenge tailored to the policy’s current capabil-
ities.

• Adjustable Generation Diversity: By adjusting the ini-
tial noise level before executing the Denoising Diffusion
Probabilistic Model (DDPM) reverse process, ADEPT
effectively varies between generating challenging envi-
ronments and introducing new environment geometries.
This capability is tailored according to the diversity
present in the existing training dataset, enriching training
environments as needed throughout the training process.
Such diversity is crucial to ensure the trained policy to
adapt and perform well in a range of previously unseen
scenarios.

We specifically target the training of adept navigation
through diverse off-road terrains, such as ones characterized
by varying elevations, irregular surfaces, and obstacles. This
article extends our previous work [77] from multiple perspec-
tives:

• Scalable Generation: Our ADEPT focuses on expos-



ing agents to contiguous environments across succes-
sive training epochs. Unlike discontinuous environments
suited for local planning or super large environments
that incur computation burdens, this approach enhances
performance to long-horizon tasks with efficiency.

• Off-Road Environment Representation: Rather than
bare terrain elevations, we extend environments as multi-
layer maps, from the terrain elevation to the surface
canopy, offering effective generation of elevations and
plants compared to direct fine geometry inference.

• Stereo-Vision Perception Simulation: For the key at-
tribute, perception domain, we simulate the depth mea-
surement noise from simulator-rendered infrared stereo
images with stereo matching. Instead of overly compli-
cate hand-crafted noise models to the perception (e.g.,
depth image or elevation map), we randomize the single
infrared noise model which offers simple controllability
and realism.

We systematically validate the proposed ADEPT frame-
work by comparing it with established environment generation
methods [40, 45] for training navigation policies on uneven
terrains. Our experimental results indicate that ADEPT offers
enhanced generalization capabilities and faster convergence.
Building on this core algorithm, we integrate ADEPT with
teacher-student distillation [9] and domain randomization [3]
in physics and perception. We evaluate the distilled student
policy with zero-shot transfer to simulation and real-world
experiments. The results reveal our framework’s superiority
over competing methods [78, 72, 71, 57] in key performance
metrics.

II. RELATED WORK

A. Navigation in the Wild

Navigation in unstructured outdoor environments requires
planners to handle more than simple planar motions. Simu-
lating full terra-dynamics for complex, deformable surfaces
like sand, mud, and snow is computationally intensive. Conse-
quently, most model-based planners use simplified kinematics
models for planning over uneven terrains [74, 67, 75, 39, 49]
and incorporate semantic cost maps to evaluate traversability
not accounted in the simplified model [44, 63, 19, 53, 64].
Continuously learning the semantic traversability is powerful
as it can incorporate multi-modal information so aim to offer
a plug-and-play solution that can seamlessly integrate into
the state-of-the-art semantic learning methods. Our method
can follow waypoints optimized on the traversability map.
Imitation learning (IL) methods [73, 51, 61] bypass terrain
modeling by learning from expert demonstrations but require
labor-intensive data collection. On the other hand, model-free
RL does not require expert data and has shown impressive re-
sults enabling wheeled [34, 28, 71, 54] and legged robots [40,
45, 30, 46] traversing uneven terrains by training policies
over diverse terrain geometries. However, the challenge is to
generate realistic environments to bridge the sim-to-real gap.
The commonly-used procedural generation methods [45, 40]

are limited by parameterization and may not accurately reflect
real-world environment geometries. Our work addresses this
by guiding a diffusion model trained on natural environments
to generate suitable off-road environments for training RL
policies.

B. Sim-to-Real Robot Learning

[40] proposed zero-shot sim-to-real quadruped locomotion
where a Temporal Convolutional Network (TCN) encodes the
state-action history to reconstruct the privileged information.
To leverage exteroceptive information for additional recon-
struction, [45] proposed the belief encoder-decoder module
that enables robust behavior even with perception occlusions.
Subsequently, [30] proposed a compact and robust system
where the high-level classic path planner guides the low-level
learned controller to achieve superior successes. However,
these works have restrictions on the procedural generation
terrain diversity. On one hand, to learn in the real world
to unseen scenarios, RMA [37] distilled a parkour policy
on a latent space of environment extrinsic from the state-
action history. But it cannot distill multiple specialized skill
policies into one parkour policy [81]. On the other hand, three-
dimensional procedural environment generation [46] could
empower locomotion in confined spaces, with limits in re-
alism. [81] proposed soft and hard obstacle constraints for
smooth skill learning, while the environment is still restricted
by human-crafted stairs and boxes.

C. Automatic Curriculum Learning and Controllable Gener-
ation

Our method is a form of automatic curriculum learning [56,
50], where it constructs increasingly challenging environments
to train RL policies. While one primary goal of curriculum
learning in RL is to expedite training efficiency [27, 14, 16],
recent work shows that such automatic curriculum can be a by-
product of unsupervised environment design (UED) [12, 69,
70, 33, 41]. It aims to co-evolve the policy and an environment
generator during training to achieve zero-shot transfer during
deployment. Unlike prior works in UED, the environments
generated by our method are grounded in realistic environment
distribution learned by a diffusion model and guided by policy
performance. Recently, a concurrent work proposes Grounded
Curriculum Learning [68]. It uses a variational auto-encoder
(VAE) to learn realistic tasks and co-evolve a parameterized
teacher policy to control VAE-generated tasks using UED-
style training. In contrast, our work uses a sampling-based
optimization method to control the diffusion model’s initial
noise for guided generation.

Controllable generation aims to guide a pre-trained diffusion
model to generate samples that are not only realistic but also
satisfy specific criteria. A commonly used strategy is adding
guided perturbations to modify the generation process of a
pre-trained diffusion model using scores from the conditional
diffusion [24, 2] or gradients of cost functions [80]. Another
approach is to directly optimize the weights of a pre-trained
diffusion model so that the generated samples optimize some



objective function. By treating the diffusion generation pro-
cess as a Markov Decision Process, model-free reinforcement
learning has been used to fine-tune the weights of a pre-trained
diffusion model [7, 65]. This approach can also be viewed
as sampling from an un-normalized distribution, given a pre-
trained diffusion model as a prior [66]. Our work is closely
related to initial noise optimization techniques for guiding
diffusion models [5, 35, 22]. Instead of refining the diffusion
model directly, these methods focus on optimizing the initial
noise input. By freezing the pre-trained diffusion model, we
ensure that the generated samples remain consistent with the
original data distribution. In contrast to existing approaches
focusing on content generation, our work integrates reinforce-
ment learning (RL) with guided diffusion to train generalizable
robotic policies.

III. PRELIMINARIES

A. Problem Formulation

We represent the environment as e and a common practice
is a multi-channel discretized map, denoted as e ∈ RC×W×H ,
where C, W and H represent the number of channels, width,
and height, respectively. Similar to most works in training
RL policies for zero-shot sim-to-real navigation [81, 26], we
use the high-performance physics simulator [42] to model
the state transitions of the robot moving in environments
st+1 ∼ p(st+1|st, at, e). Here, s ∈ S and a ∈ A represent
the robot’s state and action, and each realization of e specifies
a unique environment. An optimal policy π(a|s, e; θ) can
be found by maximizing the expected cumulative discounted
reward. Formally,

θ∗ = argmax
θ

E at∼π(at|st,e),s0∼p(s0),
e∼p(e),st+1∼p(st+1|st,at,e)

[
T∑

t=0

γtR(st, at)

]
,

(1)
where p(s0) is the initial state distribution and p(e) denotes
the distribution over the environments. Due to the environment
e imposing constraints on the robot’s movement, the policy
optimized through Eq. (1) is inherently capable of avoiding
hazards on convex surfaces and among diverse objects. We
aim to dynamically evolve the environment distribution p(e)
based on the policy’s performance, ensuring training efficiency
and generating realistic environments.

B. Adaptive Curriculum Reinforcement Learning for
Environment-Aware Policy Optimization

A theoretically correct but impractical solution to Eq. (1)
is to train on all possible environments Λ = (e1, ..., e∞),
with p(e) as a uniform distribution over Λ. However, the vast
variability of environment geometries makes this infeasible.
Even if possible, it might produce excessively challenging
or overly simple environments, risking the learned policy to
have poor performance [6]. Adaptive curriculum reinforcement
learning (ACRL) addresses these issues by dynamically up-
dating the training dataset [55]. ACRL generates and selects
environments that yield the largest policy improvement. In our
work, designing an effective environment generator is crucial.

It should (1) generate realistic environments matching real-
world distributions and (2) adequately challenge the current
policy. Common approaches include using adjustable paramet-
ric terrain elevations [40], which offers control but may lack
realism, and generative models [29], which excel in realism but
may struggle with precise policy-tailored generation control.
Meanwhile, those methods mostly focus on the bare terrain
elevation, and robotic agile skills come from hand-crafted
objects such as stairs and boxes [81]. Although radiance
field rendering methods [47, 36] can bring the real-to-sim-
to-real pipeline with powerful representation ability of digital
twins, they also suffer from the training dataset diversity and
scarcity, which limits the co-evolvement characteristics of the
environment and policy.

C. Policy Distillation for Real-World Deployment
The policy learned in simulation can access both the

noiseless state s and the global environment e. However,
this privileged (ground-truth) information x is generally un-
available during real-world deployment due to robot sensors’
measurement noise and limited field-of-view. Rather than
employing model-free RL to train a deployment (student)
policy within a simulation directly, most existing works prefer
distilling this policy from the privileged one using imitation
learning [40, 45]. Our approach aims to reduce the overly
complicate demands of generating high-dimensional observa-
tions (e.g., noisy depth image simulation) and mitigate the
deployment policy’s risk of converging on local optima due to
incomplete observations (e.g., historical encoding). Because
the robustness of the deployment policy depends on both
the performance of the privileged teacher policy and the
diversity of its sensing observations derived from the training
environments, it is important to have a diverse and realistic
environment generator, which is the focus of this work.

IV. ADEPT: ADAPTIVE DIFFUSION ENVIRONMENT FOR
POLICY TRANSFER

This section introduces the Adaptive Diffusion Environ-
ment for Policy Transfer, ADEPT, a novel ACRL genera-
tor in the zero-shot sim-to-real fashion that manipulates the
DDPM process based on current policy performance and
dataset diversity. We begin by interpolating between “easy”
and “difficult” environments in the DDPM latent space to
generate environments that optimize policy training. Next, we
modulate the initial noise input based on the training dataset’s
variance to enrich environment diversity, fostering broader
experiences and improving the policy’s generalization across
unseen environments. We use e, e0, and ek to denote the
environment in the training dataset, the generated environment
through DDPM, and the DDPM’s latent variable at timestep
k, respectively. All three variables are the same size, e.g.,
e ∈ RC×W×H . Since in DDPM, noises and latent variables
are the same [25], we use them interchangeably.

A. Performance-Guided Generation via DDPM
We assume having access to a dataset Λ in the initial training

phase, comprising N environments. The primary objective of



the adaptive environment generator is to dynamically create
environments to be added to this dataset that optimally chal-
lenge the current policy. Ideally, these environments should
push the boundaries of the policy’s capabilities — being
neither overwhelmingly difficult nor excessively simple for
the policy to navigate. This approach ensures the training
process is effective and efficient, promoting continuous learn-
ing and adaptation. We impose minimal constraints on the
nature of initial environments, granting our method substantial
flexibility in utilizing the available data. These environments
can originate from various sources, such as elevation datasets,
procedurally generated environments, or even those created by
other generative models. We leverage the latent interpolation
ability of DDPM to blend environments from the dataset to
fulfill our objective. It adjusts the complexity of environments,
simplifying those that are initially too challenging and adding
complexity to simpler ones.

Latent Variable Synthesis for Controllable Generation.
Once trained, DDPMs can control sample generation by
manipulating intermediate latent variables. In our context,
the goal is to steer the generated environments to maximize
policy improvement after being trained on it. While there
are numerous methods to guide the diffusion model [24, 65],
we choose to optimize the starting noise to control the final
target [5]. This approach is both simple and effective, as
it eliminates the need for perturbations across all reverse
diffusion steps, as required in classifier-free guidance [24],
or fine-tuning of diffusion models [65]. Nevertheless, it still
enhances the probability of sampling informative environments
tailored to the current policy.

Consider a subset of environments Λ̄ = (e1, e2, . . . , en)
from the dataset Λ, where the superscript means environment
index rather than the diffusion step. To find an initial noise that
generates an environment maximizing the policy improvement,
we first generate intermediate latent variables (noises) for each
training environment in Λ̄ at a forward diffusion time step
k, eik ∼ q(eik|ei, k) for i = 1, ..., n. Assume that we have a
weighting function w(e, π) that evaluates the performance im-
provement after training on each environment ei. We propose
to find the optimized initial noise as a weighted interpolation
of these latents, where the contribution of each latent eik,
w(ei, π), is given by the policy improvement in the original
environment

e′k = [Σn
i=1w(e

i, π)eik] / [Σn
m=1w(e

m, π)]. (2)

The fused latent variable e′k is then processed through
reverse diffusion, starting at time k to synthesize a new
environment e′0. The resulting environment blends the high-
level characteristics captured by the latent features of original
environments, proportionally influenced by their weights.

Weighting Function. The policy training requires dynamic
weight assignment based on current policy performance. We
define the following weighting function that penalizes envi-

ronments that are too easy or too difficult for the policy:

w (e, π) = exp {r(e, π)} ,
r(e, π) = −(s(e, π)− s̄)2/σ2.

(3)

Specifically, it penalizes the deviation of environment dif-
ficulty, s(e, π), experienced by the policy π from a desired
difficulty level s̄. This desired level indicates a environment
difficulty that promotes the most significant improvement in
the policy. The temperature parameter σ controls the sensitivity
of the weighting function to deviations from this desired
difficulty level. We use the navigation success rate [17] to
represent s(·, ·). While alternatives like TD-error [32] or
regret [52] exist, this metric has proven to be an effective and
computationally efficient indicator for quantifying an environ-
ment’s potential to enhance policy performance in navigation
and locomotion tasks [45, 40]. We denote the procedure of
optimizing the noise e′k using Eq. (2) and generating the final
optimized environment by reverse diffusion starting at e′k as
e′ = Synthesize(Λ̄, π, k), where k is the starting time step
of the reverse process. As discussed in the next section, a large
k is crucial to maintaining diversity.

B. Diversifying Training Dataset via Modulating Initial Noise
The preceding section describes how policy performance

guides DDPM in generating environments that challenge the
current policy’s capabilities. As training progresses, the pool
of challenging environments diminishes, leading to a point
where each environment no longer provides significant im-
provement for the policy. Simply fusing these less challenging
environments does not create more complex scenarios. With-
out enhancing environment diversity, the potential for policy
improvement plateaus. To overcome this, it is essential to
shift the focus of environment generation towards increasing
diversity. DDPM’s reverse process generally starts from a pre-
defined forward step, where the latent variable is usually pure
Gaussian noise. However, it can also start from any forward
step K with sampled noise as eK ∼ q(eK |e0) [43]. To enrich
our training dataset’s diversity, we propose the following:

1) Variability Assessment: Compute the dataset’s variabil-
ity Λvar by analyzing the variance of the first few prin-
cipal components from a Principal Component Analysis
(PCA) on each elevation map. This serves as an efficient
proxy for variability.

2) Forward Step Selection: The forward step k ∝ Λ−1
var is

inversely proportional to the variance. We use a linear
scheduler: k = K(1 − Λvar), with K the maximum
forward step and Λvar normalized to 0 ∼ 1. This in-
verse relationship ensures greater diversity in generated
environments.

3) Environment Generation: Using the selected forward
step k, apply our proposed Synthesize to generate
new environments, thus expanding variability for train-
ing environments.

C. ACRL with ADEPT
We present the final method pseudo-coded in Alg. 1 using

the proposed ADEPT for training a privileged policy under
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Fig. 1: Framework with our ADEPT and Policy Distillation. Model-
free RL trains privileged policy ADEPT-generated environments. The
privileged policy is then distilled into the deployment (Learner) policy
using data aggregation. Iterative training and environment generation
through ADEPT enhance the deployment policy’s generalization.

Algorithm 1 ACRL with ADEPT

Input: Pretrained DDPM ϵ(·, ·;ϕ), an initial environment
dataset Λ

Output: The optimized privileged policy π∗

Initialize: The privileged policy π
1: while π not converge do
2: e = Selector(Λ, π) ▷ Env. Selection
3: π ← Optim(π, e) ▷ Policy Update
4: k = K(1− Λvar) ▷ Sec. IV-B
5: e′0 = Synthesize(Λ, π, k) ▷ Sec. IV-A
6: Λ← Λ ∪ e′0 ▷ Update Dataset
7: end while

the adaptive curriculum reinforcement learning (ACRL). The
algorithm iterates over policy optimization and guided envi-
ronment generation, co-evolving the policy and environment
dataset until convergence. The algorithm starts by selecting a
training environment that provides the best training signal for
the current policy, which can be done in various ways [6].
For example, one can compute scores for environments based
on the weighting function in Eq. (3) and choose the one with
the maximum weight. Instead of choosing deterministically,
we sample the environments based on their corresponding
weights. In practice, Selector bases its selections on the
Upper Confidence Bound (UCB) algorithm, whose preference
is defined as each environment’s weight. Optim collects
trajectories and performs one policy update in the selected
environments. After the update, we evolve the current dataset
by generating new ones, as shown in lines 4 - 6 of Alg. 1.
Benefiting from the massively parallel simulator, we can
run Alg. 1 in parallel across N environments, each with
multiple robots. In parallel training, Synthesize begins by
sampling N ×n initial noises, where N is the number of new

environments (equal to the number of parallel environments)
and n is the sample size in Eq. (2). It then optimizes over
these noises to generate N optimized noises. Finally, these
optimized noises are passed to the DDPM to generate N
environments. When the dataset grows large, it sub-samples
environments from Selector’s complement, with success
rates updated by the current policy.

D. ADEPT with Teacher-Student Distillation

We have introduced the adaptive diffusion environment
for policy transfer, ADEPT, specifically designed to train a
policy to generalize over environment geometries. However,
as highlighted in Section III-C, real-world deployments face
challenges beyond geometry, including noisy, partial observa-
tions and varying physical properties. To address these chal-
lenges, we distill the policy under teacher-student paradigm,
within massively parallel simulating our proposed environment
generator.

Environment Representation. An efficient and powerful
representation for complicate off-road environments is neces-
sary for DDPMs. It should (1) capture the complex details and
filter out redundant information of real-world environments,
and (2) balance the generation quality and computation (of
training and inference) burden. Instead of signed distance
function (SDF) or polygon mesh that have shown successes
in indoor geometry generations [20, 21] but endure high
computation costs because off-road environmental details need
finer spatial resolutions, we propose a coarse-to-fine method
that starts from environment generation via diffusion and then
guides procedural generation to complete the details. First, our
diffusion model encoding space is e ∈ R2×W×H with two
layers - terrain elevation and surface canopy.
The first layer is the bare terrain elevation and the second
layer describes the layout of wild plants. This representation
is computationally fast and lightweight.

With the diffusion-generated environment e, the elevated
terrain is extracted from terrain elevation. To recon-
struct the wild plants from surface canopy, we firstly
leverage the tree identifier [11] to map individual plants with
each height and crown. As the segmented surface canopy
shown in the middle of Fig. 2, we use the Convex hull to
define the boundary for each plant and to guide the procedural
generation to produce plant geometries. Specially, we sample
points inside the convex hull and uses procedural growth to
connect those points as branches and leaves to generate various
plants, such as bushes and trees.

Teacher-Student Policy. To further address partial observa-
tions and varying physical property challenges above ADEPT-
generated environments, we distill a teacher policy θ trained
using PPO [60], which observes the privileged information xt

and noiseless state st at each timestamp t into a depth vision-
based student policy θ̂ with noisy measurements θ̂(õt, s̃t). The
privileged information xt includes the complete environment
geometry, friction, restitution, gravity, and robot-environment
contact forces. The state st, dependent on the embodiment,
includes the robot motion information, which is usually esti-



Fig. 2: The generation process of various plants from segmenting the surface canopy heights to procedurally generating plants
within each extracted bounds. Those complex objects thus simulate to challenge the robot perception ability.
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Fig. 3: Our proposed perception system mirrors the real active stereo-vision depth sensor pipeline to mitigate the sim-to-
real gap. By projecting IR patterns onto rendered stereo images in the simulator and applying stereo matching to compute the
disparity map, the resulting elevation noise is inherently tied to the stereo-vision depth noise rather than relying on hand-crafted
values. The right panel illustrates examples of ground-truth depth, Gaussian blur (as a representative hand-crafted approach),
noisy depth generated by stereo matching, and real-world depth noise patterns. Compared to the effects of Gaussian blur, our
pipeline better reproduces realistic noise patterns.

mated with on-board sensors during deployment. Similarly, for
each specified robot drive system, the applied action represents
proportional-derivative (PD) targets α · aθt .

Student policy, θ̂, is trained via Dataset Aggregation (DAg-
ger, [58, 1]) to match the teacher’s actions with noisy and
partially observable states. The policy has access to (s̃t, õt),
where s̃t is the noisy state and õt is the height scan [46].
We use height scans as they align with probabilistic elevation
mapping [15], enabling multi-sensor fusion and supporting
ground robot applications. Due to partial observability, the
policy considers past information to decide the next action
at ∼ π̂(at|at, s̃t, õt; θ̂), where at and õt are action and
observation histories with the maximum history length H .

Domain Randomization. To enhance generalization, we
integrate physics domain randomization and perception do-
main randomization. In the physics domain, an environment
appears as geometry and is characterized by physics, including
the friction, restitution, gravity, mass, external forces, and

discrepancy in actuator set-points. These feature the robot-
environment interaction and environmental properties.

In the perception domain, the state estimation uncertainty
is modeled as independent Gaussian distributions, with covari-
ance derived from the error upper bounds of modern SLAM
systems [4, 8]. For exteroceptive perception, we propose
simulating noise in two stages: first, by modeling depth mea-
surement noise and then using it to generate noisy elevation
maps. Instead of applying hand-crafted artifacts [1, 81], we
simulate depth estimation errors based on active stereo sensor
principles as shown in Fig. 3. Stereo-vision depth sensors
provide crucial geometry without the sim-to-real challenges
of RGB color alignment [76] and excel in accuracy and
robustness due to infrared (IR) operation, simplifying simula-
tion under randomized lighting compared to passive or RGB
sensors. Using rendered stereo images, we introduce IR noise
with the model [38]. Depth is estimated using four-path semi-
global block matching (SGBM, [23]).



V. SIM-TO-DEPLOY EXPERIMENTS

We validate our method against competing approaches in
both sim-to-sim and sim-to-real settings. Using wheeled and
quadruped robot platforms, we assess its zero-shot transfer and
generalization capabilities for challenging environments.

A. Algorithmic Performance Evaluation

This section validates the ADEPT framework on goal-
oriented off-road navigation tasks, benchmarking its algo-
rithmic performance against a popular method and assess-
ing submodule contributions through ablation studies. These
experiments serve as a prelude to the sim-to-deploy tests.
This section evaluates whether the environment curriculum
generated by ADEPT enhances the generalization capability
of the trained privileged policy across unfamiliar environment
geometries, on the wheeled ClearPath Jackal robot. We train in
IsaacGym [42] and parallel 100 off-road environments, each
with 100 robots. Simulations run on an NVIDIA RTX 4090
GPU.

We compare with the following baselines. Adaptive Pro-
cedural Generation (APG), a commonly used method, uses
heuristically designed environment parameters [40]. Our im-
plemented APG follows ADEPT, adapting the environment
via the score function Eq. (3) and dynamically updating the
dataset. First, to ablate our Adaptive curriculum, Diffusion
Environment Policy Transfer (ADEPT) generates environment
without curriculum. Procedural Generation (APG) randomly
samples parameters. To ablate our Diffusion Generator, Natu-
ral Adaptive Environment Policy Transfer (N-ADEPT) selects
environments directly from E-3K. To ablate both, Natural
Environment Policy Transfer (N-ADEPT) randomly samples
from E-3K without curriculum. Mono font means the ablated
parts. All methods use the same training and evaluation setup.
After each training epoch, policies are tested in held-out
evaluation environments with 60 000 start-goal pairs. Fig. 4
shows the normalized RL return, which is calculated by the
actual return divided by the running bound. It reveals key
takeaways of our ADEPT as following.

ADEPT generates realistic environments. The higher
success rate of ADEPT than APG on the real-world replicated
environments show the generation quality of ADEPT empow-
ers robot navigation policy learning, compared to APG and
N-AEPT. In the following sim-to-sim and sim-to-real experi-
ments, we will demonstrate the smooth motion trained through
ADEPT compared to the well-performing but unnatural policy
from procedural generations.

ADEPT evolves environment difficulty. The RL return
curve reflects the stable performance of ADEPT on evaluation
environments, attributed to the evolving difficulty of training
environments generated by ADEPT. As the policy encounters
progressively harder environments, its performance initially
dips but gradually stabilizes and converges. Although N-
AEPT enjoys a large training dataset, it can hardly outperform
ADEPT due to the lack of difficulty controllability.

ADEPT evolves environment diversity. ADEPT gains
advantages over a fixed dataset such as N-AEPT because

ADEPT can easily generate thousands of environments within
tens of epochs. PG is limited by the parametric range and lacks
efficient environment parameter control.

In summary, ADEPT excels at adapting environment diffi-
culty and diversity based on evolving policy performance.

B. Sim-to-Deploy Experimental Setup
We benchmark on important metrics that include include

the success rate, trajectory ratio, orientation vibration |ω|,
orientation jerk |∂

2ω
∂t2 |, and position jerk |∂a∂t |, where ω and

a denote the angular velocity and linear acceleration. These
motion stability indicators are crucial in mitigating sudden
pose changes. The trajectory ratio is the successful path
length relative to straight-line distance and indicates navigator
efficiency. All baselines use the elevation map [15] with depth
camera and identify terrains as obstacles if the slope estimated
from the elevation map exceeds 20◦.

We also compare with following state-of-the-art motion
planners other than our ablations. Falco [78], a classic motion
primitives planner, and Log-MPPI [48], a sampling-based
model predictive controller, are recognized for the success rate
and efficiency. They use the pointcloud and elevation map
to weigh collision risk and orientation penalty. TERP [71],
an RL policy trained in simulation, conditions on the ele-
vation map, rewarding motion stability and penalizing steep
slopes. POVNav [57] performs Pareto-optimal navigation by
identifying sub-goals in segmented images [10], excelling in
unstructured outdoor environments.

C. Simulation Experiment
We simulate wheeled robot, ClearPath Jackal, in ROS

Gazebo on 30 diverse environments (E-30), equipped with a
RealSense D435 camera (30 Hz). We add Gaussian noises
to the ground-truth robot state (200 Hz), depth measurement,
and vehicle control to introduce uncertainty whose parameters
reflect the hardest curriculum during simulation training. The
ROS message filter synchronized the odometry with depth
measurement. 1000 start and goal pairs are sampled for each
environment. We do not include ablations other than N-AEPT
because of poor algorithmic performance. As results shown
in Table I, our method outperforms the baselines. While all
methods show improved performance due to the Husky’s
better navigability on uneven terrains, our method consistently
outperformed baseline methods. The depth measurement noise
poses a substantial challenge in accurately modeling obstacles
and complex environments. Falco and MPPI often cause the
robot to get stuck or topple over, and TERP often predicts
erratic waypoints that either violate safety on elevation map
or are overly conservative. Learning-based TERP and POVN
lack generalizability, with their performance varying across
different environments. This issue is mirrored in N-AEPT
and APG, highlighting the success of adaptive curriculum and
realistic environment generation properties of ADEPT.

D. Kilometer-Scale Field Trial.
In our real-world experiment, we implemented our student

policy via zero-shot transfer on a Clearpath Jackal vehicle. The
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Fig. 4: The normalized return of our proposed ADEPT and the baseline methods on evaluation environments.

Jackal Suc.
Rate

Traj.
Ratio

Orien. Vib.
(rad s−1)

Orien. Jerk
(rad s−3)

Pos. Jerk
(ms−3)

Falco 0.26 2.76 0.71 275.56 47.95
MPPI 0.48 1.21 0.75 228.66 40.69
TERP 0.33 1.62 0.77 210.05 37.08
POVN 0.17 1.23 0.68 240.98 43.69
N-AEPT 0.67 1.24 1.08 323.37 57.63
APG 0.43 1.92 0.97 236.1 41.92
Ours 0.87 1.52 0.65 193.45 34.93

TABLE I: Statistical results for simulations are presented
for ClearPath Jackal wheeled robot. The evaluation baselines
involve Falco, MPPI, TERP, POVNav, and ablations with
N-AEPT and APG. A total of 30 000 start-goal pairs are
considered for each method. Green and Bold indicate the best
and second-best.

Start
End

Trial C 1005m

Trial B 1312m

Trial A 1572m

Fig. 5: Three long-range trajectories of our method are pre-
sented, with each trajectory provided with only one distant
goal. The start and goal points are represented by green and
orange dots.

robot, running on NVIDIA Jetson Orin, was equipped with
a Velodyne-16 LiDAR (10 Hz), a RealSense D435i camera
(30 Hz), and a 3DM-GX5-25 IMU (200 Hz). Faster-LIO [4]
provided LiDAR-Inertial odometry at 200 Hz.

Our experiment extends to evaluating the capability of
our method in executing extended long-range trial in the

field, a feature enabled by ADEPT to continuously evolve
the environment. Note that during training we normalize all
state variables except for the goal distance. We conducted 3
distinct field trials, each covering approximately 1.3 km. It
is important to note that this experiment is not designed for
direct comparative analysis with other methods, as they often
rely on serialized waypoints (less than 10 meters each) for
local navigation. The trajectories from these three trials are
visualized on a satellite map in Fig. 5. In trial C, manual
intervention was required for a sharp turn due to road crossing.
The robot demonstrated its ability to adjust its heading for
goal alignment, though orientation vibration levels were not
minimal, indicating constant adjustments to navigate uneven
terrains. It should be noted that our method cannot make
a big turn in the trajectory without some waypoints (more
than 100 meters each). The trials reveal that our method
effectively extends its navigational capacity to long distances
across uneven terrains.

VI. CONCLUSION

We propose ADEPT, an Adaptive Diffusion Environment
Generator to create realistic and diverse environments based
on evolving policy performance, enhancing RL policy’s gen-
eralization and learning efficiency. To guide the diffusion
model generation process, we propose optimizing the initial
noises based on the potential improvements of the policy after
being trained on the environment generated from this initial
noise. Algorithmic performance shows ADEPT’s performance
in generating challenging but suitable environments over es-
tablished methods such as commonly used procedural gener-
ation curriculum. Combined with domain randomization in a
teacher-student framework, it trains a robust deployment policy
for zero-shot transfer to new, unseen environments. Sim-to-
deploy tests with an wheeled robot validate our approach
against SOTA planning methods.
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