
Sim-to-Real Contact-Rich Pivoting via
Optimization-Guided RL with Vision and Touch

Anonymous Author(s)
Affiliation
Address
email

Abstract

Non-prehensile manipulation is challenging due to complex contact interactions1

between objects, the environment, and robots. Model-based approaches can effi-2

ciently generate complex trajectories of robots and objects under contact constraints.3

However, they tend to be sensitive to model inaccuracies and require access to4

privileged information (e.g., object mass, size, pose), making them less suitable5

for novel objects. In contrast, learning-based approaches are typically more robust6

to modeling errors but require large amounts of data. In this paper, we bridge7

these two approaches to propose a framework for learning closed-loop pivoting8

manipulation. By leveraging computationally efficient Contact-Implicit Trajec-9

tory Optimization (CITO), we design demonstration-guided deep Reinforcement10

Learning (RL), leading to sample-efficient learning. We also present a sim-to-real11

transfer approach using a privileged training strategy, enabling the robot to perform12

pivoting manipulation using only proprioception, vision, and force sensing without13

access to privileged information. Our method is evaluated on several pivoting tasks,14

demonstrating that it can successfully perform sim-to-real transfer.15

1 Introduction16

Non-prehensile manipulation, such as pivoting, pushing, and sliding, plays an important role in17

enhancing the dexterity of robotic systems [11, 41, 52]. These skills allow robots to interact with18

the environment more flexibly, enabling them to adapt to a wide range of tasks without requiring19

secure grasps. However, achieving such skills is challenging due to the inherently complex contact20

interactions (e.g., making-breaking contact, sliding-sticking contact). These interactions introduce21

non-smooth dynamics that are difficult to model and control as the number of contacts increases.22

Model-based optimization methods, such as CITO and Model Predictive Control (MPC) [61, 48, 36,23

43, 68, 54], have demonstrated impressive performance, particularly in generating diverse trajectories24

at low computational cost. However, since these methods, in general, rely on simplified models of25

manipulation, they can be highly sensitive to uncertainties due to model inaccuracies. More critically,26

they often rely on offline system identification or online estimation of privileged information, such as27

object properties or contact states. This dependency limits the applicability of model-based controllers,28

particularly in real-world scenarios involving novel objects or partially observable environments.29

Learning-based methods, such as RL, have also shown impressive performance, especially in their30

robustness against various sources of uncertainty [38, 51, 10, 37, 4, 27, 50]. These methods can31

operate without privileged information by directly learning policies from raw observations. However,32

they typically require a large number of training samples, resulting in long training times, which poses33

a significant challenge for practical deployment. This is especially problematic in non-prehensile34

manipulation, where the policy must reason object pose, contact locations, contact forces, and feasible35

action spaces from indirect and partial observations. Unlike prehensile manipulation (e.g., grasping36
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Figure 1: Overview of our proposed framework. Trainable modules have red edges. Step 1: We
collect data using CITO given a user-specified task. Step 2: The teacher policy is trained using RL
with privileged information and sensor observations, leveraging the demonstrations collected in Step
1. Step 3: The student estimator is trained to estimate the privileged information. The estimator
consists of a CNN and a TCN to process temporal sensor observations, including segmentation and
force measurements. Step 4: During deployment in real-world, the learned student estimator and
teacher policy run in zero-shot sim-to-real transfer on physical hardware.

[41]), where grasping provides stable control, non-prehensile tasks often involve underactuated37

dynamics and complex contact constraints that make the learning problem significantly harder. As a38

result, RL may often fail to discover viable solutions within a reasonable training time.39

In this paper, we propose a framework that integrates the strengths of model-based planning with40

learning-based policy execution for non-prehensile pivoting manipulation. As illustrated in Fig. 1,41

we first employ CITO to collect a large number of task demonstrations across a range of privileged42

information parameters. Second, a teacher policy is trained in a simulator using RL, leveraging the43

demonstrations (e.g., robot, object, & contact trajectories) generated by CITO. As a result, the teacher44

policy achieves significantly higher sample efficiency. Third, we train a student estimator to predict45

the privileged information required by the teacher policy from observations. Finally, we evaluate46

the trained policy over various baselines in both simulation and hardware experiments, achieving47

zero-shot sim-to-real transfer. Our contributions are as follows.48

• A framework for learning contact-rich non-prehensile manipulation controllers and estima-49

tors by leveraging demonstrations generated by CITO.50

• A sim-to-real transfer approach based on a student-teacher architecture, where the student51

estimates privileged information from partial observations using a temporal history of visual52

and force sensing.53

2 Related Work54

Model-Based Optimization for Contact-Rich Manipulation. Model-based optimization methods55

have successfully achieved various non-prehensile manipulation skills, such as pushing [43, 48, 7],56

pivoting [3, 58, 55], and pulling [29, 32]. These methods design manipulation skills computationally57

efficiently by leveraging techniques such as contact smoothing [48, 60], mixed-integer convex58

optimization [3, 28], and distributed optimization [7, 56]. However, these methods typically require59

privileged information (i.e., full-state feedback). For example, [6] assumes that contact forces in60
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extrinsic contacts between the object and the environment are directly measurable, which becomes61

increasingly impractical as task complexity grows. In this paper, we relax the full-state feedback62

assumptions by adopting an RL approach, while still leveraging CITO to generate a large number63

of demonstrations. This strategy enables the agent to learn manipulation skills significantly more64

efficiently than standard RL methods that rely solely on sparse rewards.65

Learning-Based Methods for Contact-Rich Manipulation. Learning-based methods, such as66

RL, Imitation Learning (IL), and foundation model-based methods, have demonstrated remarkable67

success in robotic manipulation [24, 16, 17, 20, 12, 64, 70, 39, 44, 53], enabling complex tasks such68

as bimanual cable manipulation and folding laundry. However, all of these methods require a large69

number of training samples, resulting in prohibitively long training times.70

To improve sample efficiency, demonstration-guided RL has been studied [67, 51, 5], where the71

demonstrations are used to guide exploration of RL agent to learn the policy and improve sample72

efficiency. For example, [47] uses Rapidly-exploring Random Trees (RRT) and [69] uses human73

videos for generating kinematically feasible demonstrations for manipulation. However, these74

works [47, 69, 73] only consider kinematically feasible demonstrations. Incorporating contact force75

information into demonstrations could be critical to learn fine manipulation due to very thin margins76

of error imposed by contact constraints. Although some works have explored dynamically feasible77

demonstrations in locomotion tasks [21, 62, 13], there has been relatively little work on applying78

such demonstrations to manipulation tasks. This is due to the lack of a reliable module for generating79

dynamically feasible demonstrations considering extrinsic contact states in manipulation. Some80

works [30, 14] leverage human demonstrations to capture contact forces, but collecting such data81

at scale is challenging and often requires significant manual effort. In contrast, we use CITO to82

automatically generate robot, object, and contact force trajectories, providing richer supervision and83

greater scalability than human demonstrations.84

Bridging the sim-to-real gap is another key challenge. Privileged information used during training85

is often unavailable during real-world deployment. Some prior works reconstruct privileged states86

using external sensors [62, 13], such as AprilTags [45, 19]. The recent advances in the student-87

teacher framework [15, 35, 16, 42, 33, 63, 9, 31] enable zero-shot sim-to-real transfer by learning to88

predict privileged information. Although some works have applied the student-teacher framework89

to manipulation, they often rely on restrictive assumptions (e.g., assuming that object size remains90

constant [22, 19]). In contrast, although we also adopt a student-teacher framework, we do not rely91

on such assumptions. By using a temporal history of force measurements and segmentation images,92

our student estimator is more broadly applicable to real-world scenarios involving novel objects.93

3 Method94

In this section, we present our proposed framework, as shown in Fig. 1. The objective is to learn95

pivoting manipulation using only proprioceptive, visual, and force sensing. The proposed framework96

consists of three steps. In Step 1, task demonstrations are generated using CITO. In Step 2, a97

teacher policy which has access to the privileged information is trained using RL with the sampled98

demonstrations collected in Step 1. In Step 3, a student estimator is trained to estimate the privileged99

information, which serves as input to the teacher policy. The teacher policy with the predictions of100

the trained student estimator is ultimately deployed on physical hardware for real-world validation.101

In this work, we make the following assumptions: (1) both the objects and the robots are rigid and102

the center of mass is located at the geometric centers, (2) manipulation occurs under quasi-static103

condition in SE(2), and (3) the robot end-effector pose, camera sensing, and robot contact force104

measurements are consistently available throughout manipulation.105

3.1 Step 1: Collecting Demonstrations Using Contact-Implicit Trajectory Optimization106

We collect a large set of datasets using CITO in [59]. For Nr robots, we consider the following CITO:107

min
q̄t, ˙̄qt,ȳt

T∑
t=0

∥q̄t − q̄ref
t ∥2Q

s. t. , fdyn
(
q̄t, q̄t+1, ˙̄qt, ȳt

)
= 0, g

(
q̄t, ˙̄qt, ȳt

)
= 0,

(1)
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where q̄t := [q̄o
t , q̄

r
t ] and ȳt := [λ̄

e
t , λ̄

r
t , z̄t]. q̄

o
t ∈ R3 represent an object pose in SE(2) and q̄r

t ∈108

R2×Nr represent robot end-effector positions in SE(2), respectively. The end-effector orientation109

is kept fixed throughout the task. λ̄e
t ∈ R2×Ne and λ̄

r
t ∈ R2×Nr represent contact forces between110

an object and the environment, and between an object and the robots, respectively. Ne represents111

the potential extrinsic number of contacts between the object and the environment. We denote112

z̄t ∈ R2×Ne as the extrinsic contact location between the object and the environment. q̄ref
t ∈ R3113

represents the linear interpolation between the start and goal object pose with T steps. We use the114

subscript t to represent the timestep t. We denote fdyn as non-smooth dynamics of the non-prehensile115

manipulation, including nonsmooth contact switching, force and moment balance, and friction cone116

constraints. We denote g as non-dynamics related constraints, such as bounds of decision variables117

and collision-avoidance. We emphasize that the generation of trajectories that satisfy kinematic118

feasibility alone and not dynamic feasibility are simple to obtain by removing some of the fdyn119

constraints, such as force and moment balance constraints. Thus, we denote kinematically feasible120

dynamics as fkin. The problem (1) is solved using solvers such as Gurobi [25] and SNOPT [23]. See121

[59] and the appendix for more details. Solving (1) generates N demonstrations DTO := {Di
TO}Ni=1,122

where Di
TO := {{q̄t}Tt=0, {ȳt}Tt=0}i. While previous works (e.g., [47, 69, 73]) only consider q̄t with123

fkin, this work explicitly considers q̄t and ȳt with fdyn. In particular, λ̄r
t guides for agents to learn124

robot motion direction, while λ̄
e
t and z̄t offer insights into preferred extrinsic contacts.125

3.2 Step 2: Learning Privileged Teacher-Policy126

In this step, a teacher policy is trained to achieve the desired pivoting manipulation in a simulation127

where privileged information is accessible. We formulate the problem as a Markov Decision Process128

(MDP), with each component defined as follows.129

States. States consist of the privileged and non-privileged information. The privileged information130

pt includes the object pose qo
t ∈ R3, the object and environment properties vt ∈ RNp , and the131

extrinsic contact signal bt ∈ ZNe . The object pose qo
t lies in the SE(2) and consists of two positional132

components and one orientation. vt encodes physical properties, which are the mass and size of the133

object, and the friction constants of both the object and the surrounding environment geometry. The134

extrinsic contact signal bt is a binary vector where each element indicates whether a specific face of135

the object is in contact with a predefined environment surface (e.g., wall, table).136

The non-privileged information ot consists of the robot positions qr
t ∈ R2×Nr , the binary robot137

contact signal dt ∈ Z1, and the 2D contact forces λr
t ∈ R2×Nr measured by force sensors mounted138

on the robots’ wrists. All observations are approximately normalized to lie in the range [−1, 1].139

Actions. We consider linear translational actions in SE(2) for each robot, denoted as a2×Nr
t . Specifi-140

cally, each action represents a relative position command for the robots’ end-effector. These action141

commands are converted into joint torques using Operational Space Control (OSC) [34].142

Rewards. Based on how demonstrations are used, we consider three distinct reward formulations.143

We denote three different RL polices using different demonstrations (i.e., using different reward144

formulation) as (1) Vanilla RL, which does not use any demonstrations, (2) Kinematics-conditioned145

RL, and (3) Dynamics-conditioned RL. These policies are obtained by 3 different rewards defined as:146

(1) Vanilla RL: r = rp + rs + ra
(2) Kinematics-conditioned RL: r = rp + rs + ra + rkin

(3) Dynamics-conditioned RL: r = rp + rs + ra + rdyn

(2)

First, the progress reward is rp = α1

(
π
2 − θe

)
+ α2

(
θ2e
)
, where θe = arccos

(
1
2

(
Tr

(
RGR

)
− 1

))
.147

Tr(·) denotes the matrix trace, and R and RG are the goal and current rotation matrices, respectively.148

θe measures the angular deviation between the current and goal orientations, and π
2 is added as the149

offset. While the linear term in rp is used in [74, 75], our experiments reveal that the inclusion150

of the quadratic term is necessary to achieve higher success rates under domain randomization151

(DR) [65] over the size of the objects, which was not discussed in [75]. Second, the sparse success152

reward is defined as rs = α3IG (qo
t ), where IG is the indicator function over the goal set G :=153 {

qo
t ∈ R3 | ∥qo

t − qo
goal∥ ≤ ϵs

}
, where qo

goal is the desired goal state of the object and ϵs is the user-154

specified positive constant. Third, the action smoothness reward is given by ra = α4∥at−1 − at∥2,155

for avoiding non-smooth actions.156
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Next, we define the reward based on demonstrations generated by CITO. For the kinematic reward157

rkin, we use object and robot poses q̄t and extrinsic contact locations z̄t obtained by solving (1) with158

fkin. Note that contact force demonstrations are not available in this setting, as fkin does not have159

dynamics constraints. Thus, we compute rkin as:160

rkin = α5||qr
t − ϕ(qo

t )||2 (3)

where ϕ retrieves the closest reference robot configuration q̄r
t corresponding to the current object161

observation qo
t . Since both the object and environment parameters are sampled from a known162

dataset DTO during simulation, the corresponding object reference trajectory q̄o
t is known. Using163

the current observation, we identify the closest object configuration within this trajectory, and164

consequently retrieve the closest robot configuration. This reward term encourages the robot to follow165

the kinematically feasible behaviors.166

Similarly, we define the dynamics reward rdyn by utilizing the demonstration q̄t and ȳt obtained by167

solving (1) with the dynamics model fdyn:168

rdyn = α6||qr
t − ϕ(qo

t )||2 + α7 arccos

(
λr
t · ψ(qo

t )

||λr
t ||||ψ(qo

t )||

)
+ α8bt (4)

where ψ retrieves the closest reference robot contact forces λ̄r
t corresponding to qo

t , following the169

same logic as ϕ. This reward encourages the robot to follow the dynamically feasible behaviors. In170

particular, the arccosine term in rdyn encourages the robot to perform a similar contact force direction171

as the demonstration shows. Importantly, we do not enforce matching the magnitude of the contact172

force, as we observe significant discrepancies between the dynamics model by fdyn and those in173

simulators (e.g., MuJoCo), leading to a potential sim2sim gap in contact force magnitudes. Hence,174

this work focuses on the direction of contact forces. The term bt is used to count if the desired175

extrinsic contact states occur. The constants αi=1,2,3,8 are positive and the others are negative.176

3.3 Step 3: Learning Student-Estimator177

The objective of this step is to train the student estimator only using sensor observations to predict178

the privileged information as shown in Fig. 1. We empirically observe that sensor observations179

alone are sufficient for the object whose geometry is in-distribution with the dataset. However,180

their reliability declines when there is uncertainty in object size, which is quite common when181

manipulating novel objects. To address this, we additionally incorporate vision inputs to improve182

the estimation of the privileged information. Directly using RGB images is avoided due to potential183

noise, and employing 3D point clouds is excluded due to their significant computational cost (see184

[16]). Instead, we leverage the object segmentation st derived from the RGB image, providing a185

compact but informative representation of the object.186

Therefore, we define a student encoder that takes the history of the sensor observations,187

[ot−T , · · · ,ot], and the history of the segmentation features, [st−T , · · · , st]. Since st is high-188

dimensional, we first apply a Convolutional Neural Network (CNN) to compress the segmentation189

into a lower-dimensional feature representation ct. Using the temporal histories of ot and ct, we use190

a Temporal Convolutional Network (TCN) [8] to estimate the privileged information. We train CNN191

and TCN jointly via supervised learning using datasets collected by rolling out the teacher policy192

in the simulator under domain randomization. The supervised learning objective is to minimize the193

following loss function:194

l = ||pt − p̃t||2, (5)

where pt is the ground-truth privileged information and p̃t is the estimated output from the student195

encoder. It is worth noting that we do not initialize the history buffer with zeros at the beginning of196

the episode as other works do (e.g., [22, 49, 72]). Instead, we populate the buffer by repeating the197

initial observation and include this initialization scheme in the supervised learning dataset, which198

was critical for the student estimator to achieve accurate performance.199

4 Experiment Setup200

We validate our framework across two distinct tasks (see Fig. 5): Pivoting with Wall: pivoting a box201

using an external wall, Pivoting without Wall: pivoting a box without relying on external support.202
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For the latter task, the table surface must provide very high friction. In simulation, increasing the203

friction coefficient alone was insufficient to replicate the real-world behavior. As a workaround, we204

add a thin virtual wall of height 1mm to simulate the effect of high-friction contact (see Fig. 5b). In205

the hardware experiments, we test on a variety of previously unseen objects (see Fig. 6) to assess206

generalization beyond the training set. We define a trial as successful if the final orientation error207

satisfies |θe| ≤ 0.087 rad (i.e., 5◦). We describe the setup for each module below, with additional208

details provided in the appendix.209

Demonstration Setup. We use the method proposed in [59], randomizing object and environment210

parameters to generate diverse demonstrations. For all tasks, we randomize the mass of the object,211

the friction constant of the object and the environment, and the size of the object. For each task, we212

collect 5000 demonstrations, which can be computed within a few minutes using 30 Intel i9-13900K213

CPU cores.214

Teacher Policy Setup. We train the teacher policy in MuJoCo simulator [66] using robosuite [77] as215

a wrapper. The agent is trained using Soft Actor Critic (SAC) [26], implemented with tf2rl [46]. For216

SAC, we use Multi-Layer Perceptron (MLP) for both actor and critic networks. The simulation runs at217

500 Hz, while the policy operates at 10 Hz. For each episode, we set the maximum episode length to218

300 steps. Overall, training converges within 4 hours on a single NVIDIA RTX 4090. During training,219

we apply domain randomization over the objects’ mass and size, the friction constants of both the220

object and the environment, and the controller gains used in OSC within robosuite. Furthermore,221

we introduce sensor noise to both privileged information and sensor observations to account for the222

estimation errors from the student estimator during deployment.223

Student Estimator Setup. We first rollout the trained teacher policy over 2000 episodes and collect224

a dataset containing ground-truth privileged information, sensor observations, and corresponding225

segmentation images (640×480 resolution) of the object using MuJoCo’s rendering functionality.226

During data collection, we augment the segmentation images by introducing noise, such as randomly227

flipping, translating, and rotating segmentation masks, to improve robustness. We then train the228

student estimator via behavior cloning, minimizing the loss function (5) over multiple epochs. We229

use T = 5 step history of the observations for training corresponding to 0.5 second. Overall, training230

converges with 10 epochs (1 hour roughly), depending on the range of domain randomization.231

Hardware Setup. We use a 6 DoF MELFA robot [2] equipped with a stiffness controller and a232

6-axis force/torque sensor. This hardware enables users to get robot end-effector positions and the233

force measurements in the world frame. For object segmentation, we use FastSAM [76] to generate234

multiple instance segmentations from an RGB image captured by an Intel RealSense D435 RGB-D235

camera [1]. To identify the target object, we filter the segmented instances under their corresponding236

point cloud information, under the assumption that a rough estimate of the SE(2) plane is available,237

as we focus exclusively on SE(2) planar manipulation.238

Baselines. We implement an MPC baseline that uses privileged information, including object mass,239

size, and friction (identified offline), and object pose (estimated via AprilTags). At each timestep,240

MPC solves (1) in a receding-horizon manner, running at the same frequency as the teacher policy.241

5 Results242

Throughout our experiments, we aim to address the following questions:243

1. Do demonstrations generated by CITO facilitate more effective and efficient learning?244

2. How does the teacher policy’s performance vary with different demonstrations?245

3. How robust is the teacher policy compared to a baseline model-based method?246

4. How accurately can the student estimator predict the privileged information?247

5. Can the trained policies be successfully transferred to real-world hardware experiments?248

Do demonstrations generated by CITO facilitate learning? Across the two tasks, we compare249

RL performance using different types of demonstrations, corresponding to the different reward250

formulations in (2). RL with kinematic demonstrations is comparable to prior works such as251

[47, 69], which only consider kinematically feasible trajectories. Overall, RL with dynamics-based252

demonstrations achieves the fastest learning as shown in Fig. 2. In particular, in the pivoting without253
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(a) With external wall (b) Without external wall

Figure 2: Learning curves for different RL training runs. Solid lines indicate average success rates,
and shaded regions denote standard deviation across three different random seeds. Every 10k step,
the current policy is evaluated over 50 episodes, and the success rate is plotted.

Table 1: Number of successful attempts in real.
Mass Kinematics-conditioned RL Dynamics-conditioned RL

50 g 2 / 5 5 / 5
110 g 5 / 5 5 / 5
300 g 0 / 5 5 / 5

external wall task, neither vanilla RL nor kinematics-conditioned RL was able to learn the skill.254

We attribute this to the task’s tighter feasible action space. In contrast, dynamics-conditioned RL255

successfully learns the skill, benefiting from enriched demonstration with contact information.256

How does the teacher policy’s performance vary with different demonstrations? For the257

pivoting-with-wall task, we deploy both kinematics- and dynamics-conditioned RL policies on a real258

system using a box of mass 110 g. During deployment, we vary the mass values used as privileged259

information. Table 1 shows the success rates over three trials. We observe that dynamics-conditioned260

RL consistently outperforms kinematics-conditioned RL. While both policies are trained with access261

to privileged information, the dynamics-conditioned policy benefits from demonstrations that include262

contact force references. This enables the policy to learn physically grounded interaction behaviors263

during training, leading to greater robustness against variations in dynamic properties. In contrast, the264

kinematics-conditioned policy is trained with demonstrations that satisfy only geometric feasibility,265

making it more sensitive to changes in object properties. These results highlight the importance of266

dynamics-aware demonstrations in contact-rich manipulation tasks.267

How robust is the learned policy compared to MPC? We compare the robustness of a dynamics-268

conditioned RL policy against an MPC controller on the real-world pivoting-with-wall task. The true269

object length is 0.16m, and we introduce intentional mismatches in the assumed object length during270

deployment. For example, a −5mm offset means that the actual size of the box is shorter than what271

the controllers expect. As shown in Table 2, both MPC and RL succeed when the actual object is272

longer than expected (+5mm), as the contact with the wall is still maintained. However, when the273

actual object is shorter than expected (−5mm), MPC fails completely, while RL remains successful.274

This suggests that the learned policy exhibits greater tolerance to moderate discrepancies in privileged275

information. At larger mismatches (−10mm), even RL fails. These results highlight the importance276

of accurate privileged information during deployment and motivate us to develop reliable estimators.277

Table 2: Number of successful attempts in real.
MPC Dynamics-conditioned RL

+5mm 5 / 5 5 / 5
−5mm 0 / 5 5 / 5
−10mm 0 / 5 0 / 5
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Figure 3: Comparison of our student estimator’s predictions and the ground truth for the wall friction
constant, y- and z-position of the object, and orientation along x-axis, for the pivoting with a wall.

(a) Pivoting with external wall (b) Pivoting without external wall

Figure 4: Comparison of the object angle in simulation and the real-world during pivoting. We
execute the same policy both in simulation and in hardware and collect the object orientation during
manipulation over 3 trials. Due to sensor discrepancies and physical modeling differences (i.e.,
sim-to-real gap), the resulting actions and motion can differ between simulation and hardware.

How accurately can the student estimator predict the privileged information? We deploy278

the trained student estimator and the teacher policy in MuJoCo and collect both the ground-truth279

privileged information and the corresponding student estimator’s predictions. Representative results280

are shown in Fig. 3, demonstrating that our student estimator can successfully predict the privileged281

information with reasonable accuracy.282

Hardware Experiments. We deploy our teacher policy and student estimator on the real robot using283

zero-shot sim-to-real transfer. Overall, the policy successfully completes the desired task without284

access to privileged information as shown in Fig. 5 and Fig. 6.285

Sim-to-Real Transfer. To evaluate sim-to-real transfer, we deploy the learned dynamics-conditioned286

RL policy on both the simulation and physical hardware for the two pivoting tasks. The resulting287

object orientation trajectories over three trials are shown in Fig. 4.288

Overall, although there is some sim-to-real gap for both tasks, the robot could successfully perform289

the tasks on the physical hardware as shown in the attached supplemental video. We observe a larger290

sim-to-real gap for the pivoting with external wall task than the pivoting without wall task. This is291

because for the pivoting with wall task, the object induces the sliding contact between the object and292

the wall, and between the object and the table, which are relatively challenging to model precisely in293

simulator (e.g., MuJoCo), leading to a larger sim-to-real gap. In contrast, the pivoting-without-wall294

task does not involve sliding contacts, resulting in better sim-to-real transfer.295

6 Conclusion296

In this paper, we present a framework for learning closed-loop controllers and estimators for contact-297

rich pivoting manipulation. We first leverage CITO to generate high-quality demonstrations, including298

object and robot states, contact forces, and extrinsic contact location. Then, we perform demonstration-299

guided RL using these demonstrations for training a teacher policy, enabling sample-efficient learning.300

Furthermore, we train a student estimator using only proprioception, vision, and force sensing, in301

order to predict the privileged information the teacher policy uses. Our framework is evaluated over302

several tasks, including the comparison against several baselines, and achieves successful zero-shot303

sim-to-real transfer in real-world experiments.304
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(a) Pivoting with external wall (b) Pivoting without external wall

Figure 5: Snapshots of successful pivoting manipulation in simulation and real-world.

Figure 6: Snapshots of successful pivoting manipulation in real-world over various different objects.

7 Limitations305

Our work has the following limitations. First, we evaluate our framework exclusively on the pivoting306

task and do not demonstrate results for other non-prehensile manipulation tasks such as pushing and307

sliding. This choice was intentional to isolate and analyze key system components. However, our308

method does not assume task-specific priors and is applicable to a broader range of non-prehensile309

tasks, as long as CITO can generate dynamically feasible demonstrations, which is possible via the310

approach in [59] or other CITO methods such as [48].311

Second, all evaluations in this work are performed on convex objects (e.g., boxes), and we do not312

report results for non-convex geometries. While none of our framework’s modules rely on convexity313

assumptions, handling non-convex objects introduces additional complexity in contact reasoning. A314

promising future direction is to train both the teacher policy and student estimator over a distribution315

of object shapes, enabling generalization across object geometries.316

Third, we assume that objects are rigid and non-articulated in this work. This limitation arises from317

the nature of CITO, which our method relies on for generating demonstrations. The CITO we used318

in this paper [59] or other CITO methods [40, 3] do not support such dynamics. As a result, the319

performance may decrease when handling deformable or articulated objects.320

Fourth, we empirically observe that policy learning becomes significantly more challenging when321

the range of domain randomization over table and wall coefficients increases. This is expected, as322

higher friction can lead to sticking contact while lower friction leads to sliding contact, resulting in323

multi-modal interaction behavior.324

Finally, during real-world deployment, we occasionally observed slight object slip (i.e., incipient325

slip [18, 57, 29]) relative to the robot, resulting in task failure. This issue is quite challenging: the326

slip must be large enough to produce detectable changes in sensor signals (e.g., vision or force),327

allowing the student estimator to recognize it, yet small enough to avoid complete contact loss. This328

limitation is not a significant issue for other works focused on table-top manipulation [48], since329

objects are inherently stable. Addressing this limitation would likely require higher-resolution sensing330

or slip-specific estimation modules—for example, integrating visuotactile sensing (e.g., GelSight331

[71]) or augmenting the student model with incipient slip prediction capabilities.332
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A CITO Details564

In this work, we use the CITO (1), as presented in [59]. Given a task description, defined by the565

initial and goal poses in SE(2), along with privileged information (e.g., object mass, friction, and566

size, environment friction), the optimization problem in (1) is solved through a sequence of three567

optimization problems. The first optimization problem is as follows.568

min
q̄o
t , ˙̄q

o
t ,

T∑
t=0

∥q̄o
t − q̄o,ref

t ∥2Q

s. t. , h1
(
q̄o
t , q̄

o
t+1, ˙̄q

o
t

)
= 0,

(6)
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where h1 is the set of constraints, including velocity constraints, bounds on variables, and signed569

distance function-based constraints to ensure collision avoidance between the object and the envi-570

ronment. The optimization problem in (6) is used to obtain a kinematically feasible object pose571

trajectory and the corresponding extrinsic contact trajectory between the object and the environment.572

The optimization problem in (6) is solved using SNOPT [23].573

Second, after fixing the object pose trajectory q̄o
t to the solution obtained in the first stage, the574

following optimization problem is formulated to account for non-smooth constraints due to contact575

dynamics:576

Find q̄r
t , ˙̄q

r
t , ȳt

s. t. , h2
(
q̄r
t , q̄

r
t+1, ˙̄q

r
t , ȳt

)
= 0,

(7)

where h2 represents the set of constraints used for considering non-smooth constraints, including577

contact making/breaking constraints, linearized force and moment balance constraints, and friction578

cone constraints. By solving (7), we obtain the object and robot trajectories that are not only579

kinematically feasible but also respect non-smooth contact constraints under linearized quasistatic580

dynamics. This optimization problem is a mixed-integer linear problem, which is efficiently solved581

using Gurobi [25].582

Finally, given the solution obtained from (7), we consider the following optimization problem.583

Find q̄t, ˙̄qt, ȳt

s. t. , h3
(
q̄r
t , q̄

r
t+1, ˙̄q

r
t , ȳt

)
= 0,

(8)

where h3 includes non-smooth sticking-sliding contact constraints using complementarity constraints584

as well as the original (not linearized) force and moment balance constraints. During solving (8) the585

robot’s positions are locally adjusted to satisfy the nonlinear force and moment balance constraints586

and sticking-sliding complementarity constraints. This optimization problem is solved through587

SNOPT. Note that, for certain combinations of dynamics parameters (e.g., mass, friction), the solver588

may return an infeasible solution. In such cases, we do not include these infeasible solutions in the589

demonstration dataset.590

It is worth noting that the solution obtained by sequentially solving the three optimization problems591

described above satisfies the full dynamics function fdyn in (1) and is referred to as dynamically592

feasible. In contrast, if we solve the same sequence of optimization problems while removing all593

constraints involving contact forces—such as force and moment balance constraints and friction cone594

constraints—the resulting solution is referred to as kinematically feasible and satisfies the relaxed595

dynamics function fkin.596

In summary, solving (1) involves a sequence of the three optimization problems described above,597

allowing for efficient computation by decoupling different sets of constraints across the subproblems.598

See [59] for more details. Finally, we summarize the parameters used in the above optimization599

problems in Table 3.600

Table 3: Hyperparameter setup for student estimator.
Parameter Value

Optimizer SNOPT for (6) and (8) and Gurobi for (7)
T 60 for pivoting with-wall task and 150 for without-wall task

time interval for integration 0.1 s

B Training Details in Simulation601

In this section, we provide implementation details for training the teacher policy. The simulation602

environment is built using MuJoCo [66] with robosuite framework [77]. We use Soft Actor Critic603

(SAC) [26] to train the teacher policy. The training parameters are summarized in Table 4.604

The coordinate is illustrated in Fig. 7. In this work, we operate within the SE(2) group, restricting605

manipulation to the y − z plane.606
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Table 4: Hyperparameter setup for the teacher policy. Note that αi∈[1,··· ,8] are the coefficients of the
reward terms used for reward computation in (2).

Parameter Value

total # of steps 300k for pivoting with-wall task and 1500k for without-wall task
batch size 4096

max # of step for timeout 300
Networks [128, 128] MLP

learning rate for policy 1e-4
learning rate for Q function 3e-4

discount factor 0.9
replay buffer size 1e6

# of episodes for evaluation 50
# of episodes for warmstart 50k

[α1, α2, α3, α4, α5, α6, α7, α8] [1, 0.075, 10, -1, -50, -50, -0.005, 5]

Figure 7: Definition of world frame used in this work.

B.1 Domain Randomization607

During the training of the teacher policy, we perform domain randomization and add sensor noises to608

robustify the policy, which is summarized in Table 5.

Table 5: Dynamics randomization and sensor noise. N (µ, σ) denotes a Gaussian distribution with
mean µ and standard deviation σ, and U(a, b) denotes a uniform distribution over the interval of
[a, b]. A + symbol indicates that the sampled noise is added to the original parameter value.

Parameter Range

object mass U(0.04, 0.4) kg
friction for table and wall U(0.01, 0.4)

friction for objects U(0.2, 0.7)
friction for robots U(0.7, 1.7)
object size scale U(0.95, 1.05)

proportional gain kp in OSC U(2000, 8000)
derivative gain kd in OSC see below

initial object position along y-axis +U(−0.015, 0.015) m
initial robot position +U(−0.015, 0.015) m

object position observation noise +N (0, 0.015)
robot position observation noise +N (0, 0.00075)
contact force observation noise +N (0, 0.2)

609
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For the derivative gain kd in operational space control (OSC) [34], we compute it based on the610

sampled proportional gain kp to achieve critical damping using the relation kd = 2
√
kp.611

It is worth noting that we represent object orientation using quaternions and apply domain random-612

ization to account for sensor noise in orientation estimates. Specifically, we perturb the ground-truth613

quaternion q ∈ R4 by composing it with a small random rotation:614

q̃ = δq⊗ q

where q̃ is the noisy quaternion, δq is a perturbation quaternion, and ⊗ denotes quaternion multipli-615

cation. The perturbation quaternion δq is constructed using a random axis-angle rotation. We first616

sample a unit axis u ∈ R3 from a Gaussian distribution and normalize it:617

u ∼ N (0, σ2
axisI), u← u

∥u∥
Next, we sample a rotation angle θ (in degrees) from a clipped Gaussian distribution:618

θ ∼ clip
(
N (µθ, σ

2
θ),−θmax, θmax

)
We then convert the axis-angle representation to a unit quaternion via the exponential map:619

δq = exp(θ · u)

In our implementation, we use the following parameters:620

σaxis = 0.1, µθ = 0◦, σθ = 2◦, θmax = 5◦

This procedure injects bounded rotational noise into the observed quaternion while preserving unit621

norm and avoiding discontinuities.622

B.2 Termination Conditions623

An episode is terminated when any of the following conditions are met:624

1. Successful task completion: A trial is considered successful if the final orientation error625

satisfies |θe| ≤ 0.087 radians (i.e., 5◦).626

2. Significant deviation from the SE(2) plane: If the object’s x-position px deviates by more627

than 0.05m from its initial value, i.e., |px − px(t = 0)| ≥ 0.05m, or if the z-position628

drops below the table surface, pz ≤ ptable
z , the episode is terminated and a penalty of -100 is629

applied.630

3. Timeout: The episode exceeds the maximum number of steps as defined in Table 4.631

C Student Estimator Details632

In this section, we provide details about the training procedure for the student estimator.633

C.1 Data Collection634

To construct the dataset for student estimator training, we rollout the trained teacher policy in simu-635

lation and record the ground-truth privileged information, sensor observations, and corresponding636

object segmentation masks under domain randomization. We use the same range of domain ran-637

domization used during teacher policy training Table 5. Since segmentation masks are not used638

during teacher policy training, we introduce additional uncertainties to simulate realistic conditions,639

including:640

• Erosion/Dilation: Morphological operations applied with random kernel sizes to simulate641

over- and under-segmentations.642

• Partial Mask Dropout: Circular regions within the mask are randomly removed to mimic643

occlusions or partial detection failures.644

• Full Mask Dropout: With a small probability, the entire mask is dropped (set to all zeros)645

to simulate complete sensor failure or occlusion.646
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• Flip Noise: Individual pixels are randomly flipped to simulate salt-and-pepper noise or647

detector flickering.648

• Edge Perturbation: Object boundaries are randomly jittered to simulate segmentation649

boundary inaccuracies.650

• Spatial Augmentation (Affine): Random affine transformations are applied to the mask,651

simulating viewpoint shifts and calibration noise.652

• Gaussian Blur: A blur filter is applied to soften sharp edges and simulate optical imperfec-653

tions.654

The configuration of the segmentation domain randomization is summarized in Table 6.

Table 6: Segmentation mask domain randomization parameters used during student data collection.
Noise Type Parameter Value
Erosion/Dilation Probability for erosion/dilation 0.7

Kernel size choices {3, 5, 7}
Erosion vs. dilation split 0.5

Random Holes Number of holes 3
Hole radius range [3, 9] pixels
Hole probability 0.5

Full Mask Dropout Probability 0.05
Flip Noise Pixel flip probability 0.01
Edge Perturbation Edge noise probability 0.75

Edge point noise probability 0.1
Spatial Augmentation (Affine) Rotation range ±2.5◦

Translation range ±7.5%
Scaling range [0.95, 1.05]

655

C.2 Student estimator training656

Given the dataset collected in Section C.1, we train a student estimator composed of a CNN followed657

by a TCN. The CNN takes as input a binary segmentation mask of size 1× 480× 640 and consists of658

three convolutional layers with kernel sizes of (3, 3, 3), and strides of (2, 2, 1), and output channels of659

(16, 32, 64), respectively. An adaptive average pooling layer reduces the spatial dimensions to 8× 8,660

followed by a fully connected layer that produces a 1× 128 feature vector. The TCN processes the661

temporal sequence of CNN features concatenated with proprioceptive and force features. It consists662

of three layers of 1D dilated causal convolutions, each with 128 channels and a kernel size of 2,663

and dilation rates of 1, 2, and 4. We consider two types of privileged information: time-invariant664

dynamics parameters (i.e., mass and size of the object), and time-varying values such as the object665

pose. To accommodate this distinction, the student estimator employs two separate fully connected666

layers—one for predicting the time-invariant variables and another for the time-varying privileged667

quantities (e.g., object pose). The output dimensions of each head match the corresponding target668

variables. We find that this separation leads to improved estimation performance.669

Then, the model is trained by minimizing the mean square error between the ground-truth and670

predicted values by the student estimator. Fig. 8 shows the learning curve of the validation loss during671

training. The hyperparameters used for training the student estimator are summarized in Table 7.

Table 7: Hyperparameter setup for student estimator.
Parameter Value

total # of epochs 20
batch size 256

initial learning rate 1e-3
learning rate schedule ReduceLROnPlateau from PyTorch

optimizer Adam

672
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Figure 8: Student estimator validation loss over epochs.

D Ablation Study673

D.1 Effect of linear and quadratic reward terms during teacher policy training674

In Section 3, we mention that using linear and quadratic terms in rp in (2) is important to ensure that675

the robot completes the pivoting task. To validate this claim, we conducted an ablation study using676

dynamics-conditioned RL, evaluating three reward variants: (1) linear only, (2) quadratic only, and (3)677

both linear and quadratic terms in rp, under settings with and without domain randomization. Table 8678

shows the mean and standard deviation of the terminal object angle over 50 evaluation episodes.679

When domain randomization is disabled, the policy trained with the linear term alone in rp success-680

fully completes the pivoting task. In contrast, using only the quadratic term leads to task failure,681

likely due to the difficulty in reward shaping—quadratic rewards are sparse and less informative682

during early training. On the other hand, when domain randomization is enabled, policies trained with683

only the linear term exhibit significantly degraded performance. In this case, combining linear and684

quadratic terms improves performance substantially. We hypothesize that the quadratic component685

offers a stronger gradient signal when the agent is close to the goal, helping to overcome the increased686

noise due to domain randomization.687

Table 8: Comparison of terminal object angle using different reward formulation with/without domain
randomization. In the terminal angle, we show its mean with standard deviation over 50 episodes.

Reward type Enable domain randomization Terminal angle [deg]

Linear term No 88.1 ±0.21
Quadratic term No 0.0 ±0.10

Linear + Quadratic term No 88.9 ±0.20
Linear term Yes 70.1 ±0.59

Quadratic term Yes 0.0 ±0.71
Linear + Quadratic term Yes 88.2 ±0.44

D.2 Pivoting with wall task without domain randomization688

In Section 5, we present the result of the training curve using different RL training runs for two tasks.689

For the results in Fig. 2, we consider domain randomization, and thus it is possible that the pivoting690

with external wall task could not be trained due to the large domain randomization. Hence, we show691

the result for the pivoting with wall task under no domain randomization as shown in Fig. 9.692

Fig. 9 shows that all RL using different reward equations could successfully learn the skill. Among693

them, dynamics-conditioned RL exhibits the fastest learning rate. This confirms that while vanilla RL694

can succeed when the training environment is noise-free, providing dynamics-consistent demonstra-695

tions significantly improves the learning efficiency by offering more informative reward signals.696

We emphasize that for the pivoting without wall task, even under no domain randomization, vanilla697

RL and kinematically-conditioned RL fail to learn. This supports our claim that non-prehensile698
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Figure 9: Learning curves for different RL training runs for pivoting-with-wall task. Solid lines
indicate average success rates, and shaded regions denote standard deviation across three different
random seeds. Every 10k step, the current policy is evaluated over 50 episodes, and the success rate
is plotted.

manipulation tasks have very narrow feasible action regions. Therefore, leveraging demonstrations699

that satisfy complex contact constraints plays an important role in improving learning efficiency.700

D.3 Student Estimator Performance701

Figure 10: Comparison of our student estimator’s predictions and the ground truth for the box mass,
the box length, the box width, the robot friction constant, and the table friction constant, for the
pivoting with a wall.

In Section 5, we present a subset of our student estimator results due to page limitations. We show the702

remaining privileged information figures in Fig. 10. Overall, we observe that our student estimator703

successfully predicts the privileged information with reasonable accuracy.704
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