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Abstract

Non-prehensile manipulation is challenging due to complex contact interactions
between objects, the environment, and robots. Model-based approaches can effi-
ciently generate complex trajectories of robots and objects under contact constraints.
However, they tend to be sensitive to model inaccuracies and require access to
privileged information (e.g., object mass, size, pose), making them less suitable
for novel objects. In contrast, learning-based approaches are typically more robust
to modeling errors but require large amounts of data. In this paper, we bridge
these two approaches to propose a framework for learning closed-loop pivoting
manipulation. By leveraging computationally efficient Contact-Implicit Trajec-
tory Optimization (CITO), we design demonstration-guided deep Reinforcement
Learning (RL), leading to sample-efficient learning. We also present a sim-to-real
transfer approach using a privileged training strategy, enabling the robot to perform
pivoting manipulation using only proprioception, vision, and force sensing without
access to privileged information. Our method is evaluated on several pivoting tasks,
demonstrating that it can successfully perform sim-to-real transfer.

1 Introduction

Non-prehensile manipulation, such as pivoting, pushing, and sliding, plays an important role in
enhancing the dexterity of robotic systems [11} 140, 51]. These skills allow robots to interact with
the environment more flexibly, enabling them to adapt to a wide range of tasks without requiring
secure grasps. However, achieving such skills is challenging due to the inherently complex contact
interactions (e.g., making-breaking contact, sliding-sticking contact). These interactions introduce
non-smooth dynamics that are difficult to model and control as the number of contacts increases.

Model-based optimization methods, such as CITO and Model Predictive Control (MPC) [60, 477, 36,
421167, 53], have demonstrated impressive performance, particularly in generating diverse trajectories
at low computational cost. However, since these methods, in general, rely on simplified models of
manipulation, they can be highly sensitive to uncertainties due to model inaccuracies. More critically,
they often rely on offline system identification or online estimation of privileged information, such as
object properties or contact states. This dependency limits the applicability of model-based controllers,
particularly in real-world scenarios involving novel objects or partially observable environments.

Learning-based methods, such as RL, have also shown impressive performance, especially in their
robustness against various sources of uncertainty [38}, 150, 10} 37} 4} [27, [49]. These methods can
operate without privileged information by directly learning policies from raw observations. However,
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Figure 1: Overview of our proposed framework. Trainable modules have red edges. Step 1: We
collect data using CITO given a user-specified task. Step 2: The teacher policy is trained using RL
with privileged information and sensor observations, leveraging the demonstrations collected in Step
1. Step 3: The student estimator is trained to estimate the privileged information. The estimator
consists of a CNN and a TCN to process temporal sensor observations, including segmentation and
force measurements. Step 4: During deployment in real-world, the learned student estimator and
teacher policy run in zero-shot sim-to-real transfer on physical hardware.

they typically require a large number of training samples, resulting in long training times, which poses
a significant challenge for practical deployment. This is especially problematic in non-prehensile
manipulation, where the policy must reason object pose, contact locations, contact forces, and feasible
action spaces from indirect and partial observations. Unlike prehensile manipulation (e.g., grasping
[40]), where grasping provides stable control, non-prehensile tasks often involve underactuated
dynamics and complex contact constraints that make the learning problem significantly harder. As a
result, RL may often fail to discover viable solutions within a reasonable training time.

In this paper, we propose a framework that integrates the strengths of model-based planning with
learning-based policy execution for non-prehensile pivoting manipulation. As illustrated in Fig. [T}
we first employ CITO to collect a large number of task demonstrations across a range of privileged
information parameters. Second, a teacher policy is trained in a simulator using RL, leveraging the
demonstrations (e.g., robot, object, & contact trajectories) generated by CITO. As a result, the teacher
policy achieves significantly higher sample efficiency. Third, we train a student estimator to predict
the privileged information required by the teacher policy from observations. Finally, we evaluate
the trained policy over various baselines in both simulation and hardware experiments, achieving
zero-shot sim-to-real transfer. Our contributions are as follows.

* A framework for learning contact-rich non-prehensile manipulation controllers and estima-
tors by leveraging demonstrations generated by CITO.

* A sim-to-real transfer approach based on a student-teacher architecture, where the student
estimates privileged information from partial observations using a temporal history of visual
and force sensing.

2 Related Work

Model-Based Optimization for Contact-Rich Manipulation. Model-based optimization methods
have successfully achieved various non-prehensile manipulation skills, such as pushing [42l 147, [7],



pivoting [3} 57, 54]], and pulling [29,132]. These methods design manipulation skills computationally
efficiently by leveraging techniques such as contact smoothing [47, |59], mixed-integer convex
optimization [3} 28], and distributed optimization [7} 55]. However, these methods typically require
privileged information (i.e., full-state feedback). For example, [[6] assumes that contact forces in
extrinsic contacts between the object and the environment are directly measurable, which becomes
increasingly impractical as task complexity grows. In this paper, we relax the full-state feedback
assumptions by adopting an RL approach, while still leveraging CITO to generate a large number
of demonstrations. This strategy enables the agent to learn manipulation skills significantly more
efficiently than standard RL methods that rely solely on sparse rewards.

Learning-Based Methods for Contact-Rich Manipulation. Learning-based methods, such as
RL, Imitation Learning (IL), and foundation model-based methods, have demonstrated remarkable
success in robotic manipulation [24} [16} 17, 20, [12} 163,169} 139 143],152]], enabling complex tasks such
as bimanual cable manipulation and folding laundry. However, all of these methods require a large
number of training samples, resulting in prohibitively long training times.

To improve sample efficiency, demonstration-guided RL has been studied [66, 150, 5], where the
demonstrations are used to guide exploration of RL agent to learn the policy and improve sample
efficiency. For example, [46] uses Rapidly-exploring Random Trees (RRT) and [68] uses human
videos for generating kinematically feasible demonstrations for manipulation. However, these
works [46} 168 [72] only consider kinematically feasible demonstrations. Incorporating contact force
information into demonstrations could be critical to learn fine manipulation due to very thin margins
of error imposed by contact constraints. Although some works have explored dynamically feasible
demonstrations in locomotion tasks [21} 61} [13]], there has been relatively little work on applying
such demonstrations to manipulation tasks. This is due to the lack of a reliable module for generating
dynamically feasible demonstrations considering extrinsic contact states in manipulation. Some
works [30} [14]] leverage human demonstrations to capture contact forces, but collecting such data
at scale is challenging and often requires significant manual effort. In contrast, we use CITO to
automatically generate robot, object, and contact force trajectories, providing richer supervision and
greater scalability than human demonstrations.

Bridging the sim-to-real gap is another key challenge. Privileged information used during training
is often unavailable during real-world deployment. Some prior works reconstruct privileged states
using external sensors [61} [13]], such as AprilTags [44] [19]]. The recent advances in the student-
teacher framework [[15} 135,116} 141} 1331162, 19, [31]] enable zero-shot sim-to-real transfer by learning to
predict privileged information. Although some works have applied the student-teacher framework
to manipulation, they often rely on restrictive assumptions (e.g., assuming that object size remains
constant [22,[19]). In contrast, although we also adopt a student-teacher framework, we do not rely
on such assumptions. By using a temporal history of force measurements and segmentation images,
our student estimator is more broadly applicable to real-world scenarios involving novel objects.

3 Method

In this section, we present our proposed framework, as shown in Fig. [T} The objective is to learn
pivoting manipulation using only proprioceptive, visual, and force sensing. The proposed framework
consists of three steps. In Step 1, task demonstrations are generated using CITO. In Step 2, a
teacher policy which has access to the privileged information is trained using RL with the sampled
demonstrations collected in Step 1. In Step 3, a student estimator is trained to estimate the privileged
information, which serves as input to the teacher policy. The teacher policy with the predictions of
the trained student estimator is ultimately deployed on physical hardware for real-world validation.

In this work, we make the following assumptions: (1) both the objects and the robots are rigid and
the center of mass is located at the geometric centers, (2) manipulation occurs under quasi-static
condition in SE(2), and (3) the robot end-effector pose, camera sensing, and robot contact force
measurements are consistently available throughout manipulation.



3.1 Step 1: Collecting Demonstrations Using Contact-Implicit Trajectory Optimization

We collect a large set of datasets using CITO in [58]]. For NV, robots, we consider the following CITO:

min ZHQt qretHQ (1
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where q; = [q¢,q}] and §; := [}, \;,Z]. @7 € R? represent an object pose in SE(2) and q} €
R2*N+ represent robot end-effector positions in SE(2), respectively. The end-effector orientation
is kept fixed throughout the task. A; € R>*Me and A] € R>*Mr represent contact forces between
an object and the environment, and between an object and the robots, respectively. IV, represents
the potential extrinsic number of contacts between the object and the environment. We denote
7z, € R?*Ne as the extrinsic contact location between the object and the environment. @' € R3
represents the linear interpolation between the start and goal object pose with T' steps. We use the
subscript ¢ to represent the timestep ¢. We denote fg4y, as non-smooth dynamics of the non-prehensile
manipulation, including nonsmooth contact switching, force and moment balance, and friction cone
constraints. We denote g as non-dynamics related constraints, such as bounds of decision variables
and collision-avoidance. We emphasize that the generation of trajectories that satisfy kinematic
feasibility alone and not dynamic feasibility are simple to obtain by removing some of the fqy,
constraints, such as force and moment balance constraints. Thus, we denote kinematically feasible
dynamics as fxi,. The problem (1)) is solved using solvers such as Gurobi [25] and SNOPT [23]]. See
[58]] and the appendix for more details. Solving (1) generates N demonstrations Do := { D%},
where D% := {{Q:}1—o, {¥t} 1o}’ While previous works (e.g., [46. 68| [72]]) only consider g; with
fxin, this work explicitly considers q; and y; with fg4y,. In particular, 5\: guides for agents to learn
robot motion direction, while )\te and z; offer insights into preferred extrinsic contacts.

3.2 Step 2: Learning Privileged Teacher-Policy

In this step, a teacher policy is trained to achieve the desired pivoting manipulation in a simulation
where privileged information is accessible. We formulate the problem as a Markov Decision Process
(MDP), with each component defined as follows.

States. States consist of the privileged and non-privileged information. The privileged information
p: includes the object pose qfv , the object and environment properties v; € RV», and the
extrinsic contact signal by € Z"¢ The object pose g7 lies in the SE(2) and consists of two p0s1t10nal
components and one orientation. v; encodes physical properties, which are the mass and size of the
object, and the friction constants of both the object and the surrounding environment geometry. The
extrinsic contact signal by is a binary vector where each element indicates whether a specific face of
the object is in contact with a predefined environment surface (e.g., wall, table).

The non-privileged information o; consists of the robot positions q; € R?*Vr, the binary robot
contact signal d; € Z!, and the 2D contact forces A} € R?*N+ measured by force sensors mounted
on the robots’ wrists. All observations are approximately normalized to lie in the range [—1, 1].

Actions. We consider linear translational actions in SE(2) for each robot, denoted as a QXN . Specifi-
cally, each action represents a relative position command for the robots’ end- effector These action
commands are converted into joint torques using Operational Space Control (OSC) [34].

Rewards. Based on how demonstrations are used, we consider three distinct reward formulations.
We denote three different RL polices using different demonstrations (i.e., using different reward
formulation) as (1) Vanilla RL, which does not use any demonstrations, (2) Kinematics-conditioned
RL, and (3) Dynamics-conditioned RL. These policies are obtained by 3 different rewards defined as:
() VanillaRL: r =17, +7rs+ 7,
(2) Kinematics-conditioned RL: 7 = 1), + 1, + rq + Tkin 2)
(3) Dynamics-conditioned RL: 7 =17, + 75 + 74 + Tayn
First, the progress reward is r, = oy (5 — 0.) + a2 (62), where 6, = arccos (3 (Tr (R°R) — 1)).
Tr(-) denotes the matrix trace, and R and RC are the goal and current rotation matrices, respectively.



flc measures the angular deviation between the current and goal orientations, and 7 is added as the
offset. While the linear term in 7}, is used in [73, [74]], our experiments reveal that the inclusion
of the quadratic term is necessary to achieve higher success rates under domain randomization
(DR) [164]] over the size of the objects, which was not discussed in [[74]. Second, the sparse success
reward is defined as rs = asls (qf), where I is the indicator function over the goal set G :=

{q? eER3 | |lq? — dgoa |l < €5 }, where qg,,, is the desired goal state of the object and €; is the user-

specified positive constant. Third, the action smoothness reward is given by r, = aul||a;—1 — a; ||2,
for avoiding non-smooth actions.

Next, we define the reward based on demonstrations generated by CITO. For the kinematic reward
T'in, W use object and robot poses q; and extrinsic contact locations z, obtained by solving () with
fxin- Note that contact force demonstrations are not available in this setting, as fy;, does not have
dynamics constraints. Thus, we compute 7y, as:

riin = os||aj — o(af)|]? 3)

where ¢ retrieves the closest reference robot configuration q; corresponding to the current object
observation q7. Since both the object and environment parameters are sampled from a known
dataset Do during simulation, the corresponding object reference trajectory q¢ is known. Using
the current observation, we identify the closest object configuration within this trajectory, and
consequently retrieve the closest robot configuration. This reward term encourages the robot to follow
the kinematically feasible behaviors.

Similarly, we define the dynamics reward rgy, by utilizing the demonstration q; and y; obtained by
solving (1) with the dynamics model fgy,:

Al - Y(qy)
IRMIEKACTI

where 1) retrieves the closest reference robot contact forces A; corresponding to q?, following the
same logic as ¢. This reward encourages the robot to follow the dynamically feasible behaviors. In
particular, the arccosine term in 74y, encourages the robot to perform a similar contact force direction
as the demonstration shows. Importantly, we do not enforce matching the magnitude of the contact
force, as we observe significant discrepancies between the dynamics model by f4,, and those in
simulators (e.g., MuJoCo), leading to a potential sim2sim gap in contact force magnitudes. Hence,
this work focuses on the direction of contact forces. The term b; is used to count if the desired
extrinsic contact states occur. The constants o;—1 2 3 g are positive and the others are negative.

Tayn = Cu)|dy — ¢(q§)\|2 + a7 arccos < ) + agby (@]

3.3 Step 3: Learning Student-Estimator

The objective of this step is to train the student estimator only using sensor observations to predict
the privileged information as shown in Fig. [Il We empirically observe that sensor observations
alone are sufficient for the object whose geometry is in-distribution with the dataset. However,
their reliability declines when there is uncertainty in object size, which is quite common when
manipulating novel objects. To address this, we additionally incorporate vision inputs to improve
the estimation of the privileged information. Directly using RGB images is avoided due to potential
noise, and employing 3D point clouds is excluded due to their significant computational cost (see
[L6]). Instead, we leverage the object segmentation s; derived from the RGB image, providing a
compact but informative representation of the object.

Therefore, we define a student encoder that takes the history of the sensor observations,
[0¢(—7, -+ ,0¢, and the history of the segmentation features, [s,_r, - ,s;]. Since s; is high-
dimensional, we first apply a Convolutional Neural Network (CNN) to compress the segmentation
into a lower-dimensional feature representation c;. Using the temporal histories of o; and c;, we use
a Temporal Convolutional Network (TCN) [8] to estimate the privileged information. We train CNN
and TCN jointly via supervised learning using datasets collected by rolling out the teacher policy
in the simulator under domain randomization. The supervised learning objective is to minimize the
following loss function:

L= [P — Bell?, )
where p; is the ground-truth privileged information and p; is the estimated output from the student
encoder. It is worth noting that we do not initialize the history buffer with zeros at the beginning of



the episode as other works do (e.g., [22, 148, [71]]). Instead, we populate the buffer by repeating the
initial observation and include this initialization scheme in the supervised learning dataset, which
was critical for the student estimator to achieve accurate performance.

4 Experiment Setup

We validate our framework across two distinct tasks (see Fig.[5): Pivoting with Wall: pivoting a box
using an external wall, Pivoting without Wall: pivoting a box without relying on external support.
For the latter task, the table surface must provide very high friction. In simulation, increasing the
friction coefficient alone was insufficient to replicate the real-world behavior. As a workaround, we
add a thin virtual wall of height 1 mm to simulate the effect of high-friction contact (see Fig.[5b). In
the hardware experiments, we test on a variety of previously unseen objects (see Fig.[0) to assess
generalization beyond the training set. We define a trial as successful if the final orientation error
satisfies |0.| < 0.087 rad (i.e., 5°). We describe the setup for each module below, with additional
details provided in the appendix.

Demonstration Setup. We use the method proposed in [58]], randomizing object and environment
parameters to generate diverse demonstrations. For all tasks, we randomize the mass of the object,
the friction constant of the object and the environment, and the size of the object. For each task, we
collect 5000 demonstrations, which can be computed within a few minutes using 30 Intel 19-13900K
CPU cores.

Teacher Policy Setup. We train the teacher policy in MuJoCo simulator [65] using robosuite [76] as
a wrapper. The agent is trained using Soft Actor Critic (SAC) [26]], implemented with tf2rl [45]]. For
SAC, we use Multi-Layer Perceptron (MLP) for both actor and critic networks. The simulation runs at
500 Hz, while the policy operates at 10 Hz. For each episode, we set the maximum episode length to
300 steps. Overall, training converges within 4 hours on a single NVIDIA RTX 4090. During training,
we apply domain randomization over the objects’ mass and size, the friction constants of both the
object and the environment, and the controller gains used in OSC within robosuite. Furthermore,
we introduce sensor noise to both privileged information and sensor observations to account for the
estimation errors from the student estimator during deployment.

Student Estimator Setup. We first rollout the trained teacher policy over 2000 episodes and collect
a dataset containing ground-truth privileged information, sensor observations, and corresponding
segmentation images (640x480 resolution) of the object using MuJoCo’s rendering functionality.
During data collection, we augment the segmentation images by introducing noise, such as randomly
flipping, translating, and rotating segmentation masks, to improve robustness. We then train the
student estimator via behavior cloning, minimizing the loss function (3)) over multiple epochs. We
use T' = 5 step history of the observations for training corresponding to 0.5 second. Overall, training
converges with 10 epochs (1 hour roughly), depending on the range of domain randomization.

Hardware Setup. We use a 6 DoF MELFA robot [2] equipped with a stiffness controller and a
6-axis force/torque sensor. This hardware enables users to get robot end-effector positions and the
force measurements in the world frame. For object segmentation, we use FastSAM [75] to generate
multiple instance segmentations from an RGB image captured by an Intel RealSense D435 RGB-D
camera [[1]. To identify the target object, we filter the segmented instances under their corresponding
point cloud information, under the assumption that a rough estimate of the SE(2) plane is available,
as we focus exclusively on SE(2) planar manipulation.

Baselines. We implement an MPC baseline that uses privileged information, including object mass,
size, and friction (identified offline), and object pose (estimated via AprilTags). At each timestep,
MPC solves () in a receding-horizon manner, running at the same frequency as the teacher policy.

5 Results

Throughout our experiments, we aim to address the following questions:

1. Do demonstrations generated by CITO facilitate more effective and efficient learning?
2. How does the teacher policy’s performance vary with different demonstrations?

3. How robust is the teacher policy compared to a baseline model-based method?
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Figure 2: Learning curves for different RL training runs. Solid lines indicate average success rates,
and shaded regions denote standard deviation across three different random seeds. Every 10k step,
the current policy is evaluated over 50 episodes, and the success rate is plotted.

Table 1: Number of successful attempts in real.

Mass Kinematics-conditioned RL  Dynamics-conditioned RL

50g 2/5 5/5
110g 5/5 5/5
300g 0/5 5/5

4. How accurately can the student estimator predict the privileged information?

5. Can the trained policies be successfully transferred to real-world hardware experiments?

Do demonstrations generated by CITO facilitate learning? Across the two tasks, we compare
RL performance using different types of demonstrations, corresponding to the different reward
formulations in (Z). RL with kinematic demonstrations is comparable to prior works such as
[46,168], which only consider kinematically feasible trajectories. Overall, RL with dynamics-based
demonstrations achieves the fastest learning as shown in Fig.[2] In particular, in the pivoting without
external wall task, neither vanilla RL nor kinematics-conditioned RL was able to learn the skill.
We attribute this to the task’s tighter feasible action space. In contrast, dynamics-conditioned RL
successfully learns the skill, benefiting from enriched demonstration with contact information.

How does the teacher policy’s performance vary with different demonstrations? For the
pivoting-with-wall task, we deploy both kinematics- and dynamics-conditioned RL policies on a real
system using a box of mass 110 g. During deployment, we vary the mass values used as privileged
information. Table[I] shows the success rates over three trials. We observe that dynamics-conditioned
RL consistently outperforms kinematics-conditioned RL. While both policies are trained with access
to privileged information, the dynamics-conditioned policy benefits from demonstrations that include
contact force references. This enables the policy to learn physically grounded interaction behaviors
during training, leading to greater robustness against variations in dynamic properties. In contrast, the
kinematics-conditioned policy is trained with demonstrations that satisfy only geometric feasibility,
making it more sensitive to changes in object properties. These results highlight the importance of
dynamics-aware demonstrations in contact-rich manipulation tasks.

How robust is the learned policy compared to MPC? We compare the robustness of a dynamics-
conditioned RL policy against an MPC controller on the real-world pivoting-with-wall task. The true
object length is 0.16 m, and we introduce intentional mismatches in the assumed object length during
deployment. For example, a —5 mm offset means that the actual size of the box is shorter than what
the controllers expect. As shown in Table 2] both MPC and RL succeed when the actual object is
longer than expected (+5 mm), as the contact with the wall is still maintained. However, when the
actual object is shorter than expected (—5 mm), MPC fails completely, while RL remains successful.
This suggests that the learned policy exhibits greater tolerance to moderate discrepancies in privileged
information. At larger mismatches (—10 mm), even RL fails. These results highlight the importance
of accurate privileged information during deployment and motivate us to develop reliable estimators.



Table 2: Number of successful attempts in real.
MPC Dynamics-conditioned RL

+5bmm  5/5 5/5
—5mm 0/5 5/5
—10mm 0/5 0/5
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Figure 3: Comparison of our student estimator’s predictions and the ground truth for the wall friction
constant, y- and z-position of the object, and orientation along z-axis, for the pivoting with a wall.

How accurately can the student estimator predict the privileged information? We deploy
the trained student estimator and the teacher policy in MuJoCo and collect both the ground-truth
privileged information and the corresponding student estimator’s predictions. Representative results
are shown in Fig. [3] demonstrating that our student estimator can successfully predict the privileged
information with reasonable accuracy.

Hardware Experiments. We deploy our teacher policy and student estimator on the real robot using
zero-shot sim-to-real transfer. Overall, the policy successfully completes the desired task without
access to privileged information as shown in Fig. [5]and Fig.[6]

Sim-to-Real Transfer. To evaluate sim-to-real transfer, we deploy the learned dynamics-conditioned
RL policy on both the simulation and physical hardware for the two pivoting tasks. The resulting
object orientation trajectories over three trials are shown in Fig. 4]

Overall, although there is some sim-to-real gap for both tasks, the robot could successfully perform
the tasks on the physical hardware as shown in the attached supplemental video. We observe a larger
sim-to-real gap for the pivoting with external wall task than the pivoting without wall task. This is
because for the pivoting with wall task, the object induces the sliding contact between the object and
the wall, and between the object and the table, which are relatively challenging to model precisely in
simulator (e.g., MuJoCo), leading to a larger sim-to-real gap. In contrast, the pivoting-without-wall
task does not involve sliding contacts, resulting in better sim-to-real transfer.
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(a) Pivoting with external wall (b) Pivoting without external wall

Figure 4: Comparison of the object angle in simulation and the real-world during pivoting. We
execute the same policy both in simulation and in hardware and collect the object orientation during
manipulation over 3 trials. Due to sensor discrepancies and physical modeling differences (i.e.,
sim-to-real gap), the resulting actions and motion can differ between simulation and hardware.



(a) Pivoting with external wall (b) Pivoting without external wall

Figure 5: Snapshots of successful pivoting manipulation in simulation and real-world.

Figure 6: Snapshots of successful pivoting manipulation in real-world over various different objects.

6 Conclusion

In this paper, we present a framework for learning closed-loop controllers and estimators for contact-
rich pivoting manipulation. We first leverage CITO to generate high-quality demonstrations, including
object and robot states, contact forces, and extrinsic contact location. Then, we perform demonstration-
guided RL using these demonstrations for training a teacher policy, enabling sample-efficient learning.
Furthermore, we train a student estimator using only proprioception, vision, and force sensing, in
order to predict the privileged information the teacher policy uses. Our framework is evaluated over
several tasks, including the comparison against several baselines, and achieves successful zero-shot
sim-to-real transfer in real-world experiments.

7 Limitations

Our work has the following limitations. First, we evaluate our framework exclusively on the pivoting
task and do not demonstrate results for other non-prehensile manipulation tasks such as pushing and
sliding. This choice was intentional to isolate and analyze key system components. However, our
method does not assume task-specific priors and is applicable to a broader range of non-prehensile
tasks, as long as CITO can generate dynamically feasible demonstrations, which is possible via the
approach in [58] or other CITO methods such as [47].

Second, all evaluations in this work are performed on convex objects (e.g., boxes), and we do not
report results for non-convex geometries. While none of our framework’s modules rely on convexity
assumptions, handling non-convex objects introduces additional complexity in contact reasoning.

Finally, during real-world deployment, we occasionally observed slight object slip (i.e., incipient slip
[18l 56, 29])) relative to the robot, resulting in task failure. This issue is quite challenging: the slip
must be large enough to produce detectable changes in sensor signals, allowing the student estimator
to recognize it, yet small enough to avoid complete contact loss. This limitation is not a significant
issue for other works focused on table-top manipulation [47], since objects are inherently stable.
Addressing this limitation would likely require higher-resolution sensing or slip-specific estimation
modules—for example, integrating visuotactile sensing (e.g., GelSight [70]) or augmenting the
student model with incipient slip prediction capabilities.
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A CITO Details

In this work, we use the CITO @), as presented in [58]. Given a task description, defined by the
initial and goal poses in SE(2), along with privileged information (e.g., object mass, friction, and
size, environment friction), the optimization problem in (IJ) is solved through a sequence of three
optimization problems. The first optimization problem is as follows.

T
. _ _o,ref |2
min Y [lay — 7™
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where h; is the set of constraints, including velocity constraints, bounds on variables, and signed
distance function-based constraints to ensure collision avoidance between the object and the envi-
ronment. The optimization problem in (6) is used to obtain a kinematically feasible object pose
trajectory and the corresponding extrinsic contact trajectory between the object and the environment.
The optimization problem in (6) is solved using SNOPT [23]].

Second, after fixing the object pose trajectory gy to the solution obtained in the first stage, the
following optimization problem is formulated to account for non-smooth constraints due to contact
dynamics:

Find q;a qga yt

S. t. 3 h2 ((_l:7 (_l:+1a (_l;a }_’t) = 07
where ho represents the set of constraints used for considering non-smooth constraints, including
contact making/breaking constraints, linearized force and moment balance constraints, and friction
cone constraints. By solving (7), we obtain the object and robot trajectories that are not only
kinematically feasible but also respect non-smooth contact constraints under linearized quasistatic

dynamics. This optimization problem is a mixed-integer linear problem, which is efficiently solved
using Gurobi [25].

Finally, given the solution obtained from (7)), we consider the following optimization problem.

)

Find Qtv élt7 S’t

g ®)
s. ., hg (@}, @}, 47, ¥1) =0,

where h3 includes non-smooth sticking-sliding contact constraints using complementarity constraints
as well as the original (not linearized) force and moment balance constraints. During solving (&) the
robot’s positions are locally adjusted to satisfy the nonlinear force and moment balance constraints
and sticking-sliding complementarity constraints. This optimization problem is solved through
SNOPT. Note that, for certain combinations of dynamics parameters (e.g., mass, friction), the solver
may return an infeasible solution. In such cases, we do not include these infeasible solutions in the
demonstration dataset.

It is worth noting that the solution obtained by sequentially solving the three optimization problems
described above satisfies the full dynamics function fay, in (I) and is referred to as dynamically
feasible. In contrast, if we solve the same sequence of optimization problems while removing all
constraints involving contact forces—such as force and moment balance constraints and friction cone
constraints—the resulting solution is referred to as kinematically feasible and satisfies the relaxed
dynamics function fiy.

In summary, solving (1)) involves a sequence of the three optimization problems described above,
allowing for efficient computation by decoupling different sets of constraints across the subproblems.
See [58] for more details. Finally, we summarize the parameters used in the above optimization
problems in Table 3]

Table 3: Hyperparameter setup for student estimator.

Parameter Value
Optimizer SNOPT for (6) and (8) and Gurobi for
T 60 for pivoting with-wall task and 150 for without-wall task
time interval for integration 0.1s

B Training Details in Simulation

In this section, we provide implementation details for training the teacher policy. The simulation
environment is built using MuJoCo [65]] with robosuite framework [76]]. We use Soft Actor Critic
(SAC) [26] to train the teacher policy. The training parameters are summarized in Table [4]

The coordinate is illustrated in Fig.[/] In this work, we operate within the SE(2) group, restricting
manipulation to the y — z plane.
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Table 4: Hyperparameter setup for the teacher policy. Note that cv;cy ... g) are the coefficients of the

reward terms used for reward computation in (2).

Parameter Value
total # of steps 300k for pivoting with-wall task and 1500k for without-wall task
batch size 4096
max # of step for timeout 300
Networks [128, 128] MLP
learning rate for policy le-4
learning rate for Q function 3e-4
discount factor 0.9
replay buffer size le6
# of episodes for evaluation 50
50k

# of episodes for warmstart
[ala 2, 3,0y, 5, 06, 7, aS]

[1, 0.075, 10, -1, -50, -50, -0.005, 5]

y

X

Figure 7: Definition of world frame used in this work.

B.1 Domain Randomization

During the training of the teacher policy, we perform domain randomization and add sensor noises to
robustify the policy, which is summarized in Table [5}

Table 5: Dynamics randomization and sensor noise. N'(u, o) denotes a Gaussian distribution with
mean p and standard deviation o, and U(a, b) denotes a uniform distribution over the interval of
[a,b]. A + symbol indicates that the sampled noise is added to the original parameter value.

Parameter Range
object mass 4(0.04,0.4) kg
friction for table and wall U4(0.01,0.4)
friction for objects 4(0.2,0.7)
friction for robots U0.7,1.7)
object size scale 4(0.95,1.05)
proportional gain k, in OSC (2000, 8000)
see below

derivative gain k4 in OSC
initial object position along y-axis
initial robot position

+4(—0.015,0.015) m
+4(—0.015,0.015) m

object position observation noise +N(0,0.015)
robot position observation noise +N(0,0.00075)
contact force observation noise +N(0,0.2)
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For the derivative gain k; in operational space control (OSC) [34]], we compute it based on the
sampled proportional gain &, to achieve critical damping using the relation kg = 2/k,,.

It is worth noting that we represent object orientation using quaternions and apply domain random-
ization to account for sensor noise in orientation estimates. Specifically, we perturb the ground-truth
quaternion q € R* by composing it with a small random rotation:

q=0q®q

where q is the noisy quaternion, dq is a perturbation quaternion, and ® denotes quaternion multipli-
cation. The perturbation quaternion dq is constructed using a random axis-angle rotation. We first
sample a unit axis u € R? from a Gaussian distribution and normalize it:

u~N(0,02,I), u<+ Ll

Jull

Next, we sample a rotation angle 6 (in degrees) from a clipped Gaussian distribution:
6 ~ clip (N (19 03), B Bona)
We then convert the axis-angle representation to a unit quaternion via the exponential map:
0q = exp(f - u)
In our implementation, we use the following parameters:
Oaxis = 0.1, g =0° 09 =2° Opax =5°

This procedure injects bounded rotational noise into the observed quaternion while preserving unit

norm and avoiding discontinuities.

B.2 Termination Conditions
An episode is terminated when any of the following conditions are met:

1. Successful task completion: A trial is considered successful if the final orientation error
satisfies 0| < 0.087 radians (i.e., 5°).

2. Significant deviation from the SE(2) plane: If the object’s z-position p, deviates by more
than 0.05m from its initial value, i.e., [p, — p.(t = 0)| > 0.05m, or if the z-position
drops below the table surface, p, < p'®®°, the episode is terminated and a penalty of -100 is
applied.

3. Timeout: The episode exceeds the maximum number of steps as defined in Table 4]

C Student Estimator Details

In this section, we provide details about the training procedure for the student estimator.

C.1 Data Collection

To construct the dataset for student estimator training, we rollout the trained teacher policy in simu-
lation and record the ground-truth privileged information, sensor observations, and corresponding
object segmentation masks under domain randomization. We use the same range of domain ran-
domization used during teacher policy training Table[5] Since segmentation masks are not used
during teacher policy training, we introduce additional uncertainties to simulate realistic conditions,
including:

* Erosion/Dilation: Morphological operations applied with random kernel sizes to simulate
over- and under-segmentations.

* Partial Mask Dropout: Circular regions within the mask are randomly removed to mimic
occlusions or partial detection failures.

* Full Mask Dropout: With a small probability, the entire mask is dropped (set to all zeros)
to simulate complete sensor failure or occlusion.
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* Flip Noise: Individual pixels are randomly flipped to simulate salt-and-pepper noise or
detector flickering.

* Edge Perturbation: Object boundaries are randomly jittered to simulate segmentation
boundary inaccuracies.

» Spatial Augmentation (Affine): Random affine transformations are applied to the mask,
simulating viewpoint shifts and calibration noise.

* Gaussian Blur: A blur filter is applied to soften sharp edges and simulate optical imperfec-
tions.

The configuration of the segmentation domain randomization is summarized in Table [6]

Table 6: Segmentation mask domain randomization parameters used during student data collection.

Noise Type Parameter Value
Erosion/Dilation Probability for erosion/dilation 0.7
Kernel size choices {3,5,7}
Erosion vs. dilation split 0.5
Random Holes Number of holes 3
Hole radius range [3,9] pixels
Hole probability 0.5
Full Mask Dropout Probability 0.05
Flip Noise Pixel flip probability 0.01
Edge Perturbation Edge noise probability 0.75
Edge point noise probability 0.1
Spatial Augmentation (Affine) Rotation range +2.5°
Translation range +7.5%
Scaling range [0.95, 1.05]

C.2 Student estimator training

Given the dataset collected in Section[C.1] we train a student estimator composed of a CNN followed
by a TCN. The CNN takes as input a binary segmentation mask of size 1 x 480 x 640 and consists of
three convolutional layers with kernel sizes of (3, 3, 3), and strides of (2, 2, 1), and output channels of
(16,32, 64), respectively. An adaptive average pooling layer reduces the spatial dimensions to 8 X 8,
followed by a fully connected layer that produces a 1 x 128 feature vector. The TCN processes the
temporal sequence of CNN features concatenated with proprioceptive and force features. It consists
of three layers of 1D dilated causal convolutions, each with 128 channels and a kernel size of 2,
and dilation rates of 1, 2, and 4. We consider two types of privileged information: time-invariant
dynamics parameters (i.e., mass and size of the object), and time-varying values such as the object
pose. To accommodate this distinction, the student estimator employs two separate fully connected
layers—one for predicting the time-invariant variables and another for the time-varying privileged
quantities (e.g., object pose). The output dimensions of each head match the corresponding target
variables. We find that this separation leads to improved estimation performance.

Then, the model is trained by minimizing the mean square error between the ground-truth and
predicted values by the student estimator. Fig.|8|shows the learning curve of the validation loss during
training. The hyperparameters used for training the student estimator are summarized in Table

Table 7: Hyperparameter setup for student estimator.

Parameter Value
total # of epochs 20
batch size 256
initial learning rate le-3
learning rate schedule ReduceLROnPlateau from PyTorch
optimizer Adam

18



1076
1077
1078
107°

10710
0 5 10 15 20
Epoch

MSE Loss

Figure 8: Student estimator validation loss over epochs.

D Ablation Study

D.1 Effect of linear and quadratic reward terms during teacher policy training

In Section E], we mention that using linear and quadratic terms in 7, in @) is important to ensure that
the robot completes the pivoting task. To validate this claim, we conducted an ablation study using
dynamics-conditioned RL, evaluating three reward variants: (1) linear only, (2) quadratic only, and (3)
both linear and quadratic terms in 7, under settings with and without domain randomization. Table|S]
shows the mean and standard deviation of the terminal object angle over 50 evaluation episodes.

‘When domain randomization is disabled, the policy trained with the linear term alone in r,, success-
fully completes the pivoting task. In contrast, using only the quadratic term leads to task failure,
likely due to the difficulty in reward shaping—quadratic rewards are sparse and less informative
during early training. On the other hand, when domain randomization is enabled, policies trained with
only the linear term exhibit significantly degraded performance. In this case, combining linear and
quadratic terms improves performance substantially. We hypothesize that the quadratic component
offers a stronger gradient signal when the agent is close to the goal, helping to overcome the increased
noise due to domain randomization.

Table 8: Comparison of terminal object angle using different reward formulation with/without domain
randomization. In the terminal angle, we show its mean with standard deviation over 50 episodes.

Reward type Enable domain randomization = Terminal angle [deg]

Linear term No 88.1 £0.21

Quadratic term No 0.0 £0.10

Linear + Quadratic term No 88.9 +0.20
Linear term Yes 70.1 +0.59

Quadratic term Yes 0.0 £0.71

Linear + Quadratic term Yes 88.2 £0.44

D.2 Pivoting with wall task without domain randomization

In Section 5] we present the result of the training curve using different RL training runs for two tasks.
For the results in Fig.[2] we consider domain randomization, and thus it is possible that the pivoting
with external wall task could not be trained due to the large domain randomization. Hence, we show
the result for the pivoting with wall task under no domain randomization as shown in Fig.[9]

Fig. O shows that all RL using different reward equations could successfully learn the skill. Among
them, dynamics-conditioned RL exhibits the fastest learning rate. This confirms that while vanilla RL
can succeed when the training environment is noise-free, providing dynamics-consistent demonstra-
tions significantly improves the learning efficiency by offering more informative reward signals.

We emphasize that for the pivoting without wall task, even under no domain randomization, vanilla
RL and kinematically-conditioned RL fail to learn. This supports our claim that non-prehensile
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Figure 9: Learning curves for different RL training runs for pivoting-with-wall task. Solid lines
indicate average success rates, and shaded regions denote standard deviation across three different
random seeds. Every 10k step, the current policy is evaluated over 50 episodes, and the success rate
is plotted.

manipulation tasks have very narrow feasible action regions. Therefore, leveraging demonstrations
that satisfy complex contact constraints plays an important role in improving learning efficiency.

D.3 Student Estimator Performance
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Figure 10: Comparison of our student estimator’s predictions and the ground truth for the box mass,
the box length, the box width, the robot friction constant, and the table friction constant, for the
pivoting with a wall.

In Section 3] we present a subset of our student estimator results due to page limitations. We show the
remaining privileged information figures in Fig.[T0] Overall, we observe that our student estimator
successfully predicts the privileged information with reasonable accuracy.
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